
Producing Trustworthy Hardware Using
Untrusted Components, Personnel and Resources

Adam Waksman

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2014

c©2014

Adam Waksman

All Rights Reserved

ABSTRACT

Producing Trustworthy Hardware Using
Untrusted Components, Personnel and Resources

Adam Waksman

Computer security is a full-system property, and attackers will always go after the weakest

link in a system. In modern computing systems, the hardware supply chain is an obvious and

vulnerable point of attack. The ever-increasing complexity of hardware systems, along with

the globalization of the hardware supply chain, has made it unreasonable to trust hardware.

Hardware-based attacks, known as backdoors, are easy to implement and can undermine

the security of systems built on top of compromised hardware. Operating systems and other

software can only be secure if they can trust the underlying hardware systems.

The full supply chain for creating hardware includes multiple processes, which are often

addressed in disparate threads of research, but which we consider as one unified process. On

the front-end side, there is the soft design of hardware, along with validation and synthesis,

to ultimately create a netlist, the document that defines the physical layout of hardware.

On the back-end side, there is a physical fabrication process, where a chip is produced

at a foundry from a supplied netlist, followed in some cases by post-fabrication testing.

Producing a trustworthy chip means securing this process from the early design stages

through to the post-fabrication tests.

We propose, implement and analyze a series of methods for making the hardware supply

chain resilient against a wide array of known and possible attacks. These methods allow

for the design and fabrication of hardware using untrustworthy personnel, designs, tools

and resources, while protecting the final product from large classes of attacks, some known

previously and some discovered and taxonomized in this work. The overarching idea in this

work is to take a full-process view of the hardware supply chain. We begin by securing the

hardware design and synthesis processes using a defense-in-depth approach. We combine

this work with foundry-side techniques to prevent malicious modifications and counterfeit-

ing. Finally, we apply novel attestation techniques to ensure that hardware is trustworthy

when it reaches users.

For our design-side security approach, we use defense-in-depth because in practice any

security method can potentially be subverted, and defense-in-depth is the best way to

handle that assumption. Our approach involves three independent steps. The first is a

functional analysis tool (called FANCI), applied statically to designs during the coding

and validation stages, to remove any malicious circuits. The second step is to include

physical security circuits that operate at runtime. These circuits, which we call trigger

obfuscation circuits, scramble data at the microarchitectural level so that any hardware

backdoors remaining in the design cannot be triggered at runtime. The third and final step

is to include a runtime monitoring system that detects any backdoor payloads that might

have been achieved despite the previous two steps. We design two different versions of this

monitoring system. The first, TrustNet, is extremely lightweight and protects against an

important class of attacks called emitter backdoors. The second, DataWatch, is slightly

more heavyweight (though still efficient and low overhead), can catch a wider variety of

attacks and can be adapted to protect against nearly any type of digital payload. We

taxonomize the types of attacks that are possible against each of the three steps of our

defense-in-depth system and show that each defense provides strong coverage with low (or

negligible) overheads to performance, area and power consumption.

For our foundry-side security approach we develop the first foundry-side defense system

that is aware of design-side security. We create a power-based side-channel, called a beacon.

This beacon is essentially a benign backdoor. It can be turned on by a special key (not

provided to the foundry), allowing for security attestation during post-fabrication testing.

By embedding this beacon into the hardware design itself, the beacon requires neither keys

nor storage and as such exists in the final chip purely by virtue of existing in the netlist. We

further obfuscate the netlist itself, rendering the task of reverse engineering the beacon (for

a foundry-side adversary) intractable. Both the inclusion of the beacon and the obfuscation

process add little to area and power costs and have no impact on performance.

All together, these methods provide a foundation on which hardware security can be

developed and enhanced. They are low overhead and practical, making them suitable for

inclusion in next generation hardware. Moving forward, the criticality of having trustworthy

hardware can only increase. Ensuring that the hardware supply chain can be trusted in the

face of sophisticated adversaries is vital. Both hardware design and hardware fabrication

are increasingly international processes, and we believe that continuing with this unified

approach is the correct path for future research. In order for companies and governments

to place trust in mission-critical hardware, it is necessary for hardware to be certified as

secure and trustworthy. The methods we propose can be the first steps toward making this

certification a reality.

Table of Contents

List of Figures vi

List of Tables xi

1 Introduction to Hardware Security 1

1.1 How is Hardware Built? . 2

1.2 Motivating End-to-End Security . 3

1.3 Novel Methods for Hardware Security . 4

I Background, Related Work and Definitions 6

2 Important Definitions 7

2.1 Digital Hardware Backdoors . 8

2.2 Stealthy Hardware Backdoors . 9

3 Background on Hardware Design, Fabrication and Security 11

3.1 Assumption of Trust at the Top . 13

3.2 Related Work on Hardware Security . 14

3.2.1 Hardware Attacks that Pre-Date Backdoors 14

3.2.2 Hardware Backdoors . 16

3.2.3 Hardware Watermarking and Self-Identification 17

3.2.4 Hardware Netlist Obfuscation . 18

3.3 Perspective on Hardware Security as Compared to Software Security 19

3.3.1 Is Hardware Easier to Secure? . 20

i

3.3.2 Is the Economy of Hardware Different? 20

II Threat Model 22

4 Threat Sources 23

5 Adversarial Game Model 25

5.1 The Principle of Last Action . 25

6 Taxonomy of Threats and Attackers 27

6.1 Attacker Capabilities . 27

6.2 Assumptions Regarding Hardware Design Practices 29

6.3 Types of Digital Design-Level Backdoors . 31

6.3.1 Types of Backdoor Triggers . 31

6.3.2 Types of Backdoor Payloads . 33

6.3.3 Trade-Offs Regarding Backdoor Payloads From an Attacker’s Point

of View . 34

6.4 Assumptions Regarding Hardware Synthesis and Fabrication Practices . . . 35

III Designing Trustworthy Hardware 38

7 Protecting Hardware Designs Proactively with a Defense-in-Depth Ap-

proach 39

7.1 Why Be Proactive? . 39

7.2 Why Use Defense-In-Depth? . 40

8 Functional Analysis of Hardware Design Code 41

8.1 Heuristics for Identifying Stealthy Wires from Control Value Vectors 44

8.2 Relationship Between FANCI and the State-of-the-Art in Unused Circuit

Identification . 51

8.2.1 High-Level Understanding of Why FANCI Goes Beyond UCI 54

8.3 Relationship to Boolean Function Theory and Fault Simulation 56

ii

8.3.1 Relationship to Shannon Cofactors 56

8.4 Evaluation of FANCI on Hardware Backdoor Benchmarks 57

8.5 Evaluation of FANCI on an Out-of-Order Microprocessor Core 64

8.6 Red Team/Blue Team Stress Testing of FANCI 65

8.7 Security Discussion and Guarantees of FANCI 71

8.8 The Mathematics of Circuit Stealth . 73

9 Disabling Backdoor Triggers Dynamically at Runtime 75

9.1 Application to a Modern Microcontroller . 81

9.1.1 Motivation for Building the TµC1 Microcontroller 81

9.1.2 ART: An Algorithm For Making Trigger Obfuscation Decisions . . . 84

9.1.3 Caveats and Limitations . 86

9.1.4 Evaluation of ART Applied to the TµC1 Microcontroller 87

9.2 Security Guarantees and Properties of Trigger Obfuscation 93

9.3 A Case Study of Engineering Self-Attacking Hardware 95

9.3.1 Security Engineering Process . 96

9.3.2 Evaluation of Offensive and Defensive Costs 105

9.3.3 Future Attacks: Hybrid Hardware-Software Backdoors 111

9.4 Conclusions and Future Directions for Trigger Obfuscation 113

10 Detecting and Reacting to Backdoor Payloads Dynamically at Runtime 114

10.1 Backdoor Payload Detection Overview . 114

10.2 The TrustNet Defense System . 115

10.3 The DataWatch Defense System . 118

10.4 Handling Data Corrupter Attacks . 118

10.5 Handling Detection Alarms . 121

10.6 Security Guarantees of TrustNet and DataWatch 121

10.7 Case Study and Evaluation of TrustNet and DataWatch 122

10.8 Microarchitectural Details and Optimizations for Microprocessor Core Ap-

plications . 126

10.9 Conclusions and Future Directions for Payload Detection Methods 129

iii

IV Fabricating Trustworthy Hardware 131

11 Fabricating with End-to-End Security in Mind 132

12 Beacons: A Novel Power-Based Attestation Mechanisms 134

12.1 Enhancing Design-Level Protections with Beacons 134

12.2 Relationship Between Beacons and IC Fingerprinting 137

12.3 Beacon Construction and Implementation 137

13 Entanglement-Based Methods for Preventing Counterfeiting and Reverse

Engineering 141

13.1 Key-Based Activation . 142

13.2 Module Key Generation . 145

13.3 Security Analysis of Netlist Entanglement 145

14 Evaluation and Analysis of Beacons 148

14.1 Case Study: Applying Beacons to Payload Detection Systems 150

14.1.1 Design Case A1: An AES Accelerator 151

14.1.2 Design Case A2: Out-of-Order Processor Cores 152

14.2 Case Study B: Applying Beacons to Trigger Obfuscation 155

14.3 Limitations of Beacons . 155

14.4 Generality and Applicability of Beacon Implementations 157

V Conclusions and Future Research Directions 159

15 Recommendations for Practical and Operational Security 160

16 Concluding Remarks 162

16.1 Summary of Contributions . 162

16.2 Lessons Learned . 163

16.3 Limitations and Necessary Future Directions 165

iv

VI Bibliography 167

Bibliography 168

VII Appendices 181

A Glossary of Terms 182

v

List of Figures

3.1 The front end and back end of the modern supply chain. 12

3.2 Taxonomy and illustration of digital hardware backdoors. 16

8.1 An example of how backdoor circuitry (in red) can stand out from normal

circuitry (in blue) when stealth scores are calculated. Stealth values are

shown on the X-axis on a logarithmic scale. 44

8.2 False positive rates for the four different metrics and for TrustHub bench-

marks. The RS232 group — which is the smallest — has about 8% false

positives. The others have much lower rates (less than 1%). 46

8.3 A standard 4-to-1 multiplexer. The outputM takes on the value of one of the

four data inputs (A, B, C, D) depending on the values of the two selection

bits (S1, S2). 46

8.4 A malicious 4-to-1 multiplexer. The output M takes on the value of one

of the four data inputs (A, B, C, D) depending on the values of the two

selection bits (S1, S2). There are also 64 extra selection bits ({S3, · · · S66})

that only change the output if they match a specific key. 47

8.5 The average length of the backdoor trigger path identified in TrustHub bench-

marks. Longer trigger paths are likely to be harder to detect because the

distributions become more complex. The length is specified in number of

distinct wires. 60

vi

8.6 These are the total number of suspicious wires detected by each method for

each type of backdoor design on average. For each design and each of the

four methods we tried, we always found at least one suspicious wire. Thus,

each of the four methods is empirically effective. However, some turned up

larger portions of the trigger critical paths, proving to be more thorough for

these cases. 61

8.7 The trade-off between number of inputs testing (i.e. running time) and the

true positive rate. Results are shown for four different metrics. The x-axis

is on a logarithmic scale, so it takes a lot of inputs to achieve the best

results. Running 32,768 inputs through a design generally takes between a

few minutes and an hour. 62

8.8 A histogram of the triviality values for wires in a typical FabScalar module,

called the CtrlQueue. The two biggest spikes occur at around 0.5 and 0.25.

There are no major outliers. 66

8.9 Trade-off between lines of code analyzed and runtime. The black points

denote designs that finished completely in the contest time frame. The lighter

points represent designs that were analyzed partially for the contest. For

those points, the full runtime is estimated. 68

9.1 An overview of our three methods for trigger obfuscation. 76

9.2 An overview of how a typical hardware module looks in terms of its input

and output interfaces. 78

9.3 The steps of the ART algorithm. Green arrows signify a “yes” answer. Red

arrows signify a “no” answer. 86

9.4 (A) The baseline microcontroller microarchitecture we use for our security

design methodology. It is a simple processor, with on-chip memory and a

wishbone master for off-chip I/O. (B) Layout of the TµC1 microcontroller

(not to scale). Modules in orange (darker) perform security functions. Mod-

ules in blue (lighter) are part of the baseline specification. 88

9.5 A scalability comparison of DMR and data encryption for multipliers. We

consider latency (a), area (b), and energy per operation (c). 89

vii

9.6 (A) Area impact of DMR on different modules, as compared against base-

line costs and against optimal backdoor-aware choices. These measurements

are taken in the context of the TµC1 microcontroller. (B) Breakdown by

component of area costs for the TµC1 microcontroller as percentages of the

whole. 90

9.7 An overview of our AES implementation and how it applies both at the source

and at the destination of communication. The same hardware unit is used at

both source and destination, but the encrypt and decrypt instructions follow

slightly different data-paths. 97

9.8 The hardware layout of an AES-128 accelerator. 97

9.9 An overview of our implementation for secure AES. 100

9.10 The practical options for implementing PRNGs that can produce 128 random

bits per clock cycle. 101

9.11 The expected success rates of a breaker unit against our PRNG as a function

of the number of iterations of the extended Euclidean algorithm. 108

9.12 (A) This curve shows the risk of a malicious designer’s counter-attack being

discovered. If a 10% probability is acceptable to the designer, then the de-

fender should not notice a three-fold area bloat. On the other hand, given a

fixed area budget, an attacker can only achieve a bounded probability of suc-

cess. (B) Area costs of each component at 45nm, using the smallest possible

breaker circuit, i.e. the one with the smallest non-zero chance of success. . . 110

10.1 Overview of the TrustNet and DataWatch monitoring scheme. The triangu-

lar microarchitecture provides the necessary distribution of work in a simple

and easy-to-implement fashion. 116

10.2 Illustration of units covered by TrustNet and DataWatch an OpenSPARC

microprocessor. 123

10.3 Units and communication in the hypothetical inorder processor used in this

study. 123

10.4 TrustNet Monitor Microachitecture. 127

viii

12.1 An overview of how a beacon works. Beacons are added to the backdoor

protection circuits and entangled with the protections. When a beacon key

is supplied, it outputs an analog power signature or a digital output that can

be used by the auditor. 135

12.2 A beacon implementation. The state machine control is primarily a com-

parator that looks for the secret key. When it does, the state switches from

zero to one, turning on the rest of the circuitry. The toggle bit changes ev-

ery cycle, causing the combinational logic to flip every cycle. Within each

pseudo-random logic block (PRL), there is randomly generated logic. When

the state is zero, the activity factor is zero. When the state is one, the activity

factor is one. 138

13.1 An overview of the incorporation of an untrusted module, using an entangled

protection and side-channel beacon. 142

14.1 The leakage and total power draws achieved by different sizes of beacon grids.

The first dimension refers to the number of rows and the second dimension

refers to the height of each row. 149

14.2 The leakage and dynamic power draws achieved by different drive strengths

for a simple beacon. Higher drive strength can allow for more dynamic power

from a fixed number of gates. Note that the leakage power is in microwatts,

while the dynamic power is in milliwatts, so the leakage power is small. . . 150

14.3 Area overheads of the TrustNet defense mechanism and beacon placed in a

custom AES crypto-accelerator. Overheads are shown as a percentage of the

baseline system. Timing requirements are maintained in all three designs. 151

ix

14.4 The trend of how the cost of a beacon scales from smaller to larger cores

in the FabScalar family. The labels on the bars are the names these cores

have within the FabScalar family. The numbers in the names given within

FabScalar have no relation to the sizes of the cores. Naturally, if the beacon

size is roughly constant, the overhead diminishes when compared against

power consumed by larger and larger cores. In short, the closer a design is

to the power wall, the cheaper it is to use a beacon. 153

14.5 The area overheads attributed to the TrustNet defense system and a corre-

sponding beacon for the smaller FabScalar core. 154

14.6 The area overheads attributed to the TrustNet defense system and a corre-

sponding beacon for the larger FabScalar core. Slight negative values are to

be expected due to the chaotic nature of the synthesis algorithms. 154

14.7 A high level view of the FabScalar auto-generated processor architecture. . 155

14.8 Area overheads of a trigger obfuscation defense mechanism and a beacon

placed in a custom AES crypto-accelerator. Overheads are shown as a per-

centage of the baseline system. Timing requirements are maintained in all

three designs. 156

x

List of Tables

9.1 A summary of seven prominent methods for protecting against hardware

backdoors. This table outlines coverage, performance overheads and the

inherent trust models at a high level. 82

9.2 A Summary of seven prominent defenses against hardware backdoors. This

table provides a further breakdown of the types of overheads incurred by

each method. 82

9.3 A summary of the different trust assumptions made by prominent hardware

backdoor defense methods. The table covers the range of common trust

assumptions, such as a formal specification or the existence of trusted tools

for physical synthesis. 83

9.4 Baseline Costs of FHE Gates . 89

9.5 Synthesis Results of PRNG Options. Area overhead is shown as a percentage

of the original design area. 106

9.6 Synthesis Results of a Euclidean Algorithm Stage (Breaker Circuit) 107

9.7 Synthesis Results of Breaker Unit . 108

9.8 Relative Coding Complexities of Design Components 111

10.1 Comparison of TrustNet, DataWatch, and smart duplication for simple,

in-order microprocessors . 119

14.1 Specifications for the Two Chosen FabScalar Cores 151

xi

Acknowledgments

Over the course of five years at Columbia University, there are plenty of people to thank

for their support, advice and insights. I should first thank my advisor, Dr. Simha Sethu-

madhavan, who has been involved in each step of this process. The environment he set

up was one in which I felt confident focusing on relevant research from day one, and his

desire to always be pushing on new threads of research has been beneficial and encouraging.

He also has placed a tremendous focus on clarity of communication and writing so as to

produce research that is not only important but is also understood by someone. Hopefully

this document is not an exception.

I would next like to thank the colleagues I have interacted with at Columbia, which

includes all of my coauthors and all of the Professors who have helped in supporting me.

Thank you to Dr. Salvatore Stolfo, Dr. Steven Bellovin and Dr. Allison Lewko for serving

on my defense committee, as well as to Dr. Sam King of the University of Illinois at Urbana-

Champaign. Thank you as well to Dr. Angelos Keromytis, Dr. Martha Kim and all the

other Professors who have read my work, attended my talks or discussed research with me.

Thank you to Dr. Janet Kayfetz of the University of California Santa Barbara for helping

me with scientific writing and presentation skills. And thank you to all other members of

CASTL, CSL and CRF at Columbia who have provided academic and technical support to

my research endeavors.

Finally, thank you to my parents and the rest of my family, who I expect fought their way

through the first 16 pages of this document to reach this page. It is obviously a privileged

position to be in to be able to spend nine years getting an education, and my family has

been entirely supportive throughout.

xii

Chapter 1

Introduction to Hardware Security

The perception of computer hardware has changed radically over the past few years. For

much of the history of computing, hardware was used as the root of trust, a static and

immutable source of secure functionality, on top of which the entire computing stack was

built. This perception has changed due to the realization that hardware is just as vulnerable

to attacks and security violations as the software that is built on top of it. While the

vulnerability of hardware was perhaps always present, both the extent of the vulnerability

and the awareness of it have grown palpably due to the nature of modern hardware design.

Hardware development is now an incredibly global process. The creation of any individ-

ual system will often involve the use of components and intellectual property from a wide

variety of corporations around the world. On top of that, fabrication processes are often

performed in different countries and by different corporations than the ones creating and

synthesizing designs. The massive scale and complexity of modern hardware has all but

ended the era when a small group of trusted personnel could design a chip. Instead, even for

hardware that is vital to corporate or national security, the same commercial processes are

used, meaning that security rests on the assumed trust in a variety of corporations around

the world.

This situation has enormous ramifications for both large corporations and national gov-

ernments. In both cases, these large organizations need to trust the computing systems on

which they rely every day. However, in order to keep up with modern technology, they are

heavily incentivized to participate in the global computing economy. Only by developing

1

1.1. HOW IS HARDWARE BUILT?

a rigorous notion of security for the global hardware supply chain can these organizations

hope to regain trust in the devices that they use.

Thesis & Contributions: We claim that it is possible to build practical, trustworthy

hardware systems while using untrusted resources, tools and personnel. It is not necessary

to assume trust in personnel, such as designers and microarchitects, nor is it necessary to

assume trust in individual components that are combined to build a complete system. By

taxonomizing the space of possible attacks and malicious agents, we construct a model of the

hardware supply chain and identify the locations where compromises can occur. We then

construct an end-to-end security methodology that allows for the combination of untrusted

components and reliance on untrusted personnel to create a full hardware system that can

be trusted. Since it will never be possible to fully trust all personnel and resources being

used in this increasingly global supply chain, this holistic approach, using the philosophy

of building trustworthy systems out of untrusted pieces, is the only approach that can lead

to a satisfying solution.

1.1 How is Hardware Built?

The supply chain for creating modern hardware systems relies on several processes, all of

which must be trustworthy and reliable. In the broadest sense, the process splits into two

halves: design and fabrication. Design is the act of creating the definition of what the

hardware is supposed to do. This involves all of the ‘soft’ components of the process and

can also be thought of as the ‘front end’ of the process. Fabrication is the physical half of

the process, where the design is used to create a physical product. This involves the ‘hard’

aspects of the process and can also be thought of as the ‘back end’ of the process.

More specifically, the design half includes a variety of processes that turn a high-level

specification into a low-level design. The specification process defines the semantics and

functionality of the desired hardware, including an agreement to an Instruction Set Archi-

tecture (ISA) and the subsequent designing of the architecture of the hardware. Then the

core design phase is the designing of the lower level microarchitecture and the transforma-

tion of the design into precise code, usually in a Hardware Description Language (HDL).

2

1.2. MOTIVATING END-TO-END SECURITY

These languages are often but not always Register Transfer Level (RTL) languages. After

design comes a validation and verification process. Validation involves the testing of proper-

ties of the hardware using test inputs. Verification involves verifying or proving correctness

properties of the hardware or of certain subcomponents. Verification can range in scope

and quality, with some designers using only validation tests and others using fully formal

verification, where the correctness of the entire design is proven. Formal verification is an

extreme option that is often not possible. Design and validation are often done hand-in-

hand, with several iterations going back and forth, with each iteration uncovering bugs and

improving the design.

After the front-end processes have been completed, the validated and/or verified design

undergoes physical synthesis and layout, where the functional design is translated first into

a functional gatelist and then finally into a netlist layout, which is a blueprint for the

physical layout of the chip. These translations are usually done by automated tools but

in some cases can be performed by custom circuit engineers. This netlist is then used at

a fabrication facility (or foundry) to produce a physical chip, a process often refered to as

tape-out. After tape-out, a chip may undergo some degree of final testing, usually to check

for manufacturing defects. In any given manufacturing run, a substantial portion of the

chips will not work correctly, even with the best of intentions (i.e. the yield is never 100%).

1.2 Motivating End-to-End Security

The core philosophy of this work is to develop security in an end-to-end fashion, taking into

account all agents and processes. This means an outlook on security that does not simply

create trust in a specific piece or component but instead necessitates a global view of hard-

ware development and security protocols that can coherently handle attacks in all phases.

Given the incredible economic impact of hardware on the modern global economy, we must

assume that potential attackers have tremendous resources at their disposal. This means

that it must be considered possible that attackers can form conspiracies across multiple

steps of the process and that they can use extremely sophisticated attacks.

As a result of this situation, we must develop methods that can secure hardware from

3

1.3. NOVEL METHODS FOR HARDWARE SECURITY

specification through to fabrication. These methods must be aware of each other and must

not conflict with each other. We also must assume that attackers know all details of our

defenses and can invest substantial resources toward violating the axioms and assumptions

of these methods.

1.3 Novel Methods for Hardware Security

In this dissertation, we propose, implement, analyze and evaluate a set of methods for

making the hardware supply chain resilient against a wide array of known and possible

attacks. We begin by securing the hardware design and synthesis processes using a defense-

in-depth approach. We combine this half of our work with novel foundry-side techniques to

prevent both malicious modifications and counterfeiting. In the final step, we use a new

method for attestation to ensure that hardware is trustworthy when it reaches consumers.

The reason we use a defense-in-depth approach is that in practice any security method

can be subverted given unlimited resources. Defense-in-depth is the best way to handle

that problem. Using a single defense method that is assumed to be impenetrable is often

a recipe for failure. Our approach involves three independent steps, and an attacker must

violate the axioms of all three simultaneously to achieve a malicious goal.

The first method is a functional analysis tool (called FANCI, which stands for Functional

Analysis for Nearly-Unused Circuit Identification), applied statically to designs during the

coding and validation stages to directly remove any malicious circuits. The second step

is to include physical security circuits that operate at runtime. These circuits, which we

call trigger obfuscation circuits, scramble data at the microarchitectural level so that any

malicious hardware circuits (commonly referred to as backdoors), remaining in the design

cannot be triggered at runtime. The third and final step is to include a runtime monitoring

system that detects any backdoor payloads that might have been achieved despite the

previous two methods. We design two different versions of this monitoring system. The

first, TrustNet, is extremely lightweight, while the second, DataWatch, is slightly more

heavyweight and covers a wider set of attacks. We further taxonomize the types of attacks

that are possible against each of the three steps of our defense-in-depth system and show that

4

1.3. NOVEL METHODS FOR HARDWARE SECURITY

each defense provides strong coverage with low (or negligible) overheads to performance,

area and power consumption.

For our foundry-side security approach (the other half of our solution), we develop the

first foundry-side defense system that is explicitly aware of design-side security. We create

a power-based side-channel, called a beacon. This beacon can be turned on by a special key

(not provided to the foundry and not stored on chip), allowing for security attestation during

post-fabrication testing. By placing this beacon in the design itself, the beacon requires

neither keys nor storage and as such exists in the final chip purely by virtue of existing in

the netlist. We further obfuscate the netlist, rendering the task of reverse engineering the

beacon intractable. The inclusion of the beacon and the obfuscation process add little to

area and power costs and have no direct impact on performance.

All together, our methods provide a foundation on which hardware security can be

developed and enhanced. They are low overhead, practical and effective, making them

suitable for inclusion in next generation hardware. Moving forward, the criticality of having

trustworthy hardware can only increase. Ensuring that the hardware supply chain can be

trusted in the face of sophisticated adversaries is vital. Both hardware design and hardware

fabrication are increasingly international processes, and we believe that continuing with a

unified approach is the correct path for future research. In order for companies, militaries

and governments to place trust in mission-critical hardware, we believe it is necessary for

hardware to be certified as secure and trustworthy.

5

Part I

Background, Related Work and

Definitions

6

Chapter 2

Important Definitions

The core attack concept in this work is a hardware backdoor. In general computing and

computer security, a backdoor is a term that refers to a method for bypassing normal or

standard authentication, with the goal of gaining unauthorized access or executing unau-

thorized functions while remaining undetected by normal means. The main purpose of

a backdoor, as opposed to other types of computer-oriented attacks, is to remain stealthy,

which can allow for a long-term compromise of which defenders or security engineers remain

unaware.

In this section, we present definitions that are necessary for the understanding of this

work and how it expands on and contributes to computer security. These definitions are

our own, and we hope that these definitions will allow for a more formal and standardized

understanding of these subjects in the future.

Definition 1. A hardware backdoor is any alteration to the circuitry in a computer chip

that provides a method for intentionally violating the Instruction Set Architecture agreement.

In other words, a hardware backdoor allows a piece of hardware to intentionally misbe-

have. We use the Instruction Set Architecture (ISA) as ground truth because the ISA is

the contract that tells software what to expect from hardware. Any and all software that

claims to be secure has as a core axiom the belief that the ISA is perfect. For example, if

load and store operations do not behave as they are supposed to, it is impossible for any

software program to trust its own memory operations.

7

2.1. DIGITAL HARDWARE BACKDOORS

We note that in some prior literature (mostly literature on foundry-side attacks), hard-

ware backdoors are referred to as trojans. There is no tangible difference between backdoors

and trojans, so for consistency we call all hardware-oriented attacks of this sort simply back-

doors.

We next define the two properties that nearly all backdoors discussed in research liter-

ature have. Backdoors are usually stealthy and digital.

2.1 Digital Hardware Backdoors

We first define digital hardware backdoors and the alternatives to digital.

Definition 2. A digital hardware backdoor is a backdoor for which all aspects of the back-

door’s operation can be modeled using digital, cycle-accurate simulation.

We note that this is a relatively strong definition, as it would be possible to use digital

circuits to construct a backdoor that is not a digital backdoor. The reason research tends to

focus on digital backdoors as we have defined them is because from both the attacker’s and

defender’s point of view, backdoors can be well-understood if they can be simulated. Since

many backdoors are implemented at the design level, using hardware description language

(HDL) code, the ability to define backdoor functionality in terms of cycle-based, digital

functionality is important.

Most research to-date has dealt with digital hardware backdoors that fit this definition,

and most of the work in this thesis is also restricted to digital backdoors. However, some

of the methods we discuss are generalizable to other types of backdoors. We define three

types of non-digital backdoors that fill the rest of the space of possible hardware backdoors.

Definition 3. An asynchronous hardware backdoor is a backdoor for which the behavior

cannot be well-understood using only cycle-accurate simulation.

There are several reasons a backdoor might be asynchronous. It might use properties of

the clock, such as only functioning only during the negative clock edge or only if the clock

jitter is sufficiently high. A backdoor might also be implemented on a system with multiple

clock domains and might be reliant on a certain amount of clock misalignment. A backdoor

8

2.2. STEALTHY HARDWARE BACKDOORS

could also rely on naturally asynchronous components, such as an asynchronous reset signal

or the clock generation logic itself. Any backdoor whose behavior is not well-defined in a

discrete, clock-based model fits into this category.

Definition 4. An analog hardware backdoor is a backdoor for which the behavior cannot

be well-modeled with digital circuits.

A backdoor can fit into this category by using any analog logic. This could be a backdoor

implemented into an analog component, or it could be any other backdoor that makes use

of analog logic in its functionality.

Definition 5. A parametric hardware backdoor is a backdoor that cannot be modeled

computationally due to its reliance on physical properties.

Parametric hardware backdoors rely on physical properties in the environment to func-

tion. These could include environmental properties, such as temperature, voltage, etc.

These could also include incidental properties, such as the amount of wear-and-tear on a

transistor, the amount of noise in a physical fabrication process, or anything else that is

based on physical properties. The defining characteristic of all of these backdoors is that

the design itself does not explicitly express the backdoor through simulation, because the

backdoor is only functional under restricted physical constraints.

2.2 Stealthy Hardware Backdoors

We next define stealthy hardware backdoors and the alternatives to stealthy backdoors.

Definition 6. A stealthy hardware backdoor is a backdoor whose payload has less than

a 1
n
probability of activating during a given cycle of validation testing for a fixed value of

n ∈ Z+.

The purpose of a stealthy backdoor is to be dormant during validation testing so that the

design under test passes validation and goes to market. For this reason, most academically

discussed backdoors are stealthy, and the assumption in most literature is that backdoors

applied in the real world must be stealthy. The value of n is parameterizable depending on

9

2.2. STEALTHY HARDWARE BACKDOORS

the assumptions of the threat model. Generally, n should be sufficiently large that there is

no real danger of a validation engineer stumbling onto the backdoor payload. In practice, n

often takes on the value of large powers of 2, such as 232 or 264. A realistic attacker would

be aware of the value of n in a given setting by knowing the basic validation procedures

being used.

This definition is of course dependent on the choice of validation method. If validation

test inputs are chosen uniformly at random, then the probability of a payload activating is

simple to compute. If the validation test inputs are biased, we assume that an adversary

knows the bias and can compute probabilities accordingly.

Definition 7. A frequently active hardware backdoor is a backdoor that is often or always

performing malicious actions. A frequently active backdoor has a probability of activating

during a given cycle of validation testing of at least 1
n
for a fixed value of n ∈ Z+.

An attacker might choose to use a frequently active backdoor if the validation team

is believed to be ineffective or if for some reason there is no validation team. Frequently

active backdoors are easy to implement, as they are simply a consistent violation of the

ISA, designed into a hardware module. Another reason an adversary might use a frequently

active backdoor is if there is a systemic problem in validation. For example, if the validation

team only checks the positive clock edge, a frequently active backdoor on the negative clock

edge might go unnoticed.

10

Chapter 3

Background on Hardware Design,

Fabrication and Security

We begin by discussing why trust comes into question in modern hardware design and

what notions of trust we can and cannot assume. Trust is a fundamental component in

the development of complex, modern hardware systems. Myriad factors conspire to make

hardware more susceptible to malicious alterations and as a result less trustworthy than was

the case in the not-so-distant past. These factors include the growing use of third-party

intellectual property (IP) components in system-on-chip designs, the global scope of the

chip design process, increased design and integration complexity and design teams with a

relatively small number of designers responsible for each sub-component. There have already

been unconfirmed reports of compromised hardware [Uni, 2005; Simonite, 2013] leading to

serious economic consequences [len, 2006]. A non-technical solution to the problem is to

design and manufacture hardware locally in a trusted facility with trusted personnel. This

solution is not a long-term or viable solution, as it is neither efficient nor guaranteed to be

secure. This is why hardware security has grown as an academic area of research.

To understand how hardware can be compromised, we need to understand how hardware

is designed. Figure 3.1 provides a bird’s eye view of the process. The first few steps

are similar to software design and construction: it begins with the specification of design

requirements. Then the hardware is designed to meet operational requirements and coded

11

High-level

Design
Specification

Design

Validation
Synthesis

Floor-

planning

Digital Hardware Design Procedure

TAPEOUT: GOLDEN NETLIST Back-end Stages

Fabrication
Manufacture

Testing
Deployment

Front-End Stages: Focus of this work

Figure 3.1: The front end and back end of the modern supply chain.

into a hardware design language (HDL), such as Verilog or VHDL. This coding can be

done by designers working with the company, or the code can be purchased as intellectual

property (IP) from third-party vendors around the world. This use of third-party IP is

especially common in the case of peripheral components, such as USB controllers, which

can be included within a larger hardware system. Hardware then undergoes validation

testing. When compared against software systems, this testing can be much more involved.

This is due in large part to the fact that, unlike software, hardware bugs are often extremely

expensive or impossible to fix after deployment and can even result in product recalls. The

reason for this difference is simply because software is easily mutable and can be patched,

while hardware is for the most part immutable.

To minimize bugs, reputable hardware companies often employ validation and/or ver-

ification teams that are even larger than the design team. These validators either work

in tandem with designers (if the designers are insiders) or after-the-fact (if the designs are

purchased from third-party providers). The design, with all of its components, is then pro-

cessed using computer-aided design (CAD) tools from commercial companies that convert

the high-level code into gates and wires. This work can also be done manually in rare cases

at the hands of custom circuit engineers. Once this process has been completed, there exists

a functional design, which can be reviewed for security and/or reliability. Unfortunately,

the state-of-practice is to simply send the design off to a foundry for manufacturing without

any security enhancements. Code reviews are encumbered in large part by the complexity

of the design and the pressures of time-to-market constraints.

Thousands of engineers may have access to hardware during its creation, and they are

often spread across organizations, countries and/or continents. Each hardware production

step has to be considered as a possible point of attack. Designers (either insiders or third-

12

3.1. ASSUMPTION OF TRUST AT THE TOP

party providers) may be malicious. Validation engineers may seek to undermine the process.

CAD tools that may be applied for design synthesis prior to manufacture could be malicious.

Finally, a malicious foundry could compromise security during the back-end manufacturing

process. The primary root of trust is the front-end design phase, as without a trusted design

(generally referred to as a ‘golden’ design) to send off to a foundry, we have no basis from

which to begin to secure our foundries and the physical manufacturing processes therein.

When developing our trust model, we begin with one mild assumption that allows us to

lessen our need for other trust assumptions.

3.1 Assumption of Trust at the Top

We make one key assumption of trust, not due to an optimistic perspective on trustworthi-

ness but out of necessity. We believe that organizations that aim to make a profit or stay

in business are unlikely to sabotage their own designs or sell damaged products intention-

ally. It is more likely that there are one or few ‘bad apples’ within an organization that

are attempting to subvert the design or that the attack comes from external parties. In

the unlikely case that an entirely malicious company sets out to produce and sell broken

hardware, there is little one can do except wait for that company to go bankrupt or get

sued. Similarly, in a military setting, if the entire military complex is malicious from the top

down, there is not much that generic security techniques are going to do to help with that

situation. We are interested in security methods that an organization, military or nation

can use to protect itself and have trust in the hardware that it produces.

