
Uncovering Features in Behaviorally Similar Programs

Fang-Hsiang Su

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

© 2018
Fang-Hsiang Su

All rights reserved

ABSTRACT

Uncovering Features in Behaviorally Similar Programs

Fang-Hsiang Su

The detection of similar code can support many software engineering tasks such as

program understanding and program classification. Many excellent approaches have

been proposed to detect programs having similar syntactic features. However, these ap-

proaches are unable to identify programs dynamically or statistically close to each other,

which we call behaviorally similar programs. We believe the detection of behaviorally

similar programs can enhance or even automate the tasks relevant to program classifica-

tion. In this thesis, we will discuss our current approaches to identify programs having

similar behavioral features in multiple perspectives.

We first discuss how to detect programs having similar functionality. While the def-

inition of a program’s functionality is undecidable, we use inputs and outputs (I/Os) of

programs as the proxy of their functionality. We then use I/Os of programs as a behavioral

feature to detect which programs are functionally similar: two programs are functionally

similar if they share similar inputs and outputs. This approach has been studied and devel-

oped in the C language to detect functionally equivalent programs having equivalent I/Os.

Nevertheless, some natural problems in Object Oriented languages, such as input genera-

tion and comparisons between application-specific data types, hinder the development of

this approach. We propose a new technique, in-vivo detection, which uses existing and

meaningful inputs to drive applications systematically and then applies a novel similar-

ity model considering both inputs and outputs of programs, to detect functionally similar

programs. We develop the tool, HitoshiIO, based on our in-vivo detection. In the sub-

jects that we study, HitoshiIO correctly detect 68.4% of functionally similar programs,

where its false positive rate is only 16.6%.

In addition to functional I/Os of programs, we attempt to discover programs having

similar execution behavior. Again, the execution behavior of a program can be undecid-

able, so we use instructions executed at run-time as a behavioral feature of a program.

We create DyCLINK, which observes program executions and encodes them in dynamic

instruction graphs. A vertex in a dynamic instruction graph is an instruction and an edge

is a type of dependency between two instructions. The problem to detect which programs

have similar executions can then be reduced to a problem of solving inexact graph iso-

morphism. We propose a link analysis based algorithm, LinkSub, which vectorizes each

dynamic instruction graph by the importance of every instruction, to solve this graph

isomorphism problem efficiently. In a K Nearest Neighbor (KNN) based program classi-

fication experiment, DyCLINK achieves 90 + % precision.

Because HitoshiIO and DyCLINK both rely on dynamic analysis to expose program

behavior, they have better capability to locate and search for behaviorally similar pro-

grams than traditional static analysis tools. However, they suffer from some common

problems of dynamic analysis, such as input generation and run-time overhead. These

problems may make our approaches challenging to scale. Thus, we create the system,

Macneto, which integrates static analysis with machine topic modeling and deep learn-

ing to approximate program behaviors from their binaries without truly executing pro-

grams. In our deobfuscation experiments considering two commercial obfuscators that

alter lexical information and syntax in programs, Macneto achieves 90 + % precision,

where the groundtruth is that the behavior of a program before and after obfuscation

should be the same.

In this thesis, we offer a more extensive view of similar programs than the traditional

definitions. While the traditional definitions of similar programs mostly use static fea-

tures, such as syntax and lexical information, we propose to leverage the power of dy-

namic analysis and machine learning models to trace/collect behavioral features of pro-

grams. These behavioral features of programs can then apply to detect behaviorally simi-

lar programs. We believe the techniques we invented in this thesis to detect behaviorally

similar programs can improve the development of software engineering and security ap-

plications, such as code search and deobfuscation.

Contents

List of Figures v

List of Tables vi

Acknowledgements vii

1 Introduction 1

2 Functionality as Behavioral Feature 5

2.1 Motivation . 5

2.2 Related Work . 8

2.3 Approach: Detecting Similar Code In-Vivo 10

2.3.1 The Input Generation Problem . 11

2.3.2 Exploiting Existing Inputs . 11

2.3.3 Example of HitoshiIO . 13

2.4 Similarity Model: Mining Functionally Equivalent Methods 16

2.5 Implementation of HitoshiIO . 20

2.5.1 Java Background . 20

2.5.2 Identifying Method Inputs and Outputs 21

2.5.3 Instrumentation . 22

2.5.4 Recording Inputs and Outputs at Runtime 22

2.5.5 Similarity Computation . 23

2.6 Experiments of HitoshiIO . 24

i

2.6.1 RQ1: Clone Detection Rate . 27

2.6.2 RQ2: Quality of Functional Clones 29

2.6.3 RQ3: Performance . 30

2.7 Discussions . 31

2.8 Conclusions . 32

3 Execution as Behavioral Feature 34

3.1 Introduction . 34

3.2 Background . 37

3.2.1 Basic Definitions . 37

3.2.2 Motivation . 38

3.3 Related Work . 41

3.4 Approach and Implementation of DyCLINK: Detecting Code Relatives

With Link Analysis . 43

3.4.1 Constructing Graphs . 45

3.4.2 Example of DyCLINK . 46

3.4.3 LinkSub: Link-analysis-based Subgraph Isomorphism Algorithm 47

3.4.4 Limitations . 51

3.5 Evaluations of DyCLINK . 52

3.5.1 RQ1: Scalability . 55

3.5.2 RQ2: Code Relative Detection (Best Graph Match) 56

3.5.3 Discussions . 60

3.6 Conclusions . 62

3.7 Artifact Description . 63

3.7.1 Required Software Suites . 63

3.7.2 Virtual Machine . 63

3.7.3 System Configuration . 64

3.7.4 Dynamic Instruction Graph Construction 64

ii

3.7.5 (Sub)graph Similarity Computation 65

3.7.6 Result Analysis . 65

3.7.7 Potential Problems . 66

4 Topics in Program Binary as Behavioral Feature 67

4.1 Introduction of MAChiNE TOpic: Macneto 67

4.2 Background . 70

4.3 Related Work . 72

4.4 Macneto Overview . 73

4.5 Macneto Approach . 76

4.5.1 Computing Instruction Distribution 76

4.5.2 Machine Topic Modeling . 82

4.5.3 Deep Learning Phase . 84

4.5.4 Deobfuscating . 85

4.6 Evaluation . 86

4.6.1 Evaluation Metrics . 88

4.6.2 Deobfuscating ProGuard . 89

4.6.3 Deobfuscating Allatori . 91

4.6.4 Threats to Validity . 94

4.6.5 Limitations . 95

4.7 Conclusions . 95

5 Discussions of Similarity Detection 97

5.1 Static Detection of Similar Programs . 97

5.1.1 Revisit of Static Features . 97

5.1.2 Potential Use Cases of Static Similar Programs 99

5.2 Dynamic Detection of Similar Code . 101

5.2.1 Revisit of Dynamic Features . 101

iii

5.2.2 Potential Use Cases of Dynamic Similar Programs 102

5.3 Learn from Programs . 104

5.4 A Comparison of Computing Similar Programs 105

5.5 Future Work . 109

6 Conclusions 113

Bibliography 115

iv

List of Figures

1.1 An example of two behaviorally similar methods in executions. 3

2.1 High level overview of In-Vivo Clone Detection. 10

2.2 A code example with inputs and outputs identified. 14

2.3 A functional clone detected by HitoshiIO. 17

2.4 The number of functional clones detected by HitoshiIO with different pa-

rameter settings. 26

3.1 A partial comparison of matrix decomposition code from two different libraries. 40

3.2 The high-level architecture of DyCLINK including instruction instrumenta-

tion, graph construction, link analysis and final pairwise subgraph comparison. 44

3.3 The mult() method in Java. 47

3.4 An exemplary code relative. 58

3.5 The software community based on code relatives detected by DyCLINK. . . . 61

3.6 The exemplary UI of MySQL Workbench to check the comparison ID. 66

4.1 The system architecture of Macneto. 73

4.2 The readAndSort method and its callgraph. 78

v

List of Tables

2.1 The data dependencies in the addRelative method. 15

2.2 The input sources in the addRelative method. 16

2.3 The potential instructions observed by HitoshiIO. 23

2.4 A summary of the experimental codebase containing projects from the Google

Code Jam competitions. 25

2.5 The distributions of clones detected by HitoshiIO cross the problem sets. . . 28

2.6 The number of missed functional clones with different invocation thresholds

detected by HitoshiIO. 31

3.1 A summary of the code subjects for classifying software. 53

3.2 Number of comparisons performed by DyCLINK. 54

3.3 Code Relatives, Simions and Code Clones detected by project-year and by tool

for DyCLINK, HitoshiIO and SourcererCC. 56

3.4 Precision results from KNN classification of the Google Code Jam projects. . 60

4.1 Macneto’s instruction set. 79

4.2 Results of deobfuscating Allatori-obfuscated code. 91

5.1 A summary of code similarity. 98

vi

Acknowledgements

I would like to thank my advisors, Professor Gail Kaiser and Professor Simha Sethumad-

havan, for offering me the opportunity to conduct research under their supervision. They

have not only taught me how to solve problems but also how to discover new questions

and confront challenges. Gail and Simha, I appreciate your guidance and insight through-

out my PhD career. I would also like to thank my committee members, Professor Tony

Jebara, Professor Baishakhi Ray and Professor Suman Jana, for providing suggestions to

enhance my thesis.

I am extremely fortunate to have had numerous opportunities to work and collaborate

with many excellent researchers and developers during my PhD career. In no particular

order, I would like to acknowledge ChrisMurphy, Swapneel Sheth, NipunArora, Jonathan

Bell, Riley Spahn, Adrian Tang, Hiroshi Sasaki, Teruo Tanimoto, Miguel Arroyo, Anthony

Saieva, Kenneth Harvey, Morris Hopkins, John Murphy, Yu Wang, Huimin Sun, Apoorv

Patwardhan, Abhaar Gupta, Sriharsha Gundappa, Masudur Rahman, and many others.

Last but not least, I would like to thank my parents and my wife Jing-Yu who have

always supportedmewholeheartedly to pursuemy dreams (and those papers) throughout

my PhD career. To my son, Sean – thank you for joining your mom and me! While we

have finally completed a PhD, you complete us the first minute you were born.

vii

To my family

viii

Chapter 1

Introduction

Analyzing similar programs can support many software engineering tasks, such as pro-

gram comprehension [98], API replacement [73], code change prediction [132], bug local-

ization [40, 108] and code reuse [50]. Two programs are similar if they are close enough

according to one or multiple features. While many excellent approaches have been pro-

posed to detect code having similar syntax or textual features that are usually referred to

“code clone”, we propose to detect behaviorally similar programs defined as follows:

Definition 1 Two programs are behaviorally similar if they share one or more features in

functionalities, executions or semantics.

Behaviorally similar programs, we argue, can be extracted by variety of techniques. In

this thesis, we propose to leverage the power of dynamic analysis and machine learning

models to detect and identify behaviorally similar programs. In this thesis, we use the

term “code clone” to represent those syntactically or textually similar programs and use

the term “behaviorally similar program” to represent dynamically or statistically similar

programs, which differentiates our approaches from those focusing on syntax and text in

programs.

The design of the core algorithm or mechanism to detect similar code usually depend

on the definition of similarity: which features of code that the approach attempts to cap-

ture. We classify similar code into three types as follows.

• Static features: These approaches focus on capturing similar code by using syntactic

or textural features of code. Without executing programs, these approaches analyze

1

program abstractions, such as tokens, parse trees and program dependence graphs

[60, 89] and extract the information from program bodies, documents or comments

[115, 93]. This type of work focuses on detecting code clones.

• Dynamic features: In contrast to static features, dynamic features represent char-

acteristics of programs during executions. One runtime approach [60] observes

functionalities of programs defined by inputs and outputs (I/Os) in a dynamic man-

ner. These functionally similar programs are named “simions,” which differentiate

them from code clones having similar static features. Several technical challenges

are identified to implement such a technique in object oriented languages [61]. Our

prior work later alleviates these challenges [123], which will be discussed in Chap-

ter 2. In addition to program I/Os, our prior work also proposes to detect programs

having similar executions, as encoded in fine-grained dynamic dependence graphs

[121].

• Hidden features: Instead of using known features to detect which programs are

similar, some work proposes using statistical or machine learning techniques to

learn features or models from “big code,” which represents a large volume of code.

These features that may be hard to definemanually can support further applications

such as API recommendation [106] and automatic identifier naming [111].

While most of the previously proposed dynamic approaches care about programs’ be-

haviors in functionalities defined by their inputs and outputs, almost none discusses how

to capture programs’ behaviors in executions, which is also an important feature of pro-

gram dynamics. Some behaviorally similar programs may be undiscoverable by the cur-

rent similarity features. Figure 1.1 provides a trivial but motivating example. The syntax

of methods in Figure 1.1a and Figure 1.1b are not the same. Further, their functionalities

defined by their I/Os are not the same as well because of the multiplication at line 6 in

Figure 1.1b. This makes this pair of methods neither a code clone, nor a simion. In other

word, this pair of methods may not be detected as similar by the existing definitions of

2

1 public double[] initArr1(int len)
{

2 double[] arr = new double[len];
3 for (int i = 0; i < arr.length;

i++) {
4 arr[i] = 5;
5 }
6 return arr;
7 }

(a) An exemplary method to initialize an array.

1 public double[] initArr2(int size
) {

2 double[] ret = new double[size
];

3 try {
4 int counter = 0;
5 while (true) {
6 ret[counter++] = -2 * 5;
7 }
8 } catch (Exception ex) {}
9 return ret;

10 }

(b) A behavioral similar method with Figure 1.1a.

Figure 1.1: An example of two behaviorally similar methods in executions.

static or dynamic features.

We argue that the example in Figure 1.1 is still behaviorally similar at run-time, be-

cause their executed instructions are similar, regardless of the syntax and I/O. In our pre-

vious work [121], we name them code relatives. We summarize these three types of similar

code, clone, simion and code relative in this thesis. Clones represent code having similar

static features, and simions represent behaviorally similar code that functions alike with

similar I/Os. Code relatives represent behaviorally similar code that has similar execu-

tion, but does not necessarily look or function alike. We will use Figure 1.1 as the example

again to explain these three types of similar code. The pair of the programs in Figure 1.1 is

a code relative, because they are behaviorally similar in their executions. Without −2 at

line 6 in Figure 1.1b, they could be a pair of simion, because they are behaviorally similar

in their functionalities (I/Os). Without the try-catch block in Figure 1.1b, they can

be clones, because their syntax is similar. We argue that the behavioral features learned

from statistical analysis from codebases could be a fourth type of similar code, which is

orthogonal to the other three.

In this thesis, we will discuss our current work for detecting and mining those behav-

iorally similar programs in their functionalities (Chapter 2) and executions (Chapter 3),

which are relevant to code dynamics. In addition, we will delineate our approach to learn

3

a novel hidden feature of programs, topic models embedded in code binary (Chapter 4),

for supporting program deobfuscation.

4

Chapter 2

Functionality as Behavioral Feature

Identifying similar code in software systems can assist many software engineering tasks

such as program understanding and software refactoring. While most approaches focus

on identifying code that looks alike, some techniques aim at detecting code that functions

alike. Detecting these functional clones — code that functions alike — in object oriented

languages remains an open question because of the difficulty in exposing and comparing

programs’ functionality effectively. We propose a novel technique, In-Vivo Clone Detec-

tion, that detects functional clones in arbitrary programs by identifying and mining their

inputs and outputs. The key insight is to use existing workloads to execute programs and

thenmeasure functional similarities between programs based on their inputs and outputs,

which mitigates the problems in object oriented languages reported by prior work. We

implement such technique in our system, HitoshiIO, which is open source and freely

available. Our experimental results show that HitoshiIO detects more than 800 func-

tional clones across a corpus of 118 projects. In a random sample of the detected clones,

HitoshiIO achieves 68+% true positive rate with only 15% false positive rate.

2.1 Motivation

When developing and maintaining code, software engineers are often forced to examine

code fragments to judge their functionality. Many studies [63, 66, 86] have suggested large

portions of modern codebases can be clones, which can be code that is copied-and-pasted

from one part of a program to another. One problem with these clones is that they can

5

complicate maintenance. For instance, a bug is copied-and-pasted in multiple locations

in a software system. While most techniques to detect clones have focused on syntactic

ones containing code fragments that look alike, we are interested in functional clones:

code fragments that exhibit similar functions, but may not look alike.

Identifying functional clones can bring many benefits. For instance, functional clones

can help developers understand complex and/or new code fragments by matching them

to existing code they already understand. Further, once these functional clones are iden-

tified, they can be extracted into a common API.

Unfortunately, detecting true functional clones is very tricky. Static approaches must

be able to fully reason about code’s functionality without executing it, and dynamic ap-

proaches must be able to observe code executing with sufficient inputs to expose diverse

and meaningful functions. Currently, the most promising approach to detect functional

clones is to execute code fragments with a randomly generated input, apply that same

input for different code fragments and observe when outputs are the same [60, 39, 65, 38].

Thus, previous approaches towards detecting functional clones have focused on code frag-

ments that are easily compiled and executed in isolation, allowing for easy control and

generation of inputs, and observation of code outputs.

This approach does not scale to complex and object oriented codebases. It is difficult

to execute individual methods or code fragments in isolation with randomly generated

inputs, due to the complexity of generating sufficient and meaningful inputs for execut-

ing the code successfully. Previous work towards detecting functional clones in Java

programs [39, 32, 105] have reported unsatisfactory or limited results: a recent study by

Deissenboeck et al. showed that across five Java projects only 28% of the target methods

could be executed with this randomly input generation approach [32]. Deissenboeck et

al. also reported that across these projects, most of the inputs and outputs referred to

project-specific data types, meaning that a direct comparison of the inputs and outputs

between two programs is hard to be declared equivalent [32].

6

We present In-Vivo Clone Detection, a technique that is language-agnostic, and gen-

erally applicable to detect functional clones without requiring the ability to execute can-

didate clones in isolation, and hence allowing it to work on complex and object oriented

codebases. Our key insight is that most large and complex codebases include test cases

[19], which can supply workloads to drive the application as a whole.

In-Vivo CloneDetection first identifies potential inputs and outputs (I/Os) of each code

fragment, and then executes them with existing workloads to collect values from their

I/Os. The code fragments with similar values of inputs and outputs during executions are

identified as functional clones. Unlike previous approaches that look for code fragments

with identical output values, we use a relaxed similarity comparison, enabling efficient

detection of code that has very similar inputs and outputs, even when the exact data

structures of those variables differ.

We created HitoshiIO, which implements this in-vivo approach for the JVM-based

languages such as Java. HitoshiIO considers every method in a project as a potential

functional clone of every other method, recording observed inputs that can be method

parameters or global state variables read by a method, and observed outputs that are ex-

ternally observable writes including return values and heap variables. Our experimental

results show that HitoshiIO effectively detects functional clones in complex codebases.

We evaluated HitoshiIO on 118 projects, finding 874 functional clones, using only the

applications’ existing workloads as inputs.

The primary contributions of this thesis are:

1. A presentation of our technique, In-Vivo Clone Detection, a language-agnostic

technique for detecting functional clones applicable to object-oriented languages

2. Our tool, HitoshiIO for the JVM, which effectively detects functional clones in

complex code bases, available under an MIT license on GitHub[55].

7

2.2 Related Work

Identifying similar or duplicated code (code clones) can enhance the maintainability of

software systems. Searching for these code clones also helps developers to find which

pieces of code are re-usable. At a high level, work in clone detection can be split into two

categories: static clone detection, and dynamic clone detection.

Static techniques: Roy et al. [113] conducted a survey regarding the four types of code

clones and the corresponding techniques to detect them ranging from those that are ex-

act copy-paste clones to those that are semantically similar with syntactic differences.

In general, these static approaches first parse programs into a type of intermediate rep-

resentation and then develop corresponding algorithms to identify similar patterns. As

the complexity of the intermediate representation grows, the computation cost to identify

similar patterns is higher. Based on the types of intermediate representations, the existing

approaches can be classified into token-based [14, 63, 86], AST-based [17, 59] and graph-

based [49, 89, 73, 83]. Among these general approaches, the graph-based approaches are

the most computationally expensive, but they have better capabilities to detect complex

clones according to the report of Roy et al. [113]. Compared with these approaches that

find look alike code, HitoshiIO searches for functionally alike code.

Several other techniques make use of general information about code to detect clones

rather than strictly relying on syntactic features. Our motivation for detecting function

clones that may not be syntactically similar is close to past work that searched for high

level concept clones [93] with similar semantics. However, our approach is completely dif-

ferent: we use dynamic profiling, while they relies on static features of programs. Another

line of clone detection involves creating fingerprints of code, for instance by tracking API

usage [98, 29], to identify clones.

