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ABSTRACT

Recently two papers have been published on empirically measur-
ing side-channel leakage in processors. The first paper introduced a
framework for measuring side-channel leakage called “Side-Channel
Vulnerability Factor” (SVF). SVF used phase correlation between
victim and attacker programs to quantify leakage. A subsequent
paper opposed some of the claims made in the SVF paper and intro-
duced another metric, “Cache Side-channel Vulnerability” (CSV).
CSV uses the same concept of measuring correlation between vic-
tim and attacker, but instead proposes using direct correlation in
place of phase correlation. Another major difference between SVF
and CSV is the scope of leakage measurement — CSV is defined to
apply to only cache leakage, whereas SVF can be applied to mul-
tiple components within a processor. The CSV authors argue that
applying SVF yields conclusions which contradicts what they term
to be ground truth. In addition to these differences, the two papers
used different experimental setups and thus their results were not
directly comparable.

This paper deconstructs the differences between SVF and CSV.
We first provide a general overview of side-channels and back-
ground on their modeling and measurement. We then examine the
differences between SVF and CSV both quantitatively and quali-
tatively using a common experimental setup. Finally, building on
our examination of differences, we review and rebut claims made
in the CSV paper against the SVF framework and metrics.

1 Introduction

Side-channel vulnerabilities allow nefarious users to circumvent

traditional permissions, obtaining access to private information. They

could and do exist in a variety of different systems. Processor
caches shared between different processes have been demonstrated
to leak information about encryption keys [16, 17, 9]. Spikes in
power usage on mobile processors can also leak information about
encryption operations [15, 12]. Even shared networks have been
used to obtain information about other users’ encrypted communi-
cations [5].

Perhaps the most pernicious issue regarding side-channels is that
while it may be possible for many system components to leak infor-
mation, we do not know which ones or how much they leak. There
may exist side-channels being leveraged in the wild of which we
are unaware. It is, therefore, difficult to understate the importance
of methods to find, quantify, and evaluate improvements to these
side-channels.

AtISCA 2012, a paper entitled “Side-Channel Vulnerability Fac-
tor: A Metric for Measuring Information Leakage” presented a
framework for measuring the potential leakage through systems [6].!

"Full disclosure: this paper’s authors were also two of the authors
of the SVF paper.

The SVF paper proposed to estimate leakage based on the correla-
tion of phases in victim execution to phases which an attacker can
observe. Further, the authors state that leakage is a system-level
property and thus should be measured in that context, devising their
framework for that purpose. An underlying theme in the paper is
an argument against single-component (standalone) measurement
of leakage.

More recently, at HASP 2013 (a workshop co-located with ISCA),
a paper entitled “Side Channel Vulnerability Metrics: the Promise
and Pitfalls” presented a response to the original SVF paper, wherein
the authors refuted many of the SVF paper’s claims and introduced

a simpler, alternate metric, Cache Side-channel Vulnerability (CSV) [26].

CSV eliminates the phase detection techniques proposed by SVF
and instead directly computes Pearson correlation between victim
and attacker execution data. By design, CSV restricts itself to mea-
suring only leakage through caches. The authors conclude that
CSV metric results are consistent with what they term to be ground-
truth expectations of leakage.

The SVF and CSV papers agree on some issues and disagree on
others. Both papers adopt an empirical approach to side-channel
characterization (as opposed to mathematical modeling). In partic-
ular, both use a metric that compares victim execution to attacker
observations. There are, however, at least two fundamental dif-
ferences between SVF and CSV. First, the metric for comparison:
SVF uses phase correlation whereas CSV uses direct correlation.
Second, CSV measures leakage through the cache only whereas
SVF can measure leakage through multiple components like both
the cache and pipeline simultaneously. Additionally, in demonstrat-
ing their ideas, the authors of the respective paper used different
experimental setups: they differ in victim and attacker application,
their inputs, and simulator.

The HASP’13 paper raises some interesting questions. First,
CSV is derived from an intuitive perspective on cache side-channel
leakage; accordingly, their results are easy to understand. Is the

simplified CSV perspective sufficient to understand cache side-channels?

Second, CSV differs from SVF in several significant ways, leading
to vastly different results. Which of these differences are responsi-
ble for which differences in their results? We examine these ques-
tions quantitatively by normalizing the experimental infrastructure
to match as closely as possible and present experiments which re-
solve some of these lingering questions. In addition to these ques-
tions, the HASP’13 paper contains some inaccuracies about the
original SVF paper which we clarify and correct in this paper.

We begin this paper with an introduction to side-channels (Sec-
tion 2) then a background on modeling and measuring side-channel
leakage (Section 3). Next, we quantitatively and qualitatively ex-
amine the differences between CSV and SVF with a deconstruction
of their component properties and a set of experiments measuring
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Figure 1: When an attack and victim execute on the same
processor, a wide variety of components may leak sensitive in-
formation. The components highlighted are known to be ex-
ploitable with demonstrated attacks. Could the other compo-
nents leak?

SVE, CSV, and a nearly exhaustive set of derivative metrics which
incorporate properties from both (Section 4). Building on this anal-
ysis, Section 5 reviews the claims about SVF which were discussed
the CSV paper. Finally, we conclude with a discussion of open
problems in side-channel metrics and conclusions from this study
in Sections 6 and 7 respectively.