Given this mild trust assumption, we consider four major sources of insecurity concerning

the necessary steps in the hardware design process. These sources of insecurity are 1) any

third-party vendor from which IP is acquired, 2) any local or inside designers used in the

design process, 3) the validation and verification team, and 4) malicious CAD tools or

libraries.

All four of these potentially malicious agents are relevant, and we consider the possibility

that one or all of them may be malicious, despite the fact that they may have been hired

or dealt with in good faith by a benign organization. The most obvious and immediate

13

3.2. RELATED WORK ON HARDWARE SECURITY

threats come from third-party vendors. This is because modern designs can contain tens

to even hundreds of distinct third-party IP components, many of which are sourced from

small groups of designers. These third-party components may meet functional specifications

but may often do more than they are supposed to. Another significant threat is from

rogue insider designers, such as a disgruntled employee or an implant from a spy agency.

In addition to these individual conspiracies, we also consider the possibility of a larger

conspiracy of malicious designers, including one between members of the validation and

verification team within a company and third-party IP vendors from outside the company.

We trust a small number of security engineers (a few or potentially just one) to be

trustworthy to use or implement our defensive techniques correctly, and we assume that

untrusted personnel cannot go back and modify the design after the security techniques

have been applied to the design. To keep this defensive effort small and thus make this

assumption reasonable, we aim to produce low-overhead and simple security designs.

3.2 Related Work on Hardware Security

Hardware systems are increasingly becoming large ecosystems, consisting of many intercon-

nected parts. There has been a significant amount of work over the past several decades

on protecting different aspects of these systems. We discuss prior work on discovering and

countering threats against a variety of different hardware components and systems.

3.2.1 Hardware Attacks that Pre-Date Backdoors

In addition to hardware backdoors, post-fabrication attacks are a wide area of attacks that

can be perpetrated without compromising the hardware supply chain. Hardware, by which

we mean collectively the processor, memory, network interface cards, and other peripheral

and communication devices, is susceptible to two broad categories of attacks: 1) non-invasive

side-channel attacks, and 2) invasive attacks through external untrusted interfaces/devices.

Physical side-channel attacks compromise systems by capturing information about pro-

gram execution by analyzing physical emanations, such as electromagnetic radiation [Harada

et al., 1997; Mangard, 2003; Mulder et al., 2005; Gandolfi et al., 2001; Quisquater and

14

3.2. RELATED WORK ON HARDWARE SECURITY

Samyde, 2001] or acoustic signals [Marchetti and Marks, 1974; Shamir and Tromer, ;

Asonov and Agrawal, 2004], which occur naturally as a byproduct of the physics of compu-

tation. These attacks are an examples of covert channels [Lampson, 1973] and were initially

used to launch attacks against cryptographic algorithms and artifacts (such as ‘tamper-

proof’ smartcards [Mangard et al., 2007][Kocher et al., 1999]). General-purpose processors

are also vulnerable to such attacks. There have been several attacks that exploit weak-

nesses in caches [Osvik et al., ; Bernstein, 2005; Neve and Seifert, 2006; Neve et al., 2006;

Osvik et al., 2005; Percival, ; Aciicmez, 2007; Bonneau and Mironov, 2006; Osvik et al., ;

Aciicmez et al., 2007c] and branch prediction [Aciicmez et al., 2007d; Aciicmez et al., 2007b;

Aciicmez et al., 2007a]. Some countermeasures against these threats include self-destructing

keys [IBM, ; Suh and Devadas, 2007; Gassend et al., 2002; Yu and Devadas, 2010] and

new circuit styles that consume the same operational power irrespective of input val-

ues [Tiri and Verbauwhede, 2005b; Saputra et al., 2003; Kömmerling and Kuhn, 1999;

Coron, 1999; Tiri and Verbauwhede, 2005a] and microarchitectural techniques [Tiri et

al., 2007; Brickell et al., 2006; Tiri and Verbauwhede, 2006; Verbauwhede et al., 2006;

Agosta et al., 2007].

Invasive device attacks are typically carried out by knowledgeable insiders who have

physical access to devices. These insiders may be able to change the configuration of

hardware to cause system malfunctions. Examples of such attacks include changing the

boot ROM, RAM, Disk or other external devices to boot a compromised OS with software

backdoors. Other examples include stealing cryptographic keys using unprotected JTAG

ports [Altschuler and Zoppis, 2008; Rosenfeld and Karri, 2010]. A possible countermeasure

is to store data in encrypted form in untrusted hardware entities. Since the 1980s, there

has been significant work in this area [Smith, 2004]. Secure co-processors [IBM, ; Dyer et

al., 2001] and Trusted Platform Modules (TPMs) [tcg, 2007] have been used to secure boot

processes. More recently, enabled by VLSI advances, researchers have proposed continuous

protection of programs and on-chip methods for communication with memory and I/O

integration [Lee et al., 2004; Elbaz et al., 2009].

15

3.2. RELATED WORK ON HARDWARE SECURITY

COMPLETE PAYLOAD CLASSIFICATION

COMPLETE TRIGGER CLASSIFICATION

BACKDOOR = TRIGGER + PAYLOAD

TIME: TICKING TIMEBOMB

DATA: CHEAT CODE

SINGLE-SHOT CHEAT CODE

SEQUENCE CHEAT CODE

EMITTER: EXTRA EVENTS

CORRUPTER: SAME EVENTS

CONTROL CORRUPTERS

DATA CORRUPTERS

Logical Form of Backdoors

Figure 3.2: Taxonomy and illustration of digital hardware backdoors.

3.2.2 Hardware Backdoors

A more recent and more subversive threat is the threat of intentional backdoors, included at

some point during the hardware development process. Broadly speaking, work in this area

can fall into one of three categories: threats and countermeasures against malicious design-

ers, threats and countermeasures against malicious design automation tools, and threats

and countermeasures against malicious foundries. There has been work on detecting back-

doors inserted by malicious foundries that typically rely on side-channel information such

as power for detection [Wang et al., 2008; Banga and Hsiao, 2008; Chakraborty et al., 2008;

Li and Lach, 2008; Banga et al., 2008; Rad et al., 2008; Salmani et al., 2009].

There have been unconfirmed incidents of design-level hardware attacks [Adee, 2008]

and work in academia on creating hardware backdoors. Shamir et al. [Biham et al., 2008]

demonstrated how to exploit bugs in the hardware implementation of instructions. King et

al. [King et al., 2008] proposed a malicious circuit that can be embedded inside a general-

purpose CPU and can be leveraged by attack software to launch a variety of stealthy

attacks. In just the past few years, the increased threat of hardware-oriented attacks has

caused political and economic concerns [Simonite, 2013].

In one of the earliest works on protecting hardware designs from backdoors, Hicks et

al. designed a method for statically analyzing RTL code for potential backdoors, tagging

16

3.2. RELATED WORK ON HARDWARE SECURITY

suspicious circuits, and then detecting predicted malicious activity at runtime[Hicks et al.,

2010]. This hardware/software hybrid solution can work for some backdoors and even as a

recovery mechanism. Its admitted weaknesses are that the software component is vulnerable

to attack and additionally that the software emulator must itself run on some hardware,

which can lead to infinite loops and DOS (denial of service).

Broadly speaking, a digital backdoors (in academia and likely in practice) tends to have

the following logical form, illustrated in Figure 3.2. There is a good (functionally correct)

circuit and a malicious circuit that exist together in a design. The outputs of both feed

into a circuit that is semantically equivalent to a multiplexer (though it may be extremely

hidden in terms of implementation). The multiplexer selects the output of the malicious

circuit when a triggering circuit is activated. This logical form allows the circuit to behave

exactly like a backdoor-free circuit whenever necessary, such as during validation testing.

3.2.3 Hardware Watermarking and Self-Identification

Hardware watermarking in general refers to methods for allowing hardware to have a unique

identification or fingerprint. Watermarking is in essence a form of attestation, where the

watermark attests to some property or simply the identity of circuitry. These methods

have been discussed in academic literature as ways to help the foundry side of security.

In surveying existing watermarking techniques, we break them down into heavyweight and

lightweight solutions and discuss the strengths and weaknesses of existing solutions.

Heavyweight solutions allow for substantial overheads. They are often applied to large

IP blocks in system-on-chip (SoC) designs. An example is constraint-based watermark-

ing [Kahng et al., 2001]. Constraint-based watermarks add unnecessary constraints to

synthesis tools that are used to solve instances of NP-hard design problems, resulting in

unique solutions to synthesis tasks. Other synthesis solutions — which an adversary might

come up with — are likely to violate those constraints. The main limitation of this type

of solution is that solving for these constraints is expensive, and imposing the constraints

often hurts the quality and efficiency of the design [Abdel-hamid et al., 2003].

Digital Signal Processing (DSP) watermarking involves using the partitions of a design

to send out an identifying signal [Chapman and Durrani, 2000; Chapman et al., 1999].

17

3.2. RELATED WORK ON HARDWARE SECURITY

This method only applies to DSP components in SoC designs. However, it introduces the

interesting notion that different pieces of a design can represent bits in a key that is not

physically stored.

Lightweight solutions are often more practical but can have other drawbacks. An ex-

ample is continuous side-channel watermarking [Becker et al., 2010]. This method uses a

small number of unnecessary gates to generate a small and continuous side-channel that

can be measured. The drawbacks of this method are that it may be detectable by a ma-

licious foundry, and it can be counterfeited if the foundry knows the technique is being

used (since no obfuscation is used). Other lightweight solutions include finite state machine

watermarking [Abdel-Hamid et al., 2006] and test sequence watermarking.

3.2.4 Hardware Netlist Obfuscation

An alternative to watermarking that has been considered for foundry-side security is netlist

obfuscation. The netlist, as the blueprint that is sent to the foundry, must be well-

understood by an attacker before it can be tempered with. For that reason, obfuscating the

(already difficult to interpret) netlist is a method that has been considered.

Obfuscation for hardware IP is a young area, and some of the initial solutions have been

intended to raise the bar but not solve the problem altogether (in fact, a perfect solution

is impossible). Two examples are comment removal and wire renaming, where comments

and useful variable names are removed to make design code difficult to read. These types of

methods are sometimes called layout obfuscation [Brzozowski and Yarmolik, 2007]. There

also exist techniques for making local logic changes within a given module to make it harder

to understand [Goering, 2003].

There exist further methods for obfuscating source code, such as breaking code un-

necessarily into modules or reordering source code statements benignly [Brzozowski and

Yarmolik, 2007]. These methods do not always change the resulting gatelists but do serve

to make the source code harder to read. A similar proposal is to encrypt design IP source

code and only allow the netlist to be viewed. Like other solutions of this type, this raises the

bar against reverse engineering source code but does not prevent malicious foundries from

reading the netlist (which they have to receive in unencrypted form in order to manufacture

18

3.3. PERSPECTIVE ON HARDWARE SECURITY AS COMPARED TO SOFTWARE
SECURITY

the device).

Obfusflow [Chakraborty and Bhunia, 2008] (and related follow-up work [Chakraborty

and Bhunia, 2009]) is a method for preventing IP piracy. The general idea is to embed an

authorization code in the hardware that can be turned on to convert the hardware from

obfuscated mode — wherein functionality is broken — to normal mode. In order to get

correct operation, the taped-out chip has to match a stored (on-chip) sequence of codes. If

that cannot be done, the behavior of the chip is essentially random, rendering it useless.

The trade-off in this solution is area vs. anti-piracy (or anti-reverse-engineering) assurance

because of the relatively high on-chip memory overheads.

Lastly, Koushanfar and Alkabani proposed a combination of watermarking and obfusca-

tion for the protection of IP in sequential circuits [Koushanfar and Alkabani, 2010]. Their

solution guarantees provable security properties though not true obfuscation in a theoreti-

cally secure sense (which again is impossible). The trade-off is that the overheads can get

large, with the power overhead growing as large as 1,530% for the benchmark suite they

considered.

Recently, key-based activation [Roy et al., 2008; Rajendran et al., 2012] has become more

heavily studied. With key-based activation, one or more statically chosen keys are required

to make a design function correctly. Without the keys, the design produces semi-random

noise.

There has also been tangentially related work in garbling functions or circuits against

functional evaluation (as opposed to inspection or reverse engineering) [Bellare et al., 2012],

as well as camouflaging gates against physical inspection [Rajendran et al., 2013].

3.3 Perspective on Hardware Security as Compared to Soft-

ware Security

We provide some perspective on how the field of hardware security in general relates to

software security. The question we hope to answer in part is why it is that hardware

security and software security operate in such different fashions.

19

3.3. PERSPECTIVE ON HARDWARE SECURITY AS COMPARED TO SOFTWARE
SECURITY

3.3.1 Is Hardware Easier to Secure?

A natural question one might ask is whether or not hardware is easier to secure than

software. In practice, hardware has less bugs than software (on average) and is less prone

to attacks (so far). We believe that there is a fundamental aspect of hardware development

that makes hardware easier to secure than software. The fundamental difference is that with

software, attackers have an advantage, while with hardware, defenders have an advantage.

In the software setting, attackers have the tremendous advantage (in most settings)

of having essentially unlimited time to develop and apply attacks. A piece of software is

developed and then released into the world. Attackers can develop and try many different

attacks against the essentially static piece of software. In other words, software is first

developed and then attacked. Attacks have more flexibility and more time for mutation

than software has. Thus, in the most general sense, one would expect that if an attacker

and defender have equal resources, the attacker will win. In practice, this observation has

shown itself to be true most of the time.

In the hardware setting, the game is very different and is almost the opposite. Since

hardware does not normally change after it has been manufactured, it is the attacker who

gets only one chance to achieve his or her goal. In fact, since the defenders (security

engineers or testers) will usually get a chance to interact with the hardware after the last

time an attacker has touched it, it is the defender who has the advantage in terms of time

and flexibility. For this reason, one would expect that if an attacker and defender have equal

resources, the defender should win. We believe this to be the case most of the time in the

hardware setting. This is why we believe that a rigorous approach to hardware security can

result in a satisfying solution that is not easily assailable even by sophisticated attackers.

3.3.2 Is the Economy of Hardware Different?

Another natural question one might ask is whether or not the economics of hardware de-

velopment are fundamentally different from the economics of software development as they

pertain to reliability and security. It is empirically the case that hardware has less bugs on

average than software. We believe that there exist fundamental reasons for this.

The most important reason in our opinion has to do with timing. Software is often

20

3.3. PERSPECTIVE ON HARDWARE SECURITY AS COMPARED TO SOFTWARE
SECURITY

developed with extreme time-to-market constraints and with the understanding that it can

be patched at a later date. Thus, software is often released with known bugs to save time

and money. Software is highly mutable and expected to be somewhat unreliable. As a

result, that is the way software is generally built. In some secure settings, software is

designed in a more rigorous fashion. However, this is less common. Additionally, even more

security-aware software may be reliant on buggy software underneath, such as operating

systems or hypervisors.

On the other hand, hardware development is economically motivated to be reliable.

While in some cases it may be possible to ‘patch’ hardware, for example by redefining the

ISA, bugs in hardware can result in complete product recalls or in forced downgrading of

products (such as re-marketing an 8-core chip as a 4-core chip). While time-to-market

constraints remain a factor, the cost of a recall is so high that it motivates companies

to take some extra time to ensure reliability. As a result, hardware tends to have less

bugs. Additionally, hardware development naturally has more time and more opportunity

to include security mechanisms that might have non-negligible costs, especially if they can

prevent catastrophic losses down the road.

21

Part II

Threat Model

22

Chapter 4

Threat Sources

When developing a threat model for a new space of attacks, it is important to consider the

question: from where can threats come? In the case of hardware systems, threats can come

from anywhere in the hardware development process.

As discussed in Part I, we believe that organizations that aim to make a profit or stay in

business are unlikely to sabotage their own designs or sell damaged products intentionally.

As a matter of definition, we do not consider it to be a hardware-oriented attack if an entire

company knowingly produces a bad product. A hardware-oriented attack occurs when an

adversary maliciously causes problems for a company that wants to produce operational

hardware. By looking at the hardware development process, we can enumerate from where

these adversaries can come.

The first step in the process is hardware design and coding. An adversary at this stage

in the process can be any third-party vendor from which IP is acquired, or it can be any

local or insider designer being used in the design process. These two types of adversaries

are largely similar, with the main difference having to do with validation testing. In the

case of third-party IP, validation tests might or might not be included and might or might

not be trusted. On the other hand, with inside designers, it is very likely that there would

be a corresponding validation team that is at least partially trusted.

The second step is synthesis, including design synthesis (into a gatelist) and physical

synthesis (into a netlist). The trusted entity for this step is the suite of CAD tools being

used and thus the company that produced the CAD tools. In practice, these tools tend to

23

be trusted a priori, due to there being very few tools and those tools being heavily used

over a long period of time. However, we do not consider it necessary to trust these tools.

In fact, the types of attacks that an automated tool might apply to a design are essentially

identical to the types of attacks a designer could manually include. Therefore, nearly any

method for securing the design against malicious designers also applies to synthesis tools.

As we will discuss later, having a form of attestation built into the netlist further ensures

that the synthesis tools are not adding their own malicious contributions.

The third step is the foundry. The foundry can potentially be malicious in its entirety.

Broadly speaking, a foundry can have two different malicious goals. The first could be

counterfeiting and the second could be backdoor inclusion. From a security standpoint,

we are more interested in the latter of these two goals. However, counterfeiting is still of

relevant interest. In fact, if an insecure version of a design already exists, then a foundry

can ‘alter’ a newer more secure version by simply providing a counterfeit of the old version.

This connection to counterfeiting further highlights the relevance of attestation.

The fourth and final step is post-fabrication testing. Currently, this testing serves to

aid only in reliability. These tests mostly detect chips that are completely broken due

to fabrication errors. However, this same step could be used for security purposes, as we

propose in this work. If a security engineer is used for post-fabrication testing, that engineer

has to be trusted, because otherwise simply lying suffices to compromise the system.

24

Chapter 5

Adversarial Game Model

We model our understanding of hardware-oriented threats and defenses as a game. This

game serves to highlight the qualities of hardware-oriented security that make it distinct

from software-oriented security. Most notably, the primary object of interest (the hardware)

is relatively immutable. As such, it is incredibly important who the last entity to alter the

hardware is. In this game, the attacker(s) and the defender(s) take turns altering the

hardware. The first alteration is the original coding of the design components, and the last

alteration is the final stage of post-fabrication testing. Since it is so crucial who makes the

last alteration, we explicitly highlight this aspect of the model.

5.1 The Principle of Last Action

Conjecture 1. Last Action Conjecture. We conjecture that given two entities, 1) a

malicious, intelligent adversary, and 2) a well-intending security engineer, if the two entities

are equal in resources and ability, then the entity who last touches the hardware prior to

release will win.

Specifically, this means the following. A defender, i.e., a security engineer or team, has

methods for securing and defending hardware. An intelligent, malicious adversary, who

can impact both the design and fabrication processes, knows all defensive methods and

has ways to subvert them. Developing new defenses will not prevent this adversary from

developing new attacks. Our conjecture states that since both sides have ways of defeating

25

5.1. THE PRINCIPLE OF LAST ACTION

each other, and since hardware, once released, is a static, immutable object, whoever alters

the hardware last prior to release wins the game.

From this (somewhat obvious) conjecture, we naturally derive what we call the Principle

of Last Action.

Theorem 1. The Principle of Last Action. A hardware device can be secured if and

only if (one or more) trusted security engineers are the last entities to interact with the

device prior to its release.

This principle follows directly from our conjecture. We note that this final interaction

with the hardware could involve altering the device or simply running an attestation pro-

tocol. Either way, if the device is secure after this last alteration, and if the adversary

never has another opportunity to alter it, then the device is known to be secure due to the

immutability of the hardware from that point forward.

26

Chapter 6

Taxonomy of Threats and

Attackers

In this chapter, we break down further the sources of attacks and the capabilities they

possess, as well as our assumptions regarding them.

6.1 Attacker Capabilities

Every step in the hardware development life cycle can potentially be attacked. We outline

the possible points of attack and the capabilities of the attackers.

• HDL Design Stage: At this stage, an attacker could be anyone involved in the coding

and design process of the hardware design modules. These attackers could be malcontents

or compromised personnel, either at a third-party design house or internal to a hardware

development corporation. Additionally, an entire third-party design house could be com-

promised. Broadly speaking, the malicious actions will either occur in secret by insider

designers, or they will be intentionally included in third-party designs. In either case the

malicious code exists within the soft design while it is undergoing validation testing. The

malicious circuitry is included directly into the source code and remains there both during

validation testing and during fabrication. If a backdoor is included in this fashion, then even

an honest foundry will manufacture the backdoor. Additionally, state-of-the-art techniques

for securing foundries will not catch the backdoor, because the final device will match the

27

6.1. ATTACKER CAPABILITIES

‘golden’ design (which in this case is not sufficiently golden).

• Validation Testing Stage: During the validation testing stage, malicious attackers

could be participants in validation testing or verification actions (if those are incorporated

into the same process). We assume that it is not the case that the entire validation and

verification team is conspiring maliciously. This is a necessary assumption, because if the

entire validation team is malicious, then there is no notion of testing on which to ground

security tests and inclusions (this is essentially the same as the assumption that there

is not an entirely malicious organization that intentionally produces faulty chips. Thus,

we assume that while validation tests may be faulty or incorrect, mistakes in validation

are either accidental or hidden. Thus, while validation tests may fail to discover hidden

backdoors, they will not ignore gross problems (such as a design that simply does not work

at all).

• Physical Synthesis and Layout: In order to turn a soft design into a gatelist and then

a netlist, which is the blueprint used by hardware manufacturers for physical fabrication,

the design must be compiled, synthesized and laid out. This process is usually automatic

but can also be done in a custom fashion by engineers. In either case, there is a trust issue,

whether it is with regards to the custom circuit engineers or the software engineers who

programmed the tools. We observe, however, that any backdoor that might be included

during physical synthesis could have also been included in the HDL in the first place. Thus,

this attack scenario is not dissimilar from attacks by malicious designers. In other words,

the capabilities of automated code manipulation tools are the same as the capabilities of

designers. The main difference exists in the way we apply the Principle of Last Action.

While it is easy to include security circuits after the design and validation processes have

completed, they may need to be applied prior to physical synthesis and layout. Thus,

a malicious physical synthesis tool could remove the defensive circuits we added to the

design. Granted, this would require extremely sophisticated software in the hands of the

attacker, but it is worth considering. Therefore, we note that design-level security practices

alone cannot protect against attacks from physical synthesis tools. For this reason, physical

synthesis is more closely associated with fabrication processes. Only by using methods that

also protect against malicious foundries or by applying defenses directly to the netlist can

28

6.2. ASSUMPTIONS REGARDING HARDWARE DESIGN PRACTICES

we protect against malicious synthesis tools and malicious custom circuit designers.

• Physical Fabrication: Physical fabrication often occurs at foundries that are not only

independent (third-party) but also international, and as such governments and large corpo-

rations may find it difficult to trust them. We consider the possibility that the entire foundry

is malicious and can even conspire with malicious designers or other malicious agents. This

is a strong threat model but not necessarily an unrealistic one. A malicious foundry can

include its own hardware backdoors, similar to the ones that might be included by a ma-

licious designer. Additionally, a foundry also has the power to simply apply counterfeits.

For example, consider that security circuits have been applied to a design to secure it. If

the foundry has the design for the original (unprotected) design, then that design can be

fabricated instead of the one with defensive circuits. This is another key application of the

Principle of Last Action. Since the foundry operates after all design-related aspects have

been completed, design-level defenses alone can never be enough. Instead, we know from

this threat model that the last action must always take place post-fabrication and must

be performed by security engineers. We will see later how this Principle of Last Action

motivates the use of post-fabrication attestation to ensure that security circuits exist even

after the final step in the process.

We next discuss the assumptions we make with regards to hardware design and fabri-

cation practices.

6.2 Assumptions Regarding Hardware Design Practices

Hardware designs can broadly speaking come from two types of sources, internal or external

(third-party). We make the following assumptions about hardware design practices.

• Assumption #1: Division of Labor Typically, a hardware design team (such as a team

designing a microprocessor) is organized into sub-teams, and each sub-team is responsible for

a portion of the design (e.g., fetch unit or load-store unit). Microprocessor design, as well as

the design of other larger hardware systems, is a highly cooperative and structured activity

with tens to hundreds of participants [Appenzeller, 1995]. The Intel Atom Processor, for

instance, is reported to have had 205 “Functional Unit Blocks” [ana,]; a design of a recent

29

6.2. ASSUMPTIONS REGARDING HARDWARE DESIGN PRACTICES

System-on-Chip product from ST Microelectronics is reported to have required over 200

engineers hierarchically organized into eight units [edn, 2008]. We assume that any sub-unit

team in a design can be adversarial but that not all of the sub-units can be simultaneously

compromised. Specifically, for a design process with n > 1 design teams, at most k < n

of them may be malicious. The design parameters of hardware defense systems depend on

the expected value of k. While one could imagine powerful adversaries, such as adversarial

nation-states, buying out complete teams to create undetectable malicious designs, it is

more likely that attackers will be a small number of compromised personnel.

• Assumption #2: Design Code Access Malicious adversaries may be insiders, including

malicious microprocessor designers, which include chip architects, microarchitects, RTL de-

signers and verifiers, and circuit designers. These workers have approved access to the

design, privilege to change the design, and an intricate knowledge of the microprocessor

design process and its workings. A malicious designer will be able to provision for the

backdoor either during the specification phase, e.g., by allocating reserved bits for unnec-

essary functions, or by changing HDL code. We assume this will be unnoticed during the

implementation phase and after the code reviews are complete. Our assumption that code

audits will not be able to catch all hardware backdoors is justified because code audits in

practice are not successful at catching all inadvertent, non-malicious design bugs.

• Assumption #3: Extent of Malicious Alterations A malicious designer is able to insert a

backdoor: 1) using only a small number (tens or less) of bits of on-chip storage, 2) with

a small number of logic gates, and 3) without cycle level re-pipelining. This assumption

does not restrict the types of attacks allowed. However, we assume the attacker is clever

enough to implement the changes in this way. This assumption ensures that the malicious

designer can slip in the hardware backdoor unnoticed past traditional audit methods with

high probability.

• Assumption #4: ROMs We assume that ROMs written during the microprocessor design

phase contain correct data. In particular, we assume that microcoded information is correct.

The reason for this assumption is that the data in ROMs is statically determined and not

altered by the processor’s state. For this reason, we consider this security issue to be better

30

6.3. TYPES OF DIGITAL DESIGN-LEVEL BACKDOORS

solved statically than at runtime.

• Assumption #5: Third-Party IP We assume that designs acquired as third-party intellec-

tual property (IP) do not include exhaustive validation suites. In practice, provided IP may

come with some amount of included validation testing. However, this testing is unlikely to

be complete or even trustworthy. Internal validation engineers may develop their own test

suites for the design IP. However, these tests are also unlikely to be exhaustive in practice,

due to feasibility constraints and/or time constraints.

6.3 Types of Digital Design-Level Backdoors

If a backdoor is implemented at the design level, then it fundamentally must contain two

parts: a trigger and a payload. The payload is the malicious end achieved by the backdoor,

such as the transfer of data or changing of a value or address. This payload causes some

malicious action that has value to the attacker. The trigger allows the payload to occur

at an appropriate time. Specifically, a trigger is a circuit that controls whether or not the

payload is active at a given point in time (or clock cycle). The trigger is a fundamental

component of a design-level backdoor, because including the backdoor prior to validation

means that there must be a way to keep the payload dormant and unseen during validation

tests. For a backdoor to be viable, the probability of its payload becoming active during

validation tests must be either zero or negligibly small.1

6.3.1 Types of Backdoor Triggers

A design-level attacker can use two general strategies for triggering an attack: a time-based

trigger or a data-based trigger. From the HDL perspective, input data and the passage of

time are the only factors determining the state of the microprocessor, so these two strategies

(or some combination of them) are the only ones possible.

• Trigger #1: Cheat Codes A malicious designer can use a sequence of uncommon bits, em-

bedded in either the instruction or data stream to unlock/lock the backdoor. For instance,

a store instruction to a specific address and a certain value (one pairing in a 2128 space for

1In practice we usually consider values on the order of 2−64 or smaller.

31

6.3. TYPES OF DIGITAL DESIGN-LEVEL BACKDOORS

a 64-bit microprocessor) can be used as a key to unlock a backdoor. Since the search space

is so large, the chance that this trigger is hit by random verification is negligible. King

et al. describe a variant of this attack in which a sequence of instructions in a program

unlocks a trigger. The cheat code method gives an attacker a very high degree of control

on the backdoor but may require a reasonably sophisticated state machine to unlock the

backdoor. Further, it requires execution of software that may not be possible due to access

restrictions.

It is necessary to break down cheat codes into two subtypes, due to the existence of both

time (clock cycles) and data in HDL. A purely data-based cheat code is a large data values

that contains the full cheat code all at once. We call this a single-shot cheat code. Any other

sort of cheat code must use a notion of the time (the passage of clock cycles). For example,

a cheat code could come in multiple pieces, or the entire cheat code could be inferred from

a sequence of events, such as loads and stores to a memory unit. We call this latter type

of trigger a sequence cheat code. We note that there is a natural mapping of sequence

cheat codes onto control interfaces and single-shot cheat codes onto data interfaces. This

is because, in practice, data interfaces are large enough to handle single-shot cheat codes,

while control interfaces interpret the sequences and types of operations occurring. These are

not hard restrictions but can help pedagogically in understanding the differences between

sequence cheat codes and single shot cheat codes.

• Trigger #2: Ticking Timebombs An attacker can build a circuit to turn on a backdoor

after the machine has been powered on for a certain number of cycles. The timebomb

method is very simple to implement in terms of hardware; for instance, a simple 40-bit

counter that increments once per processor clock cycle can be used to open a backdoor

after roughly 18 minutes of uptime at 1 GHz. Unlike the cheat code method, timebomb

triggers do not require any special software to open the backdoor. Timebomb triggers

can easily escape detection during design verification because random verification tests are

typically not longer than millions of cycles.

32

6.3. TYPES OF DIGITAL DESIGN-LEVEL BACKDOORS

6.3.2 Types of Backdoor Payloads

We classify the possible digital backdoor payloads into three categories, based on implemen-

tation characteristics at the microarchitectural level. The main point of focus is whether or

not the payload generates additional microarchitectural transactions. The motivation for

this perspective is the following. An adversary is inherently motivated to generate extra

transactions as a payload. By doing so, the attacker can perform extra work without im-

pacting architecturally visible state. An example of this could be a code injection payload,

where a computer virus runs in between the issuing of one instruction and the next. This

type of payload allows for simplicity of implementation and invisibility, which are two as-

pects that an attacker is likely to optimize for. On the other hand, an attack can develop

a payload that does not inject transactions. In that case, the attack must be significantly

more aware of the nature of the running program, because it must change transactions in

flight without crashing the system (unless the goal is simply a denial-of-service attack).

Thus, we observe that an attacker can either create a hardware backdoor to do more

(or less) work than the original, uncompromised design would, or the attacker can create

a backdoor to do the same amount of work (but work that is different from that of an

uncompromised unit). This is (trivially) a complete, binary classification, which we will

elaborate on further.

• Emitter Backdoors We define an emitter backdoor to be a backdoor wherein the payload

generates additional microarchitectural transactions. An example of an emitter backdoor in

a memory unit is one that sends out loads or stores to a shadow address. When this type of

attack is triggered, each memory instruction, upon accessing the cache subunit, sends out

two or more microarchitectural transactions to downstream memory units in the hierarchy.

Similar attacks can also be orchestrated for southbridge (I/O control hub) components,

such as DMA and VGA controllers, or other third party IP, to exfiltrate confidential data

to unauthorized locations.

• Corrupter Backdoors We define a corrupter backdoor to be a backdoor wherein the payload

alters in-flight transactions without generating new ones. In this type of attack, the attacker

changes the results of a microarchitectural operation without directly changing the number

of microarchitectural transactions.

33

6.3. TYPES OF DIGITAL DESIGN-LEVEL BACKDOORS

We mentioned that there are three total types of backdoor payloads. These three types

include emitter payloads, as well as two distinct types of corrupter payloads. It is necessary

to break down corrupter payloads into two types because of the fundamental difference be-

tween control and data signals within microarchitectural designs. We correspondingly define

these two subcategories of corrupter payloads as control corrupters and data corrupters.

A control corrupter backdoor causes microarchitectural transactions to change some-

where else on-chip (at a later cycle) by corrupting the type or semantics of an instruction in

flight. For example, if a decode unit translates a no op instruction into a store instruction,

this will indirectly cause the cache management unit to do more work than it would in an

untampered microprocessor. However, this change will not manifest itself until a later cycle.

This is different from an emitter attack because the decode unit does not insert any new

transactions directly; it decodes exactly the same number of instructions in the tampered

and untampered case, but the value it outputs in the tampered case causes the cache unit

to do more work a few cycles later.

Data corrupter backdoors alter only the data being used in microarchitectural transac-

tions. Examples of this could include changing the value being written to a register file or

changing the address on a store request. Data corrupter backdoors can be used to change

program flow, for example by changing a value in a register, thus changing the result of a

future ‘branch-if-equal’ instruction. However, each individual instruction will still do the

same amount of work as it should. The extra work will not occur until the corrupt instruc-

tion has been committed. Thus each instruction in a vacuum will appear to be doing the

correct amount of work.

6.3.3 Trade-Offs Regarding Backdoor Payloads From an Attacker’s Point

of View

From an attacker’s point of view, emitter backdoors are easier to implement. Emitter

attacks, such as shadow loads (extra loads that exfiltrate data), have very low area and

logic requirements in practice. They also have the powerful property that a user may not

see any symptoms of hardware emitters when using applications. This is because they can

preserve the original instruction stream.

34

6.4. ASSUMPTIONS REGARDING HARDWARE SYNTHESIS AND FABRICATION
PRACTICES

Corrupter attacks, on the other hand, are more complicated to design and harder to

hide from the user. In these attacks, rather than simply emitting bogus instructions, the

user’s own instructions are altered to invoke the attack. Since the user’s instructions are

being altered, the attacker must have detailed knowledge of the applications being run in

order to alter data without tipping off the user. If the execution of the backdoor were to

cause the user’s program to crash, this would violate the secrecy of the attack. Corrupters

are hard to design because corrupting specific data requires at least partial decoding of user

instructions and becomes harder as the size of datapaths scales. For example, a malicious

decoder that turns no ops into shadow loads becomes harder to implement as instruction

decode becomes more complex. In the case of multi-stage decoders, the backdoor itself may

require latches and execute over multiple cycles. For contrast, an emitter attack on the

load/store unit can send out shadow loads without using any extra internal state by simply

sending out shadow loads whenever it is not busy.

To summarize, the best value per effort for an attacker is from ticking timebomb emitter

attacks (a backdoor that uses an emitter payload and a ticking timebomb trigger). Such

attacks can be implemented with very little logic, are not dependent on software or instruc-

tion sequences and can run to completion unnoticed by users. In our solutions, however,

we will discuss strategies to cover all types of backdoors, including all trigger types and all

payload types.

Now that we have covered assumptions and capabilities of the design-side, we next

discuss assumptions and capabilities of the foundry side.

6.4 Assumptions Regarding Hardware Synthesis and Fabri-

cation Practices

It is commonly assumed in hardware security fields that hardware synthesis tools are trusted.

However, we do not make this assumption. The main reason for trusting synthesis tools

currently is that there are only a few commonly used tools, and they are both old and

widespread. Therefore, if a synthesis tool has been corrupted, it has been corrupted on a

grand scale, though we note that a compromise to a compilation tool has the potential to

35

6.4. ASSUMPTIONS REGARDING HARDWARE SYNTHESIS AND FABRICATION
PRACTICES

persist for a long time [Thompson, 1984]. While this assumption of trust might very well be

valid, we find it unnecessary. If it is possible that a synthesis tool can automatically insert

backdoor logic, we want to be aware of that possibility. We note, however, that allowing

for this possibility does not radically change the situation for us, because we already handle

both design-side and foundry-side attacks.