Dynamic techniques: Our approach ismost relevant to previouswork in detecting code

that is functionally similar, despite syntactic differences by using dynamic profiling. For

instance, Elva and Leavens proposed detecting functional clones by identifying methods

8

that have the exact same outputs, inputs and side effects [39]. The MeCC system summa-

rizes the abstract state of a program after each method is executed to relate that state to

the method’s inputs, allowing for exact matching of outputs [65]. Our approach differs

from both of these in that we allow for matching functionally similar methods, even when

there are minor differences in the formats of inputs and outputs.

Carzaniga et al. studied differentways to quantify andmeasure functional redundancy

between two code fragments on both of the executed code statements and performed

data operations [26]. Our notion of functionally similar code is similar to their notion

of redundant code, although we put significantly more weight on comparing input and

output values, rather than just the sequence of inputs and outputs. We consider all data

types, even complex variables, while Carzaniga et al.HitoshiIO only consider Java’s basic

types.

Jiang and Su’s EQMiner [60] and the comparable system developed by Deissenboeck

et al. for Java [32] are two highly relevant recent examples of dynamic detection of func-

tional clones. EQMiner first chops code into several chunks and randomly generates input

to drive them. By observing output values from these code chunks, the EQMiner system

is able to cluster programswith the same output values. The EQMiner system successfully

identified clones that are functional equivalent. Deissenboeck et al. follows the similar

procedure to re-implement the system in Java. However, they report low detection rate of

functional clones in their study subjects. We list three of the technical challenges reported

by Deissenboeck et al. and our solutions:

• How to appropriately capture I/Os of programs: Compared with the existing ap-

proaches that fix the definitions of input and output variables in the program, In-

Vivo Clone Detection applies static data flow analysis to identify which input vari-

ables potentially contribute to output variables at instruction level.

• How to generate meaningful inputs to drive programs: Deissenboeck et al. reported

that for 20% − 65% of methods examined, they could not generate inputs. One

9

Application Code

Input-Output
Identifier Instrumenter

Input-Output
Recorder

Input-Output
Similarity
Analyzer

Similar Code Pairs

Existing
Workload

Figure 2.1: High level overview of In-Vivo Clone Detection. First, individual inputs and
outputs ofmethods are identified, then the application is transformed so that its inputs and
outputs can be easily recorded while it is executed under an existing workload. Finally,
these recorded inputs and outputs are analyzed to detect functionally similar methods.

possible reason is that when the input parameter refers to an interface or abstract

class, it is hard to choose the correct implementation to instantiate. Thus, instead of

generating random inputs, we invent In-Vivo Clone Detection using real workloads

to drive programs, which is inspired by our prior work in runtime testing [102].

• How to compare project-specific types of objects between different applications: Wewill

elaborate the similar issue further in Section 2.5.5: different developers can design

different classes to represent similar data across different applications/projects. For

comparing complex (non-primitive) objects, In-Vivo Clone Detection computes and

compares a deep identity check between these objects.

2.3 Approach: Detecting Similar Code In-Vivo

At a high level, our approach detects codewhich appears functionally similar by observing

that for similar inputs, two different methods produce similar outputs (i.e., are functional

clones). Our key insight is that we can detect these functional clones in-vivo to the context

of a full system execution (e.g., as might be exercised by unit or system tests), rather than

relying on targeted input generation techniques. Figure 2.1 shows a high level overview

of the various phases in our approach. First, we identify the inputs and outputs of each

10

method in an application where we consider not just formal parameters, but also all rel-

evant application states. Then we instrument the application so that when executing it

with existing workloads, we can record the individual inputs and outputs to each method,

for use in an offline similarity analysis.

2.3.1 The Input Generation Problem

Previous approaches towards detecting functional clones in programs randomly or sys-

tematically generate inputs to execute individual methods or code fragments first, and

then identify code fragments with the identical outputs as functional clones. Especially

in the case of object oriented languages like Java, it may be difficult to generate an in-

put to allow an individual method to be executed because each method may have many

different input variables, each of which may have an immense range of potential values.

Many other techniques have been developed to automatically generate inputs for individ-

ual methods, but the problem remains unsolved in the case of detecting functional clones.

For instance, Randoop [107] uses a guided-random approach, in which random sequences

of method calls are executed to bring a system to a state to which an individual method

can be executed. Randoop is guided only by the knowledge of which previous sequences

failed to generate a ‘valid’ state, making it difficult to use in many cases [128]. In the

2012 study of input generation for clone detection conducted by Deissenboeck et al., they

found that input generation and execution failed for approximately 28% of the methods

that they examined across five projects. A discussion of howwe plan to alleviate the input

generation problem in the future can be found in Section 5.5.

2.3.2 Exploiting Existing Inputs

With our In-Vivo approach, it is feasible to detect functional clones even in the cases

where automated input generators are unable to generate valid inputs. We observe that

in many cases, existing workloads (e.g., test cases) likely exist for applications, at which

11

point we can exploit the individual inputs used by each method. Key to our approach is a

simple static analysis to detect variables that are inputs, and those that are outputs for each

method in a program. From this static analysis, we can inform a dynamic instrumenter

to record these values, and later, compare them across different methods.

The output of a method is any value that is written within a method that is potentially

observable from another point in the program: that is, it will remain a live variable even

after that method concludes. The input of a method then, is any value that is read within

that method and influences any output (either directly through data flow or indirectly

through control flow). By this definition, variables that are read within a method, but not

computed on, are not considered inputs, reducing the scope of inputs to only those may

impact the output behavior of a method.

Definition 2 An input for a method is the value that exists before execution of this method,

is read by this method, and contributes to any outputs of the method.

An output of a method is the computational result of this method that a developer

wants to use. As Jiang and Su stated [60], it is hard to define the output for a method,

because we don’t know which values derived/computed by the method will be used by

the developer. So, we define the outputs for a method in a conservative way:

Definition 3 An output of a method is the value derived or computed by this method. This

computational value still exists in memory after the execution of this method.

To identify inputs given outputs, we follow [46] to statically identify the following

dependencies:

• Computational Dependency: This dependency records which values depends on the

computation of which values. Take int k = i + j as the example. The value

of k depends on the values of i and j. This dependency (c-use [46]) helps identify

which inputs can affect the computations of outputs.

12

• Ownership Dependency: This dependency records which values (fields) owned by

which objects and/or arrays. Take int c = a.myInt + b as the example,

where a is an object and myInt is an integer. In this example, the myInt field

owned by a influences the value of c. Because the a object owns myInt, our

approach will know that the a object can be an input source, even though this read

does not access a’s value directly. The ownership dependency helps identify which

values can be from inputs. This dependency is transitive, which means that the

value owned by an object/array is also owned by the owner of this object/array, if

it has any owners.

2.3.3 Example of HitoshiIO

To demonstrate our general approach, we use the method addRelative in Figure 2.2.

Note that while the code presented is written in Java, our technique is generic, and not

tied to any particular language. The addRelative method takes a Person object,

me, as the input, and create a new relative, based on the other two input parameters,

rName and rAge. The insert method, which is a callee of addRelative, inserts

newRel into the array field owned by me. The sum method, which is the other callee,

computes and return the total age of all relatives owned by me.

We use the list of outputs to identify the inputs, so we first define the formal outputs

of addRelative. ret is the return value, which is a natural output. Because pos

flows to an OutputStream, it is recognized as an output. me is written in the callee

insert, so it is also an output.

Before we discuss the input sources, we summarize the data dependencies in ad-

dRelative. We use the variable name to represent the value they contain. And we

use x
c.−→ y to represent that y is computational-dependent on x, and x

o.−→ y to depict

that y is owned by x. The dependencies in addRelative can be read in Table 2.1.

The Deps. column records the dependency between two variables, and the Notes col-

13

1 public class Person {
2 public String name;
3 public int age;
4 public Person[] relatives;
5 }
6
7 public static int addRelative(Person me, //input
8 String rName, int rAge, int pos,
9 double useless) {

10
11 Person newRel = new Person();
12 newRel.name = rName;
13 newRel.age = rAge;
14
15 if (pos > 0) {
16 insert(me, newRel, pos);
17 }
18 int ret = sum(me.relatives);
19
20 double k = useless + 1;
21
22 System.out.println(pos); //output
23 return ret; //output
24 }
25
26 public static void insert(Person me, Person rel, int pos) {
27 me.relatives[pos] = rel;
28 }
29
30 public static int sum(Person[] relatives) {
31 int sum = 0;
32 for (Person p: relatives) {
33 sum += p.age;
34 }
35 return sum;
36 }

Figure 2.2: A code example with inputs and outputs identified.

umn explains why these two variables have the dependency. We only show the direct

dependencies between variables.

Finally, we can define the input sources based on the outputs and the dependencies

between variables. An input source is the one that have direct or transitive dependencies

14

Table 2.1: The data dependencies in the addRelative method.

Deps. Notes

relatives c.−→ret ret is the computational result of sum,
which depends on me.relatives.

me o.−→relatives relatvies is a field of me.
newRel c.−→me me is written in the callee insert,

where newRel is the input.
pos c.−→me The same reason as the above.
rName c.−→newRel newRel is written by rName.
rAge c.−→newRel newRel is written by rAge.

to any of the outputs. We first define the candidate input sources in addRelative as

ISrcc(addRelative)

= {me,rName,rAge,pos,useless}
(2.1)

Given 3 outputs and all dependencies in Table 2.1, we can infer the parents of these 3

outputs as

Parents({ret,me,pos}) = {me,rName,rAge,pos} (2.2)

We then intersect these two sets and conclude the input sources of addRelative

in Table 2.2. We can see that not all input parameters are considered as input sources.

The variable useless contributes to no outputs, so we do not consider it as an input

source.

We consider the values that may change the outputs of the method as the control vari-

ables. In Figure 2.2, pos serves as the control variables, since they can decide if newRel

is should be inserted or not. In our approach, the values from all control variables (p-use

[46]) are recorded as inputs.

After a static analysis determines which variables are inputs and which are outputs,

collecting them is simple: during program execution, we record the value of each input

15

Table 2.2: The input sources in the addRelative method.

Var. Notes

me me has the computational dependency to
the output ret.

rName rName is written to newRel that con-
tributes to me.

rAge rAge is written to newRel that con-
tributes to me.

pos pos has the computational dependency
to the output me.

and output variable when a method is called, creating an I/O record for each method. Over

the program execution, many unique I/O records will likely be collected for each method.

2.4 Similarity Model: Mining Functionally Equivalent

Methods

After collecting all of these I/O records, the final phase in our approach is to evaluate the

pairwise similarity between these methods based on their I/O sets. However, there are

likely to be many different invocations of each method, and many methods to compare,

requiring O(
(
m
2

)
(n)2) comparisons between m methods and n invocation histories for

each method. To simplify this problem, we first create summaries of each method that can

be efficiently compared, and then use these summaries to perform high-level similarity

comparison. The result may be that two methods have slightly different input and output

profiles, but nonetheless are flagged as functional clones. This is a completely intentional

result from our approach, based on the insight that in some cases, developers may use

different structures to represent the same data.

Consider the two code listings shown in Figure 2.3 — real Java code found to be func-

tional clones by HitoshiIO. Note that at first, the two methods accept different (formal)

input parameters: but in reality, both use an array as inputs (the second example accesses

16

1 long getSum(long[] n, int L, int
R) {

2 long sum = 0;
3 if (R >= 0) {
4 sum = n[R];
5 }
6 if (L > 0) {
7 sum -= n[L - 1];
8 }
9 return sum;

10 }

1 public static long sum(int a, int
b)

2 {
3 if(a > b)
4 {
5 return 0;
6 }
7
8 return array[b + 1] - array[a];
9 }

Figure 2.3: A functional clone detected by HitoshiIO.

an array that is a static field, while the first accepts an array as a parameter). For the case

of L <= R, a <= b, the behavior will be very similar in both examples: the result will

be the difference between two array elements, one at b + 1 (or R), and the other at a (or

L − 1). We want to consider these functions behaviorally similar, despite these minor

differences.

Before detailing our similarity model, we first discuss the concept of DeepHash [30]

used in our similarity model. The general idea of DeepHash is to recursively compute

the hash code for each element and field, and sum them up to represent non-primitive

data types. For this purpose, for floating point calculations, we round them to two dec-

imal places, although this functionality is configurable. With the DeepHash function,

HitoshiIO can parse a set containing different objects into a representative set of deep

hash values, which facilitate our similarity computation.

The strategy of the DeepHash is as follows:

• If there is already a hashCode function for the value to be checked, then call it

directly to obtain a hash code.

• If there is no existing hashCode function for an object, then recursively collect

the values of the fields owned by the object and call the DeepHash to compute the

hash code for this object.

• For arrays and collections, compute the hash code for each element by DeepHash

17

and sum them up as the hash code.

• For maps, compute the hash code of each key and values by the DeepHash and sum

them up.

The notations we use in the similarity model are as follows.

• mi: The ith method in the codebase.

• invr|mi
: The rth invocation of mi.

• ISrc(invr|mi
): the input set of invr|mi

.

• OSink(invr|mi
): the output set of invr|mi

.

• ISrch(invr|mi
): the deep hash set of ISrc(invr|mi

).

• OSinkh(invr|mi
): the deep hash set of OSink(invr|mi

).

• MPij : A method pair contains two methods from the codebase, where i ̸= j.

• IPr|i,s|j : An invocation pair contains invr|mi
and invs|mj

.

To compare an IPr|i,s|j from two methods, mi and mj , we first computes the Jaccard

coefficients for ISrcs and OSinks as the basic components for the functional similarity.

The definition for the Jaccard similarity [82] is as follows:

J(Seti, Setj) =
|Seti ∩ Setj|
|Seti ∪ Setj|

(2.3)

If either set is empty, this will compute their coefficient as 0. To simplify the notations,

we define the basic similarities between ISrcs and OSinks as follows.

SimI(IPr|i,s|j) = J(ISrch(invr|mi
), ISrch(invs|mj

)) (2.4a)

SimO(IPr|i,s|j) = J(OSinkh(invr|mi
), OSinkh(invs|mj

)) (2.4b)

The basic similarity represents how similar two ISrcs or OSinks are. To summarize

18

the I/O functional similarity for a pair of methods, we propose an exponential model

Sim(IPr|i,s|j) =
(1− β ∗ eSimI) ∗ (1− β ∗ eSimO)

(1− β ∗ e)2
(2.5)

, where β is a constant. This exponential model punishes the invocation pairs that have

either similar ISrc or OSink, but not the other. By this similarity model, we can sharply

differentiate invocation pairs having similar I/Os from the ones that solely have similar

inputs or outputs. We can finally define the similarity for a method pairMPij as the best

similarity of their invocation pairs IPr|i,s|j .

Sim(MPij) = maxSim(IPr|i,s|j) (2.6)

In addition to using the best match among invocation pairs, we plan to use preponder-

ant matches in the future

argmax
r∈{invmi}
s∈{invmj }

∑
r

Sim(invr|mi
, f : invr|mi

→ invs|mj
) (2.7)

, r is an invocation of mi, s is an invocation of mj and f is a function to pair the r

invocation of mi with the s invocation of mj . We plan to use the Hungarian algorithm

[78] to solve this assignment problem between invocations of two programs. A potential

problem here is that the Hungarian algorithm is computationally expensive with O(n3)

time complexity, where n is the invocation number of a method. A discussion regarding

how to use the Hungarian Algorithm to solve preponderant matches is in Section 5.4.

While how to compute the set similarity between program I/Os is an open problem,

we believe that there are other potential directions to explore in addition to best and

preponderant match. For example, if we can represent inputs and outputs of programs

as distributions, we can recruit Bregman divergence [15] to measure distance (similarity)

between two programs. An obstacle we can foresee is to devise a generic representation

19

to project I/Os from each program to meaningful numeric values, which we plan to solve

in the future.

2.5 Implementation of HitoshiIO

To demonstrate and evaluate in-vivo clone detection, we create HitoshiIO, with a name

inspired by the Japanese word for “equivalent”: hitoshii. HitoshiIO records and compares

the inputs and outputs between Java methods, considering every method as a possible

clone of every other. In principle, we could extendHitoshiIO to consider code fragments -

individual parts of methods, but we leave this implementation to future work. HitoshiIO

is implemented using the ASM bytecode rewriting toolkit [11], operating directly on Java

bytecode, requiring no access to application or library source code. HitoshiIO is available

on GitHub and released under an MIT license.

2.5.1 Java Background

Before describing the various implementation complexities of HitoshiIO, we first provide

a brief review of data organization in the JVM. According to the official specification

of Java [62], there are two categories of data types: primitive and reference types. The

primitive category includes eight data types: boolean, byte, character, integer, short, long,

float and double. The reference category includes two data types: objects and arrays.

Objects are instances of classes, which can have fields [62]. A field can be a primitive or

a reference data type. An array contains element(s), where an element is also either a

primitive or a reference data type.

Primitive types are passed by value, while reference types are passed by reference

value. HitoshiIO considers all types of variables as inputs and outputs.

20

2.5.2 Identifying Method Inputs and Outputs

Our approach relies on first identifying the outputs of a method, and then backtracking

to the values that influence those outputs, in order to detect inputs. The first step is

identifying the outputs of a given method. For a method m, its output set consists of all

variables written by m that are observable outside of m. An output could be a variable

passed to another method, returned by the method, written to a global variable (static

field in the JVM), or written to a field of an object or array passed to that method. By

default, HitoshiIO only considers the formal parameters of methods, ignoring the owner

object (if the method call is at instance level) in this analysis, although this behavior is

configurable.

This approach would, therefore, consider every variable passed from method m1 to

method m2 to be an output of m1. As an optimization, we perform a simple intra-

procedural analysis to identify methods that do not propagate any of their inputs outside

of their own scope (i.e., they do not effect any future computations). For these special

cases, HitoshiIO identifies that at call-sites of these special methods, their arguments are

not actually outputs, in that they do not propagate through the program execution. To

further reduce the scope of potential output variables, we also exclude variables passed as

parameters to methods that do not directly write to those variables as inputs. We found

that these heuristics work well towards ensuring that HitoshiIO can execute within a

reasonable amount of time, and discuss the overall performance of HitoshiIO in §2.6.

Once outputs are identified, HitoshiIO performs a static data and control flow anal-

ysis for each method, identifying for each output variable, all variables which influence

that output through either control or data dependencies. Variable vo is dependent on vi

if the value of vo is derived from vi (data dependent), or if the statement assigning vo is

controlled by vi. We recursively apply this analysis to determine the set of variables that

influence the output set OSink, creating the set of variables Parents(OSink). Variable

vi in method m is an input if it is Parents(OSink) and its definition occurs outside of

21

the scope of m. HitoshiIO then identifies the instructions that load inputs and return

outputs, for use in the next step - instrumentation.

2.5.3 Instrumentation

Given the set of instructions that may load an input variable or store an output, HitoshiIO

inserts instrumentation hints in the application’s bytecode to record these values at run-

time. Table 2.3 describes the various relevant bytecode instructions, their functionality,

and the relevant categorization made by HitoshiIO (Input instruction orOutput instruc-

tion). HitoshiIO treats the values consumed by the control instructions as inputs. Just

after an instruction that loads a value judged to be an input, HitoshiIO inserts instruc-

tions to record that value; just before an instruction that stores an output value, HitoshiIO

similarly inserts instructions to record that value.

2.5.4 Recording Inputs and Outputs at Runtime

The next phase of HitoshiIO is to record the actual inputs and outputs to each method

as we observe the execution of the program. Although the execution of the program is

guided by relatively high level inputs (e.g., unit tests, which each likely calls more than

one single method), the previous step (input and output identification) allows us to carve

out inputs and outputs to individual methods - it is these individual inputs and outputs

that we record.

HitoshiIO’s runtime recorder serializes all previously identified inputs immediately

as they are read by a method, and all outputs immediately before they are written. For

Java’s primitive types (and Strings), the I/O recorder records the values directly. For ob-

jects, including arrays, HitoshiIO follows [32] to adopt the XStream library [130] to seri-

alize these objects in a generic fashion to XML. Once the method completes an execution,

this execution profile is stored as a single XML file in a local repository for offline analysis

in the next step.

22

Table 2.3: The potential instructions observed by HitoshiIO.

Opcode Type Description

xload In. Load a primitive from a local variable,
where x is a primitive.

aload In. Load a reference from a local variable.
xaload In. Load a primitive from a primitive array,

where x is a primitive.
aaload In. Load a reference from a reference array.
getstatic In. Load a value from a field owned by a

class.
getfield In. Load a value from a field owned by an

object.
arraylength In. Read the length of an array.
invokeXXX Out. Call a function
xreturn Out. Return a primitive value from the

method, where x is a primitive.
areturn Out. Return a reference from the method.
putstatic Out. Write a value to the field owned by a

class.
putfield Out. Write a value to the field owned by an

object.
xastore Out. Write a primitive to a primitive array.
aastore Out. Write a reference to a reference array.
ifXXX Con. Represent all if instructions. Jump by

comparing value(s) on the stack.
tableswitch,
lookupswitch

Con. Jump to a branch based on the index on
the stack.