2 Side-Channels: A General Introduction

Most actions have side-effects which can be used to infer private
information. For instance, the creaks as one walks in an old apart-
ment alerts neighbors to one’s presence. The same side-effects oc-
cur in computing and in fact attackers can use these “side-channels”
to obtain sensitive information. For example, the behavior of en-
cryption software is partially a function of the encryption key it is
using; thus, an attacker may be able to recover the encryption key
by measuring how long it takes for the encryption to complete or
how much power each encryption round consumes.

Side-channel leaks occur at all levels in the computing stack. The
time between memory allocations, or the amount of memory allo-
cated may leak information about a web page being rendered [11].
The size and frequency of the network packets may be used to break
encrypted VoIP conversation [25]. Concurrently running encryp-
tion alongside another program on the cloud may leak information
about the keys [28]. It is expected that applications, operating sys-
tems, virtual machine monitors, and processors leak information
creating potential side-channels. In the way of introduction, in this
section we first describe a side-channel attack in generic terms then
describe a concrete attack.

2.1 Generic Processor Side-Channel Attack

To describe a generic processor side-channel attack we need at least
two entities: a victim program, and an attacker program.

Victim: The victim program is the program from which the at-
tacker is trying to steal information. In most of the side-channel
attacks, the victim program tends to be a cipher such as AES or
RSA. In fact the practice of attacking ciphers is so common that

the name side-channel attacks has become synonymous with at-
tacks on cryptographic programs. Technically speaking, however,
the victim program can be any program. For instance, in some re-
cent attacks a web browser rendering pages and an arbitrary process
using address-space layout randomization have been victimized.

Attacker: The attacker program is the program that is trying to
extract sensitive information from the victim. This program is of-
ten carefully tailored to exploit precisely identified leakages in one
or more processor structures. It is convention to name the attack
type based on the structure that the attacker program is targeting.
For instance, if the attacker program is targeting the L1-D cache,
the side-channel attack may be referred to as a cache side-channel
attack.

However, be warned that the convention of naming attacks after
the structure is somewhat superficial. Although the attacker may
be trying to extract leakage from a particular structure (e.g., cache
side-channel), she may be indirectly aided by leakage from a dif-
ferent processor structure (e.g., pipeline). Thus, it is important to
differentiate the attacker program, the actual source(s) of leakage,
and the attacker’s perception of the source of leakage. We will re-
visit this distinction with a concrete example in the next subsection.

In addition to these two central entities, there are two additional
factors that have to be included in any generic description of a pro-
cessor side-channel attack.

Synchronization Strategy: To extract leakage from the victim,
the attacker can scavenge the leaky structure simultaneously with
the victim or just after a victim has used a structure. Attackers that
operate concurrently (in unison) are referred to as asynchronous
attackers, while attackers that take turns with the victim are referred
to as synchronous attackers. Please note that the synchronous and
asynchronous adjectives are exactly the opposite of their typical
English usage.

Denoising Strategy: Any data extracted by the attacker during
the attack is likely to be noisy due to real system effects such as in-
terrupts, inherent uncertainty from scheduling, autonomous DVFS
etc., and also due to nature of leakage being exploited (for instance,
the cache may not be accessible at precisely at the time when it is
used by a victim). To recover the sensitive information from the
raw data the attacker has to perform some denoising. Often the
ability to extract signal from noisy measurements determines the
efficacy of the attack.

Last but not the least, we need leaky processor structures to carry
out side-channel attacks. Figure 1 shows a typical microproces-
sor microarchitecture and highlights the components are considered
exploitable. In the last decade several papers have published attacks
that utilize information available through other shared microarchi-
tectural structures including I- and D-caches [17, 1], branch predic-
tors [2], SMT functional units [3], TLBs [10], network-on-chips [20],
and second- and last-level caches [27].

Our prediction is that despite a lack of published attacks, many
other on-chip shared structures including dependence predictors,
various intermediate buffers, energy management units, prefetch-
ers, page cache structures, a variety of on-chip controllers, transac-
tional memory primitives, and pretty much any microarchitectural
structure that is shared can leak information, and that this leakage
can be used to construct or aid in side-channel attacks.

2.2 Demonstrative Example: A “Cache’ Attack

In this section, we detail the operation of a particular type of side-
channel attack — an asynchronous prime-and-probe cache side-channel
attack — on the RSA encryption algorithm [17]. This particular at-
tack is useful as a demonstrative example to develop intuition on
the operation of side-channels.



The attack against RSA exists for two reasons: First, implemen-
tations of RSA exhibit microarchitectural behaviors which differ
depending on the encryption key. In the case of RSA, OpenSSL
contains branches which are data-dependent on the key. Second, an
attacker can observe — either directly or indirectly — these microar-
chitectural behaviors. An asynchronous prime-and-probe attacker
observes microarchitectural behavior by continuously scanning a
shared cache with memory instructions, detecting when they miss
in the cache and inferring that the victim evicted their cache line in
that case.

We will first detail the operation of RSA which enables the leak
followed by an explanation of the attacker which can exploit the
leak.