The difficulty with synthesis tool-oriented attacks is that they can look either like design-

side or foundry-side attacks. By making malicious modifications at the gate level, a ma-

licious tool that implement a backdoor that could have been inserted at design time. By

making intentional mistakes in placement and routing, a synthesis tool can implement a

backdoor that normally would have to be added during fabrication. However, in either of

these cases, equivalent attacks could have been added by either a malicious designer or a

malicious foundry. Thus by allowing for both malicious designers and a malicious foundry,

we argue that we are implicitly allowing for a malicious synthesis tool chain.

While our model of design-side backdoor triggers, payloads and capabilities is original

and expands understanding of the field, our model of foundry-side capabilities is relatively

standard. A malicious foundry has essentially unlimited capabilities. While they receive a

netlist that clearly specifies the device that should be produced, there is nothing in place

that ensures the integrity of the final product. At the most, there is a small amount of

post-fabrication testing to check that the device is capable of basic operation.

There are three ways in which a foundry can produce a device that fails to match the

given netlist.

• Backdoor Insertion: A foundry can manually insert backdoor logic into the netlist and

manufacture the backdoor into the device. Broadly speaking, there are two types of such

backdoors. The first is a self-contained foundry-side backdoor, where a backdoor is inserted

into a legitimately trustworthy design. The second type is a conspiracy-oriented foundry-

side backdoor. In this case, a conspiring malicious designer already included part or all

of a backdoor in the design. However, either the backdoor has no trigger or that trigger

has been disabled by defensive mechanisms. The foundry can enable that trigger, either by

supplying it directly through netlist alterations or by removing the defensive circuits from

the netlist. The result is that a design-side backdoor that would have been thwarted is now

36

6.4. ASSUMPTIONS REGARDING HARDWARE SYNTHESIS AND FABRICATION
PRACTICES

operational. In either of these two settings, the result is that a harmless design results in a

device that contains a backdoor.

• Counterfeiting: Counterfeiting is a field that has already received significant study for

reasons other than hardware security. A foundry can steal IP and/or sell chips on the

black market by counterfeiting designs. In the context of hardware security, counterfeiting

becomes even more of a problem. The ability to counterfeit means that a foundry has the

ability to ignore design-side protections. For example, consider that there exists an insecure

design I. A trustworthy design organization goes to great efforts to secure I using state-of-

the-art design-side security algorithms, resulting in the creation of a golden design G. The

netlist for G is sent to an untrustworthy foundry for manufacturing. Without needing to

understand G or go through any extra effort, the foundry simply produces counterfeits of

I and markets them as G. The result is that all of the security effort that went into G, no

matter what it is, is completely negated. We note that this example emphasizes the funda-

mental importance of the Principle of Last Action. The simple act of counterfeiting undoes

any and all design-side security unless there exists testing that occurs after fabrication.

• Accidental Errors: The third and final way in which errors can be introduced is acci-

dentally. Modern fabrication techniques are extremely complex, and the yield rates for chips

are significantly less than 100%. Therefore, many chips simply fail to work by accident.

Simple post-fabrication tests catch most of these errors, as it is easy to notice when a chip

is non-operational. These types of errors do not concern us significantly, as we are more

concerned with chips that are correctly manufactured but contain well-hidden, intentional

faults. Intentional faults are of course unlikely to be caught by simple post-fabrication tests.

37

Part III

Designing Trustworthy Hardware

38

Chapter 7

Protecting Hardware Designs

Proactively with a

Defense-in-Depth Approach

Our approach to defending against design-level hardware-oriented attacks is based on two

fundamental goals: to be proactive, and to apply defense-in-depth.

7.1 Why Be Proactive?

We believe that it is vital to be proactive when protecting against hardware-oriented attacks.

One of the main reasons for this is the time scale on which we are operating. A piece of

hardware takes a long time (and significant resources) to develop. Once fabricated, that

hardware might be sold and used for years or decades. Thus, we cannot wait for attacks

and then react to them. Additionally, due to the amount of time available during the

hardware development process, attackers are likely to be aware of all details of our defenses.

Therefore, our defenses must be proactive in defending against all possible attacks and must

also be aware of how attackers will react to knowledge of how our defensive systems work.

Thus, we consider it necessary that our defenses are proactive, i.e., they protect against

complete classes of attacks, rather than only known attacks. Additionally, it is necessary

that our defenses are self-aware, i.e., they continue to function even when attackers know

39

7.2. WHY USE DEFENSE-IN-DEPTH?

exactly when, where and how they will be implemented.

7.2 Why Use Defense-In-Depth?

Many areas of computer security result in arms races. An arms race is a situation where

the attacker and defender are on roughly equal footing, and increasing sophisticated attacks

have to be combated with increasingly sophisticated defenses. Arms races occur because

the offense and defense are playing a fair game. It is always best to assume that attackers

will apply the same amount of resources and intelligence as even the strongest defender.

Thus, attempting to win a fair game results in an unending arms race, where both attacker

and defender continue to improve their strategies.

Instead, our goal is to make the game unfair for the attacker. The two possible ways

to do this are through making the game unwinnable for the attacker or through defense-

in-depth. We do our best to make the game unwinnable for attackers by applying the

Principle of Last Action. However, doing so relies on human agents, such as attestation

engineers. As such, the game will never be truly unwinnable for attackers. Therefore, we

employ defense-in-depth as a supplemental strategy.

Our logic is the following. Given that the game as designed is unwinnable for attackers,

they can only win by violating one of the rules (i.e., axioms) of the game. Such violations

might include bribing a security engineer, discovering a new technology (such as more

advanced reverse engineering capabilities) or otherwise undermining an axiom believed to

be true. Such violations may be difficult or infeasible, but security researchers know from

experience that they can occur. However, with n-way defense-in-depth (n independent

security mechanisms), an attacker is required to simultaneously compromise the axioms of

all n systems. While defense-in-depth can never make attacks completely impossible, the

growth in difficulty as a function of n is very rapid, making it highly effective in practice.

For these reasons, we apply defense-in-depth, in addition to making the game as unfair

as possible for attackers.

40

Chapter 8

Functional Analysis of Hardware

Design Code

41

The first of the three stages of our defense-in-depth approach to hardware security is

static analysis. This step occurs during design and code entry, before the hardware has

been manufactured. The design being analyzed can either be a design that was developed

internally by an organization’s own design team or a design that was acquired from a third-

party organization. As this first line of defense, we have a developed the first algorithm for

performing static analysis to certify designs as backdoor free and have built a corresponding

tool called FANCI (Functional Analysis for Nearly-unused Circuit Identification) [Waksman

et al., 2013b].

Recall from the earlier section on backdoor models that a backdoor is turned on when

rare inputs called triggers are processed by the hardware. Since the trigger inputs are rare,

the trigger processing circuit rarely influences the output of the hardware circuit: it only

switches the output of the circuit from the good sub-circuit to the malicious sub-circuit when

a trigger is received. If we can identify sub-portions of a circuit that rarely influence the

output, then we can narrow down the set of sub-circuits that can be potentially malicious.

We call this set of potentially malicious circuits stealthy.

Boolean functional analysis helps us identify sub-circuits that rarely influence the out-

puts. We quantitatively measure the degree of influence one wire in a circuit has on other

using a new metric called control value: the control value of an input wire w1 on an output

wire w2 quantifies how much the truth table representing the computation of w2 is influ-

enced by the column corresponding to w1. FANCI detects stealthy sub-circuits by finding

wires that have anomalous, low control values compared to other wires in the same design.

The FANCI algorithm to compute the control value of w1 on w2 is presented as Algo-

rithm 1. The control value is a fraction between zero and one quantifying what portion of

the rows in the truth table for w2 are directly influenced by w1. In step 3 of the algorithm,

we do not actually construct the exponentially large truth table. We instead construct the

corresponding boolean function. Since the sizes of truth tables grow exponentially, to scale

FANCI, we approximate control values using a constant-sized subset of the rows in the truth

table.

To take a simple example, suppose we have a wire w2 that is dependent on an input

wire w1. Let w2 have n other dependencies. From the set of possible values for those n

42

Algorithm 1 Compute Control Value
1: count← 0

2: c← Column(w1)

3: T ← TruthTable(w2)

4: for all Rows r in T do

5: x0 ← Value of w2 for c = 0

6: x1 ← Value of w2 for c = 1

7: if x0 6= x1 then

8: count++

9: end if

10: end for

11: result← count
size(T)

wires (2n), we choose a constant number, let us say for instance 10,000. Then for those

10,000 cases, we toggle w1 to zero and then to one. For each of the 10,000 cases, we see if

changing w1 changes the value of w2. If w2 changes m times, then the approximate control

value of w1 on w2 is m
10,000 . Once we have computed all of the control values for a given

wire (an output of some intermediate circuit), we have a vector of floating point values

that we can combine to make a judgement about stealth. We have found that using simple

aggregating metrics, such as the arithmetic mean and median, are effective for identifying

stealthy wires. Other metrics may be possible and interesting in the future. The complete

algorithm used by FANCI is summarized in Algorithm 2.

An example of how backdoor circuitry can stand out within a module is displayed in

the histogram in Figure 8.1.

Due to the way FANCI works, the algorithm is guaranteed to flag any stealthy com-

binational logic. This means that it is impossible to trick FANCI through conventional

means. FANCI also works in practice against sequential (state machine-based) backdoors.

While the tool does not take state into account, state-based backdoors generally require

combinational logic to recognize the trigger state, and FANCI is (in our experience) able to

catch that combinational logic.

43

8.1. HEURISTICS FOR IDENTIFYING STEALTHY WIRES FROM CONTROL
VALUE VECTORS

Figure 8.1: An example of how backdoor circuitry (in red) can stand out from normal

circuitry (in blue) when stealth scores are calculated. Stealth values are shown on the

X-axis on a logarithmic scale.

8.1 Heuristics for Identifying Stealthy Wires from Control

Value Vectors

When we are done computing approximate control values for each input, we have a

vector of values for each output in the design. Our control value measurements capture

how one output wire is influenced by another input wire.

In this section we describe the heuristics that we use for making final decisions about

wires in designs. Given a vector of control values, these heuristics take an average and

determine whether or not a wire is suspicious. Having only one weakly-affecting wire or a

44

8.1. HEURISTICS FOR IDENTIFYING STEALTHY WIRES FROM CONTROL
VALUE VECTORS

Algorithm 2 How FANCI Flag Suspicious Wires in a Design

1: for all modules m do

2: for all gates g in m do

3: for all output wires w of g do

4: T ← TruthTable(FanInTree(w))

5: V ← Empty vector of control values

6: for all columns c in T do

7: Compute control of c

8: Add control(c) to vector V

9: end for

10: Compute heuristics for V

11: Denote w as suspicious or not suspicious

12: end for

13: end for

14: end for

wire that is only borderline weakly-affecting might not be sufficiently suspicious. This is

why we need heuristics for taking into account all of the control values in the vector.

Going back to the example where w2 is our output, w2 has a vector of n+1 control values

from its inputs (w1 and the n others), each between zero and one. These n+1 numbers are

the n+1 control values from the dependencies of w2. In this section, we discuss options for

processing these vectors to make a final distinction between suspicious and non-suspicious

output wires.

For a small but real example of what these vectors can look like, consider a standard,

backdoor-free multiplexer with two selection bits that are used to select between four data

inputs. This common circuit is depicted in Figure 8.3. The output M of the multiplexer is

dependent on all four data inputs and both selection bits. Semantically, the selection bits

choose which of the four data values is consumed.

We can see intuitively what the control values are for the six input wires (computation

for one input is shown explicitly in Figure 8.3). The situation is symmetric for each of the

four data wires (A, B, C and D). They directly control the output M in the cases when

45

8.1. HEURISTICS FOR IDENTIFYING STEALTHY WIRES FROM CONTROL
VALUE VECTORS

Figure 8.2: False positive rates for the four different metrics and for TrustHub benchmarks.

The RS232 group — which is the smallest — has about 8% false positives. The others have

much lower rates (less than 1%).

Figure 8.3: A standard 4-to-1 multiplexer. The output M takes on the value of one of the

four data inputs (A, B, C, D) depending on the values of the two selection bits (S1, S2).

the selection bits are set appropriately. This occurs in one fourth of the cases, and each

of these data inputs has control value 0.25. This can also be confirmed by writing out the

truth table and counting the rows.

The two selection bits have higher control values. A given selection bit chooses between

46

8.1. HEURISTICS FOR IDENTIFYING STEALTHY WIRES FROM CONTROL
VALUE VECTORS

Algorithm 3 Compute Approximate Control Value

1: numSamples← N (usually 215)

2: n← number of inputs

3: rowFraction← numSamples
2n

4: count← 0

5: c← Column(w1)

6: T ← TruthTable(w2)

7: for all Rows r in T do

8: if rand() < rowFraction then

9: x0 ← Value of w2 for c = 0

10: x1 ← Value of w2 for c = 1

11: if x0 6= x1 then

12: count++

13: end if

14: end if

15: end for

16: result← count
numSamples

Figure 8.4: A malicious 4-to-1 multiplexer. The output M takes on the value of one of the

four data inputs (A, B, C, D) depending on the values of the two selection bits (S1, S2).

There are also 64 extra selection bits ({S3, · · ·S66}) that only change the output if they

match a specific key.

two of the data values. For example, if S1 = 1 then S2 chooses between B and D. In that

case S2 matters if and only if B 6= D, which occurs in half of the cases. So the control

47

8.1. HEURISTICS FOR IDENTIFYING STEALTHY WIRES FROM CONTROL
VALUE VECTORS

values for the two selection bits are 0.50. This can be confirmed by counting rows in the

truth table.

The full vector of control values for the output M contains six values, one for each of

the six inputs. The values are:

[0.25, 0.25, 0.25, 0.25, 0.50, 0.50]

Intuitively, this is a benign circuit, as we would expect. All of the inputs are in the

middle of the spectrum (not close to zero and not close to one) which is indicative of a

common and efficient circuit.

Figure 8.4 depicts a malicious version of multiplexer. In this case, there are 64 additional

select bits. When those 64 bits match a specific 64-bit key, then the output of the mux is

changed to a malicious payload. In terms of the truth table, this affects only an exponentially

small fraction of the rows. The vector of values we would get for the outputM would include

64 additional values for those 64 extra input wires. Each of those control values would be

on the order of 2−63. Intuitively, this is an obviously suspicious circuit. We next discuss

heuristics for interpreting these vectors.

From a large circuit or large design, we get a variety of these control value vectors. The

guarantee we have about the distribution of control values is at least one or a few of them

will be zero or nearly zero for wires that belong to stealthy backdoor triggers. Thus, the

vectors will contain at least some small values. The practical question is how to deal with

these vectors and identify the output wires that are truly suspect from ones that are benign.

Toward this end, we consider a few different heuristics for evaluating these vectors. The

general description is shown in Algorithm 4.

Median: The first option we consider is the median. This is the median control value

over all of the input dependencies that feed into a dependent output wire. This median

value has the potential to be a good indicator of whether a set of dependencies is for the

most part on the high end or the low end. In the case of backdoor triggers, the wires on

the critical paths of the trigger generally have mostly unaffecting or very weakly-affecting

dependencies. Thus, the median is often zero or very close to zero.

The median can be an imperfect metric when the data distribution is very irregular.

48

8.1. HEURISTICS FOR IDENTIFYING STEALTHY WIRES FROM CONTROL
VALUE VECTORS

Algorithm 4 Compute a Heuristic for an Output Wire

1: w← output wire

2: h← heuristic function (e.g., median)

3: t← threshold (between 0 and 1)

4: v(w)← vector of control values

5: result(w)← h(v(w))

6: if result(w) < t then

7: return suspicious

8: else {result(w) ≥ t}

9: return not suspicious

10: end if

This does not happen often but can happen. The reason for this is that the median does not

reflect the presence of a few outliers in a large set of dependencies. Using just the median

(as we confirm in our evaluation), can result in a few unnecessary false positives.

Mean: In addition to the median, we also consider the mean of the control values.

Intuitively, the mean is an effective metric in the case of uniformly low dependencies or in

the case where there is a heavy tail in the distribution. The mean is also more sensitive to

outliers. For example if there are only a few dependencies, and one of them is unaffecting,

that is likely to get noticed. However, one reason the mean might not be the best metric

is because of this same sensitivity to outliers. It might fail to differentiate between two

distributions where one contains more unaffecting wires than the other.

Both: Since there are potential limitations with both median and mean, we also consider

the option of using both, i.e. flagging wires that have extreme values for both the mean

and the median. We set a threshold for both the median and the mean, and we flag a wire

as suspicious only if the median value is low and the mean value is also low. This helps

in some cases to slightly diminish false positives. Details and comparisons are presented in

Section 9.3.2.

Triviality: One last heuristic we consider in our implementation is one that we call

triviality. This is a weighted average of the values in the control value vector. We weight

them by how often they are the only wire influencing the output to determine how much

49

8.1. HEURISTICS FOR IDENTIFYING STEALTHY WIRES FROM CONTROL
VALUE VECTORS

an output is influenced overall by its inputs. Equivalently, this heuristic computes the

fraction of the rows in the truth table in which the dependent output wire has the value

zero (or symmetrically, the value one). In practice we compute triviality directly in this

way by looking only at the output column. The name ’triviality’ refers to the fact that if

the triviality value is zero or one then the circuit is completely trivial (always outputs zero

or always outputs one). The exact value for triviality can vary from run to run depending

on which rows are randomly selected, but it is probabilistically likely to vary by only a very

small amount. Empirically, we did not see significant variance.

Many other heuristics could be considered in the future to attempt to gain incremental

improvements in terms of false positive rates.

50

8.2. RELATIONSHIP BETWEEN FANCI AND THE STATE-OF-THE-ART IN
UNUSED CIRCUIT IDENTIFICATION

8.2 Relationship Between FANCI and the State-of-the-Art in

Unused Circuit Identification

Prior to our work, Unused Circuit Identification (UCI) [Hicks et al., 2010] was the state-

of-the-art in analyzing backdoors inserted during the design phase. The state-of-the-art in

design backdoor attacks is a class of attacks known as stealthy, malicious circuits [Sturton

et al., 2011]. This class of attacks deterministically evades UCI and was a viable way

to attack hardware designs prior to our work. As we will see, FANCI catches stealthy,

malicious circuits with extremely high probability.

UCI is an analysis algorithm that looks at dataflow dependencies in hardware designs

and looks for completely unused intermediate logic. It is a form of dynamic validation, and

in terms of our terminology, they identify always-affecting dependencies given a test suite.

Given the inputs in the test suite, if two wires always carry the same value, there is an

identity relationship, and the internal logic is unneeded. If the test suites were exhaustive,

then UCI would have significantly fewer false positives. However, given the incompleteness

of standard validation test suites, UCI has many false positives. For this reason, the Bluechip

system was built to replace the removed logic with exception handlers that invoke runtime

software in the case of false positives.

There are a few key differences between FANCI and UCI. The first is that FANCI does

not require a validation test suite. This is valuable for two reasons. Today, third-party IP

blocks often do not come with a validation test suite. Furthermore, if a validation suite is

supplied, the malicious provider can change the validation test suite to help the compromised

hardware evade UCI. A common problem in validation and verification is that achieving

good code coverage and good interface coverage does not mean good coverage of internal

states. Certain rare states may never get tested at all, which can lead to bugs in commercial

designs and also offers ways for backdoor designers to evade detection. FANCI tests all

logic equally, regardless of whether or not it is an input interface, and so it is impossible for

a portion of the logic to go untested.

The second key difference between UCI and FANCI is that UCI is deterministic and

discrete-valued in its approach. Given a test suite, a wire is only flagged if it is completely

51

8.2. RELATIONSHIP BETWEEN FANCI AND THE STATE-OF-THE-ART IN
UNUSED CIRCUIT IDENTIFICATION

unused, regardless of its relations to other wires. In FANCI we also catch nearly-unused

wires, meaning wires that are not completely unused by which rare alter output signals. For

example, if a wire affects the value of a nearby wire but ultimately has little impact on an

output wire a few hops away, we will catch that. Another aspect of FANCI is that it takes

into account the full vector of dependencies and uses heuristics to make a final decision.

In all of the designs we tested, there were many always-affecting dependency relationships

that FANCI did not flag. All of those relationships would have been false positives in UCI.

To give a toy example, consider a double-inverter path, two inverters placed one after

the other. This is a logical identify function, so it generates an always-affecting relationship

that would be flagged by UCI. However, as long as the output of the double-inverter path

is used, it would not be flagged by any of FANCI’s current heuristics. This is a small

example and could easily be hard-coded for in a practical implementation of UCI. However,

it serves as a microcosm of the difference between the deterministic approach of UCI and

the heuristic-based approach of FANCI.

Sturton et al. introduced stealthy, malicious circuits (SMCs) as a way to evade UCI.

FANCI detects SMCs, and we explain the intuition behind why that is. The basic idea

behind SMCs is to use logic that alters the values of intermediate wires but ultimately

does not affect outputs. Roughly speaking, UCI looks for completely unused wires, while

Sturton et al.’s class of attacks makes use of nearly-unused wires. Using this backdoor class,

Sturton et al. demonstrate basic circuit building blocks — such as AND and OR gates —

that can be used to implement stealthy hardware backdoors. Thus, any small backdoor can

be turned into an SMC and evade UCI. The truth table for one of the simplest SMCs is the

following (reproduced from [Sturton et al., 2011]):

52

8.2. RELATIONSHIP BETWEEN FANCI AND THE STATE-OF-THE-ART IN
UNUSED CIRCUIT IDENTIFICATION

t1 t0 i1 i0 h f Operation

0 0 0 0 0 0 Normal Operation

0 0 0 1 1 0 Normal Operation

0 0 1 0 0 0 Normal Operation

0 0 1 1 1 1 Normal Operation

0 1 0 0 0 0 Normal Operation

0 1 0 1 1 0 Normal Operation

0 1 1 0 0 0 Normal Operation

0 1 1 1 1 1 Normal Operation

1 0 0 0 0 0 Normal Operation

1 0 0 1 1 0 Normal Operation

1 0 1 0 0 0 Normal Operation

1 0 1 1 1 1 Normal Operation

1 1 0 0 1 1 Malicious Operation

1 1 0 1 1 0 Malicious Operation

1 1 1 0 1 1 Malicious Operation

1 1 1 1 1 1 Malicious Operation

There are two normal input bits i1 and i0 and two trigger bits t1 and t0. In terms of

the output f , this is a classic backdoor trigger. Only when all of the trigger bits are set

to one does the functionality change. In the other cases, the functionality is fixed, and the

circuit looks like f is the AND of i1 and i0. The use of the intermediate variable h, which

is distinct from f , makes it so that t1 and t0 are not truly quiescent. Thus, Sturton proved

that UCI’s defenses could be evaded.

Can FANCI detect stealthy, malicious circuits? Observe that the trigger wires – t1

and t0 – are weakly-affecting for the output f , i.e., they only affect the value of f during

malicious operation, which is a smaller fraction compared to normal operation. This fraction

diminishes as the trigger bits get numerous. Thus for the backdoors in this class of stealthy,

malicious circuits, the trigger inputs will have low control values and will be caught by

FANCI with probability approaching 1.

53

8.2. RELATIONSHIP BETWEEN FANCI AND THE STATE-OF-THE-ART IN
UNUSED CIRCUIT IDENTIFICATION

8.2.1 High-Level Understanding of Why FANCI Goes Beyond UCI

Philosophically, FANCI and UCI take similar approaches. They both leverage the ob-

servation that unused logic is potentially malicious. While the implementations are very

different, at a high level, the core difference comes from the logic of how the notion of unused

is formulated.

The notion of unused in the UCI setting can be expressed roughly as the following: If

for a given path, in all test cases, that path is always unused, then the path is malicious.

Otherwise it is not.

The notion of unused in the FANCI setting can be expressed roughly as the following:

If for a given wire, there exists another wire that it is connected to for which in most

possible cases, the path between the two wires is not used, then the wire might be malicious.

Otherwise, it is probably not but still might be.

There are several differences worthy of note between these two formulations. Firstly,

everything in UCI is deterministic, while everything in FANCI is probabilistic. The de-

terministic nature of UCI is what allows the attacks mentioned above to be guaranteed to

work. The use of uniformly random row selection in FANCI makes it impossible for an

attacker to deterministically avoid test cases.

Secondly, UCI uses all test cases, while FANCI uses a fraction of all possible cases,

chosen at random. Thus, FANCI is not subject to the need for test cases and is also less

predictable for an attacker.

Thirdly, while UCI looks at paths, FANCI looks at wires and the relationships to all

other wires. For example, a path might do actual work and produce a useful value. That

value might frequently affect one output. However, there might be a second output which

is almost never affected by that value. Thus, while the path is being used to do work, there

is a fraction of that work that is stealthy, even though it is not the case that the whole path

is unused. This is similar to what happens in the ‘stealthy, malicious’ backdoors mentioned

above.

Overall, UCI takes a deterministic, efficient and localized view in searching for unused

circuitry. FANCI takes a less efficient, randomized and global view. In looking at all

pairings of wires, FANCI does more work and potentially requires additional computation.

54

8.2. RELATIONSHIP BETWEEN FANCI AND THE STATE-OF-THE-ART IN
UNUSED CIRCUIT IDENTIFICATION

However, with the global view and the non-deterministic approach, it allows for wider

coverage and does not expose itself to deterministic attacks.

55

8.3. RELATIONSHIP TO BOOLEAN FUNCTION THEORY AND FAULT
SIMULATION

8.3 Relationship to Boolean Function Theory and Fault Sim-

ulation

While the notion of control that underlies the algorithms used by FANCI arose naturally

from the way hardware is designed, it is worth noting that similar concepts exist abstractly

in the areas of boolean function theory and fault simulation.

8.3.1 Relationship to Shannon Cofactors

The intuitive notion of control value, used in the development of the algorithms that underly

FANCI, is tightly connected with the mathematics behind Shannon cofactors. A Shannon

cofactor is the commonly used term (especially in fault simulation and modeling literature)

for the two ‘halves’ of a boolean function. Specifically, if a boolean function F contains a

variable x, then that function has two Shannon cofactors with respect to x. The positive

Shannon cofactor, usually denoted Fx, refers to the function when x is fixed to the boolean

value 0. The negative Shannon cofactor, usually denoted F ′

x, refers to the function when x

is fixed to the boolean value 1. If the boolean function is thought of as its equivalent truth

table, these two cofactors are literally the two halves of the table.

In the case of FANCI, we look at the difference between these two halves of the truth

table when measuring control value. This bitwise difference is sometimes referred to as the

boolean difference between two functions. The boolean difference can be computed between

any two boolean functions that operate on the same input space, and in the case of FANCI

we are looking at the boolean difference between the two corresponding Shannon cofactors

of the boolean function representing a circuit. It would not be wrong to alternatively define

the control value of an input wire on an output wire as the boolean difference between the

two Shannon cofactors of the boolean function defining the output wire with respect to the

input wire.

56

8.4. EVALUATION OF FANCI ON HARDWARE BACKDOOR BENCHMARKS

8.4 Evaluation of FANCI on Hardware Backdoor Benchmarks

For our implementation of FANCI, we developed a parser for gatelists that are compiled

from the Verilog HDL, which is a popular language for the design of hardware. All of the

concepts and algorithms we apply could be equivalently applied to VHDL or any other

common HDL, as well as to hand-written gatelists. Our analysis is language agnostic, but

we built a parser for structural Verilog and use Verilog for all evaluation purposes.

We used benchmarks from the TrustHub suite, which is the major academic benchmark

suite for work on hardware backdoors [Tehranipoor et al., 2012]. TrustHub is a benchmark

suite from an online community of hardware security researchers and includes a variety

of different types of backdoors, intended to be state-of-the-art in terms of stealth and

effectiveness. For some of these benchmarks, the gatelists were provided. For others, we

acquired the gatelists from the Verilog source using the Synopsys tool chain.

From the gatelist, our goal is to construct a representation of circuits that can be used

to calculate different types of dependencies. The first step is to pre-process the gatelist to

tokenize all of the different types and keywords. Each statement in a gatelist is either a

declaration of wires, an assignment action, or the definition of a gate or small set of gates.

We treat all multiple-bit wires as sets of independent wires. It is the same for our

purposes as if each bit was declared as its own wire. Gates that represent multiple basic

logic functions — such as an AND-OR-INVERTER (AOI) — are broken down into their

basic elements to make analysis easier. We treat memory elements (e.g., flip-flops) as their

logical equivalents. For example, a D-flip-flop is treated as an identity function. Basically,

we are allowing them to be treated as pass-through gates. Since we analyze the internal logic

of a module, as opposed to only the input and output interfaces, we are still able to catch

sequential backdoors by analyzing the combinational logic that determines state transitions.

Of course, doing exhaustive state analysis would be computationally intractable, which is

why we do not pursue that direction.

We evaluate the four basic heuristics we presented for the TrustHub benchmarks. These

are the mean, the medium, triviality and also the conjunction of median and mean. We

57

8.4. EVALUATION OF FANCI ON HARDWARE BACKDOOR BENCHMARKS

perform one run on each design1 with 215 = 32, 768 input cases (truth table row pairs),

with the inputs chosen uniformly at random.

The most important result of our experiments is that we did not encounter any false

negatives for any of the four heuristics. For every benchmark and for each of the heuristics,

we discovered at least one suspicious wire from each backdoor, which was enough for us to

identify the functionality of the hidden backdoors. Interestingly, different metrics tend to

highlight different parts of the backdoor. In general, the mean and median tend to highlight

backdoor payload wires and are similar to each other. This is because these payloads have

triggers or resulting values from triggers as their inputs. Thus, several of the input wires

have extremely low control values, causing both the mean and median to be small. On the

other hand, triviality focuses more on the output wire itself and as such tends to highlight

backdoor trigger wires. Since these are wires that are nearly always not set and only in rare

circumstances get set (or vice versa), their truth tables tend to score very low for triviality.

For each backdoor, we were able to identify at least one trigger and one payload wire. Using

both metrics in concert can help out in code review by flagging more of the wires associated

with the backdoor and thus demarcating the boundary of the backdoor more clearly.

Figure 8.2 shows the results for the 18 TrustHub benchmarks we analyzed with regards to

false positives. For our results, we categorize the benchmarks into groups as they have been

categorized by TrustHub. These categories represent four different design types, chosen to

be part of the benchmark suite and containing a variety of backdoor triggering mechanisms.

Each of the four groups contains a variety of backdoors manually included into a given

design.

The RS232 group contains eleven benchmarks, representing eleven different backdoors

applied to a relatively small third-party UART controller. The S35932 and S38417 groups

each contain three benchmarks, containing backdoors built into two gatelists whose source

and desciption are not provided. The S15850 group contains only one benchmark, also a

gatelist without source or functional description. The S38417 group contains the largest

designs in terms of area and number of gates.

1If desirable, multiple runs could be performed to increase confidence. In practice, the same results tend

to come up every time, but it cannot hurt.

58

8.4. EVALUATION OF FANCI ON HARDWARE BACKDOOR BENCHMARKS

The RS232 benchmarks, as the smallest, mostly contain sequential (state-machine based)

triggers but also a few combinational triggers. The s15850, s35932, and s38417 categories

are more different from RS232 and more similar to each other. They contain mostly but not

all combinational triggers and are significantly larger. We experienced a decrease in false

positive percentage for larger designs. We attribute this to the fact that the total number

of false positives remained roughly constant with respect to design size.

Additionally, the different benchmark categories achieve differing degrees of stealth.

Most of the triggers in the RS232 category have a relatively high probability of going off

randomly (such as during validation), as high as around one in a million. In the other

categories, the probabilities are lower, ranging from one in several million to as low as

around one in 2150. The backdoors in the three low probability groups are the most realistic,

since they are stealthy enough to evade detection by normal methods. The backdoors in

the RS232 category go off with such high probability that validation testing would have a

good chance of finding them. This is an aspect that made them more difficult to distinguish

and resulted in slightly more false positives. From what we have empirically observed, the

larger the design and the more well-hidden the backdoor, the better FANCI performs in

terms of keeping false positive rates low.

False positives mean increased effort for security engineers. Once a wire is flagged as

suspicious, a security engineer needs to look at the code and see if there is a good reason

for that circuit to be there. If, for example, there are 1% false positives, that would mean

roughly 1% of the design requires detailed code review.

Figure 8.2 shows the breakdown of false positives for different heuristics. Unsurprisingly,

using the median by itself produced the most false positives on average. However, the

difference is not large. The heuristic that produced the least false positives was triviality,

again by only a slight margin. All four metrics are effective enough for practical use. We

also believe that other metrics could be considered in the future to achieve incremental

improvements in terms of false positive rates. A promising result we discovered was that

the number of false positives diminished as a percentage when we looked at larger designs.

In other words, scaling up to larger designs does not seem to greatly increase the total

number of false positives.

59

8.4. EVALUATION OF FANCI ON HARDWARE BACKDOOR BENCHMARKS

Figure 8.5: The average length of the backdoor trigger path identified in TrustHub bench-

marks. Longer trigger paths are likely to be harder to detect because the distributions

become more complex. The length is specified in number of distinct wires.

Figure 8.6 shows how many wires are flagged as suspicious on average for each of the

benchmark groups by each of the different metrics. Each of the four metrics worked well,

but triviality worked slightly better than the others. We see that all four metrics flag only

a small number of critical wires, which means security engineers are given a small and

targeted set to inspect. For most of the groups, FANCI whitelists more than 99% of the

designs, making code review and inspection a feasible and relatively painless task. Triviality

returns slightly fewer on average due to having slightly fewer false positives. It is not clear

whether or not this difference is large enough to be statistically significant.

We next look at the size (using path length as a proxy) of the backdoors we encounter.

Figure 8.5 shows the lengths of the backdoor trigger computations in the TrustHub bench-

marks. The length here is specified in terms of number of distinct wires (or equivalently

60

8.4. EVALUATION OF FANCI ON HARDWARE BACKDOOR BENCHMARKS

Figure 8.6: These are the total number of suspicious wires detected by each method for

each type of backdoor design on average. For each design and each of the four methods

we tried, we always found at least one suspicious wire. Thus, each of the four methods is

empirically effective. However, some turned up larger portions of the trigger critical paths,

proving to be more thorough for these cases.

number of gates). This is the way to think of lengths that makes the most sense for us from

the perspective of digital boolean logic. Qualitatively, the smallness of these backdoors

helps FANCI to work well. Since backdoor triggers need to be small and stealthy but also

produce rare behavior, designers are forced to make each input wire as weakly-affecting as

possible. These results could be commentary on the types of backdoors those designers

choose to build, or it could be representative of the way people design malicious circuits

in general. Without a wider array of benchmarks, we cannot say for certain. However, it

appears that the crucial part of a backdoor – even a relatively complex backdoor – tends

to be composed of only a few wires. This is good for security engineers because it means

that we have a clear target for identification.

61

8.4. EVALUATION OF FANCI ON HARDWARE BACKDOOR BENCHMARKS

Figure 8.7: The trade-off between number of inputs testing (i.e. running time) and the true

positive rate. Results are shown for four different metrics. The x-axis is on a logarithmic

scale, so it takes a lot of inputs to achieve the best results. Running 32,768 inputs through

a design generally takes between a few minutes and an hour.

We lastly test to see what happens as we increase and decrease the number of input

rows we sample. The results for one of the benchmarks is shown in Figure 8.7. We see that

up to a certain point, the results improve; after that point, the results tend to converge and

stay about the same. This is essentially the law of large numbers kicking in, and it allows

FANCI to scale well.

What we also learn from Figure 8.7 is that there are two sources of false positives. The

first source is approximation. If we run only a few inputs, we get a lot of false positives,

and if we run more inputs we get less false positives. The second source is from unavoidable

false positives, i.e. weakly-affecting signals that are in the design for legitimate reasons. As

Figure 8.7 shows, the true positive percentage plateaus quickly, which is why false positives

62

8.4. EVALUATION OF FANCI ON HARDWARE BACKDOOR BENCHMARKS

due to approximation are not a major concern.

The runtime for FANCI is roughly proportional to the size of the design under test

in terms of number of total gates. In practice, the runtime ranges from a few minutes to

about an hour using 215 rows per truth table. The runtime can be increased or decreased by

changing the number of inputs tested. In practice we did not find it necessary to decrease

this number. Given the sizes of third-party IP components on the market, the runtime for

FANCI should not be a problem for real-world scenarios. Our linear runtime in terms of

number of gates is similar to many synthesis and analysis tools, since our tool and other

tools require the parsing of every gate in the design.

Additionally, the algorithm is trivially parallelizable. Our initial implementation is

sequential, but in the future it could be made parallel if necessary. We do not do any

form of directed testing or targeting of specific rows in truth tables. We go with uniform

randomness because any other method of randomness would be better for an attacker and

worse for us as the security engineers.