2.5.5 Similarity Computation

Recall that our goal is to find similarly functioning methods, not methods that present the

exact same output for the exact same input. Hence, our similarity computation mech-

anism needs to be sufficiently sensitive to identify when two methods function “signif-

icantly” differently for the same input, but at the same time ignore trivial differences

(e.g., the specific data structure used, order of inputs, additional input parameters that

are used). To capture this similarity, we use a Jaccard coefficient (as described in Section

2.4) - a relatively efficient and effective measure of the similarity between two sets. A

high Jaccard coefficient indicates a good similarity, and a low coefficient indicates a poor

23

match.

While it is relatively straightforward to compare simple, primitive values (including

Strings) in Java directly, comparing complex objects of different structures is non-trivial:

one of the key technical roadblocks reported in Deissenbock et al.’s earlier work [32]. To

solve this problem, we adopt the DeepHash [30] approach, creating a hash of each object.

The details of DeepHash can refer to Section 2.4.

The similarity model of HitoshiIO follows Section 2.4. Optimizing the parameter set-

ting for HitoshiIO’s similarity model is extremely expensive. For each different setting,

we need to conduct a user study to determine if more or less functional clones can be

detected, which is inapplicable. We conduct multiple small scale experiments (i.e., pick a

small set of our study subjects) with different βs. Then we manually verify the results to

determine the local optimized value for β, which is 3, for the exponential model of Eq. 2.5

in HitoshiIO. We plan to leverage the power of machine learning to automatically learn

the best β for HitoshiIO in the future.

HitoshiIO has two other parameters that control its similarity matching procedure:

InvT and SimT . We recognize that some hot methods may be invoked millions of times

— while others invoked only a handful. InvT provides an upper-bound for the number

of individual method input-output profiles that are considered for each method. SimT

provides a lower-bound for how similar two methods must be to be reported as a func-

tional clone. We have evaluated various settings for these parameters, and discuss them

in greater detail in Section 2.6.

2.6 Experiments of HitoshiIO

To evaluate the efficacy of HitoshiIO, we conduct a large scale experiment in a codebase

to examine functional clones detected by HitoshiIO. We set out to answer the following

three research questions:

24

Table 2.4: A summary of the experimental codebase containing projects from the Google
Code Jam competitions.

Total # of Avg per-method
Year Problem Set Projects Methods Invocations LOC
2011 Irregular Cake 30 201 24 11.2
2012 Perfect Game 34 241 21 6.4
2013 Cheaters 21 163 26 9.2
2014 Magical Tour 33 220 20 8.1

Across all projects 118 825 22 8.6

RQ1: Does HitoshiIO find functional clones, even given limited inputs and invocations?

RQ2: Is the false-positive rate of HitoshiIO low enough to be potentially usable by

developers?

RQ3: Is the performance of HitoshiIO sufficiently reasonable to use in practice?

Because HitoshiIO is a dynamic system that requires a workload to drive programs,

we selected the Google Code Jam repository [51], which provides input data, as the code-

base of our experiments. The Code Jam is the annual programming competition hosted

by Google. The participants need to solve the programming problems provided by Google

Code Jam and submit their solutions as applications for Google to test. The projects that

pass Google’s tests are published online.

Each annual competition of Google Code Jam usually has several rounds. We examine

the projects from four years (2011-2014), and consider the projects that passed the third

round of competitions. We only pick the projects that do not require a user to input

the data, which can facilitate the automation of our experiments. Descriptive details for

these projects, which form our experimental codebase, can be found in Table 2.4. For

measurement purposes, we only consider methods defined in each project — and not

those provided by the JVM, but used by the project. We also exclude constructors, static

constructors, toString, hashCode and equals methods, since they usually don’t

provide logic.

25

Similarity Threshold
0.7 0.75 0.8 0.85 0.9 0.95

#
 o

f
F

u
n

c
ti
o

n
a

l
C

lo
n

e
s

600

650

700

750

800

850

900

950

1000

1050

1100
Functional Clones by HitoshiIO

Invoke10
Invoke25
Invoke50
Invoke75
Invoke100

Figure 2.4: The number of functional clones detected by HitoshiIO with different param-
eter settings.

HitoshiIO observes the execution of each of these methods, exhaustively comparing

each pair of methods. In this evaluation, we configured HitoshiIO to ignore comparing

methods for similarity that were written by the same developer in the same year. This

heuristic simulates the process of a new developer entering the team, and looking for

functionally similar code that might look different — reporting functional clonem2 ofm1

where both m1 and m2 were written by the same developer at the same time is unlikely

to be particularly helpful or revealing, since we hypothesize that these are likely syntac-

tically similar as well. This suite of projects allows us to draw interesting conclusions

about the variety of functional clones detected: are there more functional clones found

between multiple implementations of the same overall goal (i.e., between projects in the

same year written by different developers), or are there more functional clones found

between different kinds of projects overall (i.e., between years)?

We performed all of our similarity computations on Amazon’s EC2 infrastructure [5],

using a single c4.8xlarge machine, equipped with 36 cores and 60GB of memory.

26

2.6.1 RQ1: Clone Detection Rate

We manipulate two parameters in HitoshiIO, invocation threshold, InvT and similarity

threshold, SimT, to observe the variation of the number of the detected functional clones.

The invocation threshold represents how many unique I/O records should be generated

from invocations of a method. The way that we define the uniqueness of I/O records is

by the hash value derived from their ISrcs andOSinks. HitoshiIO stops generating I/O

records for a method, when its invocation threshold is achieved. Intuitively, more func-

tional clones can be detected with a higher invocation threshold. The similarity threshold

sets the lower-bound for how similar two methods must be to be reported as a clone.

Figure 2.4 shows the number of functional clones detected by HitoshiIO while vary-

ing the similarity threshold (x-axis) and the invocation threshold (each line). With

InvT ≥ 50, the number of the detected functional clones does not increase too much.

However, there is a remarkable increase from InvT = 25 to InvT = 50. If we fix the

SimT to 85%, the difference of detected clones between InvT = 25 and InvT = 50

is 114, but the difference between InvT = 50 and InvT = 100 is only 71. Figure 2.4

also shows that the number of clones does not sharply decrease between SimT = 0.8

to SimT = 0.9. Thus, for the remainder of our analysis, we set InvT = 50 and

SimT = 0.85, and evaluate the quality and number of clones detected with these pa-

rameters.

Given this default setting, HitoshiIO detects a total of 874 clones, which contain 185

distinctive methods that average 10.5 lines of code each. The methods found to be clones

were slightly larger on average than most methods in the dataset. Table 2.5 shows the

distribution of clones, broken down between the pair of years that eachmethodwas found

in, and the size of each clone (less than or equal to 5 lines of code, or larger). In total,

HitoshiIO found 385 clones with LOC ≤ 5 (44%), while 489 of them are larger than 5

LOC (56%). About half of the clones were found looking between multiple projects in

the same year (recall that projects in the same year implement different solutions to the

27

Table 2.5: The distributions of clones detected by HitoshiIO cross the problem sets.

Number of Clones Methods
Compared

Analysis Time
(mins)Year Pair ≤ 5 LOC > 5 LOC Total

2011− 2011 20 14 34 11.6M 1.2
2012− 2012 100 32 132 11.8M 0.9
2013− 2013 18 144 162 8.4M 0.8
2014− 2014 41 65 106 9.3M 0.9
2011− 2012 25 26 51 24.4M 1.9
2011− 2013 16 24 40 20.8M 1.8
2011− 2014 36 40 76 21.6M 2.2
2012− 2013 29 30 59 21.0M 1.7
2012− 2014 59 61 120 21.8M 1.5
2013− 2014 41 53 94 18.6M 1.6

Total 385 489 874 169.5M 14.5

same overall challenge), despite there being fewer potential pairs evaluated (“Methods

Compared” column). This interesting result shows that there are many functional clones

detected between projects that have the same overall purpose, but there are still plenty

of functional clones detected among projects that do not share the same general goal

(comparing between years).

While we did find many clones, our total clone rate, defined to be the number of

methods that were clones over the total number of methods, was 185/825 = 22%. It is

difficult for us to approximate whether HitoshiIO is detecting all of the functional clones

in this corpus, as there is no ground truth available. Other relevant systems, e.g. Elva

and Leavens’ IOE clone detector, were unavailable, despite contacts to the authors [39].

Deissenboeck et al.’s Java system [32], although not available to us, found far fewer clones

with a roughly 1.64% clone rate on a different dataset, largely due to technical issues

running their clone detection system. Assuming that the clones we detected truly are

functional clones, then we are pleased with the quantity of clones reported by HitoshiIO:

there are plenty of reports.

28

2.6.2 RQ2: Quality of Functional Clones

To evaluate the precision of HitoshiIO, we randomly sampled the 874 clones reported

in this study (RQ1), selecting 114 of the clones (approximately 13% of all clones). These

114 functional clones contain 111 distinctive methods with 7.3 LOC in average. For these

clones, we recruited two masters students from the Computer Science Department at

Columbia University to each examine half (57) of the sampled clones, and determine if

they truly were functional clones or not. These students had no prior involvement with

the project and were unfamiliar with the exact mechanisms originally used to detect the

clones. But they were given a high level overview of the problem, and were requested

to report if each pair of clones is functionally similar. The first verifier had 1.5 year of

experiences with Java, including constructing research prototypes. The second verifier

had 3 years of experiences with Java, including industrial experiences as a Java developer.

We asked the verifiers to mark each clone they analyzed by 3 categories: false positive,

true positive, and unknown. To prevent our verifiers from being stopped by some complex

clones, we set a (soft) 3-minute threshold for them to analyze each functional clone, at

which point they mark the clone as unknown. Both verifiers completed all verifications

between 2 to 2.5 hours.

Among these 114 functional clones, 78(68.4%) are marked as true positive, 19(16.6%)

are marked as unknown and 17(14.9%) are labeled as false positive. If we only consider

the categories of false and true positive, the precision can be defined as

precision =
#TP

#FP + #TP (2.8)

The precision of HitoshiIO over all sampling functional clones is 0.82.

Our student-guided precision evaluation is difficult to compare to previous functional

clone works (e.g., [32, 60, 39]), as previous works haven’t performed such an evaluation.

However, overall we believe that this relatively low false positive rate is indicative that

29

HitoshiIO can be potentially used in practice to find functionally similar code.

2.6.3 RQ3: Performance

There are several factors that can contribute to the runtime overhead of HitoshiIO: the

time needed to analyze and instrument the applications under study, the time to run the

applications and collect the individual input and output profiles, and the time to analyze

and identify the clone pairs. The most dominant factor for execution time in our experi-

ments was the clone identification time: application analysis was relative quick (order of

seconds), and the input-output recorder added only a roughly 10x overhead compared to

running the application without any profiling (which was also on the order of seconds).

As shown in Table 2.5, the total analysis time for similarity computation needed to detect

these 874 clones was relatively quick though: only 14.5 minutes.

The analysis time is very directly tied with the InvT parameter, though: the number

of unique input-output profiles considered for each method in the clone identification

phase. We varied this parameter, and observed the number of clones detected, as well

as the analysis time needed to identify the clones, and show the results in Table 2.6. For

each value of InvT , we show the number of clones detected, the clone rate, the number

of clones that were verified as true positives (in the previous section), but missed, and the

total analysis time.

Even considering very few invocations (10) with real workloads, HitoshiIO still de-

tects most of the clones, with very low analysis cost. The time complexity to compute

the similarities for all invocations is O(n2), where n is the number of invocations from

all methods. This implies that the processing time under InvT = 25 is about 25% of the

baseline, but it can detect 95% of the ground truth with real workloads. This result is com-

pelling because: (1) it shows that HitoshiIO’s analysis is scalable, and can be potentially

used in practice, and (2) it shows that even with very few observed executions (e.g., due

to sparse existing workloads), functional clones can still be detected.

30

Table 2.6: The number of missed functional clones with different invocation thresholds
detected by HitoshiIO.

Clones Detected Clones
Missed

Analysis Time
(mins)InvT Total Clone Rate

10 678 20.6% 10 0.6
25 762 21.6% 4 3.8
50 874 22.4% 0 14.5
75 916 22.5% 0 32.5
100 945 22.8% 0 56.6

2.7 Discussions

In designing our experiments, we attempted to reduce as many potential risks to valid-

ity as possible, but we acknowledge that there may nonetheless be several limitations.

For instance, we selected 118 projects from the Google Code Jam repository for study,

each of which may not necessarily represent the size and complexity of large scale multi-

developer projects. However, this choice allowed us to control the variability of the

clones: we could look at multiple projects within a year, which would show us method-

level functional clones between projects that have the same overall goal, and projects

across different years, which would show us those method-level clones between projects

that have completely different overall goals. Future evaluations of HitoshiIOwill include

additional validation that similar results can be obtained on larger, and more complex ap-

plications.

For our evaluation of false positives, we recognize the subjective nature of having a hu-

man recognize that two code fragments are functionally equivalent. However, we believe

that we provided adequate training to well-experienced developers who could therefore,

judge whether code was functionally similar or not, especially given the relatively small

size of most of the clones examined. Given additional resources, cross-checking the ex-

perimental results between users might increase our confidence in evaluating HitoshiIO

in the future.

31

Ideally, we would be able to test HitoshiIO against a benchmark of functional clones:

a suite of programs, with inputs, that have been coded by other researchers to provide

a ground truth of what functional clones exist. Unfortunately, clone benchmarks (e.g.,

[76, 124]) are designed for static clone detectors, and do not include any workloads to

use to drive the applications, making them unsuitable for a dynamic clone detector like

HitoshiIO.

There are also several implementation limitations that may be causing the number of

clones that HitoshiIO detects to be lower than it should be. For instance, the heuristics

that it uses to decide what an I/O is are not sound (Section 2.5.2), which may result in

identifying fewer I/Os than it ought to. These limitations do not effect the validity of our

experimental results, as any implementation flaws would hence be reflected in the results.

To enhance HitoshiIO, we propose to have future developments in the next section.

To offer a more advanced mechanism to identify I/Os of programs, we plan to apply

a taint tracking system such as [18] to capture these I/Os. Currently HitoshiIO records

inputs and outputs as sets without considering item orders. We expect to develop a new

feature that allows users to decide if their data should be stored in sequence or not. Since

our target is to explore programs with similar functionalities, code coverage rate is not

our main concern. However, we are interested in examining the relation between code

coverage rate and detection rate of functional clones in HitoshiIO. For enhancing the

similarity computation, given a method pair, we plan to observe the correlation between

all invocation pairs between them, instead of the current approach to select the one with

the highest similarity.

2.8 Conclusions

Prior work has underscored the challenges of detecting functionally similar code in object

oriented languages. In this thesis, we presented our approach, In-Vivo Clone Detection,

32

to effectively detect functional clones. We implemented such approach in our system

for Java, HitoshiIO. Instead of fixing the definitions of program I/Os, HitoshiIO applies

static data flow analysis to identify potential inputs and outputs of individual methods.

Then, HitoshiIO uses real workloads to drive the program and profiles each method by

their I/O values. Based on our similarity model to compare each I/O profile, HitoshiIO

detected 800+ functional clones in our evaluation with only 15% false positive rate.

With these results, we enable future research that will leverage the information of

function clones. For instance, can functional clones help in API refactoring? Can we help

developers understand new code by showing them some previous examined code that is

functionally similar? We have made our system publicly available on GitHub, and are

excited by the future investigations and developments in the community.

33

Chapter 3

Execution as Behavioral Feature

Detecting “similar code” is useful for many software engineering tasks. Current tools can

help detect code with statically similar syntactic and–or semantic features (code clones)

and with dynamically similar functional input/output (simions). Unfortunately, some

code fragments that behave similarly at the finer granularity of their execution traces may

be ignored. In this thesis, we propose the term “code relatives” to refer to code with similar

execution behavior. We define code relatives and then present DyCLINK, our approach

to detecting code relatives within and across codebases. DyCLINK records instruction-

level traces from sample executions, organizes the traces into instruction-level dynamic

dependence graphs, and employs our specialized subgraph matching algorithm to effi-

ciently compare the executions of candidate code relatives. In our experiments, DyCLINK

analyzed 422+ million prospective subgraph matches in only 43 minutes. We compared

DyCLINK to one static code clone detector from the community and to our implemen-

tation of a dynamic simion detector. The results show that DyCLINK effectively detects

code relatives with a reasonable analysis time.

3.1 Introduction

Code clones [113], which represent textually, structurally, or syntactically similar code

fragments, have been widely adopted to detect similar pieces of software. However, code

clone detection systems typically focus on identifying static patterns in code, so relevant

code fragments that behave similarly at runtime, though with different structures, are

34

ignored. Detecting code fragments that accomplish the same tasks or share similar be-

havior is pivotal for understanding and improving the performance of software systems.

For example, with such functionality, it may be possible to automatically replace an old

algorithm in a legacy system with a new one or to detect commonly repeated tasks to

create APIs (semi)automatically. It may allow quick search and understanding of large

codebases, and de-obfuscation of code.

Towards detecting similarly behaving code, previous work observed code fragments

that yield the same output for the same input [60, 38] or that share similar identifiers

and structural concepts [93, 16, 98]. A significant challenge in detecting similar but not

equivalent code fragments by comparing input and output pairs, a technique also known

as finding simions [61], is judging how similar two outputs need to be for the two code

fragments to be considered simions. Particularly, with object-oriented languages, this

problem may be more complex: the same data can be designed with different project-

specific data types between projects [32].

Our key insight is to shift this similarity comparison to study how each code fragment

computes its result, rather than simply comparing those output results or comparing what

that code looks like. That is, we can gauge how similar two code fragments are without

even looking at the respective inputs and outputs. To represent runtime similarity (i.e.,

how the code fragment computes its result), we introduce the term Code Relatives. Code

relatives are continuous or discontinuous code fragments that exhibit similar behavior,

but may be expressed in structurally or even conceptually different ways. The key rela-

tionship between these code fragments is that they are performing a similar computation

regardless of how similar or dissimilar their outputs may be.

Our key contribution is an efficient system for detecting these code relatives that is ag-

nostic to the output format or identifiers used in the code. Our system, DyCLINK, traces

each program’s execution creating a dynamic dependency graph that captures behav-

ior at the instruction level. These dependency graphs encode rich and dense behavioral

35

information, more than would be found simply observing the outputs of parts of a pro-

gram or obtained from a static analysis of that program. Code relatives are isomorphic

(sub)graphs via fuzzy matching that occur repeatedly between and within these profiled

execution graphs. DyCLINK detects code relatives at any granularity: a code relative may

be a part of a single method or instead be composed of several methods that are executed

in a sequence.

The resulting graphs are large: containing a single node for every instruction, plus

edges representing dependencies. Hence, typical approaches for detecting isomorphic

(sub)graphs are time prohibitive — requiring expensive comparisons between each poten-

tial set of code relatives. In our evaluation, we examined 118 projects for code relatives,

containing a total of 1, 244 different dynamic dependence graphs, which represented a

total of over 422 million subgraphs that would be compared for similarity. To efficiently

identify code relatives in these graphs, we have developed a new algorithm, LinkSub, that

leverages the PageRank[80] algorithm to compare subgraphs and to reduce the number

of pairwise comparisons needed between subgraphs to efficiently detect code relatives (in

our evaluation, filtering away over 99% of the comparisons).

We built DyCLINK, targeting Java programs, but our methodology applies to most

high level languages. We evaluated DyCLINK on a corpus of Java programs that were

known to contain clusters of similar programs. DyCLINK effectively reconstructed the

clusters of programs with very high precision (90+%). We compared DyCLINK with one

state-of-the-art static clone detector plus one dynamic simion detector (input-output sim-

ilarity checker), finding it to be more effective at clustering similarly behaving software.

The main contributions in this section are:

• We define Code Relatives, code sharing similar fine-grained, instruction-level dy-

namic behavior, and their utility.

• We design and implement the DyCLINK system to detect code relatives. DyCLINK

uses dynamic execution traces for identifying code relatives. We have released Dy-

36

CLINK on GitHub under an MIT license [37].

• The key to scalability and effectiveness is our use of link analysis on the dynamic

instruction graphs. We devise the LinkSub algorithm, which efficiently solves the

subgraph isomorphism problem for programs with large numbers of instructions

and dependencies.

• We present a highly-accurate method for classifying programs by running the K

Nearest Neighbors (KNN) [4] algorithm among code relatives.