The Victim RSA operations are defined rather simply as modular
exponentiation:

c=m° (mod n) (1)

Wherein m is the plaintext, (n, €) is the key, and c is the ciphertext.
This operation, however, is deceptively simple because m, e, and
n can be relatively large numbers and exponentiation is a complex
operation, preventing RSA from being computed via a single CPU
operation. Instead, RSA implementations often use exponentiation
by squaring, defined recursively as:

2y e=1 . .
o€ = I(f 2 2 %fe ?s odd @)
(z%)2 if e is even

This algorithm is interesting and leaky in large part because it uses
cases based on e. As a result, the code contains a branch which
is data-dependent on the encryption key. Futher, the ‘then’ and
‘else’ bodies following this branch contain non-trivial and different
operations involving function calls to a math library. As a result,
the instructions being executed and memory addresses being exe-
cuted by the victim are significantly altered by the encryption key.
The instructions being issued affect components like the I-Cache
and the pipeline functional units. The memory addresses being ac-
cesses will affect the victim’s cache fingerprint. If either of these
microarchitectural effects can be sensed, a leak is possible.

The Attacker, in Theory Based on the intuition that an RSA oper-
ation’s cache fingerprint changes over time in a pattern depending
on the encryption key, an attacker may attempt to get an approxima-
tion of this fingerprint and use it to obtain an approximation of the
encryption key. If the attacker and victim share a cache, it seems
intuitive that an attacker can sense this fingerprint using contention
for cache lines.

The synchronous (rather than asynchronous) prime-and-probe
attack is easier to understand, so we will first explain its operation
and then convert it into an asynchronous attack. First, the attacker
“primes” the cache by issuing loads to all of the cache lines, evict-
ing all of the victim’s data. Next, the attacker allows the victim to
execute for some time, during which the victim will issue stores
and loads to the cache, evicting some of the attacker’s cache lines.
Finally, the attacker scans the cache again but times the loads to
each cache set. Loads which take longer indicate that the attacker
experienced one or more misses in that cache set, which further
implies that the victim issued a memory access to that set. The at-
tacker then lets the victim run for some period and repeats the scan,
ad infinitum.

After recording cache set load latencies in each scan and exe-
cuting many scans over the entire execution of the RSA operation,
the attacker attempts a complex post-processing step to decode her
load latencies to hits and misses, then patterns of hit and misses to

encryption key bits. The complexity of this step often depends on
quality of observations — noisy data are more difficult to decode.
The synchronous attack model assumes that the attacker can ar-
bitrarily interpose itself into the victim’s execution, interrupting
it at will. Sometimes this is feasible [9], other times it is not.
An attacker can also execute an asynchronous attack wherein he
runs in parallel with the victim and shares a cache and possibly a
pipeline via simultaneous multi-threading. The asynchronous at-
tack works the same way as the synchronous attack, but may re-
duce the wait time in between scans to zero because the victim was
given a chance to run while the attacker was issuing loads. Despite
possible noise issues related to executing simultaneously with the
victim, the asynchronous attack has been demonstrated [17].

The Attacker, in Practice Extracting leaked data from cache line
ownership is ostensibly how attackers in practice operate. There is,
however, one assumption baked into the this description: that their
measurements — noisy or not — are affected only or primarily by
cache hits and misses. Microarchitectures are more complex than
that, however. In particular, for the asynchronous attacker sharing a
pipeline with the victim, a host of interference/contention with the
victim can affect the attacker’s observations. Contention for func-
tional units, load/miss buffer slots, cache interconnect bandwidth,
and memory bandwidth all affect cache load latency, just to name
a few. From the perspective of the attacker, this differentiation is
irrelevant — they either obtain data which can be exploited or not —
which components affect these data is academic to them. In terms
of modeling, measuring, and reducing processor side-channel leak-
age, however, knowing which components positive or negatively
affect leakage is critical. If it turns out the attacker’s measurements
are mostly determined by contention for pipeline functional units
(for example) then statically partitioning the cache (thus isolating
the attacker from being evicted by the victim) will not affect leak-
age and could in fact increase leakage. Given this insight, it is
possible that “cache side-channel” may be a misnomer.

3 Background: Discovering Side-channel Leaks

While there are many solutions [23, 21, 8, 24, 19, 14] to mitigate
or block side-channel leaks until very recently there was no proces-
sor design time technique to test a microarchitectural idea for its
vulnerability to side-channel information extraction. Design-time
techniques for identifying leaks are extremely valuable, because
we can then use these techniques to identify and fix leaks before
processors hit the market.

3.1 Proving Non-existence of Side-Channels

One approach to testing a microarchitectural idea for leakage is to
use Gate-level Information Flow Tracking techniques to prove a se-
curity property known as non-interference [24]. Non-interference
is a strict binary property. The main idea is to use a variant of
taint tracking and white-box validation to prove that two informa-
tion flows never interfere with each other. The technique itself is
easy to apply and scalable, but strictly non-interfering systems im-
pose high-cost and overheads that limit the widespread application
of these systems. Further, the analysis itself needs an RTL descrip-
tion of the design. It would, however, be desirable to identify leaks
much earlier in the design cycle.

3.2 Accepting Side-channels Will Exist But Estimating Risk

While non-interference was the golden standard for security in early
days of security, it is accepted today that side-channel security
should be considerd a trade off between leakiness and associated
risks. This shift in thinking underscores the idea that security is
a continuous property rather than a binary one. Pending major



breakthroughs in low-overhead, low-cost, non-interfering systems
(which has eluded us for 20+ years) the leak-risk tradeoffs mindset
offers a pragmatic solution.

To estimate the leakiness of systems, there have been some ef-

forts to model and measure side-channel leakage. Kopt and Basin [13]

then Domnitser et al. [7] introduced methods of modeling and bound-
ing side-channel leakage. More recently, Demme et al. [6] followed
by Zhang et al. [26] proposed experimental metrics for measur-
ing leakage. All of these different techniques for analyzing side-
channels have pros and cons which we will review next.