One interesting lesson learned from our experiments was that false positives tended

to be consistent (or even predictable) and did not occur due to the randomness of our

sampling methods. We anticipate that the few false positives we do encounter will bear

similarities to each other, perhaps allowing for easier recognition. Some examples of benign

weakly-affecting wires (potential false positives) could be the most significant bit of a large

counter or an input to an exception recognition circuit for a particularly unusual exception.

These circuits are semantically similar to backdoors, because they react to a specific rare

case. For example, consider the somewhat contrived case of a floating point divider that

throws only a single exception, caused by a divide-by-zero error. Then for the data input

representing the divisor, only the value zero invokes the exception-handling logic. Thus, the

exception-handling logic is nearly unused, and that input is a weakly-affecting input. Many

other such examples exist in moder microarchitectures, and to experienced designers, we

believe they will be relatively obvious. For example, consider a performance counter that

records an overflow after it has reached 232 = 1. This looks just like a ticking timebomb

trigger and throws an easily recognizable false positive. Another similar example could be a

large CAM (content addressable memory), wherein a cell is only activated when its search

63

8.5. EVALUATION OF FANCI ON AN OUT-OF-ORDER MICROPROCESSOR CORE

value is provided. If this is, for instance, a 32-bit search input value, then each CAM cell

contains a 32-bit comparator. When looking at the results of FANCI, there will be a group

of weakly-affecting wires for each CAM cell, and they will all look identical. This type of

pattern should be easily recognizable.

We expect that the existence of these benign circuits in designs should not pose much

of a problem for security engineers, because counters, exceptions, CAMs, and so forth are

easily recognizable in code review and even by their FANCI signatures. Simply being aware

of this problem should be enough in most cases to render this problem as a non-issue.

Nevertheless, as an attacker, one might be motivated to include many such benign but

deceptive circuits to increase the false positive count. A larger false positive count could

increase the time security engineers need to spend on analysis and could possibly distract

them from more relevant circuits. The challenge from an attacker’s point of view is that

each of these false positives requires a costly circuit, and so building an entire design this

way would likely be impractical. Additionally, these types of circuits in practice tend to

have obvious architectural purposes, so adding hundreds or thousands of them would be a

dead giveaway in code review. For example, including a large number of exception handlers

that serve no apparent purpose would be a likely source of concern during code inspection.

Our hypothesis was that in real designs (i.e. designs that one might buy as IP), even

malicious designers are forced to follow common design conventions and design reasonably

efficient circuits. We believe that this is the reason we did not find a significant number of

false positives in any of the designs we analyzed.

8.5 Evaluation of FANCI on an Out-of-Order Microprocessor

Core

In order to study FANCI on a larger and backdoor-free design, we conducted a case study

using the FabScalar microprocessor core generation tool [Choudhary et al., 2011]. FabScalar

is an HDL code generator that produces processor cores given a fixed set of parameters. The

particular core we choose to use is a moderately-sized, out-of-order core with four execution

units and does not contain backdoors.

64

8.6. RED TEAM/BLUE TEAM STRESS TESTING OF FANCI

The core we analyze has a total of 56 modules. The modules contain about 1900 distinct

wires on average, with the largest module containing slightly over 39,000 distinct wires. This

largest one is abnormally large for a single module containing primarily combinational logic.

However, as this is an auto-generated design, it is understandable. While the overall design

is larger than any of the modules from the TrustHub suite, and larger than typical third-

party IP components, many of the individual modules are on average around the same size

as modules in the TrustHub suite.

We were able to analyze 54 of the 56 modules in FabScalar using 215 row pair samples

per truth table. The two largest modules are outliers and would take significantly longer

(we estimate 3-10 thousand hours on a single laptop core). These could easily be analyzed

in a commercial setting on a compute cluster. Additionally, many software optimizations

could be applied prior to commercialization.

As expected, we did not detect any false positives in the benign FabScalar core with

the triviality and mean heuristics (we did not experiment with the other two heuristics due

to lack of time). To garner some further intuition for how our heuristics look for wires

in benign hardware, we construct a histogram of a typical FabScalar module (shown in

Figure 8.8). There are two big spikes at 0.5 and 0.25. We see several other spikes. The

reasons for spikes is because semantically similar wires tend to have similar values, as we

saw in the example of a multiplexer. For this module, there are no suspicious outliers, with

all of the values being at least 0.01.

8.6 Red Team/Blue Team Stress Testing of FANCI

While the controlled experiments to test the effectiveness of FANCI yielded excellent re-

sults, we consider it interesting to stress test the tool in a less controlled and more de-

manding environment. For this reason, we performed a red team/blue team experiment

as part of NYU’s 2013 Embedded Systems Challenge (ESC), where several teams from

both the United States and around the world (specifically Europe and Asia) tried to defeat

FANCI. The tool performed well, catching all of the stealthy attacks and even a few of the

non-stealthy (frequently-on or always-on attacks) [esc, 2013; Waksman et al., 2014]. While

65

8.6. RED TEAM/BLUE TEAM STRESS TESTING OF FANCI

Figure 8.8: A histogram of the triviality values for wires in a typical FabScalar module,

called the CtrlQueue. The two biggest spikes occur at around 0.5 and 0.25. There are no

major outliers.

FANCI would not normally be expected to detect frequently on backdoors, sometimes even

frequently-on backdoors use incidentally stealthy or abnormal logic for trigger recognition.

While the rules of the contest were not entirely formalized, teams were encouraged

to attack any and all axioms of FANCI, and the blue team was put under extreme time

constraints (only a few hours to catch backdoors) so as to press FANCI as much as possible.

While several of FANCI’s axioms were targeted by attacks, FANCI displayed resilience. All

highly stealthy attacks were detected with relative ease. We found overall that the best way

for attacker’s to go after FANCI in this contest was to either use a frequently-on backdoor

or to use a pathologically pipelined design. In the first case, frequently-on backdoors are not

stealthy. Hence, FANCI will not flag them as such. In the second case, extreme pipelining

66

8.6. RED TEAM/BLUE TEAM STRESS TESTING OF FANCI

makes it harder to understand the data and stress-tests those portions of the tool prototype

that are least developed (i.e., parts that unwind memory loops). We include further details

and discussion for the three most successful red teams from the competition.

• Red Team A: Red Team A created three independent backdoors (in three different but

similar versions of a design), which highlighted different aspects of the FANCI tool and

algorithm. This team created two frequent-action backdoors (which were not detected) and

one stealthy backdoor (which was detected). The stealthy backdoor used a 66-bit cheat code

that comes from a pseudo-random input source. This backdoor highlighted the importance

of using intermediate wires in our algorithm, which was one of the main contributions of

FANCI. If FANCI only computed the impact of module inputs on module outputs, this type

of backdoor might not be caught, but since we analyze all intermediate wires, noticing a 66-

input intermediate AND gate is easy. The two frequent-action backdoors were naturally not

caught. One was turned on by the reset signal, and one was turned on frequently but only

during the negative clock edge. Both of these were frequently enough on that they yielded

no low control values and were not stealthy. These types backdoors highlight the need to use

a minimal degree of validation testing in addition to FANCI. They also illuminate the fact

that signals like reset and the clock, which might be given less attention during validation

testing in practice, are just as relevant as any other signal when considering intentionally

hidden backdoors.

• Red Team B: Red Team B submitted three backdoors as well. This team produced

a variety of backdoors on independent baseline designs. The first backdoor was designed

into a DES accelerator and was built off of an aggregation of small finite state machines

(FSMs). They used the state machines to control round scheduling in an incorrect fashion

and thus weaken the strength of encryption, which would expose the ciphertext to software-

based attacks upon data release. This was a case where we were able to detect the trigger

circuit because of the combinational logic that controlled the state machines, even though

we ignore the actual state (flip flops).

The second backdoor from Red Team B was a similar round-scheduling attack, this

time perpetrated against XTEA. This attack acquired its stealth by counting the number

of one-bits in the input, which is a good way to generate high stealth, due to the non-uniform

67

8.6. RED TEAM/BLUE TEAM STRESS TESTING OF FANCI

Figure 8.9: Trade-off between lines of code analyzed and runtime. The black points denote

designs that finished completely in the contest time frame. The lighter points represent

designs that were analyzed partially for the contest. For those points, the full runtime is

estimated.

distribution of one bits across a bounded set of integers. However, the combinational circuit

for doing the counting was flagged.

The third backdoor also attacked cryptographic hardware, this time a cellular automata

PRNG. This one was a sequence cheat code where the malicious user needed to supply one

bit of the trigger at a time. This attack would be normally difficult for validation testing

to catch, because it hides on the negative edge of the clock (similar to one of the Red Team

A attacks). However, since FANCI ignores clock timing, it can detect the trigger logic

regardless of clock edge.

• Red Team C: Red Team C produced one backdoor, hidden in a stream cipher module.

This attack was similar to one of the attacks suggested in the original FANCI paper [Waks-

man et al., 2013b] and helped to demonstrate the need for basic validation and oversight

when applying FANCI to untrusted designs. The attack is a combination of a frequent-

action backdoor and a pathological pipeline backdoor. The trigger fires frequently but not

all the time, meaning the stealth scores are not particularly low. The design is also heavily

68

8.6. RED TEAM/BLUE TEAM STRESS TESTING OF FANCI

pipelined, with roughly one flip flop between each pair of complex logic gates for critical

paths in the design. Looking at the gatelist, it is immediately obvious that the design has

been compromised due to the irrational amount of pipelining and poor latency. However,

identifying the exact behavior of the backdoor payload in this setting can be difficult, and

FANCI does not detect this payload readily or easily. Going after this type of attack in

practice requires either rigorous validation tests or oversight from an integration engineer

(to notice the pathological design style).

Overall, the contest served as an informal demonstration of the power and effectiveness

of FANCI against sophisticated groups of attackers. We include a few observations and

takeaways based on the results of the contest and our experiences.

• Runtime and Scability Figure 8.9 shows the runtime of the tool as a function of the

number of lines of code in the various designs, using one primary design from each red team.

Naturally, FANCI runs slower on larger designs, but the slowdown is more or less linear,

which makes the analysis feasible. These tests were done on a single core of a commodity

machine.

• Attack Categorization: A positive result of the contest was the discovery that many of

the red teams designed attacks very similar to the types we anticipated when first designing

FANCI. In [Waksman et al., 2013b], we mentioned three general attack avenues against

FANCI: frequently active (non-stealthy) backdoors, heavily pipelined backdoors, and false

positive flooding. While the third option was not employed by the red teams, the first two

were used by multiple teams. This evidence supports our belief that FANCI and validation

testing should to be used together synergistically. Ideally, validation testing should be

designed with the assumption that FANCI will detect anything stealthy. This would allow

validation teams to focus their efforts on other avenues, such as some of the attacks we saw

that target reset or the negative clock edge.

• Algorithm vs. Implementation: While the contest did not expose any deficiencies

in the FANCI algorithm, the tool itself was stressed in some cases. Two issues stand out.

First, runtime became an issue for large designs. Some modules would have taken more

than the given three days to analyze, and so incomplete analysis runs were done. The tool

is configurable for this, allowing for hasty passes. However, in the future, parallelization

69

8.6. RED TEAM/BLUE TEAM STRESS TESTING OF FANCI

could do a much better job of alleviating this problem. The second issue is the way the

tool handles pipelining. The core of the tool works on combinational logic, so flip-flops

have to be dealt with. We believe the best way to handle flip-flops is to treat them as

identity gates, so that simply inserting dummy flip-flops does not hide stealthy logic. On

the other hand, this creates loops in the logic, which have to be dealt with. For most cases,

our tool currently treats flip-flops as a barrier and does not analyze past them. This did

not prevent us from catching any stealthy backdoors in this contest, but it made manual

analysis more difficult. Improving the tool for this case in the future would be beneficial

and likely necessary for commercialization.

70

8.7. SECURITY DISCUSSION AND GUARANTEES OF FANCI

8.7 Security Discussion and Guarantees of FANCI

We briefly discuss a few of the key security properties regarding FANCI.

• FANCI relies on the fact that backdoors use weakly-affecting wires. This is because

backdoors need to be stealthy, i.e. well-hidden from validation testing. The more well-

hidden a backdoor is, the more likely it is to be caught by FANCI, because well-hidden

backdoors have lower control values. On the other hand, the less well-hidden a backdoor is,

the more likely it is to evade FANCI. Fortunately, less well-hidden backdoors are more easily

caught by standard validation practices. For example, a poorly-hidden backdoor that turns

on frequently (and thus has high control values) will go unnoticed by FANCI but would be

caught during basic validation testing. It is provable (see Section 8.8) that for a fixed-depth

combinational circuit path, achieving a given level of stealth requires a correspondingly low

control value for one or more of the inputs.

• FANCI does not entirely remove the need for commonplace code inspection/review prac-

tices. As a motivating example, consider an attack in which a malicious designer includes

thousands of backdoor-like circuits, i.e. circuits that have triggers. By giving only one

or a few of them useful payloads, the circuit would appear to FANCI as one with many

backdoors, producing a large number of what one might consider false positives and making

analysis take an excessively long time. Of course, in addition to the area bloat this would

cause, it would be clear in basic code inspection that this was a contrived design. Nonethe-

less, we consider this to be a relevant case that anyone using FANCI should be aware of.

FANCI specifically targets small, well-hidden backdoors, which are the type that are able

to evade testing and code inspection. It is not well-suited for catching backdoors that are

large and relatively obvious.

• Given knowledge of how FANCI works, it would be possible for an attacker to attempt

to deceive the tool’s analysis. Since an attacker cannot create a backdoor without weakly-

affecting wires, an attacker might instead try to hide a backdoor amongst other weakly-

affecting wires, hoping to cause false positives. However, in practice these types of circuits

(such as comparators and exception handlers) tend to have architecturally obvious function-

ality. If the backdoor is the only flagged wire that does not have documented functionality,

71

8.7. SECURITY DISCUSSION AND GUARANTEES OF FANCI

it stands out in code inspection. It remains theoretically possible to imagine such an attack,

though it might not be realistic. Consider for example a divide-by-zero exception handler in

a floating point unit. Consider that an attacker puts a backdoor in the unit that fires when

an instruction says to divide by seven. The divide-by-zero exception is easily recognizable

as conventional, while it would be suspicious to special-case on divide by seven, especially

if its functionality is not documented or known to the architects. FANCI would likely flag

both of them, but simple code inspection would immediately recognize the true culprit.

A qualitative but important property of our approach is that it behaves well with respect

to common, reusable structures. In common designs, especially large designs, much of

the circuitry is spent on standard, reusable components, such as CAMs, RAMs, FIFOs,

decoders, encoders, adders, comparators, registers, etc. We do not have issues with false

positives for these common types of structures, and a big part of that has to do with our

heuristics. When choosing false negatives, we look for outliers, as mentioned previously. In

these standard structures, there tend to be no outliers due to symmetry. Consider a CAM

with 32-bit data entries. For each entry, there is a 32-bit data comparator which includes

some very low control value dependencies (on the order of 1
232

. However, due to symmetry,

each of the comparators is identical (or nearly identical), thus leaving no outliers to serve

as false positives.

Our approach also works very well against stateful (viz. sequential) backdoors, as we saw

in some of the TrustHub benchmarks. By simply treating latches as identity gates, we can

ignore state and still uncover low control value dependencies. Hypothetically, a sequential

backdoor that makes use of an extremely large and deep (contrived) state machine might be

able to avoid outliers. However, as we saw in Figure 8.5, practical backdoors have relatively

small lengths.

72

8.8. THE MATHEMATICS OF CIRCUIT STEALTH

8.8 The Mathematics of Circuit Stealth

The underlying intuition behind the FANCI approach is that stealth is a necessity when

creating a design-side backdoor in the presence of validation tests. This intuition and our

empirical evidence have thus far supported the idea have there are strong motivations to

use stealthy circuits and that these stealthy circuits need to make use of wires with low

control values. We briefly express the relationship between control values and stealth which

corroborates this intuition and evidence.

Theorem 2. The Stealth/Control Duality Theorem. In a fixed depth, combinational,

digital, boolean circuit, high stealth (above 1− 1
ǫ
for a given ǫ > 0) requires at least one low

control value (below δ for a corresponding δ > 0).

Intuition: The intuition for this theorem is relatively clear. Stealth and control are

loosely opposites of each other. High stealth means that a behavior rarely happens, which

means the control value of inputs on the behavior must be low. As stealth increases, control

correspondingly decreases.

Relevance: This theorem explains the empirical results using the FANCI tool. Since

attackers are forced to use high stealth, they are forced to use low control values and thus

make the application of FANCI easier.

Proof: Consider a fixed depth circuit with all the above properties, depth d > 0 and

g > 0 gates that form a combinational circuit (i.e. a connected, directed acyclic graph).

Consider that one edge in this graph is a trigger wire T which must take on the value of 1 in

less than an ǫ fraction of all possible cases so as to achieve a stealth level greater than 1− 1
ǫ
.

Consider the restricted boolean function with the input set consisting of the subset of inputs

that contain T in their fan-out tree and with {T} as the output set. The corresponding

graph represents a subgraph of the original graph, and the stealth of T is unchanged. For

each element e of the input set (each node in the graph that has an in-degree of zero), we

can denote the two Shannon cofactors as Fe and F ‘e. The boolean difference between Fe

and F ‘e is at most 2ǫ, with the extreme case being the case where Fe is the always-zero

function. Therefore, if there exists a wire T with stealth greater than 1 − 1
ǫ
, there exists

at least one corresponding wire e such that the control value of e on T is at most 2ǫ. This

73

8.8. THE MATHEMATICS OF CIRCUIT STEALTH

satisfies the theorem by setting δ = 2ǫ. �

We note that not all circuits are combinational. In fact, pipelining is the most clear way

to break up a backdoor and lessen the use of extremely low control value wires. There are

several factors that have made pipelining insufficient to effectively bypass FANCI, and we

briefly summarize those factors.

The first issue is that pipelining has little impact if it does not result in loops. In other

words, if a flip-flop bank only cuts a combinational circuit path in half, that has no real

impact on control values. We can simply pretend the flip flops are not there (because timing

does not matter for our purposes) and run the same analysis. This has worked well for us

empirically.

A second issue is that even if the pipelining creates loops, if the loops are not highly

complex, then the analysis is not forced to change significantly. For example, if the loop can

be broken by severing one connection, then we can simply perform two analysis jobs, one

on each side of the severed connection. This makes the analysis task slightly more difficult

but not radically different.

A final issue is that in the case of extremely complex, pathological pipelining, the design

begins to look contrived. As we have seen with some example circuits, FANCI can be made

to fail by using extremely contrived pipelining methods, but the design looks unrealistic to

any experienced engineer looking at the source code. For an attacker to come up with a

design that is sufficiently pipelined to avoid FANCI while also being stealthy enough to evade

all likely validation tests and still appear ordinary enough to pass basic code inspection is

a tall order that we believe raises the bar to a high level.

74

Chapter 9

Disabling Backdoor Triggers

Dynamically at Runtime

75

TRUSTED RESET UNIT

UNTRUSTED UNITS Untrusted

unit

E

D

Trusted

unit

A

Untrusted

unit
Trusted

unit
R

a b c a c bB

E D

Non-computational case

Untrusted

unit

Computational case
α

β

A α α A

Power Reset Data Obfuscation Sequence Breaking

Figure 9.1: An overview of our three methods for trigger obfuscation.

Even if hardware designs cannot be trusted, it is possible to disable hardware backdoors

by taking action at runtime. Toward this end, we proposed trigger obfuscation, a novel

approach that allows the triggers of backdoors to be disabled before any payload has been

achieved. This means that if we do not trust the design, either because functional analysis

is imperfect, because we do not trust our own insider designers, or for any other reason, we

can fall back on trigger obfuscation as a runtime protection system.

Our approach is to include security circuits within the design itself that enforce security

at runtime. We add these circuits after the design has been completed and validated, so

that even a malicious insider on the design or validation teams cannot compromise them.

This is an important application of the Principle of Last Action.

Our key insight is the following. A stealthy hardware backdoor always contains a trigger,

which is the unique signal that turns the module from benign mode to malicious mode

and enables the backdoor payload. Our idea is therefore to scramble signals at the input

interfaces of hardware modules to prevent backdoor triggers from going off. Since payloads

are dependent on triggers, if the triggers do not arrive, the malicious payloads cannot be

delivered. We discuss how the three types of digital triggers discussed previously (ticking

timebomb, single-shot and sequence cheat codes) can be scrambled using this approach.

• Power resets protect untrusted units against ticking timebombs. A ticking timebomb,

as mentioned before, goes off after a passage of a certain amount of time, say after 240

clock cycles of operation. This can be easily implemented by an attacker with a 40-bit

down counter. The timebomb will not go off during design validation because validation is

carried out for much shorter time scales due to the slowness of validation testing and time-

to-market constraints. Typically, validation suites run in the KHz range compared to real

76

hardware that runs in the GHz range. As such, validation tests are run for a small number

of cycles, say 107 cycles per test. Given these parameters and constraints, we can see why

a malicious engineer on the design team who has insider information on the duration of the

validation tests can easily use this information to make the backdoor trigger fire well after

the validation period.

Our solution to mute this trigger is to prevent circuits from knowing that a certain

amount of time has passed since start-up. We ensure this by frequently powering off and

on (or resetting) each unit, causing all microarchitectural data to be lost. The frequency of

power resets is determined by the validation epoch. We know and trust the circuit under

test to be free of timing backdoors during the validation epoch (otherwise it would not

pass any validation); so resetting power before the end of the validation epoch ensures

that all state in the unit is wiped clean and the unit on longer has “memory” of previous

computations. For instance, if the attacker is using a counter to trigger the backdoor, that

counter will be reset to its initial value and never get a chance to hit the trigger.

Now the question is: if we are constantly resetting power to the unit, how can we make

forward progress at all? Many common hardware modules behave transactionally, meaning

that the module applies a function only to its inputs and does not need to maintain long-

term state. However, some hardware requires continuity of state across reset epochs. To

ensure forward progress in this case we simply identify and store all architectural state

necessary for forward progress outside the unit before the reset. From an implementation

perspective the reset idea can be implemented using “power gating,” circuits, a technique

to limit power consumption where units are reset during periods of inactivity.

With this approach, how can we be assured that the attacker does not exfiltrate the

time counter (or some proxy that encodes the passage of time) through the state necessary

for forward progress? This is not possible due to our axiom that the unit does not produce

incorrect results for the duration of the validation epoch. If time information is illegally

exfiltrated during validation, just one good validation engineer on the entire design team

is sufficient to notice and detect this violation. A final move by the attacker could be to

store the trigger in non-volatile state. This is a clever move but somewhat impractical

because the design process for creating non-volatile hardware is so different from regular

77

Hardware

Module

G
lo

b
a

l

IN
P

U
T

 I
N

T
E

R
F

A
C

E
S

C
o

n
tr

o
l

D
a

ta

T
e

s
t

O
u

tp
u

ts

Clock

Reset

Valids,

Commands, etc.

Data

inputs

Scan chain

inputs

Verilog Template for a ModuleGeneric Hardware Module

module example (...);

 /* Global Interfaces */

 input clock, reset;

 /* Control Interfaces */

 input [N:0] control0, control1;

 input valid0, valid1;

 /* Data Interfaces */

 input [X:0] data0;

 input [Y:0] data1;

 /* Test Interfaces */

 input [J:0] scan;

 /* Output Interfaces */

 output [Z:0] out0, out1, out2;

 /* Logic and memory for the module */

endmodule

Hardware is a Graph
of Interconnected

Modules

Module X Module Y

Module W Module Z

Chip

Figure 9.2: An overview of how a typical hardware module looks in terms of its input and

output interfaces.

hardware that this move would trigger off many different alarms at various stages in the

design process. As such, this may not pose a significant risk to most hardware units except

those that already require non-volatile memory by design (such as TPMs). Solutions to this

problem are discussed in the original paper [Waksman and Sethumadhavan, 2011].

• The second category of backdoor trigger is the single-shot cheat code. This type of trigger

is delivered as a data value thorough one of the hardware input interfaces. Our solution here

is to scramble the inputs supplied to a hardware module. Scrambling the inputs silences

backdoors because the attacker now cannot anticipate the trigger. The challenge here,

however, is to perform computation in the unit without unscrambling the input value.

Our solution draws on domain-specific applications of homomorphic encryption (or ho-

momorphic obfuscation, since as we will discuss shortly there is no need for cryptographically

strong encryption in hardware settings). We provide a brief introduction to homomorphic

functions and then explain our solution with an example.

A homomorphic operation is one that preserves the structure of another operation.

An operation f is considered to be homomorphic with respect to another operation g if

f(g(x), g(y)) = g(f(x, y)). One simple example of this is when f is multiplication and g is

the squaring function. For instance,

x2y2 = (xy)2

78

If the functionality required of a hardware module is to compute the square of a value,

we can obfuscate the input x to that unit by multiplying it by a pseudo-random value y.

The squaring unit then computes the value (xy)2. Then to decrypt, we only have to divide

by the constant y2 to get back x2. Since we permuted the input space in a homomorphic

(structure preserving) way, we did not undermine the usefulness of the squaring module.

More generally, if our obfuscation function is homomorphic over the computational function,

then the computation can be done on the data while it is encrypted, which is exactly what we

want. This is one specific application of homomorphic functions, which have been used more

broadly in software settings and in theory literature [Gentry, 2010]. If we can create low

overhead homomorphic equivalents for typical functional units, we can improve protection

against hardware backdoors.

It is also worth noting that for many hardware units, the work performed in the hardware

module is an identity operation (moving data or storing without changing it, e.g., routers,

caches), in which case any operation can be used for obfuscation. In those cases, we simply

use a bitwise XOR operation with a changing random number (an one-time pad) because

it adds only one gate to the path delay.

• The third and final type of backdoor trigger is the sequence cheat code, which we protect

against with a method called sequence breaking. Here the trigger is received as several

pieces of data over multiple cycles. Our solution is to benignly reorder sequences of inputs.

If the attacker cannot pre-determine the order in which transactions will be supplied to the

hardware module, the attacker cannot trigger a backdoor with any significant probability.

The main constraint here is to ensure that changing the order of transactions does not

change the functionality of the hardware unit.

For a realistic example, consider a memory controller with a backdoor that is triggered

by a sequence of fifty loads and stores that must come in a pre-chosen order. By changing the

order of those fifty loads, we make it unlikely that the correct trigger will ever be supplied.

The intuition for why it is easy to make the probability of attack failure effectively 100%

is that the trigger ends up being one pseudo-random choice out of the set of all possible

permutations of memory instructions, which is a factorially large set.

It may not be possible to reorder input transactions to a unit in all cases. For example, a

79

malicious user may be able to contrive a sequence of inputs to a memory controller that are

not amenable to reordering without violating correctness requirements such as consistency

or coherence requirements. For such cases we propose adding dummy events. Inserting

random dummy events such as non-binding loads to the memory controller is sufficient to

break any pre-determined order for a trigger.

80

9.1. APPLICATION TO A MODERN MICROCONTROLLER

9.1 Application to a Modern Microcontroller

As a practical case study and to learn from the engineering and implementation of our

methods into real hardware, we performed an in-depth case study with a microcontroller

to better understand the difficulties and limitations associated with applying trigger ob-

fuscation to modern hardware. Our goals in this study were three-fold: 1) to design an

algorithm for assisting security engineers in their tasks, 2) to better understand any corner

cases that might arise during the security engineering process, 3) to determine how well

different security approaches work together, and 4) to quantify the overheads associated

with applying security to real hardware.

9.1.1 Motivation for Building the TµC1 Microcontroller

We first outline the existing defensive techniques that protect against design-level hardware

backdoors, which include both our own methods and previously existing methods. These

methods can be applied module-by-module á la carte. Other solutions may be proposed in

the future, but these are the prominent methods existing today and are sufficient for us to

protect against design-level backdoors.

These methods include the three components of trigger obfuscation (rapid resets, se-

quence reordering and data encryption/obfuscation), as well as pre-existing methods: formal

verification, exhaustive validation, homomorphic encryption and dual-modulo redundancy.

We discuss each method, including the pros and cons, as well as the necessary assumption

and domain of applicability.

• Formal Verification: The goal of formal verification is to prove correctness of a design

during design-time, assuming trust in a formal specification. Formal verification can be ap-

plied to small systems or parts of systems; the cost scales exponentially with the complexity

of the system. The cost of writing the formal specification itself tends to increase design

costs and can be fundamentally hard depending on the situation.

• Fully Homomorphic Encryption (FHE): FHE [Gentry, 2010] is a technique for

encrypting both the data and the operations within a program. The technique can be

mapped to hardware by thinking of circuits as operations. Even a malicious insider cannot

81

9.1. APPLICATION TO A MODERN MICROCONTROLLER

Table 9.1: A summary of seven prominent methods for protecting against hardware back-

doors. This table outlines coverage, performance overheads and the inherent trust models

at a high level.

Type of Engagement Covers All Performance Required Trust

Defense Stage Trojans Overhead Assumptions

Formal Verification Design Time Yes None Moderate

Exhaustive Validation Design Time No None Low

Homomorphic Encryption Runtime Yes Very High Low

Dual Modular Redundancy Runtime Yes Low Lowest

Rapid Resets Runtime No Negligible Low

Sequence Reordering Runtime No Low Low

Data Encryption Runtime No None-Low Low

Table 9.2: A Summary of seven prominent defenses against hardware backdoors. This table

provides a further breakdown of the types of overheads incurred by each method.

Type of Performance Area Power Human

Defense Overhead Overhead Overhead Overhead

Formal Verification None None None Very High

Exhaustive Validation None None None High

Homomorphic Encryption Very High Very High Very High Moderate

Dual Modular Redundancy Low High High High

Rapid Resets Negligible Negligible Negligible Negligible

Sequence Reordering Low Low Low Negligible

Data Encryption None-Low Low-High Low-High Low

compromise such a system due to the circuitry itself being encrypted. Any backdoor hidden

in a circuit would have virtually no chance of being triggered, and if it were triggered its

payload would be garbled. FHE is both a strong and expensive solution. We evaluate the

possibility of applying FHE to protect against hardware backdoors. We find that FHE is

82

9.1. APPLICATION TO A MODERN MICROCONTROLLER

Table 9.3: A summary of the different trust assumptions made by prominent hardware

backdoor defense methods. The table covers the range of common trust assumptions, such

as a formal specification or the existence of trusted tools for physical synthesis.

Method Spec. Designers Validators Tools Foundry Testing

Formal Verification Yes No No Yes Yes Yes

Exhaustive Validation No No Yes Yes Yes Yes

Homomorphic Encryption No No Yes Yes Yes Yes

Dual Modular Redundancy No No No Yes Yes Yes

Trigger Obfuscation No No Yes Yes Yes Yes

orders of magnitude too expensive for practical use, but we put into perspective those costs

and what it would mean to have FHE available in hardware.

• Dual Modular Redundancy (DMR): DMR is a classic technique for building reliable

systems out of unreliable components [von Neumann, 1956], the idea being that the prob-

ability of two independent entities making the same error at the same time is very low. To

apply DMR to backdoor protection, we acquire two different implementations of the same

module with identical interfaces from two different supply chains, meaning there is roughly

a 2X area and power overhead, as well as added design-time costs. DMR provides only error

detection. Adding a third copy would allow for error correction, but detection is generally

the target in hardware security.

• Validation: Validation testing (and/or verification) confirms that a design produces

correct results for some limited test cases or period of time.

• Rapid Resets: This method, discussed in Section 9, resets power frequently to erase

transient state and prevent timebomb triggers.

• Sequence Reordering: This method, discussed in Section 9, reorders microarchitectural

events to prevent sequential cheat code triggers.

• Data Encryption: This method, discussed in Section 9, uses domain-specific homomor-

phic obfuscation to prevent single-shot cheat code triggers.

83

9.1. APPLICATION TO A MODERN MICROCONTROLLER

We summarize qualitatively the costs of the seven types of defenses in Table 9.1. We

consider the three primary design metrics — performance, area, and power — as well as

the human design/engineering effort, which can be a major bottleneck, especially when

accounting for time-to-market constraints. Unsurprisingly, none of the seven techniques

are without overheads or limitations. We also summarize the trust models in Table 9.3,

aggregating rapid resets, sequence reordering and data encryption under trigger obfuscation.

9.1.2 ART: An Algorithm For Making Trigger Obfuscation Decisions

In this section, we present ART, a simple algorithm for helping security engineers to make

decisions related to trigger obfuscation. The algorithm is essentially a decision graph, which

determines when to use trigger obfuscation (as opposed to older techniques) and in what

manner it should be used.

The basic idea is that we need to assign protections to each module in an untrusted

design. ART is a simple decision algorithm that does this. It chooses the best combination

of techniques from the seven known techniques listed in Table 9.1. Concretely, there are

27 = 128 different choices for the defense of any given module, because for each of the seven

methods in consideration, we can either use it or not use it. Overheads such as area and

power for each defense can vary depending on the module. Further, subjective opinions on

the necessity for security coverage may also vary: a given organization may only care to

cover against a subset of possible attacks. Security architects have to decide on their needs

and constraints before they can choose the right solution.

The ART algorithm is a straight-forward and intuitive way to choose from the space

of 128 choices for the case where complete coverage is desired. If only partial coverage is

needed, some modules can be left out. Constraints on any of the dimensions of overhead

(such as timing and power) can vary within the qualitative bounds described in Table 9.1,

with specific values being user-provided. We make conservative assumptions about the

relative costs of the methods. Given these relative cost relationships and the necessity for

complete coverage, we notice that only five of the 128 choices can be the most economic

choice for a given module. We know this for the following reasons:

Formal verification, FHE and DMR each provide complete coverage when applicable and

84

9.1. APPLICATION TO A MODERN MICROCONTROLLER

thus need not be mixed with other techniques for a given module. Using excess protections

can only increase overheads. That yields three choices and leaves 24 = 16 options remaining

for the other four techniques. Since validation does not provide complete coverage, it must

be combined with dynamic techniques. If validation can be applied to all interfaces of

a stateless module, then it only needs to be combined with rapid resets (choice four in

Figure 9.3). Otherwise, all three dynamic techniques are required (choice five).

That exhausts our possible choices, so we know that our algorithm should always pick

one of these five choices. Which of the five is best depends on the module and the constraints

of the design setting.

The ART algorithm is the formalization of the natural line of questions a good engineer

should ask. For each module and each option, we ask whether or not it meets our constraints.

For instance, we might or might not have a formally verified module at hand. We might

or might not have a method for performing FHE. For each module, we ask the question:

Which techniques have practical implementations for this module? We ask these questions

to the user in an order that allows us to reach all five valid choices deterministically, and

we proceed based on if the answer is yes or no.

Figure 9.3 shows the decision graph. The user provides the yes/no answers for each

individual module, and the decision graph informs the user which defensive mechanisms to

apply. The user’s inputs are based on the module in question and the constraints of the

design setting, such as power and area budgets or the availability of a formal specification.

For example, if a formally verified module is available, it will be used, and no further

protections are necessary. On the other hand, consider an on-chip router node with 1-hot

encoding as a third-party IP module. A possible user scenario could be the following. A

formal specification is not available, FHE and DMR violate the power budget, the 1-hot

encoding and valid bits can be exhaustively validated, and the data packets can be encrypted

with XOR encryption within the power budget. The module is not stateless, and packets

arrive in order, but they do not have sequential dependencies. Then the algorithm will go

through states 1→ 2→ 3→ 4→ 5→ 7→ 8→ 9→ 10 and complete at step 10.

This is logic that an astute engineer might go through naturally, but ART formalizes

the order of priorities so that it can be applied universally.

85

9.1. APPLICATION TO A MODERN MICROCONTROLLER

Figure 9.3: The steps of the ART algorithm. Green arrows signify a “yes” answer. Red

arrows signify a “no” answer.

It is guaranteed that if one of the five valid choices meets the user-provided constraints

then such an answer will be provided. For each choice, all backdoor types are covered. If

the user does not have a fixed budget and simply wishes to minimize certain constraints,

such as power, then traditional design exploration strategies (such as binary search) can be

applied on top of ART.

9.1.3 Caveats and Limitations

We consider a few caveats and limitations of the ART algorithm for decision-making.