3.2 Background

Before discussing the details of DyCLINK, we first define the key terms used in this thesis

and discuss some use cases of code relatives.

3.2.1 Basic Definitions

When discussing the notion of similar code, it is important to have a clear definition of

what similar means. For our purpose, two code fragments are similar if they produce sim-

ilar instruction-level runtime behavior, which is witnessed by execution traces (dynamic

dependency graphs) that are roughly equivalent.

• Code fragment: Either a continuous or discontinuous set of code lines.

• Code clone: “A code fragmentCF2 is a clone of another code fragmentCF1 if they

are similar by some given definition of similarity” [113]. We express this as follows.

CF1 and CF2 are code clones if:

fsim(CF1, CF2) ≥ θstat (3.1)

where fsim is a similarity function and θstat is a pre-defined threshold for static code

fragments.

37

• Code relative: An execution of a code fragment generates a trace of that execu-

tion, Exec(CF). We denote the set of a code fragment’s traces as {Exec(CF)}.

Given a similarity function fsim and a threshold θdyn for code execution, two code

fragments, CF1 and CF2, are code relatives if:

fsim({Exec(CS1)}, {Exec(CS2)}) ≥ θdyn (3.2)

In this work, we capture execution traces as dynamic program dependency graphs, and

wemodel the similarity between two code fragments as a subgraph isomorphism problem

described further in Section 3.4.

Code relatives are distinct from “simions” in that simions are code fragments that show

similar outputs given an input, while code relatives show similar behavior, regardless of

their outputs [61]. Moreover, code relatives may consider discontinuous code fragments

and include cases in which their intermediate results (but not outputs) are similar. Code

relatives are not tied to a particular programming abstraction: a code relative may be a

portion of a method, or may represent computation that is performed across several meth-

ods. All code relatives are behavioral code clones given that the definition of “similarity”

is limitless for clones in general. We use the term code relative rather than a variant of

code clone or simion to make their distinctions clear and avoid ambiguity.

3.2.2 Motivation

Detecting similar programs is beneficial in supporting several software engineering tasks,

such as helping developers understand and maintain systems [98], identifying code pla-

giarism [89], and enabling API replacement [73]. Although code clone detection systems

can efficiently detect structurally similar code fragments, they may still miss some cases

for optimizing software and–or hardware that require information about runtime behav-

ior [34]. Programs that have syntactically similar code fragments usually have similar

38

behavior; however programs can still have similar behavior even if their code is not alike

[61, 60].

Moreover, programs may have similar behavior even if their outputs for the same or

equivalent inputs are not identical. In fact, in many cases, it may be difficult to judge

that two outputs are equivalent, or even similar, due to differences in data structures. On

detecting functionally equivalent code fragments in Java, Deissenboeck et al. reported

that 60-70% of the studied program chunks across five open-source projects referred to

project-specific data types[32]. Hence, it is impossible to directly compare inputs and

outputs for equivalence across many projects. To get around these dissimilar data types,

developers would have to specify adapters to convert from project-specific datatypes to

abstract representations that could be compared. By ignoring the outputs of code frag-

ments and observing only their behavior, we can avoid this output equivalence problem.

Consider, for example, the two code examples shown in Figure 3.1, taken from the

libraries Apache Commons Math¹ and Jama², both of which perform the same matrix de-

composition task. In the case of Figure 3.1a, all computation is done in a single method

and the result is stored as instance fields of the object being constructed. In the case of Fig-

ure 3.1b, computation is split between several methods: solve, which invokes several

methods to compute the result, which is returned as a Matrix object (a type defined by

the library). A simion detector (comparing inputs and outputs) would have difficulty to

compare the inputs and outputs when the data structures do not match exactly, and there

may not be clearly defined outputs. A typical clone detector using the abstract syntax tree

of this code would also find it hard to detect the multi-method clone. It would need to

compute callgraph information to consider valid multi-method clones, which again, have

many subtle differences in code structure. In fact, clone detection tools may not consider

these two code listings to be clones, while we argue that they are code relatives and are

¹https://commons.apache.org/proper/commons-math/

²http://math.nist.gov/javanumerics/jama/

39

1 pu b l i c S i ngu l a rVa lueDecompos i t i on (f i n a l
Rea lMa t r i x ma t r i x) {

2
3 / / Genera te U .
4
5 f o r (i n t k = nc t − 1 ; k >= 0 ; k−−) {
6 i f (s i n g u l a rV a l u e s [k] != 0) {
7 f o r (i n t j = k + 1 ; j < n ; j ++) {
8 doub le t = 0 ;
9 f o r (i n t i = k ; i < m; i ++) {

10 t += U[i] [k] * U[i] [j] ;
11 }
12 t = −t / U[k] [k] ;
13 f o r (i n t i = k ; i < m; i ++) {
14 U[i] [j] += t * U[i] [k] ;
15 }
16 }
17 . . .
18 }
19 / / Genera te V .
20 f o r (i n t k = n − 1 ; k >= 0 ; k−−) {
21 i f (k < n r t &&
22 e [k] != 0) {
23 f o r (i n t j = k + 1 ; j < n ; j ++) {
24 doub le t = 0 ;
25 f o r (i n t i = k + 1 ; i < n ; i ++) {
26 t += V[i] [k] * V[i] [j] ;
27 }
28 t = −t / V[k + 1] [k] ;
29 f o r (i n t i = k + 1 ; i < n ; i ++) {
30 V[i] [j] += t * V[i] [k] ;
31 }
32 }
33 }
34 . . .
35 }
36 }

(a) Commons maths’s SingularValueDe-
composition.<init>

1 pu b l i c Mat r ix s o l v e (Mat r ix B) {
2 r e t u r n (m == n ? (new LUDecomposit ion (

t h i s)) . s o l v e (B) : (new
QRDecomposit ion (t h i s)) . s o l v e (B)) ;

3 }
4 pu b l i c QRDecomposit ion (Mat r ix A) {
5 . . .
6 f o r (i n t k = 0 ; k < n ; k++) {
7 . . .
8 i f (nrm != 0 . 0) {
9 . . .

10 f o r (i n t j = k +1 ; j < n ; j ++) {
11 doub le s = 0 . 0 ;
12 f o r (i n t i = k ; i < m; i ++) {
13 s += QR[i] [k] *QR[i] [j] ;
14 }
15 s = −s /QR[k] [k] ;
16 f o r (i n t i = k ; i < m; i ++) {
17 QR[i] [j] += s *QR[i] [k] ;
18 }
19 }
20 }
21 Rdiag [k] = −nrm ;
22 }
23 }
24 pu b l i c Mat r ix s o l v e (Mat r ix B) {
25 . . .
26 f o r (i n t k = 0 ; k < n ; k++) {
27 f o r (i n t j = 0 ; j < nx ; j ++) {
28 doub le s = 0 . 0 ;
29 f o r (i n t i = k ; i < m; i ++) {
30 s += QR[i] [k] *X[i] [j] ;
31 }
32 s = −s /QR[k] [k] ;
33 f o r (i n t i = k ; i < m; i ++) {
34 X[i] [j] += s *QR[i] [k] ;
35 }
36 }
37 }
38 . . .
39 }

(b) Jama’s Matrix.solve

Figure 3.1: A partial comparison of matrix decomposition code from two different li-
braries. Despite differences in each method, both are code relatives.

indeed detected by DyCLINK.

Software clustering and Code search are two domains that rely on similarity detection

between programs and could benefit from code relatives. Software clustering locates and

aggregates programs having similar code or behavior. The clusters support developers

understanding code semantics [77, 91], prototyping rapidly [22], and locating bugs [36].

Code search helps developers determine if their codebases contain programs befitting

their requirements [98]. A code search system takes program specifications as the input

40

and returns a list of programs ranked by their relevance to the specification.

Software clustering and code search can be based on static or dynamic analysis. Static

analysis relies on features, such as usage of APIs, to approximate the behavior of a pro-

gram. Dynamic analysis identifies traits of executions, such as input/output values and

sequences of method calls, to represent the real behavior. A system that captures more

details and represents program behavior more effectively (e.g., instead of simions) can

more precisely detect similar programs in support of both software clustering and code

search.

Based on the use cases above, instead of identifying static code clones or dynamic

simions, we designed DyCLINK, a system to detect dynamic Code Relatives, which repre-

sent similar runtime behavior between programs. We have evaluated DyCLINK, finding

it to have high precision (90+%) when applied to software clustering, results discussed in

Section 3.5.

3.3 Related Work

Code similarity detection tools can be distinguished by the similarity metrics that they

use, exact or fuzzy matching, and the intermediate representation used for comparison.

Common intermediate representations tend to be token-based [14, 63, 86], AST-based

[17, 59], or graph-based [17, 59, 71, 70, 73, 89]. Deckard [59] detects similar but perhaps

structurally different code fragments by comparing ASTs. SourcererCC[115] compares

code fragments using a static bag-of-tokens approach that is fast, but does not target

specifically similarly behaving code with different structures.

Among static approaches, DyCLINK is most similar to those that used program depen-

dence graphs (PDGs) to detect clones. Komondoor and Horwitz [70] generate PDGs for

C programs, and then apply program slicing techniques to detect isomorphic subgraphs.

The approach designed by Krinke [73] starts to detect isomorphic subgraphs with max-

41

imum size k after generating PDGs. The granularity of Krinke’s PDGs is finer than the

traditional one: each vertex roughly maps to a node in an AST. The approach proposed

by Gabel et al. [49] is a combination of AST and graph. It generates the PDG of a method,

maps that PDG back to an AST, and then uses Deckard [59] to detect clones. GPLAG [89]

determines when to invoke the subgraph matching algorithm between two PDGs using

two statistical filters.

Compared with these graph-based approaches that identify static code clones, Dy-

CLINK detects the similar dynamic behavior of programs (code relatives). This allows

DyCLINK to detect code relatives that are dependent upon dynamic behavior, for exam-

ple splitting across multiple methods.

Other previous works in dynamic code similarity detection focus on observing when

code fragments produce the same outputs for the same inputs. Jiang and Su [60] drive

programs with randomly generated input and then observe their output values, identi-

fying clones as two methods that provide the same output for the same input. Li et al.

detect functional similarity between code fragments using dynamic symbolic execution

to generate inputs [85]. Similarly, the MeCC system [65] detects code similarity by ob-

serving two methods that result in the same abstract memory state. CCCD, or concolic

clone detection [75], takes a similar approach, comparing the concolic outputs of meth-

ods to detect function-level input/output similarity. Elva and Leavens propose detecting

functionally equivalent code by detecting methods with exactly the same outputs, inputs

and side effects [39]. Juergens et al. propose simions, two methods that are found to yield

similar outputs for the same input, but provide no automated technique for detecting such

simions [61, 32]. We implement a simion detector for Java, HitoshiIO [123], which at-

tempts to overcome the problem of different data structures through a fuzzy equivalence

matching. HitoshiIO compares the input/output of functions while observing their exe-

cutions in-vivo.

Code relatives differ from all of these dynamic code similarity detection systems in that

42

similarity is compared between the computations performed, not between the resulting

outputs. This important distinction allows for similarly behaving code to be detected

even when different data structures and output formats are used. Moreover, it allows for

arbitrary code fragments to be detected as code relatives: techniques that compare output

equivalence tend to work best at a per-function granularity, because that format provides

a clear definition of inputs and outputs.

In addition to work on fine-granularity clones, much work has been done in the gen-

eral field of detecting similarly behaving software. Marcus andMaletic propose the notion

of high level concept clones, detecting code that addressed the same general problem, but

may have significant structural differences, by using information retrieval techniques on

code [93]. Similarly, Bauer et al. mine the use of identifiers to detect similar code [16].

In addition to code, several approaches analyze software artifacts such as class diagrams

and design documents. This type of analysis helps developers understand similarities/d-

ifferences between software at system level [72, 25].

Software birthmarking uses some representative components of a program’s execu-

tion to create an obfuscation-resilient fingerprint to identify theft and reuse [127, 117].

Code relatives are comparable to birthmarks in that both capture information about how

a result is calculated. However, code relatives are computed using more information than

lightweight birthmarks focusing on the use of APIs [98, 131, 12, 88].

3.4 Approach and Implementation of DyCLINK:

Detecting Code Relatives With Link Analysis

The high-level procedure of DyCLINK is shown in Figure 3.2. To begin, the program(s)

to be analyzed are instrumented to allow DyCLINK to trace their respective executions.

Next, the program(s) are executed given some sample inputs or workloads representative

of their typical use cases, and DyCLINK creates graphs to represent executions of each

43

Application
Code

Instruction
Instrumenter

Graph
Constructor

Link
AnalysisProgram Execution

Input/
Workload

Pairwise
Comparison

Code
Relatives

Graph Construction (Online) Subgraph Matching (Offline)

Figure 3.2: The high-level architecture of DyCLINK including instruction instrumenta-
tion, graph construction, link analysis and final pairwise subgraph comparison.

program, where each instruction is represented by a vertex, and each data and control

dependency is represented by an edge. Then, DyCLINK analyzes these graphs (offline) to

detect code relatives. DyCLINK traces program execution, so its results will be dependent

upon the inputs given to the program: some methods may not be executed at all, while

othersmay only be executed along some specific paths. One upside to this approach is that

it exposes common behavior, allowing code that handles boundary input cases and hence

may not be typically executed to be ignored for the purposes of code relative detection.

However, it still requires that the inputs to the program are representative of actual and

typical workloads. We will discuss this design decision further in Section 3.4.4.

DyCLINK consists of two major components: online graph construction and offline

(sub)graph matching. The graph constructor instruments and observes the execution of

the code being evaluated to generate these dynamic dependency graphs (Section 3.4.1),

while the subgraphmatcher analyzes the collected graphs to detect code relatives (Section

3.4.3). We calculate the similarity of the two dynamic dependency graphs by first link-

analyzing their important instructions (centroids), linearizing them into vectors, and then

calculating the Jaro-Winkler distance between them. This process will be described in

detail in the following sections.

We have selected Java [62] as our target language, so the instructions recorded by Dy-

CLINK are Java bytecodes. DyCLINK makes extensive use of the ASM bytecode instru-

mentation library [11], requiring no modifications to the JVM to find code relatives even

without source code present. To implement the graph matcher for other target languages,

44

we could similarly use runtime binary instrumentation to capture execution graphs, an

approach examined by Demme et al. [34]. The subgraph matching mechanism, which

occurs offline after program execution, is language agnostic.

3.4.1 Constructing Graphs

To construct dependency graphs, DyCLINK follows the JVM’s stack machine to derive the

dependencies between instructions, recording data and control dependencies. Each exe-

cution of each method results in the generation of a new dynamic instruction dependency

graph Gdig, where each vertex represents an instruction and each edge represents an ob-

served dependency. These graphs contain all instructions executed both by that method,

and by the methods that method calls. Each edge in the graph is labeled with a weight,

representing the frequency of its occurrence. We consider three types of dependencies

for our graphs:

• depinst: A data dependency between an instruction and one of its operands.

• depwrite: A read-after-write dependency on a variable.

• depcontrol: A weighted edge indicating that some instructions are controlled by

another (e.g., through a jump), corresponding to the frequency that control will

follow that edge based on the observed executions.

While it is possible to set a different weight for each type of dependency, we currently

weight each equally.

When one method calls another, DyCLINK stores a pointer from the calling method

to its callee, allowing for code relatives to be detected that span method boundaries. This

way, when a target method is examined for code relatives, DyCLINK actually considers

both the trace of that method and the traces of all methods that it calls.

DyCLINK uses two strategies to reduce the total number of graphs recorded. First,

DyCLINK stores these graphs in a flattened form — when a method calls another many

times (e.g., in a loop), DyCLINK identifies that redundancy by using the number of vertices

45

and edges as a hash value, and simply updates execution counts for each edge in the graph.

Second, DyCLINK imposes a configurable quota on the number of times (qcall) that a given

method will be captured at a given call site, which will be discussed in Section 3.5.

3.4.2 Example of DyCLINK

To showcase how DyCLINK constructs a dependency graph, consider the mult()

method in Figure 3.3. Figure 3.3a shows the Java source for thismethod thatmultiplies two

numbers, while Figures 3.3c and 3.3b show the Java compiler’s translation of this source

code into bytecode. Consider tracing an execution of this code, using {a = 8, b = 1}

as input arguments. Figure 3.3d shows the graph that may be constructed from such an

execution. The label of each numbered vertex is the index of a bytecode in Figure 3.3c,

bytecodes in the add method (Figure 3.3b) are labeled as A2, A3 and A4; each edge is

labeled with a counter indicating the number of times it occurred during the run. Every

time that mult() is executed during profiling, a new Gdig will be generated.

To see how the edges are constructed, consider the iload 2 instruction on line

7 (iload x loads a local variable x onto the JVM’s stack). When this instruction is

executed, the controlling instruction is if_icmplt 7 at line 14, so the dependency

depcontrol(14, 7) is constructed. Any additional dependencies are captured transitively

in the graph. Because iload 2 is reading the 2nd local variable, DyCLINK detects

the last instruction executed that wrote it, which is istore 2 at line 3, creating the

dependency depwrite(3, 7). invokestatic on line 9 has two depinst from iload

2 and iload 0, because these instructions are used to invoke the add method. When

add is called, its graph is stored separately, with pointers from the mult graph into it

(vertices A2, A3 and A4). By including this callee graph (add) in its caller graph (mult),

we can detect code relatives that span multiple methods.

Once the programs are executed with sample inputs, Gdigs are then constructed to

represent each method execution. We can proceed to the next phase, subgraph matching.

46

1 static int mult(int a, int b) {
2 int ret = 0;
3 for(int i = 0; i < b; i++) {
4 ret = add(ret, a);
5 }
6 return ret;
7 }
8
9 static int add(int a, int b) {

10 return a + b;
11 }

(a) The mult() method.

1 static add(II)I
2 iload 0
3 iload 1
4 iadd
5 ireturn

(b) The add() instructions.

1 static mult(II)I
2 iconst_0
3 istore 2
4 iconst_0
5 istore 3
6 goto 12
7 iload 2
8 iload 0
9 invokestatic add

10 istore 2
11 iinc 3 1
12 iload 3
13 iload 1
14 if_icmplt 7
15 iload 2
16 ireturn

(c) The mult() instructions.

2

3

4

5

6

12 13

14

7 8

A4

10

11

15

16

Dep_inst

Dep_write

Dep_control

A2 A3

1 1

1

1
1 1

1

1

11

1

1

1

1

1 1

1 1

1 1

1

1

1
1

1

1

1

2 2

1

(d) The mult graph.

Figure 3.3: The mult() method in Java (a), translated into bytecode (b), and a dynamic
instruction dependency graph (c) generated by running mult(8,1).

3.4.3 LinkSub: Link-analysis-based Subgraph Isomorphism

Algorithm

To detect code relatives, DyCLINK first enumerates every pair of Gdigs that were con-

structed: given n Gdigs, there are at most n ∗ (n − 1) ∗ sub pairs to compare, where sub

represents the number of potential subgraphs. Note that because each execution of each

method will generate a new Gdig, each method will have multiple graphs that represent

its executions, meaning that there are moreGdigs than methods. Each recorded execution

of each method is potentially compared to each of the executions of each other method.

47

The executions are represented as graphs, so we model code relative detection as a

subgraph isomorphism problem. There are two types of subgraph isomorphism (or sub-

graph matching): exact and inexact [112]. For exact subgraph matching, a test graph

needs to to be entirely the same as a (sub)graph of a target graph. Exact subgraph match-

ing would only find cases where all instructions and their dependencies are exact copies

between two code fragments; this would be too restrictive to detect code relatives. Be-

cause DyCLINK detects similar but not necessarily identical subgraphs, we are focused on

techniques for inexact subgraph matching.

The key to efficiently performing this matching is to filter out pairs of graphs that

can never match, reducing the number of comparisons needed to a much smaller set. For

example, for each graph, we calculate its centroid, create a simpler representation of each

subgraph (simply a sequence of instructions), and then identify candidate graphs to com-

pare it to, filtered to only those that contain that same instruction. Next, we perform a

constant-time comparison between each potentially matching subgraph, calculating the

euclidean distance between their instruction distributions, to eliminate unlikely matches.

For the remaining subgraphs, we apply a link analysis to each subgraph to create a vector-

ized representation of its instructions, ordered by PageRank. From these ordered vectors,

we apply an edit-distance based model to calculate similarity. Hence, we reduce the run-

ning time in two ways: we consider only potential subgraph matches that seem likely

based on some filters, and then we calculate the actual similarity of those subgraphs.

The overall algorithm is shown at a high level in Algorithm 1. The summary of each

subroutine of LinkSub is as follows:

• profileGraph: Computes statistical information of a Gdig, such as ranking of each

instruction and instruction distribution to identify its centroid.