Mathematical Modeling to Estimate Leaks In modeling based
approaches, the system being analyzed is itself mathematically mod-
eled in a relatively simple form. To continue the cache example,
Domnitser et al. [7] model ownership of cache lines (and therefore
contention for the lines), several basic properties of caches like set
associativity, and some of the characteristics of both the victim and
attacker executions like the amount of time in between repeat cache
line accesses.

Using relatively simple mathematical models enables modeling-
based analyses to apply sound reasoning to the leakage problem.
For instance, it may be possible to prove non-interference (and thus
zero leakage) between victim and attacker — this would be very easy
to show for a statically partitioned cache and may be possible for
certain cache replacement policies. In Domnitser et al. [7], a prob-
abilistic model is defined which allows computation of the proba-
bility that attackers can view critical cache accesses, an interesting,
intuitive metric.

The major drawback to modeling approaches for analysis is that
they require relatively simple mathematical models of the system
being analyzed to enable said analysis — if the models are too com-
plex, mathematically proving the (non-)existence of a side-channel
becomes difficult and perhaps intractable. In reality, however, these
systems are tremendously complicated and defy simple modeling.
Domnitser et al. [7], for example, do not model complex replace-
ment policies, prefetching, load-miss buffers, or any other cache
feature beyond the cache lines themselves. Adding these features
to their model is likely infeasible — they would complicate it be-
yond the point where one could reason about it, thus limiting con-
clusions.

Empirically Estimating Leakage Using Simulators To avoid hav-
ing to accurately model complex systems, measurement approaches
treat systems as black boxes, as we see in Figure 2. Instead of be-
ing able to analyze a system’s model, they operate experimentally,
monitoring the execution of a system to calculate a metric related
to leakage [26, 6]. This is the same methodology that most of com-
puter architecture uses — we measure power, energy, performance,
and a host of microarchitectural metrics to judge system perfor-
mance. As a result, measurement methods work on systems which
are arbitrarily complex and thus their accuracies have no limit (in
theory).

As an experimental approach, leakage measurements depend on
the same combination of factors as other measurements such as all
of the system components, the code being executed, inputs to the
program, and the application an attacker is executing. Unlike other
microarchitectural measurements, however, side-channel leakage
suffers from one additional problem: using an average over many
programs and runs may not be sufficient. While averages are rel-
evant for performance, in the adversarial environment of security
attackers can often leverage worst-case scenarios. Is the same true
for leakage? What sort of worst-case scenarios can be forced by
attackers? Answers to these questions are unclear. Even if they
were known, it may not be possible for experimental methods to
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Figure 2: Proposed leakage measurement techniques model the
system as a black box and collect traces from the victim and at-
tacker’s execution. Then, the determine whether or not the two
traces are correlated. As a result, measurements are a func-
tion of the victim program, victim’s inputs, the attacker, and
the system.

analyze worst-case situations. While measurement methods have
the capability to account for all aspects of complex systems — in
direct contrast to modeling — their inability to measure all possible
scenarios could mean that they miss important leaks.

4 SVF vs. CSV: A Comparison

To estimate leakage, two recent papers (SVF and CSV) use the ex-
perimental methodology shown in Figure 2. Specifically, both use
a pair of time-series “traces” — one representing private data used
in a victim’s execution, the other representing data being gathered
by an attacker — to model a particular run in the system being eval-
vated. For example, the victim trace could represent bits from an
RSA encryption key being used by OpenSSL and the attacker trace
could contain load completion latencies from its scan through the
cache. The challenge then is to determine how much of the pri-
vate information in the victim’s trace could be recovered from the
attacker’s trace. Informally, the challenge is determining whether
or not the two traces are correlated — if the attacker’s observations
are affected by the victim’s trace, then those observations will have
some correlation to the victim’s trace. Correlation, however, can be
measured in a variety of different ways depending on the context.

SVF proposes that traces first undergo a form of pattern recog-
nition in the form of phase detection. In particular, SVF applies
the phase detection from SimPoint phase analysis [18] and con-
structs self-similarity matrices for each trace. SVF then calculates
the Pearson correlation coefficient between the two self-similarity
matrices and uses this correlation as a metric for leakage. Intu-
itively, this approach reveals how well phases in the victim appli-
cation are reflected in observations an attacker has made. This use
of phase correlation is interesting for several reasons. First, it en-
ables one to compute correlation between two traces with different
types (e.g., memory addresses vs. cache misses). Second, it emu-
lates the learning of patterns in observations which occur as a result
of repeated events in the victim.

More recently, Zhang et al. [26] propose a new metric: Cache
Side-channel Vulnerability (CSV). CSV adopts the same method-
ology as SVF in using experimentally derived traces, but specifi-
cally defines two particular traces which are different from those



Multi-Component SVF Cache-Only SVF CSV (Our impl.) CSV ([26))
Data collected for & presented in This Paper This Paper This Paper CSV Paper [26]
Leakage potentially occurs through | All simulated components Cache Cache Cache
@ Scope Victim Trace Memory Accesses Cache Set Accessed | Cache Set Accessed | Cache Set Accessed
Attacker Trace | Cache Set Load Latencies | Cache Set Missed Cache Set Missed Cache Set Missed
Q)  Attacker Asynchronous v v v X
Synchronous v v v v
Sync. Interval 5000 5000 5000 100
@ Correlation Method Phase Correlation Phase Correlation Direct Correlation Direct Correlation
@ Victim Application OpenSSL RSA OpenSSL RSA OpenSSL RSA AES
@ Simulator Home grown Home grown Home grown GEMS [4]

Table 1: Characteristics of vulnerability metrics

used in the SVF paper’s case study. In particular, CSV defines the
victim trace to be whether or not the victim accessed each cache
set during a particular epoch and the attacker trace to be whether or
not the attacker experienced a cache miss in each cache set during
each epoch. As a result of using traces which are similar in data
type (specifically cache related events), CSV avoids using phase
detection techniques. Instead, they can directly compute Pearson
correlation between the traces, which they use as a leakage metric.