(1) ART is not the only possible algorithm. Our decision graph could be arranged in

a few different ways to get the same results. However, it is the result we care about, and

all such algorithms would yield the same results, so they are equivalent. We claim only

that the techniques we have incorporated into our designs are sufficient to achieve coverage

86

9.1. APPLICATION TO A MODERN MICROCONTROLLER

against digital design-level backdoors and that the ART algorithm always yields a solution

that fits within user-defined constraints if such a solution exists.

(2) The ART algorithm does not generate code. It is a formalization of the decision-

making process an engineer has to go through. Given the results of ART, an engineer has

to apply the chosen techniques to the design at hand.

(3) For all of the techniques we consider, there exists a common assumption of last action

from prior work, which requires that security mechanisms/procedures are inserted/applied

after the design phase has completed. From an operational security standpoint, it is crucial

that this assumption is enforced. For example, the attacker cannot have the option to add

a new module after the design has been finalized and the security mechanisms have been

applied.

To evaluate the overheads of our technique we prototyped a microcontroller for a com-

mercial AVR ISA [Waksman et al., 2013a] that included all our security features. We found

that by applying domain-specific solutions to each component in the design, we were able

to protect each module without dramatic overheads.

9.1.4 Evaluation of ART Applied to the TµC1 Microcontroller

When we began developing TµC1, our intuition was that corner-cases and difficulties

could arise in applying a variety of disparate and theoretical methods to real hardware. The

most surprising result of our work is that the various protection schemes work synergistically

with each other and can serve to patch over caveats in their original presentations. The

whole turns out to be greater than the sum of the parts.

Based on manual analysis of a variety of designs, including memory controllers, com-

putational cores and I/O controllers, we have determined that our methods can be applied

directly to designs that are commonly used as third-party components. These types of

designs tend to use standardized interfaces for ease of use. For example, memory con-

trollers adhere to the DDR protocol. This makes it easier for us to apply protections to the

interfaces.

As a case study and to demonstrate our methodology in full detail, we design and

synthesize a new microcontroller called TµC1. This microcontroller implements the AVR

87

9.1. APPLICATION TO A MODERN MICROCONTROLLER

Figure 9.4: (A) The baseline microcontroller microarchitecture we use for our security design

methodology. It is a simple processor, with on-chip memory and a wishbone master for off-

chip I/O. (B) Layout of the TµC1 microcontroller (not to scale). Modules in orange (darker)

perform security functions. Modules in blue (lighter) are part of the baseline specification.

ISA, a RISC ISA used commercially by Atmel. We choose to build a small and standard

microcontroller because it is a hard and common use case for backdoor protection. In larger

designs, our security structures would have comparatively lower overheads.

Figure 9.4(A) depicts the microarchitectural layout of TµC1. It is a simple, inorder

processor, with a decoder, execution path and unified on-chip memory. There are four

register files — data registers, I/O registers, status registers, and program counter/stack

pointer holders. We also include a wishbone master to allow for bus communication. The

choice of wishbone was fairly arbitrary. Other I/O protocols, such as USB, PCI, SATA, etc.

could be made backdoor-free with an equivalent approach.

We next discuss the cost and scalability of different methods, beginning with formal ver-

ification. Formal verification involves aspects that are exponentially hard, resulting in poor

scalability. However, formal verification is a lively field of study and more breakthroughs

are always possible. For the rest of the methods, we can compute how they scale.

For Fully Homomorphic Encryption (FHE), our experiments show that FHE is not a

practical option for security. In FHE, input data has to be encrypted before entering a unit

and then periodically re-encrypted depending on the logic depth. Both of these operations

88

9.1. APPLICATION TO A MODERN MICROCONTROLLER

are too expensive.

The complexity of the encryption, which relies on large prime numbers, has a quadratic

cost in terms of the bit width of the prime numbers. For a prime number size p and a logical

depth d, the area and power costs of a single FHE gate scale as roughly c(2dp)2 where c is

the baseline cost.

For a conservative estimate, consider the relatively small prime number size of 64 bits

and the minimum possible depths of one and two. Table 9.4 shows the results of synthesis

in 90nm technology. A modern server die is usually 300 mm2, meaning that we could, for

example, fit at most about a hundred AND gates with depth two. These results show that

FHE is orders of magnitude away from where it would need to be for practical applications.

Table 9.4: Baseline Costs of FHE Gates

Gate Type Usable Depth Latency Area Power

AND 1 150 ns .866 mm2 3.08 mW

OR 1 176 ns .856 mm2 3.01 mW

AND 2 388 ns 2.97 mm2 11.4 mW

OR 2 387 ns 3.04 mm2 11.6 mW

The implementation of data encryption depends on whether or not the circuit being

encrypted does work with combinational logic. Data encryption in the simple case – such

as memories, I/O, etc. – requires only a single XOR gate and scales at constant cost. On

the other hand, data encryption for combinational logic does not have constant cost. We

consider the units we needed for our microcontroller.

Figure 9.5: A scalability comparison of DMR and data encryption for multipliers. We

consider latency (a), area (b), and energy per operation (c).

89

9.1. APPLICATION TO A MODERN MICROCONTROLLER

Figure 9.6: (A) Area impact of DMR on different modules, as compared against baseline

costs and against optimal backdoor-aware choices. These measurements are taken in the

context of the TµC1 microcontroller. (B) Breakdown by component of area costs for the

TµC1 microcontroller as percentages of the whole.

The most substantial arithmetic module we need is a multiplier. Our encrypted version

of the multiplier, which uses a polynomial computation for scrambling, requires seven adders

in addition to the original multiplier. The adders are used to change the input values before

the multiply and then alter the product after the multiply, leveraging basic properties of

polynomials.1 The area and power costs should scale roughly as 7n + cn2 because the

adder logic grows linearly and the multiplier logic grows quadratically. For comparison,

DMR requires two multipliers and a comparator, so the costs scale as 2cn2 + n. The

expectation should be that the encrypted multiplier scales better, and this is supported by

our results. Figure 9.5 compares the latency, area, and energy per operation scaling from

n = 8 to n = 64. At the small end (small enough for exhaustive validation), DMR and data

encryption are comparable and are about double the cost of a baseline multiplier. At the

larger end (n = 32 to n = 64), DMR remains double the cost, but data encryption becomes

the same cost as the baseline multiplier because the quadratic term dominates the linear

term.

Applying Dual-Modulo Redundancy (DMR) requires two versions of a module and a

1The equations can be derived from the fact that multiplication distributes over addition. For brevity,

these are left out.

90

9.1. APPLICATION TO A MODERN MICROCONTROLLER

comparator for each interface. The cost is determined by how wide the module is (how

many interfaces) compared with how deep it is (how much circuitry is used for internal

computation). If we consider a circuit with original area a and width w, the area and power

of a DMR version scale as 2a+wc where c is the cost of a comparator. The latency scales as

a+c because the comparator is the only addition to the critical path. Figure 9.12(A) shows

the costs of DMR in practice for some example modules. We see that the area overhead

ranges from about 2.1 to 2.4. These measurements are taken in the context of the TµC1

micrcontroller and are compared against the overhead of using optimal backdoor-aware

techniques, as determined by ART. These results show that DMR can be expensive and

should be used judiciously.

Exhaustive validation can either be validation on the set of all possible control inputs

(2c cases for c control bits) or the set of all inputs (2n cases for n total bits), depending

on which exit point we use in the ART algorithm. The total cost of validation is roughly

v2b + h, where v is the baseline runtime of a single test, b is the number of bits (either

c or n) being exhaustively tested, and h is the one-time human overhead of building the

testbench. In our experiments, v is around 0.1 milliseconds on a desktop computer, so

the largest validation run, which exhausts over the 24 bit execution control interface, takes

about 28 minutes.

We synthesize our designs, including the microcontroller and all included security meth-

ods, in 90nm technology with ASIC libraries and measure area, frequency and power. Our

core design synthesizes to 0.070 mm2 at 91 MHz and 0.45 mW of dynamic power. Our

synthesis measurements include all core components as well as memory and I/O control but

not the cost of on-chip SRAM.2

We consider three different implementations of TµC1. The first is the fully secured

TµC1, which is scalable to arbitrary data-path widths because of the use of scalable data

encryption and DMR techniques. The second is a secure design that we know will not scale

because it relies on validation of some interfaces that would grow too large. As we showed

in Figure 9.5, data encryption techniques are not necessary for an 8-bit design but have

2The choice of memory technology is orthogonal to the decisions made by the ART algorithm and incurs

no security overhead.

91

9.1. APPLICATION TO A MODERN MICROCONTROLLER

great value for larger designs. In other words, our constraints for the ART algorithm would

be different for a 32-bit design than they would be for a corresponding 8-bit design. The

third design is a normal, unprotected implementation.

Clock frequency remains stable (within 1%) across the three designs. Area and power

increase by more as a percentage, about 7% from the insecure design to the secure design

and another 8% for the fully scalable design. These area and power increases are small

because we are in the low-power domain of microwatts. Since our techniques scale sub-

linearly, we expect this overhead as a percentage to diminish dramatically for large SoC

designs, which have power budgets on the order of tens of watts.

We lastly provide a breakdown of different modules on-chip in terms of the costs of

securing them. This data is shown in Figure 9.12(B). The highlighted components are those

used for security purposes, namely reset circuits, reordering circuits, encryption circuits, and

the LFSR used for random number generation.

Our experience with TµC1 provided evidence for us that using ART and our implemen-

tations of hardware defensive circuits allows us to design and synthesize hardened devices.

We learned that the difficulties in applying backdoor defenses boil down to simply under-

standing the design. So long as the security engineer understands the original design, the

additions are easy to apply.

We conducted manual analysis of the interfaces of some publicly available designs from

OpenCores (www.opencores.org) – an online database of hardware designs – and found

the same techniques we applied to TµC1 also apply to those designs. Additionally, prior

work showed through manual analysis that most of the components of an OpenSPARC T2

microprocessor (including those that might be acquired as third-party IP) can be defended

with a subset of the techniques in this thesis [Waksman and Sethumadhavan, 2011]. Thus,

ART could be applied to that microprocessor, and the additional understanding of the

engineering trade-offs would only mean a more efficient application of the defenses.

Perhaps the most important lesson learned from our work on TµC1 is that while the set

of all possible circuits is large, most third-party IP fits into a much smaller set of common,

reusable circuits. This makes for common interfaces and makes the application of defenses

simple and extensible.

92

9.2. SECURITY GUARANTEES AND PROPERTIES OF TRIGGER OBFUSCATION

9.2 Security Guarantees and Properties of Trigger Obfusca-

tion

The security guarantees provided by trigger obfuscation are relatively straight-forward. We

discuss these guarantees and relevant limitations.

Regarding power resets, the method is guaranteed to be secure as long as there is a

clear understanding (i.e. specification or formalization) of what is considered architectural

state. This architectural state can be thought of as any and all state necessary for correct

execution according to the ISA. In a system with power resets, microarchitectural state is

wiped, while architectural state is preserved. Therefore, if an attacker wants to persist state,

he or she is forced to use architectural state. Since architectural state is exactly the same

state that should be tested during validation for at least one full epoch, that state cannot

contain incorrect values during that testing epoch. However, if there is misunderstanding

in practice between the security engineers and the validation team regarding what state is

architectural, that could lead to problems. For example, if a register goes untested because

the validation team does not know about it, then a trigger value could be hidden in that

register. Therefore, there needs to be an agreed upon set of state that is architectural,

which is allowed to persist and which is validated.

With regards to sequence reordering, whenever sequences can be arbitrarily reordered,

the system is guaranteed to be secure with extremely high probability. The odds of guessing

a sequence chosen at random is factorially small, which is even smaller than exponentially

small (this is because the number of permutations of a finite set of elements grows asymp-

totically faster than an exponential curve). However, if the sequence is constrained, for

example by a memory ordering model, then the insertions of no-ops is required. If no-ops

are indistinguishable from regular operations, which is often the case, then the system is

still secure. If no-ops are distinguishable, then the system is prone to attacks from sophis-

ticated triggers that ignore no-ops. For this reason, it is important to choose no-ops that

do actual work, rather than no-ops that do literally nothing. For example, if operations to

a pipeline are being reordered, there are a very large number of instructions other than the

no-op instruction that can be used as de facto no-ops.

93

9.2. SECURITY GUARANTEES AND PROPERTIES OF TRIGGER OBFUSCATION

The security guarantee of data encryption is probabilistic but quite strong. The proba-

bility of a failure in each case scales as roughly 1 − 1
2n where n is the width of the trigger

signal, i.e. exponential in the size of the data being obfuscation. In practice, n is fairly

large – most units that cannot be exhaustively validated to check for backdoors have 64-bit

or larger interfaces. So the probability is negligible in practice. One way that the proposed

solutions can fail is if the pseudo-random number generator used for the scrambling remaps

a trigger to itself, which is extremely unlikely, or if the source of pseudo-randomness is

unreliable.

The strength of trigger obfuscation generally relies on having a trusted source for gen-

erating psuedo-random numbers. Recently, researchers have sketched attacks on hardware

random number generators, though the attacks have low stealth because they are always

on [Becker et al., 2013]. Even a very small amount of validation testing can likely detect

these attacks. We, however, do not need true cryptographically strong random number

generators and can work with weakened pseudo-random number generators. This is mainly

because of how we use the random number generation in hardware. One way for the at-

tacker to defeat our scrambling schemes is to learn about the constants for pseudo-random

number generation by choosing the plaintext inputs. For instance, forcing the input to zero

can reveal a sequence of outputs produced by the random number generator. To generate

the trigger despite scrambling, the malicious hardware unit needs to reverse engineer the

random number generator within the malicious hardware unit. For this reason, we perform

a case study of reverse engineering costs with regard to hardware backdoors. We discuss

these costs in the next section. As we will see, the area and power overheads of reverse

engineering circuits are too large in practice, which make it reasonable for us to trust our

sources of pseudo-randomness.

94

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

9.3 A Case Study of Engineering Self-Attacking Hardware

We can consider it important to view any defensive system from the perspective of the

attackers. In this section, we endeavor to attack trigger obfuscation from the position of a

well-funded adversary. In our model, the attacker has complete knowledge of our defenses

and the ability to insert malicious modules into the design. For this case study, we use a

cryptographic accelerator (specifically AES). We consider this to be an ideal target for a

case study, not only because of the complexity of applying trigger obfuscation to AES but

also because of the high level of value and vulnerability in a cryptographic target.

In this setting, we have the following entities:

• Cryptographic Module Under Test: This is the untrusted design of a cryptographic

accelerator. Our methodology applies to any standard cryptographic system, but our run-

ning example is AES-128.

• Defensive Module: This is the small trusted code base (TCB), which we call a scram-

bler circuit for the purposes of this case study. This scrambler implements a version trigger

obfuscation specifically designed for AES. Depending on the exact setting, it can either be

assumed trustworthy or formally verified.

• Attack Module: We are interested in characterizing attempts to thwart our defensive

module and force triggers through to backdoors in the original AES module. We call this

last component the breaker circuit. While the attack module is malicious, we refer to it

only as the attack module and not the backdoor. The backdoor is the first-order payload

in the cryptographic module. This attack module is a second-order payload, whose only

purpose is to cause the original (first-order) backdoor to become triggered.

During the discussion of this case study, it becomes relevant to have a notion of optimal-

ity. If we simply implement a poor quality attack, then we learn nothing about our defenses.

While creating a completely optimal attack is infeasible, we will consider our attacker’s im-

plementation to be nearly-optimal if they are algorithmically optimal and implemented

using state-of-the-art practices. In other words, while minor implementation tweaks are

always possible, and while design libraries and process technologies might change, as long

as the attack is essentially optimal for the target technology generation, we can learn from

95

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

it. In order for our experiments to be as controlled as possible, we use standard design

methodologies and design libraries for each of the components (both offensive and defen-

sive). We anticipate that future changes to design libraries and physical gate features will

not substantially impact the relative cost comparisons between the offense and the defense.

9.3.1 Security Engineering Process

Our goal in this case study is to not only measure the best possible countermeasures against

trigger obfuscation techniques but also to understand the trade-offs and the balance between

the offensive and the defensive aspects of security-aware hardware circuits. To achieve this,

we develop a method for evaluating the defenses and the attack surface. Our security engi-

neering process includes the following steps after the desired hardware has been specified.

• Design and Validation We design the module under test and validate it with a

randomized test bench. We use state-of-practice Verilog-PLI validation [Verilog, 1991;

?] and validate each transaction and error type for a random distribution of 10,000 in-

puts.

• Implementation of Defense We consider the possible choices we have for trigger ob-

fuscation, such as PRNG size and counter size for timing resets, and we make choices that

are pragmatic in hardware. We then implement the defenses and re-validate the design.

Design re-validation ensures that the changes we are making have not broken the design

and are invisible to validation engineers.

• Near-Optimal Attack Determination We determine a near-optimal attack, given

knowledge of the defense’s parameters. In the presented case study, this includes designing

a near-optimal circuit for breaking the PRNG used in the defense.

• Attack Implementation We implement the attack circuit and re-validate the design.

• Synthesis and Evaluation We synthesize the design with all of the components added.

Hardware synthesis includes physical design, such as gate choices, wire placement, layout,

floor-planning, and routing. Post-synthesis, we evaluate the costs and trade-offs of each of

the components, determining to what extent attacks are feasible and to what extent the

defenses are successful.

Together, these five steps replace the design and validation stages in the normal hardware

96

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Figure 9.7: An overview of our AES implementation and how it applies both at the source

and at the destination of communication. The same hardware unit is used at both source

and destination, but the encrypt and decrypt instructions follow slightly different data-

paths.

AES-128

Encryptor

Key Expansion Unit

First

Encryption

Round

Standard

Encryption

Round

Last

Encryption

Round

P
ip

e
li
n

e
 R

e
g

is
te

rs

P
ip

e
li
n

e
 R

e
g

is
te

rs

P
ip

e
li
n

e
 R

e
g

is
te

rs

Cipher Key

Plaintext Ciphertext

128

128 128}...
Seven More

Rounds

128
Round

Key
128

Round

Key
128

Round

Key
128

Round

Keys

Figure 9.8: The hardware layout of an AES-128 accelerator.

process. An overview of our design is depicted in Figure 9.7. Next, we describe the design

details and trade-offs for each of the main components of our system.

AES Unit Design

To emulate the role of a third-party designer, we design a standard AES crypto-accelerator

for encryption and decryption. AES accelerators are becoming more prevalent due to the

increased performance and security over software implementations. Research groups have

pursued ASIC and FPGA designs [Good and Benaissa, 2005; Lu and Tseng, 2002], and AES

units have found their way into popular hardware, such as Intel microprocessors [Network,

2012]. Figure 9.8 displays our AES design.

Defensive Scrambler Design

The first defensive technique is power resets. In the case of an AES accelerator, obscur-

ing timing information with resets is straight-forward. Like most slave devices — which

peripheral and functional components tend to be — the AES units’ outputs are functions

97

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

of its inputs and do not take into account long-term state. The state it has only pertains

to the transactions it has in-flight. Thus it is acceptable to reset the unit and all memory

within the unit periodically after completing in-flight transactions. The implementation for

this is little more than a modular counter.

The second defensive technique is sequence reordering. Like many slave devices, our AES

unit operates on transactions and has no inter-transaction dependence. Our implementation

includes two small circuits. The first is a deordering unit at the inputs, which randomly

reorders transactions and gives them a local ID. The second circuit is a reordering unit,

which is essentially a priority queue that uses the ID to reorder transactions.

The final defensive technique is data obfuscation. We chose a crypto-accelerator for

our case study because we anticipated it to be one of the hardest cases for practical data

obfuscation. Unlike most microprocessor components, which operate largely based on con-

trol inputs and mostly move around large data values atomically, cryptoaccelerators are

completely dependent on data inputs (key and plaintext) and perform complex operations

with them.

The goal of data obfuscation is — at a high level — to apply a homomorphic function (or

a hardware analog of this) to the plaintext to allow for encryption. As we saw previously,

a simple XOR operation works for most common hardware modules. However, it does not

work for all crypto-accelerators, so we must do something more. We leverage the resources

we have to perform a similar operation that gives us the same amount of security at a much

lower cost. Our algorithm is the following:

Encrypt:

1. Generate a random value R.

2. Perform an XOR of R with the plaintext.

3. Supply the obfuscated plaintext to the AES unit to perform encryption.

4. Transmit both R and the encrypted data (ciphertext).

Decrypt:

5. After transmission, AES decrypt to get back the randomized plaintext.

6. Perform an XOR to get back the original plaintext.

98

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

In the original version of the algorithm, there would be two XOR obfuscation phases.

Instead, here there is only one such phase. By making this change, we are able to use

XOR as our obfuscation function, even though XOR is not truly homomorphic across AES

cryptographic operations. This is a highly efficient solution, as it adds only one gate to the

critical paths.

This change slightly alters the way the communication is most commonly implemented.

The value of R is now entangled in the result and is required now as input to the decryption.

This change results in two small but relevant overheads:

1. The result is (in the naive case) up to twice as many bits, as it includes both the

ciphertext and R for each 128-bit transaction. However, this can optimized by sending only

the initial PRNG seed R for a given encryption task. In the optimized case, the overhead

is a constant 128 bits of transmission per document.

2. After decryption, the destination user has two values, the obfuscated plaintext and

the publicly known R. For the primary use-case, which is two security conscious parties,

both using the same ISA (such as Intel x86 if this were to be incorporated into their

AES instruction), this simply requires that the AES instruction in the ISA is specified to

take both pieces of data. The AES unit we built, which acts as both an encryptor and a

decryptor, has an XOR gate for doing this.

3. Both the source and destination must be aware of the new protocol. For example, in

some AES modes, the order of transactions has to be the same at the source and destination.

Thus, the decryptor must use the random value R to de-randomize the transaction order

after decryption.

Figure 9.9 displays an overview of our implementation. Notice that we are not changing

any of the secure channel communications or the functionality of AES. We are only adding

public information across the network to be used for scrambling and de-scrambling.

Note that there are two potential types of attackers we are concerned with. The first is

a man-in-the-middle attacker who is snooping network packets. The second is a malicious

hardware designer who places a backdoor in the hardware prior to fabrication. Note that

the former attacker operates at runtime while the latter attacker operates before device

fabrication (potentially years prior).

99

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Figure 9.9: An overview of our implementation for secure AES.

The security guarantee in our system comes from the clear demarcation between these

two types of attackers. A man-in-the-middle attacker operates on the software/network level

and wants access to the secret information that is already readily available in hardware, i.e.

plaintext or keys. However, it is the attacker’s inability to communicate with the internal

circuitry of the hardware that thwarts attacks.

The only information that is exposed (i.e. sent across the network) is the ciphertext

and the PRNG seed R. Note that this value R is public information and can be snooped

by the man-in-the-middle attacker without posing any issue. The value of R would only be

dangerous if it were known to the internal circuitry of a compromised AES accelerator, i.e.

if it were known prior to fabrication by the malicious hardware designer.

For the man-in-the-middle attacker who snooped on the network to provide that value

R directly to the hardware would be impossible, since that would be a cheat code attack.

Consider for example that a user tried to provide R as plaintext to a compromised hardware

100

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Seed

128

Random

Number

128
Scrambler (1x128 bit generator)

...

Seed

128

Random

Number

128
Scrambler (2x64 bit generators)

Seed

128

Random

Number

Scrambler

(2x4x32 bit half

frequency generators)

Selector

Seed

128

Random

Number

128
Scrambler

(4x32 bit generators)

128

Figure 9.10: The practical options for implementing PRNGs that can produce 128 random

bits per clock cycle.

module. As a data input, that value R would be re-encrypted by that later clock cycle’s

new random value R‘, rendering it useless.

For this reason, the security of this type of system boils down simply to the ability

of the hardware’s internal logic to produce random numbers that are unpredictable with

respect to the malicious trigger logic. This setting is radically different from standard

cryptographic settings where packets sent across a network are subject to intense attacks

from supercomputers. Instead, we are only concerned with the amount of work that a small,

hidden circuit can do in a single clock cycle. At the same time, we are also interested in the

quality of the randomness that we can achieve each cycle with a hardware PRNG, which

we discuss next.

With regards to selecting a suitable PRNG algorithm for the purposes of this case study,

essentially any RNG could be used in our methodology. Hypothetically, a true RNG would

make the implementation unassailable because each random value would be a true one-

time pad. For this case study, we choose to use pseudo-RNGs (PRNGs) because they are

practical. We can also evaluate their implementation costs precisely, as well as the costs of

101

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

attacking them.

Many PRNG algorithms exist, including linear congruential generators (LCGs) [Knuth,

1981], multiply-with-carry generators [Marsaglia, 2003], generalized feedback shift register

generators [Aiello et al., 1989], minimal standard generators [Park and Miller, 1988], and

Mersenne Twister generators [Matsumoto and Nishimura, 1998]. We want a simple PRNG

that can match the high clock speed of the AES unit without extreme pipelining and without

significant area cost. We also want our PRNG to have mathematical properties that will

allow us to understand the limitations of our attacker.

For the purposes of our evaluation and implementation, we choose low bit-width LCGs,

as these are efficient enough for immediate real-world applications. Some options for the

parameters of the LCG are depicted in Figure 9.10. LCGs are a class of PRNGs that have

a generating equation of the form:

Xn ≡ (aX(n−1) + c) (mod m)

where a, c, and m are the constants that define the particular LCG. Because the general

modulus function is computationally intensive, the value of m is usually chosen to be the

word size (a power of 2) of the underlying architecture, so that performing the modulus in

hardware is trivial. We consider designs that use 232, 264, and 2128 as m.

The constants a and c are selected to yield a long number sequence period using rec-

ommendations from Knuth [Knuth, 1981]. We summarize them here. When m is a power

of 2, a should be chosen so that a ≡ 8(mod 5) and should not be close in value to either

0 or m. The constant c should be relatively prime to m, which means it should be an

odd number. Lastly, a and c should both be greater than m
2 to prevent the use of di-

rect division operations. Applying these restrictions on the values of the constants a and c

prevents trivially attackable cases from occurring and prevents attackers from leveraging di-

rect divides, bitwise operations, or simple bit-shifting schemes, as methods for quick attacks.

Instead the attacker is forced to compute the actual inverse value, which is a non-trivial

operation [Knuth, 1981] and which we will see in our evaluation is infeasible. However,

in Section 9.3.2 we will also empirically analyze the potential for performing probabilistic

attacks in hardware.

102

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Thus, it suffices to restrict a such that a ≡ 8(mod 5) and m
2 ≤ a ≤ 3m

4 and to restrict

c such that c ≡ 1(mod 2) and m
2 ≤ c. Thus for m with n bits, the number of a values

is 2n

8∗4 = 2n−5 and the number of c values is 2n

2∗2 = 2n−2. Therefore, the space has size

nn−5+n−2 = n2n−7 > 2n for reasonable values of n, making the space of choices exponentially

large and thus not subject to exhaustive search attacks.

With the PRNG algorithm determined, the scrambler unit must meet two design re-

quirements:

1. The generator hardware must match the clock speed of the AES unit, generating a

new random number for each plaintext input

2. The random number must be 128-bits long to match the plaintext word size.

Requirement 1 can conceivably be relaxed: we can opt to generate a new random num-

ber once for several cycles of plaintext input. We choose not to relax this requirement

because using the same random number for multiple inputs makes it easier for an attacker

to compromise security.

An LCG requires a k -bit multiplication, where k is the width of the generated numbers.

Since a 128-bit multiply would require pipelining and relatively high area costs to match

clock frequency requirements, we choose to generate the 128 bits piecemeal from multiple

small LCGs. Furthermore, the designer could choose to alternate the output of two or more

PRNGs to get lower frequency.

Multiple choices of how to break up the generation of these 128 bits are viable, and one

of the parameters we explore is how to most efficiently do this. We discuss the results of

implementing these options in Section 9.3.2.

Offensive Breaker Design

The purpose of the breaker module is to design a near-optimal circuit that the attacker

can embed in the AES IP to circumvent the scrambler. The attacker knows exactly what

our defense circuit is and knows the optimal algorithm for attacking it. The attacker’s goal

is to obtain knowledge of the number sequence being generated by breaking the PRNG al-

gorithm. The attacker can leverage this knowledge to inject plaintext that, after predictable

scrambling, becomes a backdoor trigger.

103

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

The breaker infers the PRNG output by observing the scrambled form of some known

plaintext, supplied by the attacker or an accomplice. Given three consecutive outputs of

the PRNG, the attacker can discover the hidden constants mathematically. The solution

requires at its core finding the inverse of a number in a modular space. This is a well studied

problem from the field of cryptography. The most efficient solution (for non-trivial choice

of constants) is the extended Euclidean algorithm [Liu et al., 2008].

The extended Euclidean algorithm is an iterative algorithm, which requires O(log(N))

iterations, where N is the size of the modular base. Each of the iterations is essentially

equivalent to a division that reduces the magnitude of the inputs, hence the logarithmic

performance. Part of our focus will be spent on incorporating a hardware divider efficiently.

Given that the attacker knows the value of m, which is simply a power of two, and has

recorded three straight inputs — x, y, and z — from known plaintext, the breaker circuit

solves the following algebraic problem. From the generating equation of the PRNG:

y ≡ ax+ c (mod m) (9.1)

z ≡ ay + c (mod m) (9.2)

Subtracting the two equations we obtain:

z − y ≡ a(y − x) (mod m) (9.3)

Multiplying equation 9.1 by (y − x) yields:

y(y − x) ≡ xa(y − x) + c(y − x) (mod m) (9.4)

Substituting for a(y − x) using equation 9.3 yields:

y2 − yx ≡ xz − yx+ c(y − x) (mod m) (9.5)

Finally, cancelling the yx terms and rearranging terms yields:

y2 − xz ≡ c(y − x) (mod m) (9.6)

Solving equation 9.3 and equation 9.6 in modular space to isolate a and c requires finding

the modular inverse of (y − x). The extended Euclidean algorithm solves for equations of

the form

104

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

pu ≡ 1 (mod q) (9.7)

Here p and q are coprime, and u is the variable to be solved for. With (y − x) as p and m

as q, we find the modular inverse of (y − x) by solving for u.

The number of iterations required for the extended Euclidean algorithm to succeed

depends on input values. In hardware, we implement a module that carries out one round

of the extended Euclidean algorithm. This module can be chained together to increase the

probability of success. The goal of an attacker with limited resources is to find the optimal

trade-off between probability of success and cost. We discuss implementation trade-offs

for the breaker and the scrambler in Section 9.3.2. We will see that it is not feasible to

implement the full Euclidean algorithm, but it is possible to achieve a small probability of

success with only one iteration.

9.3.2 Evaluation of Offensive and Defensive Costs

We next evaluate trade-offs for the design parameters described in Section 9.3.1. We focus

on the performance of the chosen designs, primarily clock frequency and design area, for

each of the components in our design. Our results show that it is infeasible for the attacker

to make a deterministic attack against trigger obfuscation techniques.

The cost of a deterministic attack is high because it takes a deep pipeline to guarantee a

correct prediction. As the pipeline gets shallower, the probability of a correct guess shrinks,

but not all the way to zero. Nevertheless, this opens up the possibility for an attack that

has no guarantee of success but has a better chance of supplying the trigger than one

would have with random guessing (which would be 1
2128

. We analyze the trade-offs between

success probability and design feasibility for the attacker to see if there is a design point

that presents a significant threat.

We implement the modules in our design using standard ASIC cells and 90nm libraries.

We synthesize these designs using the Synopsys Design Compiler [Synopsys, 2006] and scale

area results to 45nm, a common node for embedded systems, using ITRS conversions [ITR,

]. We note that custom circuits can be optimized beyond that of which ASIC design is

capable. Our goal is to understand the relative costs between defenses and attacks. If both

105

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Table 9.5: Synthesis Results of PRNG Options. Area overhead is shown as a percentage of

the original design area.

Width Depth Frequency Area Overhead

1x128 bits 2 Stages 260 MHz 22%

2x64 bits 2 Stages 257 MHz 12%

4x32 bits 2 Stages 244 MHz 6%

2x(1x128) bits 2 Stages 142 MHz 36%

2x(2x64) bits 2 Stages 158 MHz 20%

2x(4x32) bits 2 Stages 153 MHz 10%

attack and defense were to be done custom instead of in ASICs, we believe the comparative

results would be very similar. We next present the cost breakdown for each module.

9.3.2.1 Baseline AES Module

Our pipelined AES unit achieves 238 MHz operating speed with a throughput of one en-

cryption per cycle. This is comparable to prior similar efforts [Good and Benaissa, 2005].

The area cost is about 0.625 square millimeters.

9.3.2.2 Defensive Scrambler Module

As described in Section 9.3.1, several configurations for the PRNG are viable. The designer

can opt to generate all 128 bits of the random number at once, thereby accepting the

penalty of having to implement a 128-bit multiplier. On the other end of the spectrum,

the designer may generate four 32-bit random numbers in parallel using less expensive 32-

bit multipliers. Additionally, the designer can trade off area and frequency by using twice

as many generators, each running at half frequency. We tried all practical configurations,

including all reasonable pipeline depths. The best designs are shown in Table 9.5. Full

frequency generators (the first three entries) have to reach at least 238 MHz to be viable,

while half frequency generators (the last three entries) have to reach at least 119 MHz. For

our purposes, the most practical choice is the full frequency, 4x32-bit PRNG. The results

of this study clearly demonstrate the practicality, both in terms of area and frequency, of

106

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Table 9.6: Synthesis Results of a Euclidean Algorithm Stage (Breaker Circuit)

Divider Depth Multiplier Depth Clock Frequency Area Overhead

11 Stages 3 Stages 252 MHz 22%

using LCGs to implement data obfuscation.

9.3.2.3 Breaker Module Trade-Offs

Each iteration of the extended Euclidean algorithm requires a division and a few multipli-

cations. Without pipelining, 32-bit dividers and multipliers do not keep pace with the AES

unit’s 238 MHz clock. The minimal amount of pipelining required to meet the timing goal

is eleven stages for the divider pipeline and three stages for the multiplier. Exact numbers

are shown in Table 9.6.

In order to turn a single stage, which represents one iteration of the algorithm, into a

full solver, an attacker has two broad microarchitectural choices. The first choice is to tile

many (about 50) stages and pipeline them. The second choice is to make many duplicates,

have them feed back on themselves, and time multiplex the work across all of them. In

either case, this involves tiling about 50 copies of the circuit. Our results show that neither

of these solutions is feasible because even a single stage requires a significant area overhead.

These results completely rule out the possibility of deterministic attacks. Therefore,

from here on out we concern ourselves with probabilistic attacks. Probabilistic attacks

are potentially more promising because after only one or a few iterations of the Euclidean

algorithm, there is a non-zero chance of finding the solution, due to the fact that the

algorithm sometimes finishes faster than the worst case number of iterations. Next, we

discuss what degree of success can be achieved in hardware.

9.3.2.4 Euclidean Algorithm Stage Count Evaluation

We run the extended Euclidean algorithm many times in software to empirically determine

its probability of success for discovering the PRNG constants for our setting after limited

iterations. Figure 9.11(A) shows the overall results, and Figure 9.11(B) shows a close-up of

107

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Figure 9.11: The expected success rates of a breaker unit against our PRNG as a function

of the number of iterations of the extended Euclidean algorithm.

Table 9.7: Synthesis Results of Breaker Unit

Probability of Success Breaker Depth Area Overhead

1 in 1 Billion 1 Stage 22%

1 in 1 Million 4 Stages 45%

1 in 10 Thousand 7 Stages 112%

1 in 100 11 Stages 210%

1 in 10 15 Stages 291%

1 in 2 19 Stages 415%

low probability cases.

As Table 9.7 shows, with the minimal choice of a single stage, an attacker still has

roughly a one in a billion chance of success, which is low, but not too low to be a threat.

For example, if our AES unit is running at full capacity, it can perform a billion operations

in just over four seconds. The degree of threat this poses depends on the scenario. If an

attacker is in a position to supply a backdoor trigger for four seconds (or more) then this

is a very real threat. In other scenarios it may not be as much of a threat.

Having the degree of the threat quantified can inform security operatives in the field.

If this probability of attack is acceptable, then it can be ignored. If this probability is too

high, then they know the design is insufficient. A few options are available for paying to

strengthen the defense. An ideal (if practical) fix would be to use a true (physical) RNG. If

a true RNG can be efficiently made with 128 bits-per-cycle throughput at high frequency,

then trigger obfuscation can be made completely secure, as demonstrated by our analysis.