• sequence: Sort instructions ofGdig by the feature defined by the developer to facil-

itate locating instruction segments. We use the execution order of each instruction

to sort a Gdig.

48

• locateCandidates: Given the centroid of a Gte
dig, locate each instance of that cen-

troid instruction in each potential target graph Gta
dig.

• euclidDist: Compute the euclidean distance between the instruction distributions

of two Gdigss.

• LinkAnalysis: Apply PageRank to a graph, returning a rank-ordered vector of

instructions.

• calcSimilarity: Calculate the similarity of two PageRank ordered instruction vec-

tor using edit distance.

LinkSub models a dynamic instruction dependency graph of a method as a network,

and uses link analysis [23], specifically PageRank [80], to rank each vertex in the network.

The first phase of the algorithm (profileGraph) ranks each vertex in the graph be-

ing examined, calculating the highest ranked vertex (centroid) of the graph. This step

also calculates instruction distribution for subgraph matching. The next phase lists all

instructions of the target graph,Gta
dig, by execution order in the sequence step to facil-

itate locating candidate subgraphs. In the next step, locateCandidates, we select

all subgraphs in the target graph that match the centroid of Gte
dig. If a subgraph in Gta

dig

contains the centroid instruction ofGte
dig then it is potentially a code relative, but if it does

not contain the centroid instruction, then it can’t be. This is effectively the first filter that

reduces the largest set of potential subgraphs to compare.

For each of the potential candidate subgraphs, we next apply a simple filter

(euclidDist) similar to [89], which computes the Euclidean distance between the

distributions of instructions in the graph ofGte
dig and a candidate subgraph from theGta

dig.

If the distance is higher than the threshold, θdist, defined by the user, then this pair of

subgraph matching is rejected. We empirically came to a threshold of 0.1 (the lower the

better) to include only those subgraphs that were mostly similar.

If a candidate subgraph from the Gta
dig passes the euclidean distance filter, DyCLINK

applies its link analysis to this candidate. DyCLINK calculates a PageRank dynamic vector,

49

DV , for the candidate subgraph (LinkAnalysis), where the result is a sorted vector

of all of the instructions (vertices from the subgraph), ordered by PageRank.

Data: The target graph Gta
dig and the test graph Gte

dig

Result: A list of subgraphs in Gta
dig, CodeRelatives, which are similar to Gte

dig

//Compute Statistical Information;
profilete = profileGraph(Gte

dig);
//Change Representation;
seqta = sequence(Gta

dig);
//Filter to find possible matches;
assignedta = locateCandidates(seqta, profilete);
CodeRelatives = ∅ ;
for sub in assignedta do

//Perform multi-phase comparison;
SD = euclidDist(SV(sub), profilete.SV);
if SD > θdist then

continue ;
end
DV sub

target = LinkAnalysis(sub);
dynSim = calcSimilarity(DV sub

target, profilete.DV);
if dynSim > θdyn then

CodeRelatives ∪ sub ;
end

end
return CodeRelatives;

Algorithm 1: LinkSub.

Finally, in calcSimilarity, we use the Jaro-Winkler Distance [27] to measure

the similarity of two DV s, which represents the similarity between two Gdigs. Jaro-

Winkler has better tolerance of element swapping in the instruction vector than con-

ventional edit distance and is configurable to boost similarity if the first few elements in

the vectors are the same. These two features are beneficial for DyCLINK, because the

length ofDV (Gdig) is usually long, and thus may involve frequent instruction swapping.

For representing the behavior of methods, we use the PageRank-sorted instructions from

DV (Gdig). If the similarity between the PageRank vectors from the subgraph of the Gta
dig

and the Gte
dig is higher than the dynamic threshold (θdyn), DyCLINK identifies this sub-

graph as being inexactly isomorphic to Gte
dig. We empirically evaluated several values of

50

this threshold, settling on 0.82 as a default in Section 3.5. We refer to the subgraph similar

to the Gte
dig as a Code Relative in the Gta

dig.

The runtime execution cost of our algorithm will vary greatly with the number of

subgraphs that remain after the two filtering stages. While each filtering stage itself is

relatively cheap (the PageRank computation requires only O(V +E) for a graph with V

nodes andE edges), in the worst case, where we would need to calculate the Jaro-Winkler

similarity of every possible pair of (sub)graphs, the overall running time would be dom-

inated by these computations for (sub)graphs. In practice, however, we have found that

these two filtering phases tend to dramatically reduce the overall number of comparisons

needed, making the running time of LinkSub quite reasonable, requiring only 43 minutes

on a commodity server to detect candidate code relatives in a codebase with over 7, 000

lines of code. Profiling this code base resulted in 1, 244Gdigs, requiring a total worst-case

422+ millions of subgraph comparisons. A complete evaluation and discussion of the

scalability of our algorithm and system are in Section3.5.1.

3.4.4 Limitations

There are several key limitations inherent to our approach that may result in incorrect

detection of code relatives. The main limitation stems from the fact that DyCLINK cap-

tures dynamic traces: the observed inputs must exercise sufficiently diverse input cases

that are representative of true application behavior. A second limitation comes from our

design decision to declare that two code fragments are relatives if there is at least a single

input pair that demonstrates the two fragments to be similar. An ideal approach would

require profiling the application over large workloads representative of typical usage. If

we could guarantee that the inputs observed were truly sufficiently diverse to represent

typical application behavior, then it may be reasonable to consider the relative portion of

inputs that result in a match compared to those that do not. However, with no guarantee

that the inputs that DyCLINK observes are truly representative of the same input distri-

51

bution observed in practice in a given environment, we decide for now to instead ignore

counter examples to two fragments being relatives, declaring them relatives if at least one

pair of inputs provide similar behavior.

Consider the following example of a situation where these choices may result in un-

desirable behavior. The first method will sort an array if the passed array is non-null,

returning -1 if the parameter is null. The second method will read a file if the passed file

is non-null, returning -1 if the parameter is null. If DyCLINK observes executions of each

method with a null parameter, then these two methods will be deemed code relatives, be-

cause there is at least one input pair that causes them to exhibit similar behavior. A future

version of DyCLINK could instead consider all of the inputs received, and the coverage

of each of those inputs towards being representative of overall behavior.

DyCLINK can also fail to detect code that is similar in terms of its input and output

if it has different instruction-level behavior. For example, a method can multiply two

integers, {a, b}, in a convoluted way as Figure 3.3 depicts, or it can simply return a ∗ b.

By our definitions, these are not code relatives, and wouldn’t be detected by DyCLINK.

Due to nondeterminism in a running program, DyCLINK may record different exe-

cution graphs, causing results to vary slightly between multiple profiling runs. In multi-

threaded applications, DyCLINK currently only considers code fragments that execute

within the same thread as code relatives - there is no merging of graphs across threads.

3.5 Evaluations of DyCLINK

We evaluate DyCLINK in terms of both runtime performance and precision. We answer

two research questions:

• RQ1: Given the potentially immense number of subgraph comparisons, is Dy-

CLINK’s performance feasible to scale to large applications?

52

• RQ2: Are the code relatives detected by DyCLINK more precise for classifying

programs than are the similar code fragments found by previous techniques?

Table 3.1: A summary of the code subjects from the Google Code Jam for classifying
software.

Proj Graph Size

Year Problem Tot. Aut. Meth. # Vavg Vmax Eavg

2011 Irregular Cake 48 30 106/154 367 398 6698 958.1
2012 Perfect Game 48 34 122/182 195 138.2 2001 276.6
2013 Cheaters 29 21 95/147 374 283.4 2456 631.7
2014 Magical Tour 46 33 105/159 308 223.6 3709 480.5

Unfortunately, we are limited in our choice of experimental subjects and comparison

approaches by what is publicly available. For example, while there are publicly avail-

able benchmarks of code clones [124] with a ground truth manually provided, we found

many of them did not include sufficient dependencies and build scripts to be compiled

and executed dynamically. To focus our evaluation on projects that were build-able and

distributed with inputs/test cases, we selected projects from the Google Code Jam repos-

itory [51]. Google Code Jam is an annual online coding competition hosted by Google.

Participants submit their projects’ source code online, and Google determines whether

they correctly solve a given problem. Because each submission for the same problem

attempts to perform the same task, we assume that each project within the same year

will likely share code relatives, while projects between different years solving different

requirements will likely not share code relatives or at least fewer.

To compare DyCLINK’s code relative detection with static code clone detection, we

selected the state-of-the-art clone detector available, SourcererCC[115]. While Sourcer-

erCCis highly performant, scaling impressively to “big code”, we admittedly do not expect

to find many near-miss static code clones in independently written Code Jam entries. In

contrast, we would expect to find clusters of dynamic functional I/O simions, since the

independently written entries intend to complete the same tasks. Previous simion detec-

53

Table 3.2: Number of comparisons performed by DyCLINK on the Google Code Jam
projects, showing worst case number of comparisons (without any filtering) and actual
comparisons performed along with the relative reduction in comparisons achieved by Dy-
CLINK. We also show the total analysis time needed to complete each set of comparisons.

Years
Comp.

Subgraphs Compared Analysis Time (sec)

Worst Case Actual Reduction DyCLINK HitoshiIO SourcererCC

2011-2011 49,999,944 258,478 99.48% 836.38 64.00 4.1
2012-2012 5,006,827 7,719 99.85% 14.88 49.00 4.4
2013-2103 35,186,281 280,355 99.2% 392.73 51.00 3.9
2014-2014 19,017,387 123,196 99.35% 230.39 53.00 4.3
2011-2012 38,371,375 12,221 99.97% 49.77 133.00 4.9
2011-2013 93,519,230 45,822 99.95% 193.55 125.00 5.0
2011-2014 70,260,597 10,396 99.99% 70.98 133.00 4.9
2012-2013 30,745,400 32,621 99.89% 68.15 96.00 5.1
2012-2014 21,730,445 31,151 99.86% 63.96 114.00 5.0
2013-2014 58,399,594 460,750 99.21% 653.44 105.00 4.7
Total 422,237,080 1,262,709 99.7% 2574.23 923.00 46.3

tors for object-oriented languages do not address project-specific object data types, due

to the technical challenges reported by Deissenboeck et al. [32]. Therefore, we developed

a simion detector that we have recently built for Java, HitoshiIO [123], specifically de-

signed to overcome these challenges and enable fair comparison of the similarity models.

The information on the evaluation subjects is shown in Table 3.1. For each competition

year, we show the problem name, the number of projects in the repository, the number

of automatic projects without human interactions used in this study, the total number

of executed methods in those projects and the statistics for the captured Gdigs including

the number of graphs and the numbers of vertices and edges. For the executed methods,

we provide two numbers: retained/all. To avoid potentially inflating our results by

includingmatches of trivial methods, we filter out simplemethodswith little work in them

(such as toString and initialization methods). all represents the number of all executed

methods, while retained shows the method number after such filtering.

We discuss some parameter settings of DyCLINK for conducting the experiments in

this thesis. For constructingGdigs in Section 3.4.1, we empirically set the quota at a given

54

call site, qcall as 5. This allows for reasonable performance both in terms of code relative

detection and runtime overhead. For conducting the inexact (sub)graph matching, we set

θdist as 0.1 and θdyn as 0.82 in Algorithm 1, where both parameters range from 0 to 1.

The details of each parameter setting can be found in the GitHub page of DyCLINK [37].

While searching for the best parameter setting for DyCLINK is out of the scope of this

thesis, we plan to utilize machine learning techniques for optimizing DyCLINK in future.

3.5.1 RQ1: Scalability

To evaluate the scalability of DyCLINK, we measured its performance when running on

these 118 projects. The key to DyCLINK’s performance is the relative reduction in sub-

graph comparisons that result from filtering and link analysis steps. If we can greatly

reduce the number of candidate subgraphs to be compared, then DyCLINK will scale,

even on large graphs. Table 3.2 shows the worst case number of pairwise comparisons

that would be needed by a naive subgraph matching algorithm, along with the number of

comparisons that were actually necessary to detect the code relatives. We also show the

analysis time for each of DyCLINK, HitoshiIO, and SourcererCC.

DyCLINK filtered out over 99% of the potential subgraphs to compare, resulting in a

total analysis time of just 43 minutes on an Amazon EC2 “c4.8xlarge” instance. While

this analysis time is significantly longer than the static approach, and still more than

the simion detector, we believe that the analysis runtime is acceptable given the time

complexity to solve the inexact (sub)graph matching problem.

Because DyCLINK is a dynamic profiling approach, there is also a time overhead for

collecting the traces and generating the graphs. Our execution tracer implementation is

unoptimized and records every single instruction. An optimized version might instead

be able to infer and record instructions that expose program behaviors. To trace these

applications took a total time of just over 2.5 hours compared to a baseline execution

time without instrumentation of approximately 1 minute on an iMac with 8 cores and

55

Table 3.3: Code Relatives, Simions and Code Clones detected by project-year and by tool
for DyCLINK, HitoshiIO and SourcererCC.

Years DyCLINK HitoshiIO SourcererCC
Compared

2011-2011 103 21 5
2012-2012 49 59 13
2013-2103 116 181 6
2014-2014 66 43 4
2011-2012 3 19 9
2011-2013 0 9 9
2011-2014 0 19 6
2012-2013 7 6 15
2012-2014 3 25 8
2013-2014 81 24 16
Total 428 406 91

32 GB memory; however the instrumentation overhead can vary significantly with the

complexity of the program — one single subject took 114 minutes to execute, while the

remaining 117 required only a total of 43 minutes to execute. We are confident that the

tracing overhead can be significantly reduced with some optimizations as demonstrated

by other Java tracing systems, such as JavaSlicer [54].

3.5.2 RQ2: Code Relative Detection (Best Graph Match)

We first evaluate the quality of the code relatives detected by DyCLINK by looking at

the number of code relatives detected in projects across and within each year. For this

evaluation, we ran each tool with its default similarity threshold (0.82 for DyCLINK, 0.85

for HitoshiIO and 0.7 for SourcererCC), and a minimum code fragment size of 10 lines of

code (45 instructions for DyCLINK). Table 3.3 shows the number of code relatives detected

by DyCLINK as well as the number of code clones detected by the other two systems.

DyCLINK detected more similar code fragments on average than the other systems did.

Those relatives were skewed to be almost entirely among projects within the same year,

while the other tools tended to find similar code fragmentsmore evenly distributed among

56

and within the project years (recall that all projects in the same year performed the same

task). This result is encouraging, as we expect that there are more code relatives in code

that has the same general purpose than in code that is doing different tasks.

Figure 3.4 shows an exemplary pair of similar code fragments detected by DyCLINK in

Code Jam projects. The two caller methods, calcMaxBet and maxBet, exhibit similar

functionality to maximize bets, so both of them are detected by DyCLINK and HitoshiIO.

However, even though their subroutines, canDo and cost, have similar behavior to

evaluate costs, HitoshiIO cannot detect them as functionally similar by observing their

I/Os. The reason is that their output values will be hard to detect as similar: while canDo

performs a comparison between the cost and budget and returns a boolean, cost solely

computes the cost and leaves the comparison for its caller maxBet. This example shows

the difficulty to detect dynamic code similarities by observing functional I/Os of programs.

We did not conduct a user study as part of this experiment other than random sampling

performed by the authors to ensure the relatives reported were valid. To judge the system

accuracy, we investigated specifically its precision in a software clustering experiment.

Software Community Clustering. To judge the efficacy of DyCLINK in performing

software clustering, we applied a KNN-based classification algorithm to the Google Code

jam projects. Again, our ground truth is that projects from the same year solving the same

problem ought to be in the same cluster.

We apply the K-Nearest Neighbors (KNN) classification algorithm to predict the label

(project year) for each method and then validate the prediction result by Leave-One-Out

methodology: each sample (method) plays as a testing subject exactly once, where all

the rest of the samples play as the training data. The high-level algorithm is shown in

Algorithm 2: for each method, we search for the K other methods that have the greatest

similarity to the current one in the searchKNN step. Each nearest neighbor method

can vote for the current method by its real label in the vote step. The label voted by the

greatest number of neighbor methods becomes the predicted label of the current method.

57

1 static long calcMaxBet(long budget,
2 long[] x,int winningThings) {
3 ...
4 if (canDo(budget, x, winningThings, mid)) {
5 low = mid;
6 } else { high = mid; }
7 ...
8 }
9

10 static boolean canDo(long budget,
11 long[] x,int winningThings,long lowestBet) {
12 long payMoney = 0;
13 for (int i = 0; i < x.length; i++) {
14 if (x[i] < lowestBet) {
15 payMoney += -x[i] + lowestBet;
16 }
17 }
18 return payMoney <= budget;
19 }

(a) The call sequence includes the canDo method

1 long maxBet(long[] a,int count,long b) {
2 ...
3 if (cost(a, count, mid) <= b) {
4 left = mid;
5 } else { right = mid; }
6 ...
7 }
8
9 long cost(long[] a,int count,long bet) {

10 long result = 0;
11 for (int i = 0; i < count; i++) {
12 result += (bet - a[i]);
13 }
14 for (int i = count; i < a.length; i++) {
15 if (a[i] <= bet) {
16 result += (bet + 1 - a[i]);
17 }
18 }
19 return result;
20 }

(b) The call sequence includes the cost method

Figure 3.4: An exemplary code relative.

In the event of a tie, we side with the neighbors with the highest sum of similarity scores.

Then, we track the precision of the approach as the total number of correctly labeled

methods divided by the total number of methods.

58

Data: The similarity computation algorithm SimAlg, the set of subject methods to
be classified Methods and the number of the neighbors K

Result: The precision of SimAlg
realLabel(Methods);
matrixsim = computeSim(SimAlg, Methods);
succ = 0;
form inMethods do

neighbors = searchKNN(m, matrixsim, K);
m.predictedLabel = vote(neighbors);
if m.predictedLabel = m.realLabel then

succ = succ+ 1;
end

end
precision = succ/Methods.size;
return precision;

Algorithm 2: Procedure of the KNN-based software label classification algorithm.

For observing the efficacy of the systems under single and multiple neighbors, we set

K = 1 andK = 5. We also vary the line of code thresholds used for each code fragment’s

minimum size between {10, 15, 20, 30}. Only programs that pass the threshold setting

including LOC and similarity were considered as neighbors of the current program.

The results of this analysis are shown in Table 3.4: DyCLINK showed the highest

precision among all three techniques when examining code fragments that consisted of

at least ten lines of code. When excluding the smallest fragments (for example, looking

only at those with 20 lines of code or more), the simion detector HitoshiIO performed

slightly better. The methods being incorrectly categorized by HitoshiIO were mostly less

than 20 lines of code. SourcererCCdid not find sufficient clones that were longer than 30

lines of code to allow for clustering at that level, and hence, the precision value is not

available. Because we use the project year as the label for each method, it is possible that

some syntactically similar code detected by SourcererCCis not identified as a true positive

case.

Figure 3.5 shows the clustering matrix based on DyCLINK’s KNN-based classification

result with K = 1, LOC = 10. Each element on both axes of the matrix represents a project

59

Table 3.4: Precision results fromKNN classification of the Google Code Jam projects using
DyCLINK, HitoshiIO and SourcererCC, while varying K and the minimum fragment
length considered.

Min.
Fragm.

K=1 K=5

DyCLINK HitoshiIO SourcererCC DyCLINK HitoshiIO SourcererCC

10 0.94 0.81 0.35 0.91 0.77 0.34
15 0.94 0.86 0.48 0.92 0.86 0.45
20 0.87 0.95 0.55 0.90 0.95 0.45
30 0.92 0.91 N/A 0.91 0.91 N/A

indexed by the abbreviation of the problem set to which it belongs and the project ID. We

sort projects by their project indices. Only projects that have at least one code relative

with another project are recorded in the matrix. The color of each cell represents the

relevance between the ith project and the jth project (the darker, the higher), where i and

j represent the row and column in the matrix. The project relevance is the number of code

relatives that two projects share. Each block on the matrix forms a Software Community,

which fits in the problem sets that these projects aim to solve. These results show that

DyCLINK is capable of detecting programs with similar behavior and then cluster them

for further usage such as code search.