Although both are intended to measure side-channel leakage,
SVF and CSV are very different metrics and reflect different per-
spectives on side-channel leakage. Accordingly, the results ob-
tained by the two papers are significantly different. Next, we an-
alyze the differences between SVF and CSV in both qualitatively
and quantitatively.

SVE, CSV, and the experiments their authors have published dif-
fer in five respects, as summarized in Table 1:

@ Scope The choice of traces directly impacts the scope of leak-
age measurement. SVF defines traces which measure the
correlation between the memory addresses being accessed
by a victim and load latencies to each cache set which an
attacker can observe. This captures potential leakage in any
component which affects execution of memory instructions.
In contrast, CSV defines victim and attacker traces which
contain whether or not cache sets” were accessed by the vic-
tim and whether or not cache sets experienced misses by
the attacker. By construction, CSV measures only leakage
through cache line ownership.

@ Attacker The SVF authors used an asynchronous attacker wherein

the attacker and victim run in parallel, often sharing a pipeline
via Simultaneous Multi-Threading (SMT). The CSV paper
used a synchronous attacker, assuming that it was capable
of interrupting the victim every 100 cycles and scanning the
cache contents.

@ Correlation Method SVF uses a phase detection based corre-
lation metrics which we will call “phase correlation” whereas
CSV directly computes Pearson correlation between traces.

@ Victim The SVF paper examined OpenSSL’s RSA signing op-
eration whereas the CSV authors used an AES algorithm.

@ Simulator The SVF paper used a simulator its authors devel-
oped from scratch whereas the CSV paper used a modified
version of GEMS5 [4].

%In this description, cache set does not mean physical cache set.
Rather, it is the cache set before hashing schemes are applied.

Cache Size L1=32K, L2=256K, L3=8MB

Line Size 64B or 8B

Associativity 8-way or 4-way

SMT On - victim & attacker share a core
Prefetcher None

Attacker Scan Style | Scans all sets in order

Partitioning None, Dynamic, Static

Random Eviction None, 5%, 10%, 50%

Hashing Scheme Low Bits, XOR, PRS-100, RPCache

Table 2: Cache configurations for the results shown in Figure 3.

4.1 Experimental Methodology

To quantitatively tease out the differences between SVF and CSV,
we duplicate the experiments from the CSV paper. We also create
an SVF metric which measures leakage only in the cache by using
the same traces as CSV. Finally, the attacker style (synchronous vs.
asynchronous) is also varied. These combinations are used to de-
termine precisely which properties of the metric and experimental
setup affect results and how. All were implemented in the newest
version of the custom simulator used in Demme et al.’s SVF pa-
per [6] (the details of which can be found in that paper). To limit
the number of combinations, we ran with the OpenSSL RSA vic-
tim which was used in the SVF paper. Table 1 shows these metrics
and compares them to the CSV metric and evaluation environment
used in Zhang et al.’s work [26].

Metrics To determine what effect differences in metric have on
results, we present three different metics: (1) the original SVF
metric defined by Demme et al. using phase correlation and traces
defining a multi-component scope, meaning they account for leak-
age in many different components. (2) Cache-Only SVF which
uses SVF phase correlation, but defines traces in a manner identi-
cal to CSV. (3) The original CSV metric which uses direct corre-
lation and traces which define a cache-only scope. We note that
the fourth possible combination — CSV-like direct correlation with
multi-component system scope — is not possible since CSV’s direct
correlation is incapable of handling traces of different types.

Cache Features Our baseline and variants are shown in Table 2.
Most of the configuration parameters are well known options. Those
options deserving further specification are explained here:

Partitioning Intuitively, splitting the cache between the attacker
and victim should eliminate or reduce the side-channels since
the attacker can no longer experience misses as a result of
victim actions. Static partitioning allocates half of the lines
in each set to each thread (victim/attacker). Dynamic parti-



Access Eviction

Thread | Result | Line Owner | Action

Victim Hit - Regular hit processing

Victim Miss Victim Regular miss processing

Victim Miss Attacker Swap accessed set with a
randomly selected set; In-
validate victim’s lines in
swapped sets

Attacker Hit - Regular hit processing

Attacker | Miss Attacker Regular miss processing

Attacker | Miss Victim Swap accessed set with a
randomly selected set; In-
validate victim’s lines in
swapped sets

Table 3: RPCache PRS permutation policies.

tioning regularly determines which cache lines should be ex-
clusively allocated to a thread and which should be shared,
the same as used in the SVF paper [6].

Random Eviction Earlier work [6] implemented a feature which
randomly evicts cache lines. It serves to add noise to at-
tacker measurements, thus one would expect it to reduce SVF
and/or CSV. An eviction occurs each cycle with configurable
probability and uniform randomly selects a cache line to evict.