Another more immediate possibility would be to use a 64-bit LCG instead of a 32-bit LCG.

108

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

If a defender is willing to pay the extra area cost for that, then the threat, though not erased

entirely, would be diminished beyond reason, because the probability of success would be

orders of magnitude less.

Figure 9.12(A) goes into more detail regarding the area costs required to achieve varying

success rates. As an adversarial designer tunes the parameters to increase success rate, the

area cost grows very quickly. There’s a sweet spot in the middle of the curve where an

attacker can get a lot of increased success for little marginal cost. However, to reach that

part of the curve requires more than a 200% area overhead. An interesting question for

the future is: how much area is too much? Increasing the area and code base of a design

by several fold would be noticed and most likely make the unit too expensive to market.

However, it is not known where the line is or whether 22% is too much. It is likely that

22% would be far too much to evade IC fingerprinting [?] or similar techniques, but more

work is needed in those areas to know for sure. Figure 9.12(B) displays the respective area

costs of each of the components assuming the minimal breaker circuit.

9.3.2.5 Design and Code Complexity

While code complexity is a function of the person coding, we use source lines of code as a

first order approximation of the coding complexities of the different modules in our design.

Table 9.8 shows the relative code sizes of these modules. All code is structural, synthesizable

Verilog. The original AES unit comprises roughly five thousand lines of code. It is possible

to build an AES unit with fewer lines, but our goal of optimizing for area resulted in this

code size, which is reasonable for real world applications.

The adversarial circuit comprises roughly a 10% code bloat. It is unclear how much

code bloat is noticeable in practice, and this is an interesting subject for future discussion.

The defensive circuits together comprise a TCB of roughly 3.3%.

9.3.2.6 Generality of Case Study and Extensions

Our method for protecting AES works because AES consists of two steps that perform

inverse operations. Since the data before AES encryption and after AES decryption is the

same, this is a good use-case for what we call psuedo-homomorphic encryption. This also

109

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Figure 9.12: (A) This curve shows the risk of a malicious designer’s counter-attack being

discovered. If a 10% probability is acceptable to the designer, then the defender should not

notice a three-fold area bloat. On the other hand, given a fixed area budget, an attacker

can only achieve a bounded probability of success. (B) Area costs of each component at

45nm, using the smallest possible breaker circuit, i.e. the one with the smallest non-zero

chance of success.

works in similar fashion for any standard cryptographic algorithm, because encryption and

decryption have this property of inversion (limitations for AES and other common crypto

algorithms are discussed in Section 9.3.3). A cryptographic unit applies an encryption e

along with a decryption d under the requirement that

d(e(x)) = x ∀x

Our requirement is similar but with the addition of the XOR operation.

R⊕ d(e(R ⊕ x)) = x ∀x

The two requirements are equivalent, so our requirement does not limit the set of crypto-

graphic algorithms that can be used. In fact, our techniques can be applied to any function

and its inverse, where f and f−1 play the role of e and d. For this reason our circuits

can be applied directly to a wider class of hardware modules because many modules, such

as buffers, interconnects, memories, caches, comparators, reorder stages, fetch units, etc.

move around and store data items without changing them arithmetically. As we discuss

in Section ??, microarchitectural studies are needed to determine the costs and benefits of

such applications.

110

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

Table 9.8: Relative Coding Complexities of Design Components

Module Submodules Lines of Code

AES Unit 44 4976

Breaker 5 506

Scrambler 4 99

Deorder 1 39

Reorder 1 31

Counter 1 14

9.3.3 Future Attacks: Hybrid Hardware-Software Backdoors

We briefly discuss a topic that we have not studied in depth and that we consider inter-

esting as an avenue for future research. Hardware backdoor research to date (including

our research) has assumed that hardware attacks and software attacks are distinct. While

hardware backdoors might be triggered by malicious software, we assume that the software

is performing actions that would be harmless without the malicious hardware underneath.

However, consider the possibility that a hardware backdoor is used to exacerbate the

damage of an existing software attack. There is no reason this should be impossible. While

there are several possibilities, we consider this option as it pertains to our cryptographic

design. With options for pure hardware attacks diminished by our defenses, an intelligent

attacker might turn to a hybrid hardware-software attack. As an example of this, we believe

that the change in protocol necessary for the our hardware-oriented defense of cryptographic

hardware opens the door for hybrid attacks. We briefly discuss two such attacks in the

context of this work while acknowledging that other attacks might be possible.

The first attack we propose involves an active man-in-the-middle. Suppose there exists a

man-in-the-middle on the network who can both intercept messages and alter them at will.

This attacker has already succeeded at attacking the system at the software and network

level. However, the damage of this attack can be exacerbated using a hardware backdoor.

This attacker has the ability already to replace real ciphertext with fake ciphertext before

it is received. This is sufficient to perform a denial-of-service attack, as well as possibly an

111

9.3. A CASE STUDY OF ENGINEERING SELF-ATTACKING HARDWARE

integrity (or replay) attack. When conspiring with a hardware-based attacker, this attack

could be expanded to a confidentiality attack. The attacker could replace the original

ciphertext with spurious ciphertext that corresponds to a hardware cheat code. The cheat

code could then cause hardware to release the key, breaking confidentiality.

We note that this type of attack is likely to be an emitter backdoor and could potentially

be detected by TrustNet or a similar system. However, there is no reason to necessarily

assume that a company that has invested in trigger obfuscation will also invest in TrustNet.

Currently, we consider this type of hybrid exacerbation attack to be an open problem for

future research.

A second type of attack that we propose could occur on a shared system. Suppose that

a benign user and a malicious user share a software system and that each user has his or

her own AES key. The key is not obfuscated because it is needed for computation and

because it is by definition secure (if the attacker knows the key a priori then the game is

over). However, suppose that the malicious user supplies a cheat code via a pre-chosen key

that is meant to cause a permanent operational change, which would remain active when

the benign user supplies the real key at a later time. This approach does not work on our

implementation, because we reset the device on a key change. However, from a practical

security standpoint, it is important to ensure that reset is implemented in this fashion, and

it is not unthinkable that other implementations might be configured differently. There

exist ways to verify that state-holding elements are resettable, such as code inspection or

verification of a small amount of code, but these methods are not always employed.

In general, the idea of using hardware backdoors indirectly as a tool for aiding malicious

software is an interesting area and is a natural direction for researchers to pursue in the

future.

112

9.4. CONCLUSIONS AND FUTURE DIRECTIONS FOR TRIGGER OBFUSCATION

9.4 Conclusions and Future Directions for Trigger Obfusca-

tion

At present, trigger obfuscation is an intriguing and powerful technique that still presents

several open questions. Each of three components of trigger obfuscation will continue to

raise interesting questions as the space of hardware circuits is explored further.

Rapid resets may need to be adapted for non-volatile logic, including the possibility of

increased usage of non-volatile memories (such as using Phase Change Memory). Rapid

resets also might need to be adapted for stateful accelerators, programmable accelerators,

or FPGA usage.

Sequence reordering raises questions of its own. In addition to the increased variety

of accelerators being used, some of which are transactional and some of which are not,

increasingly complex memory systems and on-chip routers make it important to understand

when sequence matters and when it does not.

Data obfuscation is perhaps the most open of the three methods. Homomorphic obfus-

cation is a new area that is distinct in some respects from older work on fully homomorphic

encryption. Constructing a library of homomorphic circuits or generalizing techniques for

domain-specific homomorphic circuits could have value to the community. Additionally, a

further look into homomorphic cryptographic circuits would have value, as cryptography is

an area where homomorphic circuits are both important and especially hard to implement.

Lastly, hybrid hardware/software attacks raise questions for future study. The work in

this field to date has assumed either no interaction or relatively simple interaction between

software and the hardware backdoor circuits. However, if sophisticated software attacks

are combined with hardware-oriented attacks, the degree of compromise needed by the

hardware could be significantly decreased and pave the way for more subtle attacks. We

believe this area deserves further inspection in the future.

113

Chapter 10

Detecting and Reacting to

Backdoor Payloads Dynamically at

Runtime

10.1 Backdoor Payload Detection Overview

If a backdoor is somehow designed to bypass both static analysis and trigger obfuscation,

thus allowing itself to be turned on at a maliciously intended time, then we are forced

to detect the payload of the attack at runtime. This is the last of the three steps in our

defense-in-depth design-side security approach.

When detecting a malicious payload, we must either recover the system to a coherent

state or fail gracefully. This ensures that in the worst case, exfiltration of system data

(and thus the compromising of system privacy) cannot occur. To make this happen, we

use a dynamic on-chip monitoring system that performs backdoor payload detection by

continuously checking microarchitectural invariants.

Key Insight: Our system for on-chip monitoring is based on two key observations: 1)

that in a hardware system, the communication events that exist between multiple hardware

units are largely deterministic, and there exist invariants that are violated only when back-

doors achieve their payloads, and 2) that the way hardware modules are connected to each

114

10.2. THE TRUSTNET DEFENSE SYSTEM

other lends itself naturally to a self-monitoring system. Examples of invariants between

hardware units can be simple checks such as that the number of instructions executed by

the functional units should not be larger than the number instructions that are processed

by the instruction decoder. Our second observation points out that if we make the weak

and reasonable assumption that the majority of modules are not malicious, we can build a

secure invariant-monitoring infrastructure even if we do not know which of the modules are

the malicious ones.

For our initial defensive implementations, we assume that exactly one module (or one

design team) is malicious, but there are natural extensions to n malicious modules for

n > 1 [Waksman and Sethumadhavan, 2010], which we discuss later. Increasing the fraction

of the design that is malicious naturally increases the cost of the self-monitoring network.

10.2 The TrustNet Defense System

The first self-monitoring system we build is called TrustNet. The basic idea, depicted

in Figure 10.1, is to have self-monitoring triangles formed out of any set of three hard-

ware modules. In typical hardware designs, any module is connected to several others.

For example, in a microprocessor pipeline, a decoder is connected to a fetch and an ex-

ecution unit, among others. There is usually some unit that sees data before it (in this

case the fetch) and some unit that sees data after it (in this case the execution). We call

these the predictor and the reactor respectively. By adding a verification step between the

predictor and the reactor, we can confirm that the untrusted (monitored) unit is doing rea-

sonable work. For example, the fetch unit and execution unit can communicate to ensure

that the correct number of instructions are being decoded. This simple example invariant

(instructions in = instructions out) prevents all decoder-based code-injection attacks,

an important class of attacks.

Using TrustNet, we can protect against any emitter backdoors. Recall that by definition

emitter backdoors cause the wrong number (either too many or too few) of microarchitec-

tural transactions to occur in the compromised unit. TrustNet counts these events and

matches them up on a cycle by cycle basis. Thus, as soon as one too many or one too

115

10.2. THE TRUSTNET DEFENSE SYSTEM

Predictor

Unit

Monitored

Unit

Reactor

Unit

Monitor

The monitor for an unit

can be placed on any

on-chip unit

Input event

notification

Output event

notification

Reactor: Any unit that

receives output from

the monitored unit

Predictor: Any unit that

supplies inputs to the

 monitored unit

Figure 10.1: Overview of the TrustNet and DataWatch monitoring scheme. The triangu-

lar microarchitecture provides the necessary distribution of work in a simple and easy-to-

implement fashion.

few communications occurs, TrustNet detects this misbehavior. Conceptually, the system

detects violations of deterministic communication invariants between on-chip units, which

are the same invariants necessarily violated by emitter backdoors.

The microarchitecture for a single monitoring unit is a prediction/reaction monitor

triangle, depicted in Figure 10.1. A triangle consists of three different on-chip units - a

predictor, a reactor, and a target (monitored unit in Figure 10.1. The predictor unit sends

messages to the monitor, predicting events that should come out of the target unit. If the

reactor does not receive a predicted event, or if the reactor receives an event that was never

predicted, then the monitor throws an alarm.

The target unit is any unit on-chip. For one example, using Figure 10.3 as reference,

consider the decode unit (IDU) as a target. The predictor unit can be any unit that sees

events before they reach the decode unit, for example the fetch unit (IFU). The fetch unit

sees every instruction before it reaches the decode unit. The reactor unit can be any unit

that sees events after they pass through the target. For example, it can be the execution

116

10.2. THE TRUSTNET DEFENSE SYSTEM

unit (EXU), because that unit always receives information about instructions after they

pass through the decode unit. The monitor itself can reside anywhere on-chip. The IFU

knows each cycle whether or not it has fetched a new instruction. The EXU knows at

each cycle whether or not a valid instruction is advancing through the pipeline. Having

these two sources of knowledge corroborate prevents the IDU from ever inserting bogus

instructions into the pipeline. Nothing extra has to be computed, since this knowledge is

already represented by signals in the respective units.

A vital aspect of this design is that the target unit never communicates with the monitor.

Therefore, even if the designer of unit X knows the design of the monitor (which is likely),

the designer is unable to corrupt the monitor of X. For this reason, it is important that

the monitor of X should not be physically part of unit X.

Recall that in this setting, at most one sub-team is corrupt, and so an attacker cannot

corrupt two independent units on-chip. This assumption guarantees that TrustNet reliably

detects attacks. Consider the monitor set up to watch unit X. There are four items in

play - the predictor of X, which we will call P ; the reactor to X, which we will call R; X

itself; and the monitor of X, which we will call M . The attacker must choose one and only

one of these items to corrupt. In order to cause a confidentiality or integrity attack in X,

the attacker would have to choose to corrupt X itself. However, in that case P , R, and M

are all untampered with, and the attack is caught at runtime by the P -R-M monitor. The

attacker could instead tamper with P or with R (but not both). In either case that attack

would be caught at runtime, since P and R would disagree with each other during the cycle

when the first faulty communication occurred. The last choice is to corrupt M to cause an

availability attack (a false positive in the detector). However, since M contains only one (or

a few) logic gates, it is too small to contain a cheat code or ticking time bomb. M has so

few states (usually none) and input bits (usually two) that it can easily be verified statically

by exhaustive enumeration. Thus, in this worst case, only denial-of-service is possible, and

even this worst case is impossible in practice due to the simplicity of the microarchitecture.

117

10.3. THE DATAWATCH DEFENSE SYSTEM

10.3 The DataWatch Defense System

As the natural extension to TrustNet we designed a more robust system called DataWatch.

This system covers a wider class of attacks at the cost of slightly higher overheads. Since

TrustNet measures simple invariants that can be checked by counting, such as numbers

of instructions or events, DataWatch performs simple data integrity checks. For example,

DataWatch can check that memory events have the correct types or that the correct opcode

types are being supplied to pipeline units. DataWatch is inherently more heavyweight

than TrustNet, since TrustNet uses one-bit signals and DataWatch uses multi-bit signals.

However, DataWatch is still efficient for modern designs. Thus, while TrustNet is an ideal

solution for emitter attacks, DataWatch is an effective way to also catch corrupter attacks,

making the decision of which system to use dependent on the use case.

DataWatch is specifically best at catching control corrupter backdoors. Recall that con-

trol corrupters change the semantics of an instruction in flight. The same predictor/reactor

scheme, used to catch emitter attacks, works to detect control corrupter attacks, since

these attacks either cause reactions (microarchitectural transactions) that are not predicted

or prevent transactions that are predicted. DataWatch uses the same triangle scheme as

TrustNet. However, instead of transmitting individual bits to monitors, signatures (e.g.,

hashes, parity bits, slices) are passed to monitors that check for equivalence. For example,

in the case of the decoder, a two bit signature is enough to define whether an instruction

involves a load, a store, both, or neither (two bits for four cases). An equality check on

the signatures from the predictor and the reactor is enough to confirm an on-chip invariant,

namely that the number of each type of regular memory operation that enters the IDU

equals the number of each type of memory operation that exit the IDU. This prevents, for

instance, an attack that exfiltrates data by converting no ops into store instructions.

10.4 Handling Data Corrupter Attacks

Data corrupter attacks are both the hardest to implement and the hardest to defend against.

In practice, they may be infeasible to design, but they are academically interesting and re-

main the only type of attack that can potentially evade the DataWatch defense system.

118

10.4. HANDLING DATA CORRUPTER ATTACKS

Table 10.1: Comparison of TrustNet, DataWatch, and smart duplication for simple, in-

order microprocessors

Attribute TrustNet DataWatch Smart Duplic.

Data Cor-

rupter

Detection

No No Yes

Control

Corrupter

Detection

No Yes Yes

Emitter De-

tection

Yes Yes Yes

False Posi-

tives

No No No

Stalls Pro-

cessor

No No Possibly

Area Cost Negligible Low Moderate

On-Chip

Traffic

Increases

Off-chip

memory

No effect

Backdoor

source

Can be identified

Data corrupters change only the data that is sent in on-chip communications. These back-

doors are fundamentally different from the types previously discussed because the amounts

and types of communications between units during the execution of an instruction is iden-

tical to that of a correctly functioning chip. The monitor triangle, while very efficient for

recognizing amounts and types of transactions, does not work well for this case, because

data corrupter attacks cannot be recognized without duplicating some of the computational

logic that has been corrupted. For example, if the EXU (execution unit) produces an incor-

119

10.4. HANDLING DATA CORRUPTER ATTACKS

rect sum, the fact that the sum is wrong cannot be known without duplicating (or otherwise

performing the job of) the ALU (arithmetic/logic unit).

However, this type of attack shares interesting similarities with transient errors that

can occur in microprocessors. Significant work has been done toward transient error detec-

tion [Chatterjee et al., 2000][Reinhardt and Mukherjee, 2000][Yoo and Franklin, 2008][Car-

retero et al., 2009] and fault tolerance, and we draw on the principles of some of this prior

work. It is sufficient in many cases to duplicate select computational logic in order to pro-

tect the RTL design, since standard memory structures (e.g., RAMs) are not susceptible to

RTL level attacks. We propose that this type of minimal duplication, which we call ‘smart

duplication,’ can be used in a case-by-case way to protect any units (e.g., memory control

unit) that are not covered by the DataWatch system or any units that may be considered

vulnerable to data corrupter attacks. This partial duplication allows for protection against

data corrupter attacks. However, it does this at the possible cost of processor stalls and

extra area, and in most domains data corrupter attacks would likely be considered infeasible

due to the requisite of knowing the binaries that will be run in the future during the RTL

design phase. Therefore, this technique may only be useful in a few select domains or not

at all.

Table 10.3 summarizes some of the attributes of the offered solutions. None of the pro-

posed solutions have a problem with false positives (false alarms) because they use invariants

that can be easily determined statically in non-speculative, in-order microprocessors. Ex-

tending this solution to designs with advanced speculative techniques, such as prefetching,

may make false positive avoidance non-trivial. False negatives (missed attacks) are only a

problem if multiple signals in the DataWatch technique are hashed to save space, because

two different values may hash to the same key, thus tricking the equality checker. However,

hashing is an implementation option, which we chose to avoid because the space requirement

of the baseline DataWatch system is fairly low.

120

10.5. HANDLING DETECTION ALARMS

10.5 Handling Detection Alarms

We have thus far discussed how TrustNet and DataWatch can detect attacks. However, if

a payload is detected, there remains the important question of what to do with that infor-

maiton. There are several possibilities for techniques for handling alarms from TrustNet

and DataWatch. A simple and legitimate response could be to shutdown the entire system.

At the least, this would turn confidentiality or integrity attack into an availability attack,

because the only result would be denial of service. In highly secure domains, this may be

desirable to guarantee no exfiltration of sensitive data. For example, if an attack is meant

to destroy crucial equipment, simply shutting down is likely less catastrophic. If continu-

ous operation is a higher priority, then some form of N -way redundancy is an option. If

designs from multiple vendors are available, then when an alarm sounds, the computation

can be migrated onto another machine from the machine that has been compromised, with

computation being resumed from the last known safe state. As an arbitrary example, if the

alarm sounded on an Intel x86 chip, the computation could be moved to an AMD x86 chip

and resumed. This proposed technique could also be helpful for forensics. When an alarm

goes off, the data in flight in the hardware units could be flagged as a cheat code and logged

for future execution.

10.6 Security Guarantees of TrustNet and DataWatch

We briefly discuss the guarantees provided by our proposed runtime systems. Consider a

monitor that is set up to watch an untrusted unit X. There are four actors in play – the

predictor of X (P), the reactor to X (R), X itself, and the monitor of X, which we call

M . With a lone-wolf attacker model, the attacker gets to corrupt one and only one of

these actors. In order to compromise confidentiality or integrity, the attacker would have

to choose to corrupt X itself. In this case, P , R, and M are all untampered with, and

the attack can be detected. If the attacker chooses to tamper with P or R, then they

would disagree, and the attack would be detected. The attacker can choose to attack M ,

but since monitors are one or a few logic gates (XOR gate), it can be formally checked

not to contain backdoors. The proposed solution, however, will not work for a conspiracy

121

10.7. CASE STUDY AND EVALUATION OF TRUSTNET AND DATAWATCH

between designers of multiple units or when one bad designer designs multiple units that

are responsible for monitoring each other. Organizational security is necessary to prevent

such attacks.

10.7 Case Study and Evaluation of TrustNet and DataWatch

As a case study, we demonstrate the effectivness of TrustNet and DataWatch on portions

of the Sun Microsystems’ OpenSPARC T2 microarchitecture. In this study, we use the

HDL hardware implementation of OpenSPARC to systematically determine the number

of on-chip units that can be readily covered (without ingenuity or further expansion) by

our design. To measure the vulnerability surface we observe that a hardware unit is only

vulnerable to backdoors in-so-far as its interfaces are threatened. The processing that goes

on inside the unit can be checked to be safe simply by checking its inputs and outputs.

Thus the interfaces present points of vulnerability, and the efficacy of our solution is then

determined by whether or not these interfaces are protected from attacks using TrustNet

and DataWatch. Figure 10.2 shows the units on an OpenSPARC chip that can be covered

partially or fully using TrustNet and/or DataWatch. We note that this is a conservative

estimate, based only on those interfaces we can easily cover. Further investment of effort

or domain-specific knowledge would likely lead to even better coverage.

To get into more detail, the in-order microprocessor used in our simulations closely

models the cores and cache hierarchy of the aformentioned OpenSPARC T2 microprocessor

and is based on manual analysis of the OpenSPARC source code. For this study, the units

in the processor core are partitioned as described in the OpenSPARC T2 documentation,

and we used the open-source HDL code to identify the predictors and reactors for each unit.

The following are the monitoring triangles we implemented in simulation, categorized by

the untrusted unit being monitored. We first list the TrustNet triangles.

• #1 IDU: The primary responsibility of the IDU is to decode instructions. Predicted by

the IFU and reacted to by the EXU, the IDU monitor confirms each cycle that a valid

instruction comes out of the IDU if and only if a valid instruction entered the IDU. This

monitor detects any attack wherein the IDU inserts spurious instructions into the stream.

122

10.7. CASE STUDY AND EVALUATION OF TRUSTNET AND DATAWATCH

Diversity

Control

Corrupter

Emitter

Backdoor

Coverage

Figure 10.2: Illustration of units covered by TrustNet and DataWatch an OpenSPARC

microprocessor.

Figure 10.3: Units and communication in the hypothetical inorder processor used in this

study.

123

10.7. CASE STUDY AND EVALUATION OF TRUSTNET AND DATAWATCH

In the case of branch and jump instructions, which do not go all the way through the

pipeline, the information travels far enough for the EXU to know that a branch or jump

is occurring. This monitor can be extended to support a speculative microprocessor if the

monitor can reliably identify speculative instructions.

• #2 IFU: The primary responsibility of the IFU is to fetch instructions. Predicted by the I-

Cache and reacted to by the IDU, this monitor confirms each cycle that a valid instruction

comes out of the IFU if and only if an instruction was fetched from the I-Cache. This

invariant catches any attack wherein the IFU sneaks instructions into the stream that did

not come from the I-Cache. The monitor operates on the level of single instructions as

opposed to whole cache lines. While the whole line is loaded into the I-Cache from the L2,

the I-Cache knows when individual instructions are being fetched into the IFU.

• #3 LSU: The load-store unit (LSU) handles memory references between the SPARC core,

the L1 data cache and the L2 cache. Predicted by the IDU and reacted to by the D-Cache,

this monitor confirms each cycle that a memory action (load or store) is requested if and

only if a memory instruction was fed into the LSU. This catches shadow load or shadow

store attacks in the LSU. Our microprocessor uses write merging, which could have been

a problem, since several incoming write requests are merged into a single outgoing write

request. However, there is still a signal each cycle stating whether or not a load/store is

being initiated, so even if several writes are merged over several cycles, there is still a signal

each cycle for the monitoring system.

• #4 I-Cache: Predicted by the IFU and reacted to by the unified L2 Cache, this confirms

each cycle that an L2 instruction load request is received in the L2 Cache if and only if that

load corresponds to a fetch that missed in the I-Cache. The IFU can predict this because

it receives an ‘invalid’ signal from the I-Cache on a miss. An I-Cache miss immediately

triggers an L2 request and stalls the IFU, so there is no issue with cache line size. The

IFU buffers this prediction until the reaction is received from the L2 Cache. This catches

shadow instruction loads in the I-Cache.

• #5 D-Cache: Predicted by the LSU and reacted to by the L2 Cache, this is the same as

the monitor #4 but watches data requests instead of instruction requests.

• #6 L2 Cache: Predicted by the I-Cache and reacted to by MMU, this is the same as

124

10.7. CASE STUDY AND EVALUATION OF TRUSTNET AND DATAWATCH

monitor #4 but is one level higher in the cache hierarchy.

• #7 L2 Cache: Predicted by the D-Cache and reacted to by the MMU, this is the same

as monitor #5 but is one level higher in the cache hierarchy.

• #8 D-Cache: Predicted by the LSU and reacted to by the L2 Cache, this is the same as

monitor #5 but watches writes instead of reads. It is necessary that two separate monitors

watch reads and writes; if a single monitor counted only the total number of reads and

writes, then an attacker could convert a write into a read unnoticed. This would cause old

data to be loaded into the cache and prevent the new value from being written.

• #9 L2 Cache: Predicted by the D-Cache and I-Cache and reacted to by the MMU, this

confirms that line accesses in the MMU correspond to line accesses issued by the level 1

caches. This monitor prevents shadow loads/stores executed by the L2 Cache.

Next we list the DataWatch monitoring triangles, also categorized by the untrusted

unit being monitored:

• #10 IFU: Predicted by the IDU and reacted to by the I-Cache, this confirms each cycle

that if the I-Cache receives a valid PC value it is the same as the value computed in the

IFU. This required some duplication of PC logic but did not require any extra storage. This

prevents attacks wherein the IFU maliciously changes the control flow.

• #11 Data TLB: Predicted by the checker data TLB and reacted to by the LSU, this

confirms each cycle that the outputs of the data TLB match the outputs of the checker

data TLB. This prevents data TLB attacks, such as permissions violations or page mis-

translation. This is on the borderline of what we would start to call ‘smart duplication’

because the ‘signatures’ are so large. However, we included this is our DataWatch imple-

mentation and simulation.

• #12 Instruction TLB: Predicted by the checker instruction TLB and reacted to by the

IFU, this is the same as monitor #11 but for the instruction TLB rather than the data

TLB.

• #13 IDU: Predicted by the IFU and reacted to by the LSU, this confirms that the

number of instructions decoded into memory operations matches the number of memory

instructions fetched. For our microprocessor, this required that the IFU looked at a few bits

125

10.8. MICROARCHITECTURAL DETAILS AND OPTIMIZATIONS FOR
MICROPROCESSOR CORE APPLICATIONS

of the instruction. The monitoring occurs at a one cycle lag, so the timing on the critical

path is unaffected. The IFU stores a few of the bits from the fetched instruction in flip-flops

until the next cycle, when a prediction can be made with a few logical gates. For our case

study, this is the only type of control corrupter decoder attack we address. The reason for

this is that in our simple microprocessor, the only types of signals the decoder can cause

are loads in stores (if, for example, the decoder changed an add to a subtract, this would

be a data corrupter, because it would not alter the number of transactions in the execution

unit, just the value of the output). In more complex microprocessors, decode units may be

responsible for more types of transactions and might require additional monitoring triangles.

When customizing a DataWatch system to fit a particular design, it is important up front

to identify what types of signals each unit is responsible for.

10.8 Microarchitectural Details and Optimizations for Mi-

croprocessor Core Applications

While TrustNet and DataWatch can be adapted for a wide variety of hardware, we consider

microprocessors to be a likely application. As a result, we develop some optimizations for

keeping overheads negligible when applying TrustNet and DataWatch to microprocessor

cores. The microarchitecture of our implementations for the predictor and monitor units

are depicted in Figure 10.4. The predictor unit consists of (i) event buffers for delaying

the issue of tokens to the monitor and (ii) token issue logic to determine when buffered

events can be released from the event buffers. The predictor unit requires a small buffer

because it is possible for multiple predictions to happen before a reaction happens, and these

predictions must be remembered for that duration. These buffers can be sized a priori to

avoid overflows. The monitor itself simply checks if events appear on the predictor and

reactor inputs during the same cycle.

When designing the TrustNet system to catch emitter backdoors, we considered it to

be important that the monitors fit directly into the pipeline without any complex timing

or buffering issues. Since predictions and reactions must arrive at the monitor during the

same cycle, timing must be controlled in the face of non-determinism, which arises in all

126

10.8. MICROARCHITECTURAL DETAILS AND OPTIMIZATIONS FOR
MICROPROCESSOR CORE APPLICATIONS

Predictor Token

Reactor Token

Alarm
XOR

Monitoring unit

Token

Issue

Logic

Predictor

unit
New Token

Predictor Token

Output

Token

Buffers

Figure 10.4: TrustNet Monitor Microachitecture.

microprocessors due to cache misses, etc. We handled this differently in the case of the

memory hierarchy and in the case of the pipeline. The pipeline offers a natural lock-

step manner for coordinating events. If a reaction stage is N pipeline steps down from a

prediction stage, then the prediction stage has a size N buffer that advances only when that

stage of the pipeline advances. Since the monitoring network advances in lock-step with

pipelined events, timing is not a problem. For example, if the third pipeline stage wants

to send a prediction to a monitor that lies in the fifth pipeline stage, this will take two

pipeline advancements (no need for forwarding). If the third stage stalls for any reason, the

prediction also stalls and gets buffered. When the data from the third stage reaches the

fifth stage, the prediction token will also arrive. Of course, the prediction token should not

pass through the fourth stage but should instead remain in the prediction buffer, with a bit

denoting that it is semantically in the fourth stage.

In the case of the cache hierarchy, on the other hand, it is necessary to know which

127

10.8. MICROARCHITECTURAL DETAILS AND OPTIMIZATIONS FOR
MICROPROCESSOR CORE APPLICATIONS

predictions correspond to which reactions, because it is possible for memory requests to be

handled out of order. This requires time-stamping of packets, for example with a one byte

local time signature copied from an 8-bit modular counter.

Buffering in the Predictor Units Since predictors see events before reactors, a predictor

may at times have made several predictions that have not yet been reacted to. For any

monitor on any particular processor, there will be a known, finite bound on how many

predictions can accumulate before a reaction occurs. We handled this by placing buffers on

the predictors with enough slots to hold all the pending events in the worst case scenario.

A náıve solution for catching control corrupter backdoors in TLBs (translation lookaside

buffers) is to simply have multiple designers build different implementations of the same

TLB and compare their outputs each cycle (i.e., DMR). Since TLBs tend to be power-

hungry, highly or fully associative structures, duplication is an expensive approach. Instead

of complete duplication, we propose a new TLB microarchitecture that provides significant

protection without the costs associated with duplication. The TLBs contain page trans-

lation and permissions information not available elsewhere on chip. A TLB consists of a

CAM that translates a virtual page into a physical page, which is then stored in a table

(RAM) with the corresponding permissions information for that physical page.

Our idea is to create a direct-mapped ‘checker’ structure that has the same functionality

as a TLB, the motivation being that a direct-mapped structure uses a small fraction of the

power of an associative one. The TLBs in our case study are fully associative. We added

functionality to the CAMs to output the line number of the output. This allowed us to

build a checker TLB that uses these line numbers. Essentially, instead of having one CAM

and a direct-mapped RAM (as is normal), we have one CAM and two direct-mapped RAMs

that operate in parallel. The CAM provides matching entries to both RAMs in parallel.

One of those RAMs communicates with the rest of the chip while the other RAM only gives

outputs to a monitor (equality verifier). The equality check occurs at a one cycle latency,

so the values are buffered for that cycle.

Naturally, the CAM could be tampered with so that it sends incorrect line numbers to

the checker TLB. This would cause the equality check to fail because data from one line of

the original TLB’s RAM will be compared to data from a different line of the second RAM,

128

10.9. CONCLUSIONS AND FUTURE DIRECTIONS FOR PAYLOAD DETECTION
METHODS

causing an alarm to be thrown. Therefore, our checker TLB turns a potential confidentiality

or integrity attack into at worst an availability attack. We note that this availability attack

would also be easy to catch at verification time because the passing of the line number is

simple, combinatorial logic that can be checked by exhaustive enumeration.

While this duplication is more expensive than the simple TrustNet and DataWatch

monitors used for backdoor protection, it is significantly less expensive than complete du-

plication and offers strong protection for a vulnerable structure.

10.9 Conclusions and Future Directions for Payload Detec-

tion Methods

Payload detection is an approach that we believe will always be necessary and will never

be perfect. The necessity comes from the fact that we can never have 100% certainty

in the perfection of our defenses. While proactive defense systems are desirable, reactive

defense systems are necessary for the cases when proactive defenses are circumvented. The

imperfection comes from the fact that as a reactive system, payload detection can only stop

attacks that are more or less understand. If a brand new attack is developed that was never

previously envisioned, it is unlikely to have a payload that has been accounted for.

We expect that payload detection will be valuable in practice as an efficient way to

defend against classes of known or concerning attacks. For example, when developing a

cryptoaccelerator, the set of known attacks is large and well understood. A few specific

properties, such as making sure keys do not leak and extra ciphertext is not transmitted

can prevent a large variety of likely attacks. Similar cases exist for other well-understood

hardware, such as memory subsystems.

The limitation of payload detection that is essentially unavoidable occurs for modules

that have not been well studied. For instance, it would be difficult to protect a brand new

unit (or a piece of third-party IP) for which attacks have not been analyzed or proposed.

One way to deal with this in the future could be to have a library of known interface

compromises (i.e., types of attacks) so that new hardware modules can be identified as

fitting into one or more of these library classes.

129

10.9. CONCLUSIONS AND FUTURE DIRECTIONS FOR PAYLOAD DETECTION
METHODS

Additionally, with dark silicon becoming increasingly prevalent, many optimizations of

TrustNet and DataWatch (as well as duplication techniques are possible). In a setting

where area is plentiful and power is scarce, a large amount of duplicate modules and/or

monitors could be constructed and powered on only when necessary or psuedo-randomly.

130

Part IV

Fabricating Trustworthy Hardware

131

Chapter 11

Fabricating with End-to-End

Security in Mind

An important point that we make throughout this work is that security approaches have

to be based on globally-aware analysis of threats and personnel. One problem with the

current state-of-the-art in security is that the hardware security space has been fragmented

unnaturally into design-side approaches and foundry-side approaches. These two halves can

both be more effective when combined together, but thus far they have been disparate and

have used incompatible threat models.

In this part, we primarily seek to combine works, ideas and concepts from foundry-side

security, along with our own novel contributions, to generate a coherent methodology for

creating trustworthy hardware in the presence of both design-side attackers and foundry-side

attackers.

We briefly argue for the impossibility of perfect design-side security without foundry-side

security and vice versa.

Consider a perfect design that is not only backdoor-free but also contains unfailing

runtime mechanisms for detecting any and all possible malicious behavior. This design is

a document (a netlist) that is sent off to a malicious foundry. The foundry ignores the

netlist and instead returns a chip produced from an older, less secure netlist. Thus, all the

design-side security was for naught, as it never made it into the physical chip.

132

Consider a perfect foundry that not only avoids backdoor insertion but also has perfect

chip imaging to ensure that all fabricated chips precisely match the provided netlist. A

malicious design house gets malicious IP included in the netlist. The foundry perfectly and

precisely fabricates a chip from the malicious design, thus producing the backdoor inserted

by the malicious design house. Thus, the foundry-side security was for naught, as it only

served to produce all malicious circuits hidden in the netlist.