3.5.3 Discussions

Through this evaluation, we have shown that DyCLINK is an effective tool for detect-

ing similar code fragments. There are several potential limitations to our experiments,

however. Even though we may have manually come to the conclusion that two code

fragments are code relatives and assuming that we are internally valid in that conclusion,

two developers’ definitions of “similarly behaving” code may differ. We believe that we

have limited the potential for this bias through our study design: we purposely selected a

suite of projects that are known to be likely to contain similarly behaving code, because

they were performing the same overall task. Hence, when we conclude that DyCLINK is

effective at finding behaviorally similar code, we come to this conclusion both from our

60

Software Community based on Code Relatives

I1 I2 I3 I4 I5 I6 I7 I8 I9I10I11I12I13I14I15I16I17I18I19I20I21I22I23I24I25I26I27I28P1P2P3P4P5P6P7P8P9P10P11P12P13P14P15P16P17P18C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17M1M2M3M4M5M6M7M8M9M10M11M12M13M14M15M16M17M18M19M20M21M22M23M24M25

I1
I2
I3
I4
I5
I6
I7
I8
I9

I10
I11
I12
I13
I14
I15
I16
I17
I18
I19
I20
I21
I22
I23
I24
I25
I26
I27
I28
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12
P13
P14
P15
P16
P17
P18
C1
C2
C3
C4
C5
C6
C7
C8
C9

C10
C11
C12
C13
C14
C15
C16
C17
M1
M2
M3
M4
M5
M6
M7
M8
M9

M10
M11
M12
M13
M14
M15
M16
M17
M18
M19
M20
M21
M22
M23
M24
M25

Irregular Cake

Perfect Game

Cheaters

Magic Tour

Figure 3.5: The software community based on code relatives detected by DyCLINK. The
darker color in a cell represents a higher number of code relatives shared by two projects.

internal review and also from the external construction, that by definition, the code ought

to behave similarly (at least on some scale).

However, this selectivity comes at a cost: the projects that we selected might be too

homogeneous overall, and not sufficiently representative of software in general. We could

bolster our claims by performing a broader study on, for instance, large open-source

projects from GitHub. We could construct a user study to help establish a ground truth

for what “similar code” really is.

Dynamic analysis and static analysis have their own opportunities and obstacles in

detecting different types of similar code. Thus, we plan to distill and integrate the advan-

tages of DyCLINK and SourcererCCto devise a new approach for detecting similar code

fragments more effectively with better efficiency.

61

3.6 Conclusions

Determining when two code fragments are “similar” is a subjective and complex prob-

lem. We have distilled the problem of detecting behaviorally similar code fragments

into a subgraph isomorphism problem based on dynamic dependency graphs that cap-

ture instruction-level behavior. To feasibly analyze the hundreds of millions of potential

matching subgraphs, we have devised a novel link-analysis based algorithm, LinkSub,

which greatly reduces the number of pairwise comparisons needed to detect code rela-

tives, and then efficiently compares them using PageRank. DyCLINK detects behaviorally

similar code better than previous approaches, and has reasonable runtime overhead. We

have released DyCLINK under an MIT license on GitHub [37]. A tutorial regarding how

to use DyCLINK can be found in Section 3.7.

One key limitation of our approach is from its dynamic nature: because it relies on

program execution traces to detect code relatives, it is only applicable to situations where

the subject code can be executed. In addition to being executable at all, there must be

valid inputs that are representative of a program’s normal behavior to expose its typical

use cases and generate representative traces. In our previous work [123], we applied

applications’ existing test suites for this purpose, but recognize that test suites may not

be truly representative of application usage. Alternatively, automated input generation

tools [47, 107] could be used to drive the application. We plan to experiment with input

generation techniques, allowing us to apply DyCLINK to larger scale systems than studied

in this thesis. Furthermore, we plan to construct a benchmark suitable for use for dynamic

code similarity detection. This benchmark would contain not only workloads and scripts

to compile and run each application, but also a human-judged ground-truth of program

similarity, analogous to the static code clone benchmark, BigCloneBench [124].

We also plan to study additional applications of our link-analysis based graph com-

parison algorithm. For example, we plan to explore the possibility to apply DyCLINK

to support software development tasks related to behavior, such as (semi)automatic API

62

generation and code search.

3.7 Artifact Description

We provide a tutorial to replay the result of Table 3.3. A virtual machine (VM) containing

DyCLINK and all required software can be accessed from DyCLINK’s Github page [37].

Users can first read Section 3.7.7 to check the VM’s limitation. We conducted our experi-

ments on an iMac with 8 cores and 32 GB memory to construct graphs (Section 3.7.4) and

Amazon ec2 “c4.8xlarge” instances to match graphs (Section 3.7.5).

3.7.1 Required Software Suites

If the user chooses to use our VM, this step can be skipped. The user needs to install

JDK 7 [58] to execute our experiments on DyCLINK. DyCLINK is a Maven project [97].

If the user wants to re-compile DyCLINK, the installation of Maven is required. Dy-

CLINK needs a database system and GUI to store/query the detected code relatives. We

use MySQL and MySQL Workbench. For downloading and installing them, the user can

check MySQL’s website [104]. For setting up the database, the user can find more details

indycl_home/scripts/db_setup, wheredycl_home represents the home di-

rectory of DyCLINK.

3.7.2 Virtual Machine

We set up the credential with “dyclink” as the username and “Qwerty123” as

the password for our VM. The home of DyCLINK is /home/dyclink/dy-

clink_fse/dyclink. For starting MySQL, the user can use the command sudo

service mysql start. The credential for MySQL is “root” as the username and

“qwerty” as the password.

63

3.7.3 System Configuration

Before using DyCLINK, the user needs to change to the home directory of DyCLINK.

The user first uses the command ./scripts/dyclink_setup.sh to create all re-

quired directories for executing DyCLINK. DyCLINK has multiple parameters to specify

in the configuration file: config/mib_config.json. For reproducing the experi-

mental results, the user can simply use the this configuration file.

3.7.4 Dynamic Instruction Graph Construction

We put our codebases for the experiments under codebase/bin. The user will find

4 directories from “R5P1Y11” to “R5P1Y14”. These 4 directories contain all Google Code

Jam projects we used in the thesis from 2011 to 2014.

Before executing the projects in a single year, the user needs to specify the graph di-

rectory for the graphDir field in the configuration file. This is to tell DyCLINK where

to dump all graphs. For example, the user sets graphDir to graphs/2011 for stor-

ing graphs of the projects in 2011. We have created subdirectories for each year under

graphs.

We prepare a script to automatically execute all projects in a single year:

./scripts/exp_const.sh $yearDir. For example, the user can execute all

projects in 2011 by the command ./scripts/exp_const.sh R5P1Y11. Most

years can be completed between 0.5 to 3 hours on the VM, but 2013 may cost 20+ hours

and need more memory.

The cache directory records cumulative information for constructing graphs. If

users fail any year, they need to first clean the cache directory and reset thread-

MethodIdxRecord in the configuration file to be empty, and re-run every year.

64

3.7.5 (Sub)graph Similarity Computation

Because we compute the similarity between each graph within and between years, there

will be totally 10 comparisons. For storing the detected code relatives in the database, the

user needs to specify the URL and the username in the configuration file.

For computing similarities between graphs in the same year, the user can issue

./scripts/dyclink_sim.sh -iginit -target graphs/$year,

where $year is between {2011, 2014}. For different years, the command is

./scripts/dyclink_sim.sh -iginit -target graphs/$y1 -test

graphs/$y2, where

$y1 and $y2 are between {2011, 2014}. DyCLINK will then prompt for user’s decision

to store the results in the database The user needs to answer “true”.

On the VM, we suggest the user to detect code relatives for 2011−2012, 2011−2014,

2012−2012 and 2012−2014, if we exclude the projects in 2013. The other 6 comparisons

may take 20+ hours to complete on the VM.

3.7.6 Result Analysis

For analyzing code relatives for a comparison, the user needs to retrieve the compari-

son ID from the dyclink database. The user first queries all comparisons by the SQL

command as Figure 3.6 shows via MySQL Workbench, and then checks the ID for the

comparison. lib1 and lib2 show the years (codebases) in a comparison. If the val-

ues for lib1 and lib2 are different such as 2011− 2012, this comparison contains the

code relatives between different years. If the values are the same such as 2012−2012, this

comparison is within the same year. Figure 3.6 checks the comparison ID (299) for code

relatives within 2012 (2012− 2012).

For computing the number of code relatives, the user can use the command

./scripts/dyclink_query.sh $compId $insts $sim -f with 4 pa-

rameters. The $compId represents the comparison ID. The $insts represents the

65

Figure 3.6: The exemplary UI of MySQL Workbench to check the comparison ID.

minimum size of code relatives with 45 as the default value. The $sim represents the

similarity threshold with 0.82 as the default value. The flag -f filters out simple utility

methods in our codebases. An exemplary command for the 2012−2012 comparison with

$compId = 299 is ./scripts/dyclink_query.sh 299 45 0.82 -f.

3.7.7 Potential Problems

The major potential problem is the performance and memory of VM. Some experiments

regarding 2013 may cost too much time and need more memory than the VM has. If

the OutOfMemoryError occurs, the user can increase the memory for the VM and

sets -Xmx for JVM in the corresponding commands under the scripts directory. For

completing all experiments in our thesis, we suggest to run DyCLINK on a real machine.

66

Chapter 4

Topics in Program Binary as Behavioral Feature

Android applications are nearly always obfuscated before release, making it difficult to

analyze them for malware presence or intellectual property violations. Obfuscators might

hide the true intent of code by renaming variables, modifying the control flow of meth-

ods, or inserting additional code. Prior approaches toward automated deobfuscation of

Android applications have relied on certain structural parts of apps remaining as land-

marks, un-touched by obfuscation. For instance, some prior approaches have assumed

that the structural relationships between identifiers (e.g. that A represents a class, and B

represents a field declared directly in A) are not broken by obfuscators; others have as-

sumed that control flow graphs maintain their structure (e.g. that no new basic blocks are

added). Both approaches can be easily defeated by a motivated obfuscator. We present a

new approach to deobfuscating Android apps that leverages deep learning and topic mod-

eling on machine code, Macneto. Macneto makes few assumptions about the kinds of

modifications that an obfuscator might perform, and we show that it has high precision

when applied to two different state-of-the-art obfuscators: ProGuard and Allatori.

4.1 Introduction of MAChiNE TOpic: Macneto

Android apps are typically obfuscated before delivery, in an effort to decrease the size of

distributed binaries and reduce disallowed reuse. In some cases, malware authors take

advantage of the general expectation that Android code is obfuscated to pass off obfus-

cated malware as regular code: obfuscation will hide the actual purpose of the malicious

67

code, and the fact that there is obfuscation will not be surprising, as it is already a gen-

eral practice. Hence, there is great interest in automated deobfuscators: tools that can

automatically find the original structure of code that has been obfuscated.

Deobfuscators can be used as a part of various automated analyses, for instance, pla-

giarism detection or detecting precise versions of third party libraries that are embedded

in apps, allowing auditors to quickly identify the use of vulnerable libraries. Similarly,

deobfuscators can be used to perform code search tasks among obfuscated apps using re-

covered identifiers and simplified control flow. Deobfuscators can also be used as part of

a human-guided analysis, where an engineer inspects applications to determine security

risks.

In general, deobfuscators rely on some training set of non-obfuscated code to build a

model to apply to obfuscated code. Once trained, deobfuscators can recover the original

names of methods and variables, or even the original structure and code of methods that

have been obfuscated. For example, some deobfuscation tools rely on the structure of

an app’s control flow graph. However, they are susceptible to obfuscators that introduce

extra basic blocks and jumps to the app’s code and can be slow to use, requiringmany pair-

wise comparisons to perform their task [121, 41]. Using another approach, DeGuard [20]

is a state-of-the-art deobfuscator that builds a probabilistic model for identifiers based on

the co-occurrence of names (e.g., knowing that some identifier a is a field of class bwhich

is used by method c). While this technique can be very fast to apply (after the statistical

model is trained), this approach is defeated by obfuscators that change the layout of code

(e.g. move methods to new classes or introduce new fields).

We present a novel approach for automated deobfuscation of Android apps: Mac-

neto, which applies recurrent neural networks and deep learning to the task. Macneto

leverages a key observation about obfuscation: an obfuscator’s goal is to transform how

a program looks as radically as possible, while still maintaining the original program se-

mantics. Macneto deobfuscates code by learning the deep semantics of what code does

68

through topic modeling. These topic models are a proxy for program behaviors that are

stable despite changes to the layout of code, the structure of its control flow graph, or

any metadata about the app (features used by other deobfuscators). These topic mod-

els are trained using a relatively simple feature set: a language consisting of roughly 20

terms that represent the different low-level bytecode instructions in Android apps and

roughly 200 terms that represent the various Android APIs. Macneto’s topic model is

resilient to many forms of obfuscation, including identifier renaming (as employed by

ProGuard [109]), method call injection, method splitting, and other control flow modifi-

cations (as employed by Allatori [3]).

Macneto uses deep learning to train a topic classifier on known obfuscated and un-

obfuscated apps offline. This training process allows Macneto to be applicable to various

obfuscators: supporting a new obfuscator would only require a new data set of obfus-

cated and deobfuscated apps. Then, these models are saved for fast, online deobfuscation

where obfuscated code is classified according to these topics, and matched to its original

code (which Macneto hadn’t been trained to recognize). This search-oriented model al-

lows Macneto to precisely match obfuscated code to its deobfuscated counterpart. This

model is very applicable to many malware-related deobfuscation tasks, where a security

researcher has variousmalware samples and is trying to identify if those samples had been

hidden in an app. Similarly, it is immediately applicable to plagiarism-related deobfusca-

tion tasks, were an analyst has the deobfuscated version of their code and is searching for

obfuscated versions of it.

We evaluatedMacneto by building several deobfuscationmodels based on over 1, 500

real android apps using two popular, advanced obfuscators: ProGuard [109] and Allatori

[3]. Compared to a state-of-the-art statistical approach [20], Macneto had significantly

higher precision at recovering method names obfuscated by ProGuard 96% vs 67%.

On Allatori (which employs significantly more complex obfuscations), Macneto

maintained a good precision (91%), while the state-of-the-art approach could not be ap-

69

plied at all. Moreover, we found that Macneto performs well even with a relatively small

training set. Based on these findings, we believe that Macneto can be very successful at

deobfuscating method names.

The contributions of this thesis are:

• A new approach to deobfuscation leveraging deep learning and machine topics.

• A new approach to automatic classification of programs with similar semantics.

• An evaluation of our tool on two popular obfuscators.

4.2 Background

In general, obfuscators make transformations to code that result in an equivalent exe-

cution, despite structural or lexical changes to the code — generating code that looks

different, but behaves similarly. Depending on the intended purpose (e.g. hiding a com-

pany’s intellectual property, disguising malware, or minimizing code size), a developer

may choose to use a different kind of obfuscator. At a high level, these obfuscations

might include lexical transformations, control transformations, and data transformations

[28]. Obfuscators might choose to apply a single sort of transformation, or several.

Lexical transformations are typically employed by “minimizing” obfuscators (those

that aim to reduce the total size of code for distribution). Lexical transformations replace

identifiers (such as method, class or variable names) with new identifiers. Since obfus-

cators are applied only to individual apps, they must leave identifiers exposed via public

APIs unchanged. Similarly, if some obfuscated class C1 extends some non-obfuscated

class C2 and overrides method m, then the obfuscator can’t change the name of m with-

out breaking inheritance structures.

Control transformations can be significantly more complex, perhaps inlining code

from several methods into one, splitting methods into several, reordering statements,

adding jumps and other instructions [90, 110]. Control transformations typically leverage

70

the limitations of static analysis: an obfuscator might add additional code to a method,

with a jump to cause the new code to be ignored at runtime. However, that jump might

be based on some complex heap-stored state which is tricky for a static analysis tool to

reason about.

Finally, data transformations might involve encoding data in an app or changing the

kind of structure that it’s stored in. For instance, an obfuscator might encrypt strings in

apps so that they can’t be trivially matched, or change data structures (e.g. in Java from

an array to an ArrayList) [90].

In this thesis we define the deobfuscation problem as follows. A developer/security

analyst has access to a set of original methods and their corresponding obfuscated ver-

sions, and her job is to identify the corresponding original version given obfuscated pro-

gram. Then the developer/analyst can analyze the original program to identify malware

variants which becomes a significantly easier problem. Thus, in our case, deobfuscation

essentially becomes a search problem, similar to DeGuard [20].

We assume that obfuscators can make lexical, control, and data transformations to

code. We do not base our deobfuscation model on any lexical features, nor do we base it

on the control flow structure of or string/numerical constants in the code. When inserting

additional instructions and methods, we assume that obfuscators have a limited vocab-

ulary of no-op code segments to insert. That is, we assume that there is some pattern

(which need not be pre-defined) that our deep learning approach can detect. Macneto

relies on a training phase that teaches it the rules that the obfuscator follows: if the obfus-

cator is truly random (with no pattern to the sort of transformations that it makes), then

Macneto would be unable to apply its trained deobfuscation model to other obfuscated

apps. However, we imagine that this is a reasonable model: an adversary would have to

spend an incredible amount of resources to construct a truly random obfuscator.

Since it relies on static analysis, Macneto could also be defeated by an obfuscator that

inserts many reflective method calls (which are dynamically resolved at runtime). This

71

obfuscator could effectively mask all of the 250 features that Macneto uses to classify

methods to topic vectors. In that case, Macneto would be relying only on the bytecode

instructions. Macneto could be adapted to better analyze reflection through existing

techniques [84].

4.3 Related Work

Although in a programming language identifier names can be arbitrary, real devel-

opers usually use meaningful names for program comprehension [87]. Allamanis et

al.[1] reported that code reviewers often suggest to modify identifier names before ac-

cepting a code patch. Thus, in recent years, naming convention of program iden-

tifiers drew significant attention for improving program understanding and mainte-

nance [1, 24, 81, 126, 8, 96]. Among the identifiers, a good method name is particularly

helpful because they often summarize the underlying functionalities of the correspond-

ing methods [56, 2]. Using a rule-based technique, Host et al. [56] inferred method names

for Java programs using the methods’ arguments, control-flow, and return types. In con-

trast, Allamanis et al. used a neural network model for predicting method names of Java

code [2]. Although these two studies can suggest better method names in case of naming

bugs, they do not look at the obfuscated methods that can even change the structure of

the program.

JSNice [111] and DeGuard [20] apply statistical models to suggest names and identi-

fiers in JavaScript and Java code, respectively. These statistical models work well against

so called “minimizers” — obfuscators that replace identifier names with shorter names,

without making any other transformations. These approaches can not be applied to ob-

fuscators that modify program structure or control flow.

While Macneto uses topic models as a proxy for application and method behavior,

a variety of other systems use input/output behavior [60, 123, 61], call graph similarity

72

Source
Code

Deep
Learning

Machine
Code

Call Graph
Analyzer

Machine
Topics

Instruction
Dist.

Computation

inst.
vectors

Obfuscated
Machine Code

Instruction
Dist.

Computation
Graph Diff.
Analyzer

inst.
vectors

⎡

⎢

⎢

⎢

⎣

t1

t2
.

.

.

tm

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

i1

i2
.

.

.

in

⎤

⎥

⎥

⎥

⎦

inst.
vectors inst.

vectors

topic
vectors

Program
Classifier

obfus.

Unknown
Machine code

Topic
Filter

Relevance
Scorer

Predicted
Machine code

Offline
Training

Online
Deobfuscation

Classification/Annotation Co-Training

Testing

Figure 4.1: The system architecture of Macneto, which consists of four stages: instruc-
tion distribution, classification, deep-learning on machine topics and online scoring, to
deobfuscate Android apps.

[121, 41], or dynamic symbolic execution [100, 85, 75]. Macneto is perhaps most similar

to systems that rely on software birthmarks, which use some representative components

of a program’s execution (often calls to certain APIs) to create an obfuscation-resilient fin-

gerprint to identify theft and reuse [127, 117, 98, 131, 12, 88]. One concern in birthmarking

is determining which APIs should be used to create the birthmark: perhaps some API calls

are more identifying than others. Macneto extends the notion of software birthmarking

by using deep learning to identify patterns of API calls and instruction mix, allowing

it be an effective deobfuscator. Further, Macneto extends the notion of birthmarks by

considering not just the code in a single method, but also instructions called by it.

4.4 Macneto Overview

From a set of original and obfuscated methods, Macneto intends to identify the original

version of a given obfuscated method. Here we describe an overview of Macneto.

Although obfuscators may perform significant structural and/or naming transforma-

73

tions, the semantics of a program before and after obfuscation remain the same. Macneto

leverages such semantic equivalence between an original program executable and its ob-

fuscated version at the granularity of individual methods. The semantics of a method are

captured as the hidden topics of its machine code (“machine topics”) instead of human

texts such as identifier names in methods. By construction, an obfuscated method is se-

mantically equivalent to its original, non-obfuscated method that it is based on. Macneto

assumes that the machine topics of an obfuscated method will match those of the original

method. In its learning phase, Macneto is provided a training set of methods, which are

labeled pairs of obfuscated and non-obfuscated methods. Once training is complete, Mac-

neto can be presented with an arbitrary number of obfuscated and deobfuscated meth-

ods, and (assuming that the deobfuscated method exists in the input set) accurately match

each obfuscated method with its original version. In the event that the original method

body isn’t known, Macneto can return a suggested method (that it had been trained on)

which was very similar to the original method, and, in our evaluation, typically has the

same name.