Hashing Scheme In addition to the relatively standard low bits
and XOR hashing schemes, we also examine “PRS-100" and
“RPCache”. These two schemes use a mechanism called per-
mutation register sets (PRS) [22] which maps virtual cache
sets to physical ones, essentially allowing for changes in the
hash over time. In PRS-100, we use the same PRS policy as
used in Demme et al. [6] and randomly swap two sets’ map-
pings once every 100 loads. Further, in PRS-100 the PRS
mappings are applied only to the victim application as dis-
cussed in the original PRS paper [22]. RPCache [23] uses a
different policy wherein PRS is applied to both threads (with
different mappings for each one) and a permutation occurs at
certain cache misses, as we detail in Table 3.

4.2 Comparison

With this variety of metrics and different attackers, we can quan-
titatively determine which factor impacts differences in results. In
this subsection we examine each parameter and review its effect
on leakage measurement: How does scope affect leakage measure-
ment? Are asynchronous or synchronous attackers more powerful?
Does correlation method matter? Do the details of application and
simulated hardware change measurements?

The results of our simulations can be found in Figure 3. Since
it explores a multi-dimensional space, the reader is requested to
refer to the appropriate subset of charts mentioned in each analysis
below. The first row contains results using the same measurement
methods as Demme et al. [6], the bottom row contains results using
CSV as defined by Zhang et al. [26] but with the same experimental
setup as the other configurations. The rows in between contain
data with different combinations of options for the measurement
method, bridging the gap between the two extremes.

How does scope impact leakage measurement? (Charts A and
B) These data indicate that the scope of measurement (i.e., whether
multiple component or only cache leakage is being measured) has
profound impact upon the measurement. We see that multi-component
SVF with an asynchronous attacker (row A) is nearly unaffected by
any cache design parameter — as if the attacker were not even using

the cache. When SVF’s scope is narrowed to cache only (row B),
however, many of the features we would expect to degrade the leak-
age work as intuitively expected. Statically partitioning the cache,
for example, drops cache-only SVF to 0. Since both of these rows
utilize phase correlation and differ only in their scope, the differ-
ence in leakage for statically partitioned caches shows that attack-
ers can utilize leakage in other components even by only issuing
loads.

Does attacker style impact leakage? (Charts A, B and D) If
we compare multi-component SVF with an asynchronous attacker
(row A) to the synchronous attacker (row D), we observe similar
trends as when the scope is narrowed to cache-only (row B). We
suspect the reason for this is that side-channel leakage data con-
tained in cache line ownership is long-lived enough to be probed
by a synchronous attacker’s interrupts, whereas other potentially
vulnerable components’ states are far more transient and thus must
be probed by an attacker running concurrently. Comparing the
cache-scope metrics (cache-only SVF and CSV) confirms the data
from multi-component SVF — in the restricted scope, trends in de-
sign features’ effects tend to be similar for asynchronous and syn-
chronous attackers.

Does correlation method impact leakage measurement? (Charts
E and F) As seen of rows E and F, the trends exhibited by Cache-
Only SVF and CSV are quite similar; however, one striking ex-
ception is XOR indexing wherein CSV rates its vulnerability near
zero, though we would not expect XOR to offer substantial pro-
tection. CSV reports a near-zero vulnerability for XOR because a
given address in the victim and attacker will be assigned to differ-
ent cache sets. As a result, when the victim displaces an attacker’s
cache line in some set S, the attacker sees a miss in S’, since we
assume that the attacker does not know the relationship between S
and S’. CSV, however, measures the correlation between accesses
in S and misses in S, nor S’. If, however, the attacker is able to
learn the relationship between S and S’, a very simple post- pro-
cessing step will reveal significant leakage. Since SVF uses phase
correlation instead of direct correlation, it — in essence — learns the
mapping between S and S'.

In addition to differences in XOR vulnerability rating, we also
observe that SVF finds some leakage in PRS-100 and RPCache,
whereas CSV does not. This is likely because there is another form
of leakage for which SVF can account but CSV cannot: aggregate
numbers of misses which vary over time. Phase correlation cap-
tures this pattern, however CSV will not if the misses are continu-
ously shifted from cache set to cache set, as they are in PRS-based
schemes.

Victim, Simulator, & Attacker Interval (Row F) The victim ap-
plication, simulator, and synchronous attack interval differ between
Zhang et al. [26] and this paper. Any differences between the bot-
tom row of Figure 3 and their paper’s results (not reproduced here)
can be attributed to these differences. Many of the trends are sim-
ilar, including the fact that static partitioning eliminates leakage in
all cache-only contexts. There are, however, several differences be-
tween our CSV results and theirs: (1) Dynamic partitioning lowers
CSV in Zhang et al., but not here. We suspect this is a difference
in dynamic partitioning algorithms. (2) Very small random evic-
tion rates lower CSV much more quickly in our experiments. This
is likely because our synchronous attacker’s larger interrupt period
means more side-channel noise is added in between scans. (3) XOR
is rated lower by us. This is likely a result of how Zhang et al. de-
fine “cache set” in their metric; we assume they use physical cache
sets for low bits and XOR but the virtual (pre-hash) sets for PRS-
based schemes, in essence assuming that an attacker cannot reverse
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Figure 3: The effects of cache configuration and attacker types on various vulnerability metrics
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PRS mapping but can reverse the XOR hash.
4.3 Conclusions

The experiments and analysis in this section provide evidence for
two important conclusions: (1) While cache-only scope could be
useful for debugging leakage in a cache, multi-component scope is
necessary to determine broader vulnerability. Using only a cache-
only scope is akin to measuring cache miss rates and assuming
them to be the only determinant of processor performance. (2)
CSV’s direct correlation, while intuitive, assumes very little abil-
ity of attackers to post process data and can thus underestimate
leakage. As a result, even schemes which provide only superfi-
cial protection (like the XOR example) can be rated as having little
vulnerability. Overall, phase correlation appears to be superior in
finding a superset of leaks which direct correlation discovers and is
flexible enough to be applied to a variety of different scopes.