Therefore, we consider it necessary to be aware of both design-side and foundry-side

security when developing hardware. In the following chapters, we discuss how foundry-

aware techniques can work synergistically with the design-side techniques discussed thus

far and be used to develop trustworthy hardware in the presence of a malicious conspiracy

that includes both malicious designers and a malicious foundry.

133

Chapter 12

Beacons: A Novel Power-Based

Attestation Mechanisms

To achieve our goals, we first propose a new attestation mechanism, which we call a beacon,

that allows for the usage of side-channel measurements post-fabrication that attest to design-

side properties.

12.1 Enhancing Design-Level Protections with Beacons

Given that there exist runtime systems for dynamically protecting against design-level back-

doors, we want our foundry-level defenses to work together with those systems. In our

methodology, these design-level protections are combined (post-design phase, pre-fabrication

phase) with the beacon that prevents attacks from a malicious foundry. The process be-

gins in the design phase with anti-backdoor circuits and ends post-fabrication with the

attestation of the beacon. We next explain the details of this system.

Our power attestation construct – a beacon – is a digitally controllable challenge/response

circuit. The output is unpredictable to anyone except the owner of the key used to generate

the beacon. The response of the beacon can be either digital or analog, and we consider

both options, though we ultimately use analog (specifically power). The idea of beacons is

illustrated in Figure 12.1.

An analog side-channel beacon is a substantial and predictable side-channel emanation

134

12.1. ENHANCING DESIGN-LEVEL PROTECTIONS WITH BEACONS

Figure 12.1: An overview of how a beacon works. Beacons are added to the backdoor

protection circuits and entangled with the protections. When a beacon key is supplied, it

outputs an analog power signature or a digital output that can be used by the auditor.

caused by a digital input. It can be thought of as a spot on the chip that can be intentionally

made hot under controlled circumstances. The side-channel emanation should be easy to

measure and reliable in its values. We achieve this by using power as our side-channel

throughout this chapter. We consider the following requirements to be necessary for the

practical application of power side-channel beacons:

• Average power usage of the design should not be impacted by the inclusion of beacons.

• Peak power constraints of the design should not be violated by beacons.

• The difference between power usage when a beacon is on versus when it is off should be

reliably measurable and thus should be large with respect to the total power of the system:

too large to be by accident (e.g., process variations) or to go undetected.

• The trigger for the beacons should be an unlikely input to prevent the foundry from

guessing the trigger to learn and replay the expected power output.

Our conclusion from these requirements is that the natural solution for a beacon is a

135

12.1. ENHANCING DESIGN-LEVEL PROTECTIONS WITH BEACONS

digitally-triggered circuit that raises power by a substantial amount that is at most the

difference between average and peak power. The triggered execution aspect of the beacon

is functionally similar to a typical backdoor even though it is used benignly for the purposes

of security. We delve into the implementation later in this chapter, but we give now the

intuition for why all the requirements are met by this solution.

• Average power is unaffected because the beacon, being a key-enabled circuit, only needs

to be on for a controlled and small number of cycles. During normal operation it is off.

• The beacon raises power usage from average power to a controlled level above average

that is at most peak power.

• The difference in power is on the order of the difference between peak and average, which

in any realistic system is large and readily measurable. This difference can be chosen to be

smaller if desirable as long as it is big enough to be observable.

• The trigger for the beacon (just like a trigger for a backdoor) can evade detection, this

being one of the fundamental motivations for this field of study in the first place. The beacon

is applied after backdoor defensive mechanisms are in place and is thus unaffected by the

defensive mechanisms themselves. A beacon can be thought of as a beneficial backdoor

applied by the last actor in the design process.

A digital beacon is the same concept as the analog one but with digital outputs instead

of side-channel emanations. It is an intentional backdoor that outputs a signal (e.g., a one)

when it sees a special key and a different signal (e.g., a zero) for all other possible values.

There are nearly unlimited ways in which a digital beacon output can be relayed to the

auditor. It could be placed into a pre-chosen register, put in memory, sent out directly

through a pin, or made externally visible through any other number of means.

The trade-off between the digital approach and the analog side-channel approach exists

in detectability for both the attacker (malicious foundry) and the auditor. The digital

approach is more easy to detect, thus making it easier to implement and easier for an

attacker to circumvent. Using a digital output might offer the attacker the possibility to

backtrace from the output pin to identify some of the logic [Helfmeier et al., 2013]. Such

a method would not be possible in the case of an analog side-channel beacon, because the

side-channel beacon does not connect to any output pins. From here on out, we go with

136

12.2. RELATIONSHIP BETWEEN BEACONS AND IC FINGERPRINTING

the power side-channel approach.

12.2 Relationship Between Beacons and IC Fingerprinting

Integrated Circuit (IC) fingerprinting is an approach to a related problem. Work in the

area attempts to find emergent power signatures that convey the identity of a design and

then detect anything that is different (e.g., a possible backdoor) [?]. Additional work

has been done toward enhancing the ability to detect power signatures using dynamic

monitoring [Narasimhan et al., 2012].

IC fingerprinting is difficult in practice because foundry-inserted backdoors can be very

small and might have almost no impact on power. For this reason, false negatives and false

positives are a major area of study for IC fingerprinting.

Beacons, on the other hand, are the opposite of IC fingerprinting in some respects.

Instead of taking a design as given and attempting to detect small fluctuations in power

caused by malicious circuits, we instead intentionally entangle the beacon in the design and

ignore small fluctuations. At a high level, fingerprinting attempts to prove that two things

are the same, whereas beacons attempt to show that two things are different. Proving

sameness turns out to be very hard, as demonstrated by prior work, because differences can

be almost arbitrarily small and noisy. By switching from a hard problem to a relatively

easy problem, we are able to do away with false positives and false negatives and avoid the

need for noise filtering.

12.3 Beacon Construction and Implementation

The number of ways in which a beacon can be constructed is almost unbounded. By varying

the choice of logic gates (AND, OR, etc.) the functionality required of the beacon can be

provided in exponentially many different ways. The template we choose for a side-channel

beacon is depicted in Figure 12.2. There are two core components.

• A state machine controller. The state machine simply detects when the auditing key has

arrived as an input. In the simplest case, the logic is essentially a comparator that has been

137

12.3. BEACON CONSTRUCTION AND IMPLEMENTATION

Beacon

Key
Recognition

Logic
State Machine

On/Off
State

Toggle
Beacon

Key

Clock

Match

Power

Pseudo-Random Logic Blocks

PRL ...PRL PRL PRL PRL

Figure 12.2: A beacon implementation. The state machine control is primarily a compara-

tor that looks for the secret key. When it does, the state switches from zero to one, turning

on the rest of the circuitry. The toggle bit changes every cycle, causing the combinational

logic to flip every cycle. Within each pseudo-random logic block (PRL), there is randomly

generated logic. When the state is zero, the activity factor is zero. When the state is one,

the activity factor is one.

entangled (using an algorithm to be described later).

• Pseudo-random logic blocks. The other core component is a set of pseudo-random logic

blocks (PRLs). A PRL is a circuit of depth one: it is an array of logic gates that are fed

inputs and give outputs in parallel. To construct the beacon power circuit we tile multiple

PRLs next to each other to form a grid of logic blocks. Each PRL passes along the input

signal through randomly chosen logic blocks. Each pair of adjacent PRLs forms a bipartite

graph, where each edge either exists or does not exist based on a pseudo-random decision

based on the secret key (the connections are formed during hardware synthesis).

How do these PRLs work? We will illustrate this by assuming that the each PRL is

a long column of NOT-equivalents.1 We make this choice to make it easy to control the

activity factor, but other choices would be acceptable as well. The circuit begins operation

by broadcasting a bit (or bits) to the first PRL.

The visual to have at this point is that the PRLs are like a long chain of see-saws. The

reason the visual is a see-saw is because the signal flips when it moves from one PRL to the

1By NOT-equivalents, we mean gates that do the same thing as a NOT gate. This could include multiple

implementations of NOT gates, NAND gates, NOR gates, and a variety of other choices.

138

12.3. BEACON CONSTRUCTION AND IMPLEMENTATION

next (because they are all NOT-equivalents in the simplest case). If the signal is all ones in

the first PRL, it is all zeros in the second PRL, all ones in the third PRL, and so on. When

the toggle bit flips, all of the one-PRLs go to zero and the zero-PRLs go to one, causing

100% of the wires to toggle.

If we wanted to create a hot spot, we could have used practically any circuit, but why

PRLs? In our experience, the activity factor in an average circuit normally ranges between

around 0.01 to 0.1, but with PRLs we can use a circuit that is 10 to 100 times smaller

for the same power surge by guaranteeing that the activity factor is at or near one (100%

activity).

This type of beacon has fairly clear power costs. There is the leakage power (power

consumed when the circuit is in standby) and the dynamic power (power consumed when

the circuit is operational). The leakage power comes from the two flip-flops and the PRLs.

If a flip-flop has leakage F and a PRL has leakage P , then the leakage is roughly

2F +NP

where N is the number of PRLs used. If each PRL has a maximum dynamic power con-

sumption of D, then the power consumption while the beacon is active is roughly

2F +N(P + αD)

where α is the activation factor. Since we want the beacon consumption to be large com-

pared to the leakage power, we want the ratio

2F +N(P + αD)

2F +N(P)

to be large. The two ways to make them happen are to make α and D large. While there

are multiple ways to achieve this goal, we presented one set of options. This set contains an

exponentially large2 number of possible beacon circuits, each with maximal activity factor

(α = 1).

2The number of distinct beacons within the set is exponential in the size of the random key.

139

12.3. BEACON CONSTRUCTION AND IMPLEMENTATION

As we will see in Section 9.3.2, cost and power can be estimated analytically and eval-

uated empirically for different beacon sizes. By increasing the size of the PRL grid, the

intensity of the hot-spot is increased.

140

Chapter 13

Entanglement-Based Methods for

Preventing Counterfeiting and

Reverse Engineering

Given a beacon that can attest to security properties of a fabricated hardware device, our

goal is to prevent an intelligent attacker from undermining the beacon. Without learning the

key, it is impossible to fake the power signature; thus the only attack vector for an adversary

is to uncover the beacon key and create a fake beacon before or during fabrication. For this

reason, recovering the key becomes an exercise in reverse engineering, because with a full

understanding of the circuit at the most detailed level, an adversary can potentially guess

the key.

Our technique for embedding beacons and protecting against key extraction through

reverse engineering is depicted in Algorithm 5. Our system has three pieces: a beacon, a

protection mechanism and an untrusted module. At a high level, the beacon and protection

are entangled together, while the untrusted module can operate correctly only when a special

key (KM) is supplied to it. This module key, KM , is generated only when both the beacon

and protection have not been tampered with in any way; entangling the beacon circuit and

the protection circuit ensures that they cannot be separated by an adversary to leave the

beacon intact without the protections. Next, we describe individual portions of our design

141

13.1. KEY-BASED ACTIVATION

Entangled Module

Beacon Defense

Module Under Protection

K
B

K
A

Inputs

Outputs

K
M

Altered Inputs

Power

Figure 13.1: An overview of the incorporation of an untrusted module, using an entangled

protection and side-channel beacon.

viz. our techniques for entanglement and module key generation.

13.1 Key-Based Activation

How can we entangle two circuits – the beacon and the protection circuit – in a way that

is difficult for an adversary to separate them out even when he has complete access to the

netlist? Simple mixing is dangerous: by construction, the beacon circuits will be relatively

dark for all but one of an exponential number of possible inputs, while the protection circuit

will ordinarily show some activity for all inputs. An intelligent adversary can take advantage

142

13.1. KEY-BASED ACTIVATION

Algorithm 5 Combine beacons with protections and modules

1: for all security-critical modules m do

2: KA ← Activation Key for m (public after fabrication)

3: KB ← Beacon Key (private)

4: KM ← Module Key (private)

5: B ← newBeacon(KA,KB)

6: Synthesize B

7: P ← protection(KA)

8: Synthesize P ∪B

9: for all bits w in KM do

10: w ← randSelect(value(w), P, B)

11: end for

12: Synthesize P ∪B ∪M

13: end for

of this difference to identify and snip out the protection circuit, leaving the beacon intact1.

One solution to this problem is to match the activity of the beacon with the activity of

the protection circuit. In practice, this solution is hard to implement because the activity

of the protection circuit depends on its inputs. To obtain the same activity for all possible

inputs, the protection and beacon circuits must be functionally identical which is not often

the case. Of course, one can try to match the activities for many cases but it can be argued

that any small difference in the unmatched cases can be exploited by a sufficiently capable

adversary to differentiate the two circuits.

Instead of trying to match the activity factors or trying to make them look similar,

our solution is to take away the attacker’s ability to turn on the circuits before fabrication.

What we propose is to prepare the circuits so that they can be turned on only when another

special key – called the activation key (KA) – is supplied to the beacon and the protections.

This key is kept secret from the foundry during manufacturing and can be provided through

a single interface by using the same interface for the entangled beacon and protections. This

1We do not know of such an attack for advanced technology nodes, but we expect this to be possible

with some degree of difficulty for large circuits.

143

13.1. KEY-BASED ACTIVATION

is important because it means an attacker cannot simply trace the input pins to learn about

the design protections and how they are entangled with the beacons.

This method for turning on circuits is known as key-based activation technology and

has been proposed previously to protect against IP piracy [Roy et al., 2008; Rajendran et

al., 2012]. The idea is best explained with a toy example: imagine that every intermediate

wire in a design is XOR’d with a special input bit. If that bit is a zero, the design works.

If that bit is a one, the design essentially produces random noise. In this toy case, only by

supplying all zeros can the design be made to function correctly. By introducing XOR and

XNOR gates (or arbitrary functional equivalents) into designs, any design can be converted

to a design that works only when some special inputs (an activation key) are supplied.

Our approach for beacon construction is shown in Algorithm 6. Note that KB is the

key to light up the PRLs to maximum activity.

Algorithm 6 Entangle a Beacon

1: KA ← Activation Key (public after fabrication)

2: KB ← Beacon Key (private)

3: B ← state machine to recognize KB

4: for all bit w in KA do

5: r ← random internal wire in B

6: Insert XOR/XNOR equivalent to recognize value(w) at r

7: end for

8: Re-synthesize B with NAND logic

We make two additions to prior key-based activation technology [Roy et al., 2008;

Rajendran et al., 2012]. We are concerned that an intelligent attacker could deduce (or

guess) the value of an input bit (part of KA) based on the logic the input bit feeds into.

For example, in a toy case, XORs could represent 0-bits and XNORs could represent 1-bits,

making the attacker’s job far too easy if the attacker can identify the gate types by exam-

ining the netlist. Semantically, a 0-bit should feed into an XOR followed by some arbitrary

logic, while a 1-bit should feed into an XNOR followed by some arbitrary logic. We first

insert at least one negating gate (NOT, NOR, NAND, etc.) after each XOR so that every

entry point is capable of processing either a 0 or 1 bit. Secondly, we resynthesize the whole

144

13.2. MODULE KEY GENERATION

beacon and protection using one type of gate2 to enhance uniformity and prevent these

gate-identification attacks. We do not know if the aforementioned attack could be made

to work against prior work.3 However, with these minor additions, we protect ourselves

against the attack in case it ever becomes feasible.

13.2 Module Key Generation

Once we have a working beacon, we synthesize it together with a protection mechanism

(activated with the same key KA). Next, we want to ensure that an adversary does not

leave the protection circuit and beacon intact while somehow replacing the untrusted module

with another module that defeats the protection module.

Our solution here is to use key-based activation again. However, instead of using KA,

we derive the activation key for the untrusted module from the circuits in the protection

and beacon modules. This derivation ensures that the untrusted module will not work

with a compromised protection or beacon module. The key derivation is simple: we use

intermediate wires from the modified beacon and protection circuits to pull out the bits

needed to produce a new derived key KM . The wires are chosen such that when KA is

supplied, KM is deterministically produced, while in all other cases the outputs are don’t-

care bits (values not equal to KM).

13.3 Security Analysis of Netlist Entanglement

Difficult to Attack: The main guarantee of our system is that an attacker cannot effi-

ciently reverse engineer the circuit under protection and thus cannot counterfeit it or include

backdoors. While the entry points of all bits in the keys are known (i.e., the locations of the

gates are known), brute forces the actual values of the key bits (zeros vs. ones) is inefficient

due to the exponential explosion of possibilities. Prior work [Rajendran et al., 2012] has

2We arbitrarily chose NAND logic.

3For this reason we do not apply this extra step to the module under protection. However, if desirable,

the same step could be applied.

145

13.3. SECURITY ANALYSIS OF NETLIST ENTANGLEMENT

shown that recovering keys can require as many as 1044 ≈ 2146 test patterns, which is far

too many for an attacker to perform, even with tremendous resources.

Composable: While our system is composed out of components that rely on entangle-

ment keys, the composition does not weaken the system. In order to attack the system, an

attacker must recover KA or KM or both. KA is applied in the same way as prior work and

thus has equal strength. KM is derived from KA using a pseudo-random one-time func-

tion. Thus, if KA is not recovered, recovering KM reduces to the same problem. Therefore,

breaking our system is at least as hard as breaking the state-of-the-art. Thus, our system

composes without weakening the state-of-the-art.

Lifetime of Keys: The lifetime that a key has to be kept secret is from when they are

generated (post-design) to when attestation is performed (post-fabrication). Once attesta-

tion tests have passed, the keys can go public, and in practice they probably would so that

they could be included in firmware or something similar. The reason keys can go public at

that point is that once the hardware has been manufactured, it is too late for an attacker

to go back and attack the netlist.

We briefly summarize the three keys used in our system for clarity.

• KA, the activation key, is kept private until after manufacturing is complete, at which

point it can be loaded into firmware or distributed with the product. Once the manufactur-

ing is complete, KA no longer has any need to be kept a secret. Without KA, the behavior

of the design is undefined.

• KB is the beacon key. This is a private key, used only during auditing (post manufactur-

ing) to turn on the beacon side-channel for attestation. Without KB , the functionality of

the beacon is undefined.

• KM is a private key that enables the untrusted module. Without KM , the behavior of

the module is undefined. KM is derived from KA. Like KA, KM must be a secret prior to

manufacture. After manufacture, it is acceptable for attackers to use chip-probing methods

to uncover KM , because it no longer has value at that point in time, as the device has

already been manufactured.

We note additional security-related points:

• From the perspective of an attacker, reverse engineering a beacon is equivalent to uncov-

146

13.3. SECURITY ANALYSIS OF NETLIST ENTANGLEMENT

ering both KA and KB , which is equivalent to guessing a 128-bit key. In our design, neither

key exists physically in memory on the chip; the keys are implicitly coded in the circuits.

• The key KM used for the module under protection is equivalent to a standard entangle-

ment key. Under the same axioms that protect KA and KB , KM cannot be easily guessed.

KM can also be made larger (more bits) than KA if desirable, as the mapping from KA

to KM does not need to be surjective. This means that the foundry cannot easily apply

parametric backdoors or other foundry-specific attacks to the module under protection.

Parametric backdoors have become increasingly studied and can be difficult to detect if

properly hidden [Becker et al., 2013].

• Post-attestation, if a second fabrication run is needed, new keys should be chosen. If this is

a financial concern, one possible approach to avoid re-synthesis is to compare the production

from the second run (using the same mask and not changing keys) to the devices produced

in the first run. Prior work has been done in this area toward making this comparison

efficient and practical [?; Jin and Makris, 2008; ?]. As an alternate possibility, there has

been recent work on building inspection resistant memory [Valamehr et al., 2012], though

expanding that to full designs and making it robust would require further research.

147

Chapter 14

Evaluation and Analysis of Beacons

In this chapter, we analyze the costs and trade-offs for a power-based beacon. We also

include a variety of practical case studies.

Our designs are all synthesized using a Synopsys tool chain and standard 90nm ASIC

libraries. We use the Synopsys power analysis tools to acquire power information, in addition

to area and timing reports. We alter the power magnitude by adjusting the size of the

beacon. The important parameter is the size of what we call the beacon grid. This grid is

the matrix formed by tiling the rows of PRLs in the beacon. A beacon made out of x rows of

height y can be referred to as an x-by-y beacon. The leakage power drawn scales with both

the two flip-flops and the logic in the beacon grid (see Figure ??). Ignoring second-order

effects, the leakage power is roughly

2Lf + Lc + xyLg

where Lf is the power leaked by a flip-flop and Lc is the power leaked by the comparator.

Lg is the power leaked by an average gate in the grid. All of these costs are linear, which

is as good as we can hope to do. The additional dynamic power usage that we can achieve

scales as roughly

αLc + αxyLg

where α is the activity factor (which is kept high by design in our implementation) of the

148

combinational logic. The activity factor for the logic governing the flip-flops is effectively

zero.

Figure 14.1: The leakage and total power draws achieved by different sizes of beacon grids.

The first dimension refers to the number of rows and the second dimension refers to the

height of each row.

In Figure 14.1, we show the leakage and total power for different sizes of beacons. These

values can also be impacted by physical decisions about the gates, such as drive strength,

as shown in Figure 14.2. The ratio of height to width for the beacon grid is an arbitrary

choice. We went with the ‘golden ratio’ for lack of a better choice. As Figure 14.1 shows,

the constant leakage cost of the flip-flops matters only for extremely small beacons. By

increasing the size of the beacon grid, the dynamic power draw can be brought up rapidly.

Note that the bars for leakage power are multiplied by 100 in size to make them visible.

The leakage power drawn is fairly negligible.

149

14.1. CASE STUDY: APPLYING BEACONS TO PAYLOAD DETECTION SYSTEMS

Figure 14.2: The leakage and dynamic power draws achieved by different drive strengths

for a simple beacon. Higher drive strength can allow for more dynamic power from a fixed

number of gates. Note that the leakage power is in microwatts, while the dynamic power is

in milliwatts, so the leakage power is small.

14.1 Case Study: Applying Beacons to Payload Detection

Systems

In order to test our methodology, we implement TrustNet and apply a beacon to it. In

this case study, we show how beacons can complement and harden TrustNet (and similarly

DataWatch). Without a beacon in place, TrustNet by itself would be relatively easy to

disable via a malicious foundry. Assuming the gates — which are a priori known — could

be located, the disabling could be done by severing a single wire or causing a single stuck-

at-one fault. We examine three different applications of TrustNet to study costs of different

deployment conditions. The three cores we examine are a cryptographic accelerator, a small

general purpose core and a larger general purpose core.

For example, consider an AES encryption accelerator. One invariant is that the AES

encryption unit should output the same number of bytes of ciphertext as it receives as plain-

text. If the amount of ciphertext exceeds the amount of plaintext, that implies wrongdoing

150

14.1. CASE STUDY: APPLYING BEACONS TO PAYLOAD DETECTION SYSTEMS

Figure 14.3: Area overheads of the TrustNet defense mechanism and beacon placed in

a custom AES crypto-accelerator. Overheads are shown as a percentage of the baseline

system. Timing requirements are maintained in all three designs.

Table 14.1: Specifications for the Two Chosen FabScalar Cores

Core Type Out-of-Order Fetch Width Fetch Depth Execution Units Issue Queue Size

Small Yes 1 1 4 32

Large Yes 6 2 6 64

and could mean a key or some other private data is being leaked.

14.1.1 Design Case A1: An AES Accelerator

An AES accelerator is an interesting case for the necessity of hardware security. By defini-

tion, such accelerators are given privileged access to secret data. This makes them prime

targets for attack by malicious entities. For our case study, we implement a simple and effec-

tive emitter backdoor into a custom AES accelerator design. We build the four components

necessary to demonstrate a TrustNet-aware beacon:

151

14.1. CASE STUDY: APPLYING BEACONS TO PAYLOAD DETECTION SYSTEMS

• A custom AES accelerator, designed in the Verilog HDL.

• A hidden emitter backdoor in the AES design.

• A TrustNet module that disables emitter backdoors by checking that the in-packets match

the out-packets cycle for cycle in the AES design.

• An entangled beacon that attests to the presence of the TrustNet module.

Figure 14.3 shows the overheads associated with TrustNet and with adding a beacon to

TrustNetİn order to implement TrustNet to meet the timing requirements of our custom

AES unit, we had to add a small amount of pipelining to the original design of TrustNet.

We were able to make the beacon meet timing requirements in one case by adding a single

pipeline and as an alternate case with clock division. For the results shown, we went with

clock division. We find, as expected, that the non-combinational area overheads are nearly

zero. The combinational area overhead of the beacon is comparable to that of TrustNet

itself.

14.1.2 Design Case A2: Out-of-Order Processor Cores

To study out-of-order general purpose cores, we make use of FabScalar, a framework for

automatically generating implementations of microprocessors [Choudhary et al., 2011]. It is

capable of generating cores with different sizes and features (such as different fetch widths,

commit widths, number of execution units, issue policies etc.) The two cores we use for the

bulk of our experiments are specified in Table 14.1. An architectural view of a FabScalar

core is portrayed in Figure 14.7. The security in TrustNet is based on finding invariants

of hardware designs. Many invariants of FabScalar cores are true for all generated cores,

regardless of the given parameters. We add TrustNet to the FabScalar framework, allowing

the automatic generation of out-or-order cores that have built-in security checks.

Figure 14.5 shows the area overheads associated with adding the TrustNet defense

modules and also adding a beacon that attests to the presence of TrustNet. This data is

for one of the smaller FabScalar cores. As we can see, since the beacon overhead is smaller

even than that of the backdoor defense, it amounts to only a small fraction of one percent.

We also note that the overhead of a beacon is amplified by the choice of activation method.

152

14.1. CASE STUDY: APPLYING BEACONS TO PAYLOAD DETECTION SYSTEMS

Figure 14.4: The trend of how the cost of a beacon scales from smaller to larger cores in

the FabScalar family. The labels on the bars are the names these cores have within the

FabScalar family. The numbers in the names given within FabScalar have no relation to the

sizes of the cores. Naturally, if the beacon size is roughly constant, the overhead diminishes

when compared against power consumed by larger and larger cores. In short, the closer a

design is to the power wall, the cheaper it is to use a beacon.

Applying key-based activation increases the total overhead in this case to 1.7%. We also

performed a study with a larger FabScalar core; the results are shown in Figure 14.6. Since

this is a larger core, the impact of the beacon is much smaller as a percentage.1 Finally,

the costs — both area and power — diminish relatively as the chip scales to larger sizes

(Figure 14.4 shows the power case).

1 Automatic synthesis is a complex and largely automatic process; slight variations can result in small

changes in area. This is the reason we sometimes see slightly negative area overheads.

153

14.1. CASE STUDY: APPLYING BEACONS TO PAYLOAD DETECTION SYSTEMS

Figure 14.5: The area overheads attributed to the TrustNet defense system and a corre-

sponding beacon for the smaller FabScalar core.

Figure 14.6: The area overheads attributed to the TrustNet defense system and a corre-

sponding beacon for the larger FabScalar core. Slight negative values are to be expected

due to the chaotic nature of the synthesis algorithms.

154

14.2. CASE STUDY B: APPLYING BEACONS TO TRIGGER OBFUSCATION

Figure 14.7: A high level view of the FabScalar auto-generated processor architecture.

14.2 Case Study B: Applying Beacons to Trigger Obfusca-

tion

As a second case study of the beacon methodology, we consider combining beacons with

trigger obfuscation. This is another example — like TrustNet — of a defense mechanism

that consists of a small piece of circuitry that could potentially be identified by a malicious

foundry. While it is more complex than TrustNet, re-routing a few key wires in the defense

logic could disable the effects of the defensive system. We consider the impact of beacons

as a complementary tool to trigger obfuscation, using a custom AES crypto-accelerator as

the baseline design.

As shown in Figure 14.8, the area impact of the beacon is negligible. Trigger obfuscation

is a more heavy-weight defensive mechanism, and the impact of the beacon on area falls

into the noise. All timing constraints are still met by the design.

14.3 Limitations of Beacons

The notion of entangling or encrypting computational behavior (including hardware, soft-

ware and Turing Machines) has been discussed in theory literature. There have been im-

portant negative results that highlight the limitations. These results have demonstrated

that some limitations on entanglement are unavoidable.

We note that entangling two circuits is a form of obfuscation. In [Barak et al., 2001],

it was proven that the most widely accepted, generic notion of obfuscation is impossible

155

14.3. LIMITATIONS OF BEACONS

Figure 14.8: Area overheads of a trigger obfuscation defense mechanism and a beacon

placed in a custom AES crypto-accelerator. Overheads are shown as a percentage of the

baseline system. Timing requirements are maintained in all three designs.

to achieve. Specifically, if there is information one wants to hide about some circuits,

even if it is only one bit of information, any obfuscated version of those circuits can be

used to steal that information. A set of such unobfuscatable examples were constructed.

Whether or not domain-specific obfuscation could be applied was left open. However,

the set of unobfuscatable examples includes a set of constant-depth circuits, so even in

the hardware setting a generally applicable, provably unbreakable obfuscation method can

never be achieved. This work was later extended to show that for a family of programs,

even approximate obfuscation is impossible, meaning that if complete obfuscation is the

goal, even approximate computation is impossible [Bitansky and Paneth, 2013]. However,

it remains possible to achieve approximate obfuscation while producing precise computation,

which is exactly what our aim is with our development of beacons.

156

14.4. GENERALITY AND APPLICABILITY OF BEACON IMPLEMENTATIONS

14.4 Generality and Applicability of Beacon Implementa-

tions

In our evaluation and case studies, we discussed various implementations of beacons. These

implementations could be applied to any standard ASIC hardware design and could be

adapted to custom circuit designs as well. In this section, we describe aspects of the beacon

approach that allow for natural future extensions that could be developed and applied if

they become necessary or financially motivated.

• Beacon circuitry can perform any common functionality, as long as it has a high activity

factor. It does not need to have an activity factor of exactly one. This could be useful if it

is desirable to make the beacon circuitry look like something specific, such as ALUs.

• Low-level synthesis attributes are configurable. For example, if an entire design is done

with low drive strength, the beacon can be configured to have the same low drive strength.

Other physical attributes, such as frequency and voltage, can be similarly matched.

• There are no restrictions on how intense or long-lasting a power side-channel beacon needs

to be. Regardless of circumstantial details — such as the ability of security engineers to

measure power emanations — beacons can be configured to match the needs of engineers.

Furthermore, the exact design restrictions on beacons impact the trade-offs between dif-

ferent approaches. For instance, in high-frequency designs, designers may want the beacon

delay to be comparable with the length of the critical paths between latches. There are a

few easy ways to solve this problem:

One option is to use a clock period divider so that the beacon signal takes multiple clock

cycles (in the primary clock domain) to propagate. As a proof of concept, we implemented

a version of this without problems using standard ASIC tools.

A second option is to use pipeline latches to make the beacon match the fastest clock

domain. The only downside is that latches take up area and suffer from leakage power

dissipation. This does not detract from the effectiveness of the beacon, but it increases the

overhead by the cost of the latches.

A last option is to use unreliable latches for the beacon grid. This allows the beacon

to meet any timing requirement. It is also a good place to use unreliable latches, because

157

14.4. GENERALITY AND APPLICABILITY OF BEACON IMPLEMENTATIONS

correctness is irrelevant. Whether or not this is a viable option depends on the choice of

foundry.

One last point of note relates to the choice of the work that the beacon does. If malicious

foundries improve the state-of-the-art in the future, it might become possible to guess which

gates are too quiet or are doing abnormal work. An optional trade-off then would be to do

work in beacons that looks like real work. For example, a beacon could perform a series of

addition operations, the results of which could be thrown away.

158

Part V

Conclusions and Future Research

Directions

159

Chapter 15

Recommendations for Practical

and Operational Security

We consider it important for security methodologies to be not only of academic interest but

also to be useful and practical for real-world applications. Toward this end, we mention

several of the practical aspects of our systems that have occurred to us when considering

operational security and commercial viability.

• When applying design-side defenses, it is important to have a distinction between trusted

and untrusted personnel. This seems especially important for military applications or ap-

plications in other regimes where a very limited number of personnel can be given complete

trust. As is always the case in security, it is impossible to trust nobody. As we have dis-

cussed in this thesis, we are trusting the high level architectural specification. In other

words, we trust that if we succeed in producing the hardware we are trying to build, we

have built something that has desirable functionality. We also need to trust the person or

people adding the security features, such as TrustNet, DataWatch and/or trigger obfusca-

tion. These features need to be added after the design has been completed and have to be

included in the system. We can imagine one person with a high level of clearance adding

these small circuits or having a group of multiple people oversee and verify the addition. We

note that these circuits are so simple and easily verifiable that as long as one trustworthy

individual sees their inclusion, we can be assured that they have been correctly added, even

160

if several other malicious individuals have had the opportunity to tamper with the design.

• When performing static analysis, it is important to be clear on what guarantees are

provided and what are not. Static analysis can be performed on source code, on gatelists,

and possibly on netlists. Static analysis provides information only about the design phase

it is being applied to. For example, if static analysis is applied to a gatelist and then a tool

synthesizes the gatelist into a netlist, there is no guarantee that the netlist is backdoor-free,

since the tool could have maliciously converted a benign gatelist into a faulty netlist. Static

analysis provides security only for the phase during which it is applied.

• When implementing post-fabrication tests and/or audits, there is a degree of trust that

is necessary. Allowing an untrusted foundry to audit its own chips seems problematic, as

they could perform the audits incorrectly. For audits to be meaningful, they either need

to be performed by a trusted person on site or performed on chips after they have been

delivered to the purchasing company. Either way, in order for audits to have trustworthy

results, they must be performed or overseen by a trustworthy individual (or automated to

a degree that the results can be trusted by the relevant parties).

• Expectations of validation engineers can vary wildly from one scenario to another. In

some cases, such as the incorporation of third-party IP into an otherwise trusted design,

validation teams might be given complete trust and be expected to perform rigorous testing.

In other scenarios, validation teams might be compromised or might perform only the most

cursory of tests. We recommend that security engineers remain aware of the goings-on

of validation teams and the implicit or explicit expectations. These expectations impact

all aspects of hardware security. For example, the results of FANCI are only meaningful

when combined with some degree of validation testing to catch frequent-action backdoors.

Applications of power resets and other elements of trigger obfuscation can only provide

guarantees when the module interfaces are appropriately validated and when architectural

state is documented. In general, an awareness of the validation process and how it impacts

the assumptions of various security methods is vital to operational security.

161

Chapter 16

Concluding Remarks

In this dissertation, we have presented a variety of methods for hardening modern hardware

against the various threats that exist within the hardware development life cycle. We have

also presented a holistic methodology for combining and applying all of these methods to

create trustworthy hardware in the presence of a sophisticated and resourceful conspiracy

of attackers. We conclude with a summary of the main contributions of this work, lessons

that have been learned and limitations on this field of study moving forward.

16.1 Summary of Contributions

FANCI: We introduced a new method for using static analysis to detect potentially mali-

cious circuitry within hardware designs as either source code or gatelists. Using this method,

we were able to efficiently detect backdoors in modern benchmarks. We were also able to

evaluate full microprocessor cores. We found that the scalability and generality of this

approach are sufficient to make it a valuable tool for next generation hardware. We also

conducted a red team/blue team exercise where international teams of hardware designers

attempted to design stealthy backdoors that could evade detection.

Trigger Obfuscation: We proposed the first method for disabling unknown and unde-

tected backdoors at runtime using trigger obfuscation. With this method, we are able to cut

off hardware backdoor triggers before they turn on payloads, thus dynamically preventing

attacks, even if we are unaware of the existence of the backdoors. We were able to efficiently

162

16.2. LESSONS LEARNED

implement these methods on a large scale, both in an open source microprocessor (looking

at the cores and the memory system) and in a custom microcontroller that we built from

scratch with security in mind.

TrustNet and DataWatch: We proposed the first systems for dynamic monitoring of hard-

ware behavior for backdoor payload detection. The two systems we built, TrustNet and

DataWatch, allow for the detection of malicious payloads on the granularity of a single cy-

cle (nanosecond scale). We were able to apply these systems with low simulated overheads

to an open source microprocessor. We were further able to implement them efficiently into

a homegrown cryptographic accelerator. These two systems both have demonstrated good

scalability and avoid false positives by being implemented directly into the microarchitec-

ture.

Beacons: We proposed beacons, an attestation mechanism for allowing the post-fabrication

auditing of design-side protection mechanisms. This is the first hardware security system

that protects both the design side and the fabrication side simultaneously and allows for a

coherent framework with which to understand the full hardware development life cycle. We

implemented these beacons at low cost into a variety of designs and applied entanglement

methods to make reverse engineering difficult.