A high level overview of Macneto’s approach for deobfuscation is in Figure 4.1. Mac-

neto utilizes a four stage approach, where the first three stages occur offline and can be

pre-trained:

(i) Computing Instruction Distribution. For an application binary (original or obfus-

cated), Macneto parses each method as a distribution of instructions, which is analogous

to the term frequency vector for a document. Instead of considering just the instructions

of each method, Macneto also recursively considers the instructions of each method’s

callee(s), which helps Macneto to deeply comprehend behavioral semantics.

(ii)Machine TopicModeling. Identifiesmachine topics from the instruction distribution

of the original method. These machine topics are used as a proxy for method semantics.

The same topic model is used later to annotate the corresponding obfuscated method as

well.

74

(iii) Learning. Uses a two-layered Neural Network (NN) where the input is the in-

struction distribution of a method (original and obfuscated), and the output layer is the

corresponding machine topic distribution of the original method. Macneto uses this

two-layered NN as a program classifier that maps an original method and its obfuscated

version to the same class and represented by machine topic vector . This is the training

phase of the NN model. Such model can be pre-trained as well.

(iv) Deobfuscating. This is basically the testing phase of the NN model. It operates on

a set of original and obfuscated methods that form our testing set. Given an obfuscated

method, the above RNN model tries to infer its topic distribution; Macneto in turn tries

to find a set of original methods with similar topic distribution and ranks them as possible

deobfuscated methods.

Consider the example readAndSort program shown in Figure 4.2, assuming that

this is a method belonging to an Android app that we are using to train Macneto. To

compute the instruction distribution of readAndSort, Macneto first calculates the

callgraph and identify its two callees read and sort. The instruction distributions of

these two callee methods will be inlined into readAndSort. Then Macneto moves

to the next step, applying topic modeling on the instruction distributions of all methods

including readAndSort in the training app set. The result of this step is a vector

containing the probability/membership that a method has toward each topic: a Machine

Topic Vector (MTV). Macneto annotates both the original and obfuscated versions of

this method with this same MTV. This annotation process allows our learning phase to

predict similar MTVs for a method and its obfuscated version, even when their instruction

distributions are different.

75

4.5 Macneto Approach

This section describes the four stages of Macneto in detail, illustrating our several design

decisions. We have designed Macneto to target any JVM-compatible language (such as

Java), and evaluate it on Android apps. Macneto works at the level of Java bytecode; in

principle, its approach could be applied to other compiled languages as well. In this thesis,

executable/binary actually means Java bytecode executable and machine code means Java

bytecode.

4.5.1 Computing Instruction Distribution

We use the instruction distribution of a method to begin to approximate its behavior. This

involves two main steps:

1. for a target method m (original or obfuscated), Macneto recursively identifies all

methods that it invokes (its callees) and then cumulatively computes the instruction

distribution of m and its callees using term frequency distribution,

2. Macneto identifies the differences in callees between an original and obfuscated

method using a graph diff algorithm, and optionally filters out the additional callees

from obfuscated methods.

Here, we will explain each of these steps.

Instruction Distribution (ID)

ID is a vector that represents the frequencies of important instructions. For a method

Mj , its instruction distribution can be represented as IDMj
= [freqI1j , freqI2j , ...freqIaj],

where a represents the index of an instruction and freqIaj represents the frequency of

the ath instruction in the method Mj . This step is similar to building the term frequency

vector for a document.

76

Macneto considers various bytecode operations as individual instructions (e.g. load-

ing or storing variables), as well as a variety of APIs provided by the Android framework.

Android API calls provide much higher level functionality than simple bytecode opera-

tors, and hence, including them as “instructions” in this step allows Macneto to capture

both high and low level semantics. However, including too many different instructions

when calculating the distribution could make it difficult to relate near-miss semantic sim-

ilarity.

To avoid over-specialization, Macneto groups very similar instructions together and

represents them with a single word. For instance, we consider all instructions for adding

two values to be equivalent by abstracting away the difference between the instruction

fadd for adding floating point numbers and the instruction iadd for adding integers.

All instructions for adding different data types are categorized as a single one xadd.

Table 4.1 lists all of the instructions Macneto considers.

Further, for a target method under analysis, Macneto inlines the instructions from the

target’s callee method(s) recursively in the instruction distribution to capture the target’s

context. For that, Macneto constructs callgraphs for applications and libraries using

FlowDroid [10], a state-of-the-art tool that uses context-, flow-, field-, and object-sensitive

android lifecycle-aware control and data-flow analysis [10]. For example, consider the

method readAndSort as shown in Figure 4.2. readAndSort simply reads the first

line of a file as a string and then sorts this string. It delegates its functionality to two

subroutines, readFile and sort. Both readFile and sort also invoke several

methods, such as toCharArray and readLine APIs included in Android to help

them complete their tasks. The corresponding call graph is shown in Figure 4.2a.

Macneto considers following two classes of callee methods: (i) Android APIs. These

methods are offered by the Android framework directly. Macneto models these APIs as

single instructions. readLine and toCharArray in Figure 4.2 belong to this cate-

gory. (ii)Applicationmethods. These are all the other methods beside Android APIs. These

77

1 public String readAndSort(String f) {
2 char[] data = readFile(f);
3 return sort(data);
4 }

readAndSort

readFile

sort

BufferedReader

FileReader

readLine

toCharArray

String

(a) The readAndSort method and its callgraph.

1 public static char[] readFile(String f) {
2 try {
3 BufferedReader br =
4 new BufferedReader(new FileReader(f));
5 String first = br.readLine();
6 return first.toCharArray();
7 } catch (Exception ex) {
8 }
9 return null;

10 }
11 public static String sort(char[] data) {
12 for (int i = 1; i < data.length; i++) {
13 int j = i;
14 while (j > 0 && data[j - 1] > data[j]) {
15 char tmp = data[j];
16 data[j] = data[j - 1];
17 data[j - 1] = tmp;
18 j = j - 1;
19 }
20 }
21 return new String(data);
22 }

(b) The callee methods of readAndSort.

Figure 4.2: The readAndSort method and its callgraph (a). Two callee methods,
readFile and sort, of readAndSort (b).

78

Table 4.1: Macneto’s instruction set.

Opcode Description

xaload Load a primitive or an object from an array, where
x represents a type of primitive or object.

xastore Store a primitive or an object to an array, where x
represents a type of primitive or object.

arraylength Retrieve the length of an array.
xadd Add two primitives on the stack, where x repre-

sents a type of primitive.
xsub Subtract two primitives on the stack, wherex rep-

resents a type of primitive.
xmul Multiply two primitives on the stack, wherex rep-

resents a type of primitive.
xdiv Divide two primitives on the stack, where x rep-

resents a type of primitive.
xrem Compute the remainder of two primitives on the

stack, where x represents a type of primitive.
xneg Negate a primitive on the stack, where x repre-

sents a type of primitive.
xshift Shift a primitive on the stack, where x represents

integer or long.
xand Bitwise-and two primitives on the stack, where x

represents integer or long.
xor Bitwise-or two primitives on the stack, where x

represents integer or long.
x_xor Bitwise-xor two primitives on the stack, where the

first x represents integer or long.
iinc Increment an integer on the stack.
xcomp Compare two primitives on the stack, where x

represents a type of primitive.
ifXXX Represent allif instructions. Jump by comparing

value(s) on the stack.
xswitch Jump to a branch based on the index on the stack,

where x represents table or lookup.
android_apis The APIs offered by the Android framework,

which usually starts from android.,
dalvik., java.. Macneto records 235
android apis.

79

are methods from an application or third party libraries used by an application. While

Macneto treats Android APIs as individual instructions, all other application method

calls are inlined into the calling method, resulting in the instruction distributions of those

callee methods being merged directly in the target method. We can then define the in-

struction distribution of a target method Mj as:

IDMj
= IDMj

+
∑

Mk∈callees(Mj)

IDMk
(4.1)

, where j is the index of the current method and k represents the indices of its callee meth-

ods. We use these instruction distributions as the input source for next step to identify

topics embedded in programs.

To calculate these instruction distributions, Macneto uses the ASM Java bytecode

library [11], and Dex2Jar [35]. This allows Macneto to deobfuscate Android apps (which

are distributed as APKs containing Dex bytecode), while only needing to directly support

Java bytecode. For collecting Android APIs, we analyze the core libraries from Android

API level 7 to 25 [6].

Graph Diff

Some obfuscators may inject additional instructions into the original methods, which

might then change instruction distribution and hence the perceived semantics of those

methods. Since Macneto inlines application method calls, inserting additional method

calls could cause significant distortions to the instruction distribution of a method. Mac-

neto combats this obfuscation by learning (and then filtering out) superfluous method

calls that are systematically inserted by obfuscators from the callgraphs before/after ob-

fuscation of the original method. We call this learning module on callgraphs as graph

diff.

For each method in an Android app, Macneto first analyzes the callee difference of

80

the current method Mj before and after the obfuscation

∆Mj = callees(M obfus
j)− callees(Mj) (4.2)

, where callees(Mj) and callees(M obfus
j) represent the callees ofMj before and after the

obfuscation, respectively. If ∆Mj is not empty, Macneto records the instruction distri-

butions of the methods in∆Mj as patterns. In a training app set, Macneto computes the

appearances of each pattern (instruction distribution) it learns from the callee differences

and reports those patterns having high support. We first define the total callee differences

detected by Macneto as

Diffcallee(T) =
∪
k

∆Mk (4.3)

, where T represents a training app set and k is the method index. Then we define the

support of a pattern as

Support(Patterni) =
Count(Patterni)∑
j Count(Patternj)

(4.4)

, where i is pattern index, Patterni ∈ Diffcallee(T) andCount(.) returns the appearance

number of a pattern.

We again use readAndSort example in Figure 4.2 to demonstrate how graph

diff works. Let’s assume an obfuscator injects a method decrypt(String)

to method readAndSort; the callees of obfuscated readAndSort becomes

callee(readAndSortobfus) = {read,sort,decrypt}. Thus, the ∆readAndSort =

{decrypt}. The instruction distribution of decrypt, IDdecrypt, is recorded by Mac-

neto as a pattern. If the support of such pattern is higher than a threshold (0.03 in this

thesis), Macneto reports it as a significant pattern and uses it to filter out superfluous

method calls in the testing app set.

Note that the Graph Diff step is optional, but can have a positive impact to recover

81

methods obfuscated by an advanced obfuscator. We evaluated the impact of including the

Graph Diff step in detail in Section 4.6.

4.5.2 Machine Topic Modeling

Topic modeling [21] is a generative model that identifies the probabilities/memberships

that a document has to (hidden) topics or groups. Topic modeling has been widely used in

software engineering literature to understand programs and detect anomalies [116, 52].

Most existing approaches apply topic modeling on human-readable program elements

(e.g, method names, comments or texts in source code) or program documents to identify

hidden topics. These approaches treat each program as plain text and use topic modeling

to identify topics in programs, as labeled by human words. However, these human words

may be noisy and inadequate to describe program behavior. Further, an obfuscated or

anonymized program may not have a meaningful method name or other identifiers, and

would not have any comments left. Existing approaches reliant on humanwords to cluster

or classify programs by topics may fail to process such programs.

In contrast, in this thesis, we propose the concept of Machine Topics, where we at-

tempt to identify the probability distribution that a method belongs to multiple topics

from machine code. We further include machine code of the callee methods to retrieve

the contextual semantics as well. Modeling instructions (machine code) as terms and

methods as documents, Macneto uses Latent Dirichlet Allocation [21] to extract hidden

machine topics in methods. We extract topics from the original method since some noisy

instructions such as nop might be injected into an obfuscated method by an obfuscator.

To the best of our knowledge, Macneto is the first system to identify topics of programs

from machine code.

LDAmodels each document as a sequence of words, where each document can exhibit

a mixture of different topics. Each topic is subsequently modeled as a vector of words.

Here, we model instruction distribution of a method as a document where each instruc-

82

tion is a word. Thus, following the concept of LDA, a machine topic becomes a vector of

instructions (machine words) and can be represented as:

MTi = [PrI1i , P rI2i ...P rIai] (4.5)

, whereMTi is the ith machine topic andPrIai represents the probability of the instruction

Ia belonging to the topic in MTi. Each method can also be modeled in terms of machine

topic vector (MTV):

MTV (Mj) = [PrMT1
j , P rMT2

j ...P rMTb
j] (4.6)

, where Mj represents the jth method and MTb represents the bth machine topic. PrMTb
j

represents the probability/membership of the method Mj belonging to the topic MTb.

In Macneto, we define 35machine topics (b = 35) and have 252 types of instructions

(a = 252) as we listed in Table 4.1. While optimizing the topic number is out of the scope

of this thesis, we observe that 35 machine topics can split all methods in a reasonable

way. Using these 35 machine topics, we generate unique machine topic vector (MTV).

Note that, the dimension of each MTV is same as the topic number, i.e., 35, although

the number of topic vectors can be potentially infinite due to different probability values

(see Equation 4.6). Thus, a unique method Mj can have a unique topic vector MTV (Mj)

that encodes the probability of the method belonging to each machine topic. MTV (Mj)

becomes the semantic representation of both Mj and its obfuscated counter part M obfus
j .

We annotate each original and its obfuscated method with the corresponding machine

topic vector and use them to train our NN based classifier, which will be discussed in

Section 4.5.3. To compute machine topics and topic vector for each method, we use the

Mallet library [92].

In the next two steps, Macneto aims to deobfuscate an obfuscated method using a NN

based deep learning technique. In the training phase, the NN learns the semantic relation-

83

ship between a original and obfuscated method through their unique MTV. Next, in the

testing (deobfuscating) phase, given a obfuscated method, NN retrieves a set of candidate

method having similar MTVs with the obfuscated method. Macneto then scored these

candidate methods and outputs a ranked list of original methods with similar MTVs.

4.5.3 Deep Learning Phase

In this step, Macneto uses a NN based deep learning technique [119] to project the low-

level features (Instruction Distributions) of methods to a relevant distribution of machine

topics (Machine Topic Vector). Macneto treats MTV as a proxy for program semantics,

which should be invariant before and after obfuscation. Thus, MTV can serve as a sig-

nature (i.e., class) of both original and obfuscated methods. Given a training method set

T , Macneto attempts to project each method Mj ∈ T and its obfuscated counterpart

M obfus
j to the same MTV, i.e., Mj →MTV (Mj)←M obfus

j .

Similar deep learning technique is widely adopted to classify data [119]. However,

most of these data comes with pre-annotated classes to facilitate learning. For exam-

ple, Socher et al. [119] uses deep learning to classify images to relevant wordings. Such

work has benchmarked images accompanied with correct descriptions in words to train

such classifiers, Macneto does not have any similar benchmarks. However, Macneto

does have available sets of applications, and has access to obfuscators. Hence, Macneto

builds a training set by co-training a classifier on obfuscated and deobfuscated methods

(with Macneto knowing the mapping from each training method to its obfuscated coun-

terpart).

Macneto characterizes eachmethodMj andM obfus
j by the samemachine topic vector

MTV (Mj), allowing it to automatically tag each method for training program classifiers.

Given an unknown obfuscated method, Macneto can first classify it to relevant machine

topics (a MTV), which helps quickly search for similar and relevant original method. Only

these original methods sharing similar MTVs with the unknown method will be scored

84

and ranked by Macneto, which enhances both system performance and effectiveness of

deobfuscation.

To train such projection/mapping, Macneto tries to minimize the following objective

function

J(Θ) =
∑
Mj∈T

∥∥MTV (Mj)− g(θ(2) · f(θ(1) ·Mj))
∥∥2

+
∥∥∥MTV (Mj)− g(θ(2) · f(θ(1) ·M obfus

j))
∥∥∥2

(4.7)

, where T is a training method set,MTV (Mj) ∈ Rb (becauseMacneto defines bmachine

topics), Θ = (θ(1), θ(2)), θ(1) ∈ Rh×a and θ(2) ∈ Rb×h. For hidden layers, Macneto uses

tanh function (f(.)) as the first layer and uses logistic function (g(.)) as the second layer.

Macneto uses the technique of stochastic gradient descent (SGD) to solve this objective

function.

As we discussed in Section 4.5.2, there can be infinite classification (MTV) in Mac-

neto, which may result in the un-convergence of our classifier learning. Thus in this

learning phase, we select those methods having high memberships (> 0.67) toward spe-

cific machine topics. Our experiment result shows that the classifier built on these high-

membership methods actually work on all methods (see Section 4.6).

4.5.4 Deobfuscating

Taking an obfuscated method as a query, Macneto attempts to locate which original

method in the codebase have the lowest distance from it. The NN in Macneto can effec-

tively infer the machine topic vector (MTV) of an unknown obfuscated method and then

locate a set of original candidates having similar MTVs measured by the cosine similarity.

To further score and rank candidates, we develop a scoring model, which takes both

semantic information and structural information of programs [41, 99] into account. For

semantic information, we use the instruction distribution as the feature. For structural

85

information, we select the features of methods on callgraphs, which include centrality

(PageRank in this thesis), in-degree (how many other methods call this method) and out-

degree (how many other methods this method calls) of the method. We then use a linear

combination to compute distance between two methods:

Dist(Mk,Ml,W) = winst ∗Distinstkl + wc ∗Distckl

+win ∗Distinkl + wout ∗Distoutkl

(4.8)

, where k and l are method indices, and W = {winst, wc, win, wout}. For computing

Distinstkl , we apply cosine similarity, while for the other three features, we compute the

absolute differences between two methods.

Because our objective is to maximize the precision of the deobfuscation, we can for-

malize our objective function as

argmax
W

∑
i

I(Mi, Deob(M obfus
i , T,Dist(Mk,Ml,W))) (4.9)

, where T is a trainingmethod set,Deob(.) returns the nearest neighbor method ofM obfus
i

based on the distance function and I(.) returns 1 if the results from Deob(.) is Mi else

return 0. To solve this function, we apply Simulated Annealing [69] to Macneto for

optimizing the weighting numbers W .

4.6 Evaluation

We evaluated the performance of Macneto on two popular obfuscators: ProGuard [109]

andAllatori [3]. For each obfuscator, we gaveMacneto the task of recovering the original

version of each obfuscated method. We selected these obfuscators based on a recent sur-

vey of Android obfuscators, selecting ProGuard for its widespread adoption and Allatori

for its complex control and data-flow modification transformations [13]. We performed

86

our evaluation on the most recent versions of these tools at time of writing: ProGuard

5.3.2 and Allatori 6.0. In particular, we answer the following two research questions:

• RQ1: How accurately can Macneto deobfuscate methods transformed by a lexical

obfuscator?

• RQ2: How accurately canMacneto deobfuscate methods that are obfuscated using

control and data transformation?

To judge Macneto’s precision for method deobfuscation, we needed a benchmark

of plain apps (that is, not obfuscated) from which we could construct training and test-

ing sets. For each app, we applied both ProGuard and Allatori, each of which output a

mapping file (to aid in debugging) between the original (not obfuscated) method, and the

obfuscated equivalent. Hence, we used the 1, 611 Android apps from the F-Droid open-

source repository of Android apps as experimental subjects [42]. In our experiments, we

vary the numbers of apps included in training and testing app sets and then randomly

select apps into both sets.

We first split these apps into a training set and a testing set and then obfuscate each of

them. Both the original and obfuscated training sets are used to train the program classi-

fier using the first three steps outlined above. To evaluate the deobfuscation precision of

Macneto, we use methods in each app in the obfuscated testing set as a query to see if

the original versions of these obfuscated methods can be retrieved by Macneto from the

original testing set. In our training and testing phase in this thesis, we filter out the triv-

ial methods having very few instructions (< 30) or very few types of instructions (< 10),

because they may not offer sufficient information for Macneto to deobfuscate. The con-

structormethods<init> and<clinit> are also excluded, because their functionality

is usually setting up fields in classes/objects without too much logic.

We compare our results directly with the state-of-the-art Android deobfuscator De-

Guard [20]. While DeGuard can support inferring other obfuscated information, such as

field names and data types in programs in addition to method names, we only compare

87

Macneto’s capability to recover method names. Note that the evaluate suite we used

(from F-Droid) matches the same suite used in Bichsel et al.’s evaluation of DeGuard [20].

The size of full app set from F-Droid we use is slightly different with DeGuard: we have

1, 611 apps but DeGuard has 1, 784. This is because about 170 apps cannot be processed

by the Allatori obfuscator or use some 3rd party libs that are not included in app, which

are detected byMacneto. DeGuard’s approach is not applicable to obfuscators that trans-

form control flow (such as Allatori), and hence, we only include DeGuard results for the

ProGuard experiments.