S Discussion of Claims in the CSV Paper

In addition to proposing CSV, which we reviewed in Section 4,
Zhang et al. [26] discuss some “limitations” to SVF and describe
characteristics for “a good system vulnerability metric”. In this
section we review both.

5.1 Discussions on SVF

The CSV paper has a section entitled “Discussions on SVF” which
comments on several features of SVFE. Several of the limitations
they discuss relate to the SVF paper’s selection of traces, attacker
style, and attacker capability. The previous section reviewed these
topics quantitatively. Additionally, Zhang et al. [26] list several
other limitations regarding SVF, which we address here.

SVF as a Framework to Define Metrics Zhang et al. [26] state
in Section 3,1, Para. 1:

“The aim of SVF is to use a single metric to reveal the
information leakage of the entire system for all side-
channel attacks. [...] According to Demme’s SVF def-
inition, the SVF is the correlation between the sim-
ilarity matrices of two traces; let’s call them X and
A. Thus this SVF can ONLY evaluate the information
leakage of X through A, instead of the entire system.”

SVF has the ability to observe leakage through all the system
components which directly or indirectly affect events at trace points
X and A. Since microprocessor components are interconnected (e.g.,
cache and pipeline), any component directly or indirectly connected
to X or A could affect X and/or A. In Section 4 of this paper, we
provide evidence that multiple components contribute to leakage
even though the attacker may ostensibly target only one compo-
nent, reinforcing the importance of this measurement feature.

The CSV paper also says in Section 3.1, Para. 2 that:

“[...] SVF can not be what we term a universal metric,
i.e., a single metric for all side channel vulnerabilities
in a system, as claimed in [9].”

We agree that SVF is not a universal metric, and it was never
claimed to be in the original SVF paper contrary to the above at-
tribution®. Although not explicitly stated by Demme et al., SVF
was designed as a framework with which many different metrics
can be defined to measure different types of leakage throughout a
system. For example, in Section 4 of this paper, we defined a new
cache-only SVF metric to focus on leakage in the cache.

3Reference [9] in the CSV paper is a citation to the original SVF
paper

Phase Correlation The CSV paper takes exception to the use of
similarity matrices (which are used to compute phase correlation)
instead of a simpler scheme like direct correlation. The argument
against it is presented in Section 3.2, Para. 1 as:

“[...] it may not be appropriate to calculate the correla-
tion of two similarity matrices to compare their traces.
[...] Calculating the similarity matrix of the observa-
tion trace can only help the attacker decide the phase
classification of his own observation, not any informa-
tion about the victim’s execution traces.”

SVF uses phase correlation — which measures correlation in at-
tacker’s observed phases to phases in victim execution, a form of
information leakage — for two important reasons. First, phase cor-
relation likely reveals more leakage than direct correlation as di-
rect correlation can only pick up on leakage which results in lin-
ear correspondence between victim and attacker traces, whereas
phase correlation can pick up on more complex patterns and thus
non-linear correspondence. Quantitatively, our study in Section 4
(specifically the comparison of hashing schemes in direct and phase
correlations) provides some evidence that in practice phase corre-
lation finds more leaks than direct correlation.

The second reason phase correlation is important is that it pro-
vides more flexibility in selecting trace points. Simply put, direct
correlation can only compare trace points with similar events (e.g.,
scalars vs. scalars or N-length vectors vs. N-length vectors). Phase
correlation, however, can be used to compare any trace points for
which similarity functions can be defined, a far wider range than
direct correlation. Further, our results demonstrates the importance
of trace selection in measuring multi-component leakage.

While none of this proves that phase correlation is entirely ap-
propriate — in fact the SVF paper lists several occasions in which it
may be ineffective — the results in this paper provide some evidence
of its utility in designing metrics (which we show to be important)
and efficacy in finding leaks. Our results should only be interpreted
to support the utility of SVF — they apply only to the system which
we are simulating and cannot be generalized.

5.2 On Characteristics of Metrics and Ground Truths

In the CSV paper’s Section 2.2. “Characteristics of a Good Sys-
tem Vulnerability Metric”, the authors lay out six characteristics
of good metrics: realistic, deterministic, consistent, unbiased, in-
structive, universal. We agree with several of them: metrics should
indeed be unbiased and deterministic. Ideally, they would also be
universal and instructive, but these two may not be possible in all
scenarios, as described in both Demme et al.’s and Zhang et al.’s
papers. Zhang et al. also suggest (Section 2.2, Bullet 1) that metrics
should be:

“Realistic. It must correctly represent reality, e.g. the
vulnerability of a system, and must represent ‘ground
truth’.”