16.2 Lessons Learned

Full System Awareness and Defense In Depth: Working on these projects has con-

vinced us that both full system awareness and the application of defense-in-depth techniques

will remain important in hardware security fields. The nature of hardware development re-

quires that several layers have to all work together. The work done in architectural design

and coding is radically different than the manufacturing work done in a foundry. Most prior

literature has focused only on one aspect of hardware development and understandably so.

Moving forward, we believe that these communities could benefit from increase collabora-

tion and cross-field research. For similar reasons, we believe defense in depth will become

more valuable rather than less so. Even with better models and more advanced defenses,

the variety of axioms and environments present in all the different possible ways hardware

163

16.2. LESSONS LEARNED

can be developed will likely make it impossible for one simple technique to ever guarantee

security from start to finish.

Trust Models: Various literature in these fields of research have significantly different

trust models, and slight changes to the trust model can radically alter the way research is

interpreted. From the specification through to the manufacturing, there are many different

sets of personnel who might become involved, and these all change the way security is

modeled. Expectations of what a validation team is capable of or likely to have funds for

differ significantly. Similarly, perceptions of where the greatest and most immediate threats

lie vary from researcher to researcher. Ideally, having a unified and static trust model (such

as the one used in this dissertation) has value. However, we consider it unlikely that a

single trust model will satisfy the global community for a long period of time. A factor that

comes into play is the constant change in technology. As we move to lower technology nodes,

different techniques are being used at foundries that could impact audits. Additionally, the

usage of non-volatile memories and FPGAs impact the trust model and might become more

prevalent in the future. Moves to other technologies entirely could change the tools that are

used and/or design and validation practices. A challenge for the community is to maintain

a coherent trust model in the future in the face of all of these changes.

Completeness of Axioms: A challenge that arises in any practical area of security is the

shifting view of axioms. Generally, a security system guarantees security given its axioms

and loses those guarantees if any of those axioms changes or becomes unrealistic. With

hardware especially, axioms can change, or we can realize that our axioms caused us to

miss out on something important. As we move to new architectures, including potentially

massive amounts of accelerators, multiple clock domains, analog accelerators and a general

increase in heterogeneity of hardware on chip, we have to think with each change how our

axioms might change. As one specific example, can a new generation of accelerators have

power resets applied? Do we understand how its interfaces might be attacked and what

invariants we might want to enforce? Will the core functionality have an easily applicable

homomorphic obfuscating function? Any time a substantially new hardware components

becomes popular, these questions and more will have to be asked. We consider it an

important challenge for the future to maintain a coherent view of hardware development as

164

16.3. LIMITATIONS AND NECESSARY FUTURE DIRECTIONS

the global economy and hardware needs continue to change.

16.3 Limitations and Necessary Future Directions

In security, there are always limitations. We discuss a few of the limitations of hardware

security and touch on some future directions that we consider to be vital.

Arguably the greatest limitation on hardware security is personnel. Depending on the

scenario, varying degrees of trusted personnel are necessary, but that number is never zero.

It is possible that companies today feel that they can trust all personnel except for third

parties and foundries. Whether or not that perspective is reasonable is currently a matter of

opinion. Some elements of trust seem unavoidable, even in extreme military settings. The

final post-fabrication audit requires some degree of trust due to the Principle of Last Action.

Early steps in specification and architectural design seem to require a degree of trust as well.

The methods proposed in this work drastically decrease the reliance on trusted personnel

from where it is today. However, we do not believe that degree of trust can ever reach

zero. One avenue of research that might help with this would be an open source library

of hardware components, where this trust could be crowd-sourced to a degree. However,

unless hardware technologies and microarchitectural techniques become more stagnant, it

is unlikely that such a library would be efficient enough for commercial applications.

Another key limitation in the hardware space is that the product is ultimately physical.

It seems potentially impossible to rule out all possible attacks. While this dissertation

contributes greatly for digital attacks, the space of all possible attacks is larger and less

well understood. Purely parametric attacks, which might not require any alterations to

source code or even to digital gates, could exist in an almost limitless number of fashions.

Is it possible that fine-grained temperature alterations could trigger unexpected events?

Could physical environments be altered slightly by remote attackers in ways that fabrication

engineers would not expect? Digital models and simulation environments are limited in

precision. Thus, as long as security research takes place in simulated environments, there

are limitations on the types of unknown attacks that might be prevented or discovered.

We consider this limitation to be potentially fundamental, as physics continues to be a

165

16.3. LIMITATIONS AND NECESSARY FUTURE DIRECTIONS

developing and changing area, so protecting against all possible physical interference seems

impossible.

In our opinion, the most vital direction for future research in hardware security is to

understand the commercial viability of security approaches and improve efficiency where

necessary. We know that modern hardware is vulnerable to attacks. However, modern

hardware by and large is not protected by any security measures. It is possible that a

large-scale commercial change will not occur until after a global catastrophe has occurred.

Nevertheless, it is possible that commercial and/or government entities could act proactively

and pursue security methods in the near future. We consider the biggest disincentive from a

commercial perspective to be increased design complexity and delayed time to market. Even

if area and power overheads are zero, designers will always shy away from complexity, as it

increases design and validation costs. Additionally, any delay to time to market is a de facto

area overhead, as technologies are always improving. Therefore, if security is to become a

first-order concern in hardware development, it will likely need to become integrated into

modern processes in such a way as to not become a source of delays and overheads. We

anticipate that methods similar to the ones proposed in this thesis will become necessary

in order to have reliable hardware in the future and hope that a proactive approach will be

adopted.

166

Part VI

Bibliography

167

BIBLIOGRAPHY

Bibliography

[Abdel-hamid et al., 2003] Amr T. Abdel-hamid, Sofine Tahar, and El Mostapha

Aboulhamid. IP Watermarking Techniques: Survey and Comparison. In In IEEE

International Workshop on System-on-Chip for Real-Time Applications, 2003.

http://ieeexplore.ieee.org/Xplore/defdeny.jsp?url=/iel5/ 8609/27279/01213006.pdf,

2003.

[Abdel-Hamid et al., 2006] Amr T. Abdel-Hamid, Sofiène Tahar, and El Mostapha Aboul-

hamid. Finite State Machine IP Watermarking: A Tutorial. In AHS, pages 457–464,

2006.

[Aciicmez et al., 2007a] O. Aciicmez, S. Gueron, and J. P. Seifert. New Branch Prediction

Vulnerabilities in OpenSSL and Necessary Software Countermeasures. Cryptology ePrint

Archive, Report 2007/039, February 2007.

[Aciicmez et al., 2007b] O. Aciicmez, C. K. Koc, and J. P. Sefert. On the Power of Simple

Branch Prediction Analysis. In Proceedings of the ACM Symposium on Information,

Computer and Communications Security (ASIACCS), pages 312–320, March 2007.

[Aciicmez et al., 2007c] O. Aciicmez, C. K. Koc, and J. P. Seifert. Predicting Secret Keys

via Branch Prediction. In Proceedings of the RSA Conference — Cryptographers Track

(CT-RSA), pages 225–242, March 2007.

[Aciicmez et al., 2007d] O. Aciicmez, W. Schindler, and C. K. Koc. Cache Based Remote

Timing Attack on the AES. In Proceedings of the RSA Conference — Cryptographers

Track (CT-RSA), pages 271–286, March 2007.

168

BIBLIOGRAPHY

[Aciicmez, 2007] O. Aciicmez. Yet Another MicroArchitectural Attack: Exploiting I-cache.

In Proceedings of the 1st Computer Security Architecture Workshop (CSAW), pages 11–

18, November 2007.

[Adee, 2008] Sally Adee. The Hunt for the Kill Switch. IEEE Spectrum Magazine, 45(5):34–

39, 2008.

[Agosta et al., 2007] G. Agosta, L. Breveglieri, I. Koren, G. Pelosi, and M. Sykora. Coun-

termeasures Against Branch Target Buffer Attacks. In Proceedings of the 4th Workshop

on Fault Diagnosis and Tolerance in Cryprography (FDTC), 2007.

[Aiello et al., 1989] G. R. Aiello, M. Budinich, and E. Milotti. Hardware Implementation

of a GFSR Pseudo-random Number Henerator. Computer Physics Communications,

56(2):135 – 139, 1989.

[Altschuler and Zoppis, 2008] Frank Altschuler and Bruno Zoppis. Embedded System Se-

curity. January 2008.

[ana,] Latest from DAC: ST and Media Tek manage media SoC designs (part 2). http:

//www.edn.com/blog/1690000169/post/290028029.html.

[Appenzeller, 1995] D. P. Appenzeller. Formal Verification of a PowerPC Microprocessor.

In ICCD ’95: Proceedings of the 1995 International Conference on Computer Design,

page 79, Washington, DC, USA, 1995. IEEE Computer Society.

[Asonov and Agrawal, 2004] D. Asonov and R. Agrawal. Keyboard Acoustic Emanations.

In Proceedings of the IEEE Symposium on Security & Privacy, pages 3–11, May 2004.

[Banga and Hsiao, 2008] Mainak Banga and Michael S. Hsiao. A Region Based Approach

for the Identification of Hardware Trojans. In Hardware-Oriented Security and Trust,

2008. HOST ’08. IEEE International Workshop on, June 2008.

[Banga et al., 2008] Mainak Banga, Maheshwar Chandrasekar, Lei Fang, and Michael S.

Hsiao. Guided Test Generation for Isolation and Detection of Embedded Trojans in ICs.

In GLSVLSI ’08: Proceedings of the 18th ACM Great Lakes symposium on VLSI, pages

363–366, New York, NY, USA, 2008. ACM.

169

BIBLIOGRAPHY

[Barak et al., 2001] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,

Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating

Programs. In Proceedings of the 21st Annual International Cryptology Conference on

Advances in Cryptology, CRYPTO ’01, pages 1–18, London, UK, UK, 2001. Springer-

Verlag.

[Becker et al., 2010] G.T. Becker, M. Kasper, A. Moradi, and C. Paar. Side-channel Based

Watermarks for Integrated Circuits. In Hardware-Oriented Security and Trust (HOST),

2010 IEEE International Symposium on, pages 30 –35, june 2010.

[Becker et al., 2013] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P.

Burleson. Stealthy Dopant-Level Hardware Trojans. In CHES, pages 197–214, 2013.

[Bellare et al., 2012] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations

of Garbled Circuits. In Proceedings of the 2012 ACM conference on Computer and Com-

munications Security, CCS ’12, pages 784–796, New York, NY, USA, 2012. ACM.

[Bernstein, 2005] D. J. Bernstein. Cache-timing Attacks on AES, 2005.

[Biham et al., 2008] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug Attacks. In CRYPTO,

pages 221–240, 2008.

[Bitansky and Paneth, 2013] Nir Bitansky and Omer Paneth. On the Impossibility of Ap-

proximate Obfuscation and Applications to Resettable Cryptography. In STOC, pages

241–250, 2013.

[Bonneau and Mironov, 2006] J. Bonneau and I. Mironov. Cache-Collision Timing Attacks

Against AES. In Proceedings of the 8th International Workshop on Cryptographic Hard-

ware and Embedded Systems (CHES), pages 201–215, 2006.

[Brickell et al., 2006] E. Brickell, G. Graunke, M. Neve, and J. P. Seifert. Software Miti-

gations to Hedge AES Against Cache-based software side channel vulnerabilities. IACR

ePrint Archive, Report 2006/052, February 2006.

[Brzozowski and Yarmolik, 2007] Maciej Brzozowski and Vyacheslav N. Yarmolik. Obfus-

cation as Intellectual Rights Protection in VHDL Language. In Proceedings of the 6th

170

BIBLIOGRAPHY

International Conference on Computer Information Systems and Industrial Management

Applications, CISIM ’07, pages 337–340, Washington, DC, USA, 2007. IEEE Computer

Society.

[Carretero et al., 2009] Javier Carretero, Pedro Chaparro, Xavier Vera, Jaume Abella, and

Antonio González. End-to-end Register Data-flow Continuous Self-test. SIGARCH Com-

put. Archit. News, 37(3):105–115, 2009.

[Chakraborty and Bhunia, 2008] Rajat Subhra Chakraborty and Swarup Bhunia. Hard-

ware protection and authentication through netlist level obfuscation. In Proceedings of

the 2008 IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’08,

pages 674–677, Piscataway, NJ, USA, 2008. IEEE Press.

[Chakraborty and Bhunia, 2009] Rajat Subhra Chakraborty and Swarup Bhunia. Security

through Obscurity: An approach for Protecting Register Transfer Level Hardware IP.

In Proceedings of the 2009 IEEE International Workshop on Hardware-Oriented Security

and Trust, HST ’09, pages 96–99, Washington, DC, USA, 2009. IEEE Computer Society.

[Chakraborty et al., 2008] R.S. Chakraborty, S. Paul, and S. Bhunia. On-Demand Trans-

parency for Improving Hardware Trojan Detectability. In Hardware-Oriented Security and

Trust, 2008. HOST 2008. IEEE International Workshop on, pages 48–50, June 2008.

[Chapman and Durrani, 2000] R. Chapman and T.S. Durrani. IP Protection of DSP Algo-

rithms for System on Chip Implementation. Signal Processing, IEEE Transactions on,

48(3):854 –861, mar 2000.

[Chapman et al., 1999] R. Chapman, T.S. Durrani, and A. P. Tarbert. Watermarking DSP

Algorithms for System on Chip Implementation. In Electronics, Circuits and Systems,

1999. Proceedings of ICECS ’99. The 6th IEEE International Conference on, volume 1,

pages 377–380 vol.1, 1999.

[Chatterjee et al., 2000] Saugata Chatterjee, Chris Weaver, and Todd Austin. Efficient

Checker Processor Design. In MICRO 33: Proceedings of the 33rd annual ACM/IEEE

international symposium on Microarchitecture, pages 87–97, New York, NY, USA, 2000.

ACM.

171

BIBLIOGRAPHY

[Choudhary et al., 2011] N.K. Choudhary, S.V. Wadhavkar, T.A. Shah, H. Mayukh,

J. Gandhi, B.H. Dwiel, S. Navada, H.H. Najaf-abadi, and E. Rotenberg. Fabscalar:

Composing Synthesizable RTL Designs of Arbitrary Cores within a Canonical Super-

scalar Template. In Computer Architecture (ISCA), 2011 38th Annual International

Symposium on, pages 11–22. IEEE, 2011.

[Coron, 1999] J. Coron. Resistance Against Differential Power Analysis for Elliptic Curve

Cryptosystems. In C .K. Koc and C. Paar, editors, Proceedings of the 1st Cryptographic

Hardware and Embedded Systems, pages 292–302, August 1999.

[Dyer et al., 2001] J.G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, and S.W.

Smith. Building the IBM 4758 Secure Coprocessor. Computer, 34(10):57–66, Oct 2001.

[edn, 2008] Intel’s Silverthorne Unveiled: Detailing Baby Centrino. http://www.

anandtech.com/showdoc.aspx?i=3230&p=4, 2008.

[Elbaz et al., 2009] Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby B. Lee,

Nachiketh Potlapally, and Lionel Torres. Hardware Mechanisms for Memory Authenti-

cation: A Survey of Existing Techniques and Engines. pages 1–22, 2009.

[esc, 2013] The 2013 Embedded Systems Challenge. 2013.

[Gandolfi et al., 2001] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analy-

sis: Concrete Results. In Proceedings of 3rd International Workshop on Cryptographic

Hardware and Embedded Systems (CHES), pages 251–261, 2001.

[Gassend et al., 2002] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas De-

vadas. Silicon Physical Random Functions. In ACM Conference on Computer and Com-

munications Security, pages 148–160, New York, NY, USA, 2002. ACM Press.

[Gentry, 2010] Craig Gentry. Computing Arbitrary Functions of Encrypted Data. Commun.

ACM, 53(3):97–105, 2010.

[Goering, 2003] Richard Goering. Software Engineering Firm Obfuscates Verilog, 2003.

172

BIBLIOGRAPHY

[Good and Benaissa, 2005] Tim Good and Mohammed Benaissa. AES on FPGA from the

Fastest to the Smallest. In Cryptographic Hardware and Embedded Systems - CHES 2005,

7th International Workshop, pages 427–440. Springer, 2005.

[Harada et al., 1997] T. Harada, H. Sasaki, and Y. Kami. Investigation on Radiated Emis-

sion Characteristics of Multilayer Printed Circuits Boards. IEICE Transactions on Com-

munications, E80-B(11):1645–1651, 1997.

[Helfmeier et al., 2013] Clemens Helfmeier, Dmitry Nedospasov, Christopher Tarnovsky,

Jan Krissler, Christian Boit, and Seifert Jean-Pierre. Breaking and Entering Through the

Silicon. In Proceedings of the 2013 ACM conference on Computer and Communications

Security, CCS ’13, 2013.

[Hicks et al., 2010] Matthew Hicks, Samuel T. King, Milo M. K. Martin, and Jonathan M.

Smith. Overcoming an Untrusted Computing Base: Detecting and Removing Malicious

Hardware Automatically. In Proceedings of the 31st IEEE Symposium on Security and

Privacy, 2010.

[IBM,] IBM. IBM 4764 PCI-X Cryptographic Coprocessor.

[ITR,] International Technology Roadmap for Semiconductors 2009 Edition: Executive

Summary.

[Jin and Makris, 2008] Yier Jin and Yiorgos Makris. Hardware Trojan Detection Using

Path Delay Fingerpring. In Hardware-Oriented Security and Trust, 2008. HOST ’08.

IEEE International Workshop on, June 2008.

[Kahng et al., 2001] Andrew B. Kahng, John Lach, William H. Mangione-smith, Stefanus

Mantik, Student Member, Igor L. Markov, Miodrag Potkonjak, Paul Tucker, Huijuan

Wang, and Gregory Wolfe. Constraint-based Watermarking Techniques for Design IP

Protection. IEEE Trans. Computer-Aided Design Integrated Circuits Systems, 20:1236–

1252, 2001.

173

BIBLIOGRAPHY

[King et al., 2008] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou.

Designing and Implementing Malicious Hardware. In Proceedings of the 1st USENIX

Workshop on Large-scale Exploits and Emergent Threats, April 2008.

[Knuth, 1981] Donald E. Knuth. Seminumerical Algorithms, The Art of Computer Pro-

gramming, volume 2. Addison-Wesley, Reading, Mass., USA, 1981.

[Kocher et al., 1999] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power

Analysis. pages 388–397. Springer-Verlag, 1999.

[Kömmerling and Kuhn, 1999] Oliver Kömmerling and Markus G. Kuhn. Design Principles

for Tamper-Resistant Smartcard Processors. In Proceedings of the USENIX Workshop

on Smartcard Technology, pages 9–20, May 1999.

[Koushanfar and Alkabani, 2010] Farinaz Koushanfar and Yousra Alkabani. Provably Se-

cure Obfuscation of Diverse Watermarks for Sequential Circuits. In HOST, pages 42–47,

2010.

[Lampson, 1973] B. W. Lampson. A Note on the Confinement Problem. Communications

of the ACM, 16(10), 1973.

[Lee et al., 2004] Jae W. Lee, Daihyun Lim, Blaise Gassend, G. Edward Suh, Marten van

Dijk, and Srinivas Devadas. A Technique to Build a Secret Key in Integrated Circuits

for Identification and Authentication Application. In Proceedings of the Symposium on

VLSI Circuits, pages 176–159, 2004.

[len, 2006] U.S. Government Restricts China PCs, 2006.

[Li and Lach, 2008] Jie Li and J. Lach. At-Speed Delay Characterization for IC Authen-

tication and Trojan Horse Detection. In Hardware-Oriented Security and Trust, 2008.

HOST 2008. IEEE International Workshop on, pages 8–14, June 2008.

[Liu et al., 2008] Chao-Liang Liu, Gwoboa Horng, and Hsin-Yu Liu. Computing the Mod-

ular Inverses is as Simple as Computing the GCDs. Finite Fields and Their Applications,

14(1):65–75, 2008.

174

BIBLIOGRAPHY

[Lu and Tseng, 2002] Chih Chung Lu and Shau Yin Tseng. Integrated Design of AES

Encrypter and Decrypter. In Application-Specific Systems, Architectures and Processors,

2002. Proceedings. The IEEE International Conference on, pages 277 – 285, 2002.

[Mangard et al., 2007] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Anal-

ysis Attacks: Revealing the Secrets of Smart Cards. Springer-Verlag, Secaucus, NJ, USA,

2007.

[Mangard, 2003] S. Mangard. Exploiting Radiated Emissions - EM Attacks on Crypto-

graphic ICs. In Proceedings of AustroChip, 2003.

[Marchetti and Marks, 1974] V. Marchetti and J. Marks. The CIA and the Cult of Intelli-

gence. Knopf, 1974.

[Marsaglia, 2003] George Marsaglia. Random Number Generators. Journal of Modern

Applied Statistical Methods, 2(1):2–13, 2003.

[Matsumoto and Nishimura, 1998] Makoto Matsumoto and Takuji Nishimura. Mersenne

Twister: a 623-Dimensionally Equidistributed Uniform Pseudo-random Number Gener-

ator. ACM Trans. Model. Comput. Simul., 8:3–30, January 1998.

[Mulder et al., 2005] E. De Mulder, P. Buysschaert, S. B. Ors, P. Delmotte, B. Preneel,

G. Vandenbosch, and I. Verbauwhede. Electromagnetic Analysis Attack on an FPGA Im-

plementation of an Elliptic Curve Cryptosystem. In Proceedings of EUROCON, November

2005.

[Narasimhan et al., 2012] S. Narasimhan, W. Yueh, X. Wang, S. Mukhopadhyay, and

S. Bhunia. Improving IC Security against Trojan Attacks through Integration of Se-

curity Monitors. Design Test of Computers, IEEE, PP(99):1, 2012.

[Network, 2012] Intel Software Network. Intel Advanced Encryption Standard (AES) In-

structions Set - Rev 3, 2012.

[Neve and Seifert, 2006] M. Neve and J. P. Seifert. Advances on Access-driven Cache At-

tacks on AES. In Proceedings of Selected Areas of Cryptography (SAC), 2006.

175

BIBLIOGRAPHY

[Neve et al., 2006] M. Neve, J. P. Sefert, and Z. Wang. A Refined Look at Bernstein’s AES

Side-channel Analysis. In Proceedings of the ACM Symposium on Information, Computer

and Communications Security (ASIACCS), page 369, March 2006.

[Osvik et al.,] D. A. Osvik, A. Shamir, and E. Tromer. Other People’s Cache: Hyper

Attacks on HyperThreaded Processors. Presentation available at http://www.wisdom.

weizmann.il/~tromer/.

[Osvik et al., 2005] D. Osvik, A. Shamir, and E. Tromer. Cache attacks and Countermea-

sures: the Case of AES. Cryptology ePrint Archive, Report 2005/271, 2005.

[Park and Miller, 1988] S. K. Park and K. W. Miller. Random Number Generators: Good

Ones are Hard to Find. Commun. ACM, 31:1192–1201, October 1988.

[Percival,] C. Percival. Cache Missing for Fun and Profit. http://www.daemonology.net/

papers/htt.pdf.

[Quisquater and Samyde, 2001] J. J. Quisquater and D. Samyde. Electromagnetic Analysis

(EMA): Measures and Counter-Measures for Smart Cards. In Proceedings of the Inter-

national Conference on Smart Cards: Smart Card Programming and Security (E-smart),

pages 200–210, 2001.

[Rad et al., 2008] Reza M. Rad, Xiaoxiao Wang, Mohammad Tehranipoor, and Jim

Plusquellic. Power Supply Signal Calibration Techniques for Improving Detection Reso-

lution to Hardware Trojans. In ICCAD ’08: Proceedings of the 2008 IEEE/ACM Inter-

national Conference on Computer-Aided Design, pages 632–639, Piscataway, NJ, USA,

2008. IEEE Press.

[Rajendran et al., 2012] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and

Ramesh Karri. Security Analysis of Logic Obfuscation. In Proceedings of the 49th An-

nual Design Automation Conference, DAC ’12, pages 83–89, New York, NY, USA, 2012.

ACM.

[Rajendran et al., 2013] Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu, and

Ramesh Karri. Security Analysis of Integrated Circuit Camouflaging. In Proceedings of

176

BIBLIOGRAPHY

the 20th ACM Conference on Computer and Communications Security, CCS ’13. ACM,

2013.

[Reinhardt and Mukherjee, 2000] Steven K. Reinhardt and Shubhendu S. Mukherjee. Tran-

sient Fault Detection via Simultaneous Multithreading. In ISCA ’00: Proceedings of the

27th annual international symposium on Computer architecture, pages 25–36, New York,

NY, USA, 2000. ACM.

[Rosenfeld and Karri, 2010] Kurt Rosenfeld and Ramesh Karri. Attacks and Defenses for

JTAG. Design & Test of Computers, IEEE, 27(1):36–47, Jan.-Feb. 2010.

[Roy et al., 2008] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. EPIC: End-

ing Piracy of Integrated Circuits. Design, Automation & Test in Europe Conference &

Exhibition, 0:1069–1074, 2008.

[Salmani et al., 2009] H. Salmani, M. Tehranipoor, and J. Plusquellic. New Design Strategy

for Improving Hardware Trojan Detection and Reducing Trojan Activation Time. In

Hardware-Oriented Security and Trust, 2009. HOST ’09. IEEE International Workshop

on, pages 66–73, July 2009.

[Saputra et al., 2003] H. Saputra, N. Vijaykrishnan, M. Kandemir, M. Irwin, R. Brooks,

S. Kim, and W. Zhang. Masking the Energy Behavior of DES Encryption. In Proceedings

of the Design Automation and Test in Europe Conference (DATE), 2003.

[Shamir and Tromer,] A. Shamir and E. Tromer. Acoustic Cryptanalysis: On Nosy People

and Noisy Machines. http://people.csail.mit.edu/tromer/acoustic/.

[Simonite, 2013] Tom Simonite. NSA’s Own Hardware Backdoors May Still Be a Problem

From Hell. MIT Technology Review, October 2013.

[Smith, 2004] Sean Smith. Magic Boxes and Boots: Security in Hardware. IEEE Computer,

37(10):106–109, 2004.

[Sturton et al., 2011] Cynthia Sturton, Matthew Hicks, David Wagner, and Samuel T.

King. Defeating UCI: Building Stealthy and Malicious Hardware. In Proceedings of

177

BIBLIOGRAPHY

the 2011 IEEE Symposium on Security and Privacy, SP ’11, pages 64–77, Washington,

DC, USA, 2011. IEEE Computer Society.

[Suh and Devadas, 2007] G. Edward Suh and Srinivas Devadas. Physical Unclonable Func-

tions for Device Authentication and Secret Key Generation. In Design Automation Con-

ference, pages 9–14, New York, NY, USA, 2007. ACM Press.

[Synopsys, 2006] Synopsys. Design Compiler Technology Backgrounder, 2006.

[tcg, 2007] Trusted Computing Group. Online at https://www.trustedcomputinggroup.

org/, 2007.

[Tehranipoor et al., 2012] Mohammad Tehranipoor, Ramesh Karri, Farinaz Koushanfar,

and Miodrag Potkonjak. TrustHub, 2012.

[Thompson, 1984] Ken Thompson. Reflections on trusting trust. Commun. ACM,

27(8):761–763, August 1984.

[Tiri and Verbauwhede, 2005a] K. Tiri and I. Verbauwhede. A VLSI Design Flow for Secure

Side-Channel Attack Resistant ICs. In DATE ’05: Proceedings of the conference on

Design, Automation and Test in Europe, pages 58–63, March 2005.

[Tiri and Verbauwhede, 2005b] K. Tiri and I. Verbauwhede. Design Method for Constant

Power Consumption of Differential Logic Circuits. In Proceedings of Design, Automation

and Test in Europe Conference (DATE), pages 628–633, March 2005.

[Tiri and Verbauwhede, 2006] K. Tiri and Ingrid Verbauwhede. A Digital Design Flow for

Secure Integrated Circuits. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), 25(7):1197–1208, July 2006.

[Tiri et al., 2007] K. Tiri, O. Aciicmez, M. Neve, and F. Andersen. An Analytical Model for

Time-Driven Cache Attacks. In Proceedings of the Fast Software Encryption Workshop

(FSE), March 2007.

[Uni, 2005] United Stated Department of Defense. High Performance Microchip Supply,

February 2005.

178

BIBLIOGRAPHY

[Valamehr et al., 2012] Jonathan Valamehr, Melissa Chase, Seny Kamara, Andrew Put-

nam, Dan Shumow, Vinod Vaikuntanathan, and Timothy Sherwood. Inspection Resistant

Memory: Architectural Support for Security from Physical Examination. In Proceedings

of the 39th Annual International Symposium on Computer Architecture, ISCA ’12, pages

130–141, Washington, DC, USA, 2012. IEEE Computer Society.

[Verbauwhede et al., 2006] I. Verbauwhede, K. Tiri, D. Hwang, A. Hodjat, and P. Schau-

mont. Circuits and Design Techniques for Secure ICs Resistant to Side-Channel Attacks.

In Proceedings of the International Conference on IC Design & Technology (ICICDT),

pages 1–4, May 2006.

[Verilog, 1991] Verilog. Verilog-HDL PLI Reference Manual, 1991.

[von Neumann, 1956] J. von Neumann. Probabilistic logics and the synthesis of reliable

organisms from unreliable components. In Automata Studies, pages 43–99, 1956.

[Waksman and Sethumadhavan, 2010] Adam Waksman and Simha Sethumadhavan. Tam-

per Evident Microprocessors. In Proceedings of the 31st IEEE Symposium on Security

and Privacy, Oakland, California, 2010.

[Waksman and Sethumadhavan, 2011] AdamWaksman and Simha Sethumadhavan. Silenc-

ing Hardware Backdoors. In Proceedings of the 2011 IEEE Symposium on Security and

Privacy, SP ’11, pages 49–63, Washington, DC, USA, 2011. IEEE Computer Society.

[Waksman et al., 2013a] A. Waksman, J. Eum, and S. Sethumadhavan. Practical,

Lightweight Secure Inclusion of Third-Party Intellectual Property. In Design and Test,

IEEE, 2013.

[Waksman et al., 2013b] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan.

FANCI: Identification of Stealthy Malicious Logic Using Boolean Functional Analysis. In

Proceedings of the 20th ACM Conference on Computer and Communications Security,

CCS ’13. ACM, 2013.

[Waksman et al., 2014] Adam Waksman, Jeyavijayan Rajendran, Matthew Suozzo, and

Simha Sethumadhavan. A Red Team/Blue Team Assessment of Functional Analysis

179

BIBLIOGRAPHY

Methods for Malicious Circuit Identification. In Proceedings of the 51st Annual Design

Automation Conference, DAC ’14, 2014.

[Wang et al., 2008] Xiaoxiao Wang, M. Tehranipoor, and J. Plusquellic. Detecting Mali-

cious Inclusions in Secure Hardware: Challenges and Solutions. In Hardware-Oriented

Security and Trust, 2008. HOST 2008. IEEE International Workshop on, pages 15–19,

June 2008.

[Yoo and Franklin, 2008] Joonhyuk Yoo and Manoj Franklin. Hierarchical Verification for

Increasing Performance in Reliable Processors. J. Electron. Test., 24(1-3):117–128, 2008.

[Yu and Devadas, 2010] Meng-Day (Mandel) Yu and Srinivas Devadas. Secure and Robust

Error Correction for Physical Unclonable Functions. Design & Test of Computers, IEEE,

27(1):48–65, Jan.-Feb. 2010.

180

Part VII

Appendices

181

Appendix A

Glossary of Terms

Backdoor: An alteration to hardware that allows it to violate the ISA contract, generally

assumed to be both malicious and surreptitious.

Backdoor Payload: The result (often as a digital emission) of a backdoor, i.e., the ends

being achieved by a backdoor.

Backdoor Trigger: The signal (digital or otherwise) that causes backdoor behavior to

initiate.

Beacon: A hardware circuit that creates a measurable but undocumented output when

supplied with a specific input (such as a key).

Cache: A (usually small) memory that stores recently accessed data for the purpose of

speeding up common-case memory accesses.

Computer Architecture: The defined mechanisms and operations of a hardware system,

usually specified in an ISA.

Control Corrupter Backdoor Payload: A backdoor payload wherein the payload ac-

tion is achieved by altering control signals in pre-existing operations (such as changing an

addition into a subtraction).

Dark Silicon: A phrase for describing the emergent phenomenon that in many modern

chips only a fraction of the chip can operate at any given point in time as a result of fixed

power budgets.

Data Corrupter Backdoor Payload: A backdoor payload wherein the payload action

is achieved by causing an incorrect data operation (such as making it so that 5 + 6 = 12).

182

Data Obfuscation: A technique for intentionally obfuscating data inputs to hardware

modules to prevent the actions of backdoors triggered by single-shot cheat codes.

DataWatch: A hardware-based, self-monitoring system for dynamically detecting cor-

rupter backdoor payloads.

Denial of Service: An attack wherein the goal is only to prevent a system from working,

rather than to achieve any more specific malicious end.

Emitter Backdoor Payload: A backdoor payload wherein the payload action is contained

within a superfluous emission that is supplementary to the normal microarchitectural traffic

of the running program(s).

Fabrication: The process of manufacturing a physical computing chip.

FANCI: A static analysis algorithm and corresponding prototype for detecting stealthy

circuits in hardware designs.

Foundry: A facility where hardware designs are used to manufacture physical chips.

Frequent-Action Backdoor: A backdoor that is frequently or always active and produc-

ing a payload.

Gatelist: An intermediate soft representation of hardware that specifies all gates in a

design and how they are connected.

Hardware Design Language: A language for specifying the functionality of a hardware

design that can be compiled into a netlist.

Instruction Set Architecture: Commonly referred to as an ISA, the document that

specifies the computer architecture.

Main Channel: A defined channel through which information is meant to be transmitted,

such as a defined interface.

Microarchitecture: The implementation details of hardware that operate at a lower level

than the computer architecture (as specified by the ISA). Microarchitectural information

is generally not needed to understand the architecture and generally impacts performance

rather than correctness.

Netlist: The lowest level soft representation of hardware, describing connectivity informa-

tion, transistor layouts and various physical attributes.

Netlist Entanglement: A form of netlist-level obfuscation for making it difficult to detect

183

the boundaries between semantically distinct chip elements.

Obfuscation: The act of intentionally making something hard to understand, usually with

the connotation of the method not being cryptographically perfect.

Pathological Pipeline: An attack strategy against FANCI wherein designs are pipelined

to an extreme and unnecessary degree, possibly including unnecessary feedback loops, so as

to make the analysis of combinational logic difficult.

Principle of Last Action: The idea that given two sophisticated adversaries and unlim-

ited resources, the actor who acts last usually wins.

Rapid Resets: A technique of rapidly reseting power and microarchitectural state in a

hardware module to prevent the actions of backdoors triggered by ticking timebombs.

Register Transfer Level: A hardware design abstraction, mainly for synchronous digital

circuits, that models circuit operations as the flow of digital signals between registers.

Sequence Cheat Code: A digital backdoor trigger that requires a series of data spread

out across multiple clock cycles or events.

Sequence Reordering: A technique for reordering microarchitectural transactions be-

nignly to prevent the actions of backdoors triggered by sequence cheat codes.

Single-Shot Cheat Code: A digital backdoor trigger that requires one data input that

arrives at one point in time (or during a single clock cycle).

Side Channel: A channel through which information can be transmitted that exists due

to implementation details rather than original design, often but not always existing by

accident.

Stealthy Backdoor: A hardware backdoor whose operation is unlikely to be noticed

during validation tests.

Technology Library: Documentation for the layouts of a set of implementations of logical

gates and connections, often used in the compilation of hardware designs.

Technology Node: A generation of hardware technology, most commonly identified by

the defining feature length (such as 32 nanometers).

Ticking Timebomb: A digital backdoor trigger that requires only timing information,

such as the passage of clock cycles or a certain number of regular events.

Trigger Obfuscation: A term for the set of methods used to obfuscate hardware module

184

inputs so as to prevent backdoors from receiving digital triggers.

Trojan: An alternate term for a backdoor, sometimes with the connotation of having been

implemented by a malicious foundry.

TrustNet: A hardware-based, self-monitoring system for dynamically detecting emitter

backdoor payloads.

Validation: The term for general testing methods applied to hardware designs to test for

reliability, correctness and/or security.

Verification: The process of proving properties about a hardware design, usually regarding

correctness.

185