Resulting from the realism desiderata, the CSV paper validates
their results (and refutes SVF results) by drawing on “known sys-
tem behavior” which they term as “ground truths”. The CSV paper
does not define how system behavior is known or to whom. Their
statements about “ground truths", however, seem reasonable for a
cache-only context, and indeed our results verify this. On the other
hand, as our experiments show, their “ground truths" do not neces-
sarily hold in a multi-component context, which the original SVF
paper examined. While we agree that metrics should be realistic,
“ground-truths" must be precisely defined before they can used to
judge metrics. In the next section we define “ground truth" and
discuss challenges in determining ground-truth.



6 Side Channel Metrics: Open Problems

As software is gradually hardened over the next several years (due
to heavy investment in hardware and software for security), side-
channels will become a major threat if unattended. Further, greater
sharing of resources (vis-a-vis movement to the cloud) is likely to
increase exposure to side-channel attacks. As such, methods to
quantitatively understand leakage will become increasingly impor-
tant; however, it will likely remain difficult to prove the relevance
of leakage metrics and measurement methods. Thus questioning
and critically analyzing metrics will remain an important topic.

Many open problems remain in the measurement of side-channels
leaks. In addition to demonstrating the relevance of measurement
methods and analyses like phase correlation, the selection of ap-
propriate attack models and traces appear important yet are lacking
in systematic methodologies.

Both SVF and CSV model an attacker and measure the leakage
which that particular attacker can observe. As a result, the leakage
which they measure is with respect to a particular attacker. Is it
possible for real attackers to be more clever than the attacker mod-
els used by the metrics and find bigger leaks? Our experiments
regarding asynchronous versus synchronous attackers — which are
reasonably similar as they both use prime-and-probe cache scan-
ning — indicate that the attacker model can have a strong effect on
leakage. Radically different attackers are likely to probe systems
in different manners and thus evoke different side-channel leaks.
This begs the question: can systems’ leakages be modeled indepen-
dently from an attack model or are they two inherently intertwined?
If the latter, do there exist systematic methods to find effective at-
tack models which cover the full space of attacks? These questions
are fundamental to side-channel measurement.

The selection of traces is a related problem. Using victim and
attacker traces which directly correspond to an attack’s target data
and actual observations is a natural way to define traces, but it ties
the measurement closely to a particular attack model. Can traces be
defined differently to create measurements which are less depen-
dent of the attack model? One could systematically examine many
(or all) different “probe points” in a system to find leaks; however,
would these leaks be located without also attempting all possible
attackers? If the system can be exercised broadly and generically,
perhaps systematic trace selection could locate leaks without thor-
ough attack modeling.

Another interesting open question is determination of “ground
truth". Before “ground truths" can be used to validate metrics they
must be defined. In our view “ground truth" must be defined as a
fact which has been rigorously proven within the same context and
using the same set of assumptions as the metric. For example, it
may be possible to mathematically prove that some cache features
like static partitioning entirely prevent leakage if cache line con-
tention alone is considered to be leakage. In this case, any valid
metric for leakage should indeed show zero leakage, but only if
the metric also considers cache line contention as the sole source
of leakage. If the metric can be affected by any other factor — as
both SVF and CSV can be — then the measurement and the math-
ematical proof can reasonably disagree. One reason for disagree-
ment could be that the mathematical proof is using insufficient or
simple axioms about the context in which leaks are occurring (and
hence cannot be a “ground truth"). Improving the accuracy of the
mathematical model, however, is extremely challenging as modern
processors use complex features that often defy axiomatization and
formal reasoning. Accordingly useful mathematical ground-truths
rarely exist today; determination of these ground-truths is a chal-
lenging area of study.

7 Conclusions

In this paper, we have reviewed side-channels in general, systemat-
ically analyzed the differences between SVF and CSV, and rebut-
ted many of the claims made by Zhang et al. [26]. These discus-
sions have left us with two important conclusions regarding SVF
vs. CSV and the use of “ground truths".

SVF vs. CSF We posed two important questions in the introduc-
tion: (1) Is CSV a sufficient metric? (2) Which of the differences
between the two are most relevant? Our deconstruction in Section 4
indicates that SVF’s flexibility to examine leakage through multi-
ple components is important to understand the leakage of multi-
component ensembles rather than individual components. This dif-
ference is likely the most important finding in this paper. Addition-
ally, in the reduced scope of caches we presented some evidence
that the limited analytical capability of direct correlation (versus
SVF’s phase correlation) can underestimate leakage in some sce-
narios. The flexibility provided by SVF combined with its ability
to estimate more leakage is likely to make SVF more useful to pro-
cessor designers.

Ground Truths We discussed the use of “ground truths” for
metric validation in side-channel research. Mathematically proven
ground-truths in a full-system context are difficult to obtain for
modern processors because of their complexity. Alternately, using
intuition as ground truth for metric validation is a dangerous con-
cept — measurements should inform intuition rather than vice versa.
Finally, “first-order" models of processor operation are also insuffi-
cient for side-channel security evaluation for the simple reason that
the study of information leakage is a very young field, so we do not
yet fully understand its dynamics to know which interactions and
components within a processor can be ignored.

The paucity of full-system mathematical ground-truths, the dan-
ger of using intuition, and unsuitability of first-order estimates means
that we will likely rely on full-system empirical measurements to
measure leakage. Accordingly, our second conclusion is that met-
rics and methods should be continuously questioned and debated,
but measurements disagreeing with intuition or a mathematical proof
based on contrived axioms should be no more than a launching pad
for further inquiry. In the context of security, any metric or frame-
work that reveals unintuitive or surprising behaviors is an asset.
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