As a baseline, we also compare Macneto to a naïve approach that simply calculates

the distance between two methods using the feature-scoring equation presented in the

previous section (equation 4.8). This baseline does not include Macneto’s topic modeling

classifier and weighting number optimization for the scoring equation.

4.6.1 Evaluation Metrics

We use two metrics to evaluate Macneto’s performances to deobfuscate programs: pre-

cision and Top@K. We first define a testing method set as {Mi|i ∈ R}, and its obfuscated

counterpart as {M obfus
j |j ∈ R}, where i and j are the method indices. The definition of

precision is

precision =

∑
j I(Mj, Deob(M obfus

j))∣∣∣{M obfus
j }

∣∣∣ (4.10)

, where Deob(.) returns the deobfuscation result of M obfus
j by a system and I(.) returns

1 if the result of Deob(.) is the same with the real original version Mj , else returns 0.

As we discussed in Section 4.1, we model the deobfuscation problem as a nearest

neighbor search problem. Thus, we also use Top@K, which is widely adopted to mea-

sure the performance of search systems, as an evaluation metric. Top@K is a generalized

88

version of precision, if we replace Deob(.) in Eq. 4.11 by a ranking function:

Top@K =

∑
j I(Mj, Rank(M obfus

j , {Mi}, K))∣∣∣{M obfus
j }

∣∣∣ (4.11)

, where Rank(.) first computes the distance between M obfus
j and each method in the

testing method set {Mi} by a distance function (Eq. 4.8 in this thesis), and then returnK

methods having the shortest distances from {Mi}. I(.) returns 1 if the original versionMj

is in theK methods returned byRank(.), else returns 0. Precision, then, is Top@1. In our

experiments, we use K = {1, 3, 10} to evaluate the system performance. For DeGuard,

because it only predicts the best answer (K = 1) and we cannot access their source code

after contacting the authors, we only evaluate DeGuard by precision.

4.6.2 Deobfuscating ProGuard

RQ1.How accurately can Macneto deobfuscate methods transformed by a lexical obfus-

cator?

To compare Macneto with DeGuard, we use the same testing and training data sets

as used to evaluate DeGuard [20], which includes 110 Android apps for testing. A direct

comparison between the two systems is complicated: Macneto only considers methods

that are reachable from any entry point (e.g. those on a callgraph rooted by standard An-

droid entry points), whereas DeGuard considers all methods in an app for deobfuscation

(including those that could never be called). Further, for evaluating DeGuard, the origi-

nal paper [20] attempts to map an obfuscated method to a method in the training apps, so

some obfuscated methods having names that never appear in the training apps may not

be matched. Because the source code of DeGuard is not freely available online (or from

the authors), we were not able to modify DeGuard to fit our evaluation. For completeness,

we include the comparison results with this caveat.

We use the rest 1, 501 apps as the training data set to train Macneto and deobfuscate

89

these same 110 apps used in the evaluation of DeGuard. On this task, we found that the

precision (i.e. Top@1) of Macneto was 96.29%. Top@3 and Top@10 of Macneto are

99.31% and 99.86%, respectively.

While Bichsel et al. report the overall precision (80%) of DeGuard on all program

properties including method names, field name, data type, etc., the exact precision for

each specific program property is not reported (except graphically) [20]. To determine

the precision of DeGuard on method names alone, we used the DeGuard web interface

[31] to attempt to deobfuscate these same 110 apps. While we do not find the information

about the mapping between obfuscated methods and their deobfuscated counterparts on

this web interface, we can only compute the precision by counting the percentage of the

deobfuscated method names appearing in the original apps. In this experiment, we found

DeGuard’s precision on deobfuscating method names to be 66.59% by our evaluation,

matching the results in Figure 6 of the original DeGuard paper [20].

Macneto achieves almost perfect deobfuscation on ProGuard in our evaluation. Pro-

Guard renames identifiers (human words) in programs without further program transfor-

mation, such as changing control flow. Thus, the instruction distributions and structural

information of each method are similar before and after ProGuard’s obfuscation. The pro-

gram classifier and the scoring function inMacneto can resolve such identifier renaming,

because the information in the machine code mostly stays similar.

We also apply the naïve approach developed by us to deobfuscate these apps. The

precision is 53.84%, 74.79% and 90.79% for Top@1, Top@3 and Top@10, respectively.

Comparing Macneto with the naiv̈e approach, we can find that our deep learning based

program classifier can help enhance the precision of deobfuscation. The naïve approach

also relies on the instruction distribution to deobfucate methods, but this approach seems

to be too sensitive. Its precision (Top@1) is only 53.84%, even though its Top@10 is

reasonable: ∼ 91% of methods can be ranked in the top 10 positions.

Result 1:Macneto can deobfuscate lexically obfuscated methods with 96% precision.

90

Table 4.2: Results of deobfuscating Allatori-obfuscated code.

#Train #Test Method Worst Real
ID APKs APKs Selection Methods System Gdiff. comp. comp. Filter Top@1 Top@3 Top@10 Boost@1

#1 1501 110 0.67 1, 932
Macneto ✓ 3.92 M 2.04 M 47.85% 91.10% 96.95% 98.81% 206% ↑
Naïve 29.76% 33.59% 35.92%

#2 1501 110 N/A 12, 690
Macneto ✓ 174.30 M 11.70 M 93.29% 81.33% 89.55% 92.36% 87% ↑
Naïve 43.56% 48.79% 58.52%

#3 1501 110 0.67 2, 148
Macneto 4.81 M 2.77 M 42.35% 75.42% 90.27% 95.58% 231% ↑
Naïve 22.77% 26.16% 30.30%

#4 1501 110 N/A 12, 695
Macneto 174.37 M 11.28 M 93.53% 68.96% 82.47% 89.37% 102% ↑
Naïve 34.21% 40.48% 51.45%

#5 1111 500 0.67 12, 533
Macneto ✓ 213.60 M 46.82 M 78.08% 69.62% 82.37% 92.25% 74% ↑
Naïve 40.12% 45.83% 51.36%

#6 1111 500 N/A 97, 578
Macneto ✓ 11203.32 M 500.01 M 95.54% 69.86% 81.84% 89.61% 140% ↑
Naïve 29.16% 33.26% 37.71%

#7 1111 500 0.67 10, 798
Macneto 161.68 M 38.78 M 76.02% 52.15% 65.91% 78.16% 58% ↑
Naïve 33.11% 39.78% 46.33%

#8 1111 500 N/A 97, 567
Macneto 11202.06 M 464.81 M 95.85% 50.30% 63.14% 73.52% 149% ↑
Naïve 20.19% 23.91% 27.86%

#9 611 1000 0.67 30, 102
Macneto ✓ 1130.81 M 117.40 M 89.62% 63.99% 78.11% 87.09% 129% ↑
Naïve 27.90% 32.79% 42.52%

#10 611 1000 N/A 152, 817
Macneto ✓ 26991.00 M 984.13 M 96.35% 69.56% 81.37% 88.63% 108% ↑
Naïve 33.43% 38.01% 43.97%

#11 611 1000 0.67 25, 064
Macneto 805.63 M 79.81 M 90.09% 35.59% 53.79% 66.57% 115% ↑
Naïve 16.53% 20.30% 25.85%

#12 611 1000 N/A 152, 817
Macneto 26991.00 M 1082.85 M 95.99% 48.51% 60.42% 69.56% 105% ↑
Naïve 23.65% 27.83% 32.25%

Column Description: ID: Conguration ID; Train APKs and Test APKs: numbers of training and testing APKs,
respectively; Method Selection: denotes a method’s membership towards a machine topic; Method: total number of
testing methods; System: system under evaluation; Gdiff: whether graph diff module is enabled or not; Worst comp.:
total number of method comparisons without program classifier; Real comp.: total number of method comparisons
with the program classifier; Filter: the percentage of unnecessary comparisons that is saved by Macneto; Boost@1:
enhancement achieve by Macneto over the naïve approach on precision (Top@1).

It outperforms a naiv̈e approach by 42 percentage points.

4.6.3 Deobfuscating Allatori

RQ2. How accurately can Macneto deobfuscate methods that are obfuscated using con-

trol and data transformation?

Compared with ProGuard, which mainly focuses on renaming identifiers in programs,

Allatori changes control flow and encrypts/decrypts strings via inserting additional meth-

ods into programs. To demonstrate the performance of Macneto against such advanced

obfuscations, we trained 6 deobfuscation models (varying several parameters such as the

91

sizes of training and testing app sets of Macneto) and report the precision and Top@K.

We consider building and applying each model to two types of testing methods:

1. all methods that have been obfuscated, and

2. only significant methods that have been obfuscated, as determined by those that

have relatively high memberships (> 0.67) toward any machine topic.

This leads to 12 results (6 models ∗ 2 types of method set) in our evaluation.

The overall results of the 6models on 2 types of method sets as well as the comparison

results between Macneto and the naïve approach can be found in Table 4.2. In Table

4.2, the “ID” column represents the configuration ID, where we have 12 configurations

in total. The “Train apps” and “Test apps” columns represent the numbers of training

and testing apps, respectively. Note that the size of training apps does not matter to

the naïve approach, because it simply relies on instruction distributions and the vanilla

weighting numbers to deobfuscate programs. We randomly split all apps from F-Droid

into our training and testing app sets. Note that the configuration 4 with {Train =

1501, T est = 110} matches the exact same configuration used in the original evaluation

of DeGuard. The “Method Selection” column denotes the two types of method selection

based on the filtration criteria of methods’ membership towards any topic as discussed

above, and the “Method” column records the number of testing method. The “System”

column shows which system we evaluate, and the “Gdiff” column shows if our graph diff

module discussed in Section 4.5.1 is enabled or not.

As discussed in Section 4.5.4, Macneto uses the program classifier to filter out those

methods that do not share the similar classification (MTV) of a given obfuscated method.

The “Worst comp.” column shows the total comparison numbers at the scale of million

methods in the deobfuscation stage (see Section 4.5.4) without the program classifier that

Macneto would have to perform, and the “Real comp.” column reports the total compar-

ison number with the program classifier. The “Filter” column represents the percentage

of unnecessary comparisons that can be saved by Macneto with the program classifier.

92

The “Top@K” columns, where K = {1, 3, 10}, are self-explanatory. The “Boost@1” col-

umn shows the enhancement achieve by Macneto over the naïve approach on precision

(Top@1).

There are three key findings we observe in Table 4.2

1. Good deobfuscation performance: In general, Macneto can achieve 80+% Top@10

under most configurations. As the number of the training apps grows, Macneto

can even achieve ∼ 99% Top@10.

2. Effectiveness of the program classifier trained by deep learning: The filter rate of

unnecessary comparisons is usually higher than 80% for most configurations. Such

filtering achieved by our program classifier also enhances the system performance

of Macneto to deobfuscate programs, which will be discussed in the following

paragraphs.

3. Effectiveness of graph diff : Given the same training-testing app set, Macneto can

have up to 20% enhancement on Top@10 by enabling graph diff. Allatori encrypts

string literals in programs, so it injects additional methods into programs to decrypt

these strings, which changes the program structure and instruction distribution.

Our graph diff. module precisely identifies these injected decryption. With the

graph diff. module, Macneto achieves roughly 90% Top@10 when the size of the

training data is small.

The Boost column shows the precent increase in precision from the naïve approach to

Macneto—note that this improvement is more than 100% inmost models. As the number

of testing apps increases, which means that the number of training apps decreases (this

only influences Macneto, since the naïve approach does not have a training phase), the

performance of both system drops, even though Macneto still outperforms the naïve

approach. Macneto offers a relatively stable precision when the size of testing apps

(152K+ methods in 1000 apps) is large and the size of training apps (611 apps) is small:

∼ 70% Top@10, while the naïve approach drops to about 32%. By enabling the graph diff.

93

module, Macneto can achieve 88 + % Top@10, which does not even drop significantly

due to the increase of the search range (testing set).

The same finding can also be observed when we evaluate both systems on the signif-

icant methods having memberships > 0.67 toward specific machine topics in the testing

app set. While the performance of the naïve approach does not improve significantly,

Macneto has about 10% improvement on the precision compared with testing on all

methods in Table 4.2, when the size of test apps is 110. This results in Macneto achieves

200% boost over the naïve approach.

In general, the deobfuscation precisions of Macneto steadily increase as the size of

the training/testing set increases/decreases, while the precisions of naïve approach do not

enhance significantly as the size of search range (testing set) decreases. For most of the

configurations, Macneto can rank the correct original versions of 80% of the obfuscated

methods in the top 10 position. Even though the training app set is small (611 apps), the

Top@10 offered by Macneto is still about ∼ 70%.

Result 2:Macneto can deobfuscate up to 91% precision. It significantly outperforms

a naiv̈e approach in all the tested configurations.

4.6.4 Threats to Validity

In our evaluation, we collect 1600+ apps from an open-source repository. It is possi-

ble that such app set is not representative enough. Also, we apply Macneto to recover

programs obfuscated by two obfuscators in our evaluation. Some threat models and trans-

formation techniques adopted by other obfuscators may not be evaluated in this thesis.

In the future, we plan to collect more apps and obfuscators to test and enhance the system

capability of Macneto.

When we split the apps into training set and testing set, we use a random approach.

It is possible that Macneto may not perform well on some testing sets, but we only have

3 in our evaluation. To enhance the confidence on Macneto, we can conduct a K-fold

94

cross validation [7] to make sure the performance of Macneto is stable.

4.6.5 Limitations

Currently, Macneto relies on the callgraph of the app to understand the semantic of each

method and merge instruction distributions. Thus, only the methods in the callgraph

can be deobfuscated by Macneto. These methods are potentially the ones that will be

executed in runtime.

The graph diff. module in Macneto can identify the methods frequently injected by

the obfuscator. By using the instruction distribution as the pattern, Macneto can com-

pute which patterns appear frequently in the training apps after obfuscation and then

filter out the methods having the same instruction pattern in the testing apps. One possi-

ble obfuscation thatMacnetomay not be able to handle is to randomly generatemethods,

where each method has different instruction distribution. In this way, Macneto may not

be able to determine which methods are intentionally injected by the obfuscator. The

other possibility is that some methods having the similar instruction distributions with

the detected patterns can be falsely filtered by Macneto. Further, because Macneto

recursively merges instructions from callee methods into their caller methods, even if a

single method is falsely filtered, a large portions of method can be affected in a negative

way. One potential solution for these two limitations is to use data flow analysis [10] in

Macneto to determine which callees may not influence the result of the current method

so that they can be safely removed.

4.7 Conclusions

Deobfuscation is an important technique to reverse-engineer an obfuscated program to

its original version, which can facilitate developers understand and analyze the program.

We present Macneto, which leverages topic modeling on instructions and deep learn-

95

ing techniques to deobfuscate programs automatically. In two large scale experiments,

we apply Macneto to deobufscate 1600+ Android APKs obfuscated by two well-known

obfuscators. Our experiment results show that Macneto achieves 96 + % precision on

recovering obfuscated programs by ProGuard, which renames identifiers in APKs. Mac-

neto also offers great precision on recovering programs obfuscated by an advanced ob-

fuscator, Allatori, which changes control flow and inserts additional methods into APKs

in addition to renaming identifiers. Compared with a naïve approach relying on instruc-

tion distribution of the obfuscated method to search for the most similar original version

in the codebase, Macneto has up to 200% boost on the deobfuscation precision.

96

Chapter 5

Discussions of Similarity Detection

Identifying similar code can support multiple software engineering tasks including en-

hancing maintenance of software systems, searching for relevant code befitting develop-

ers’ purposes, clustering/classifying programs etc. In this chapter, we categorize both of

our and existing approaches to detect different types of similar programs and discuss their

potential applications.

While the categorization of all similar programs/software is an open question, we

attempt to classify similar programs into six categories, which can be seen in Table 5.1.

The category column describes the name of the category; the description column gives

a high level explanation regarding how to detect similar programs by some features of

programs for the given category; the analysis column records which types of analysis

that the current category usually uses: static, dynamic or both; the existing work column

summarizes the papers/publications that we will discuss in this chapter. The Learning

category can be orthogonal to the other five categories, because the learning techniques

can potentially be integrated with these five categories to analyze programs.

5.1 Static Detection of Similar Programs

5.1.1 Revisit of Static Features

Roy et al. [114] conducted a survey regarding the four types of code clones and the corre-

sponding techniques to detect them ranging from those that are exact copy-paste clones

to those that are semantically similar with syntactic differences. In general, these static

97

Table 5.1: A summary of code similarity, which contains six categories: syntactic, func-
tional, executional, learning-based, conceptual and other.

Category Description Analysis Existing Work

Syntactic Use syntactic information of pro-
grams as a feature to detect simi-
lar programs. The syntactic infor-
mation here does not only limit to
abstract syntax tree (AST) but also
token, program dependence graph
or other information that encodes
‘structures’ of programs.

Static [14, 63, 115, 17,
59, 73, 89, 67]

Functional Use inputs and/or outputs of pro-
grams as a functional feature to
detect similar programs. *While
most approaches in this category
use dynamic analysis, some ap-
proaches use symbolic execution,
which is a middle ground of static
and dynamic analysis, to approxi-
mate functionality of programs.

Dynamic,
Static*

[60, 32, 123, 39,
120]

Executional Use some features of program exe-
cutions to detect similar programs.
*While most approaches in this cat-
egory also rely on dynamic anal-
ysis, some approaches attempt to
leverage the power of machine
learning to approximate program
behavior.

Dynamic,
Static*

[121, 34, 33, 38,
43, 65, 26, 9, 44]

Conceptual Use text information in code, such
as comments, documentations and
identifiers, as a feature to detect
similar programs.

Static [93, 94, 98, 29]

Other Use other features of code/ma-
chines, such as web traffic and
workload, to detect similar code.

Other [118, 64]

Learning Use machine learning models to
identify hidden features in code-
bases. These hidden features can
support developers observing com-
monality between code, which is
difficult for humans to identify.

Static,
Potentially
dynamic

[111, 106]

98

approaches first parse code into a type of intermediate representation (static features) and

then develop corresponding algorithms to identify similar patterns. As the complexity of

the intermediate representation grows, the computation cost to identify similar patterns

is higher. Based on the types of intermediate representations, the existing approaches can

be classified into token-based [14, 63, 115], AST-based [17, 59] and graph-based [73, 89].

Among these general approaches, the graph-based approaches are the most computation-

ally expensive, but they have better capabilities to detect complex clones according to the

report of Roy et al. [114]. While some approaches in Roy et. al’s report attempt to detect

similar code with syntactic differences, we still categorize all approaches in this report as

syntactically similar, because they still leverage syntactical information in the code.

Several other techniques make use of general information about code to detect coun-

terparts rather than strictly relying on syntactic features. Marcus and Maletic use iden-

tifier names and comments in source code to search for high level concept clones [93, 94].

Another line of similar code detection involves creating fingerprints of code, for instance

by tracking API usage [98, 29], to identify code having similar semantics/concepts.

While the true behavior and/or functionality of a code can only be identified in run-

time (dynamically), some approaches leverage the power of symbolic execution [120] or

data mining [43] to approximate these dynamic features of code. Further use cases based

on these approaches will be discussed in Section 5.1.2.

5.1.2 Potential Use Cases of Static Similar Programs

As we discussed in Chapter 2, many software engineering tasks can be supported by

similar code (code clone) detection. A common problem caused by these similar code

fragments is the maintenance cost [63, 115]. One possibility is that a piece of code is

buggy, but it is copied and pasted in multiple locations in a system. The cost to rectify

these bugs can be O(n), where n is the time that this buggy code is copied and pasted.

Having a tool to identify and locate these similar code fragments can help developers

99

manage and maintain their software systems.

While locating duplicated code to enhance software maintenance usually requires

computing syntactic similarity between code, some work of static analysis collects other

features, such as document, API usage or path constraint, of code to help developers

search for code or document which are conceptually or functionally similar. Marcus and

Maletic attempt to construct the relationship, tracebility links, between code and its corre-

sponding documents [93, 94]. McMillan et al. [98] computes the similarity between Java

software applications by which APIs they use. Such application-based similarity can help

developers conduct rapid prototyping and support companies to speed up the drafting of

project documents to win the bid of a proposal, i.e., similar application can have similar

project documents.

Stolee et al. [120] offers another feature of code to compute similarity: path con-

straints. Their Satsy system uses I/O examples of methods to generate path constraints of

code as features. When a developer gives an I/O example, the Satsy system applies sym-

bolic execution [68] to generate path constraints (specifications) and then uses a SMT

solver to check and search for methods that fit into these specifications. Symbolic execu-

tion is not a pure static analysis. To be more specific, instead of supplying real input to

drive programs, symbolic execution uses symbolic input as an abstraction of real input to

explore which paths in programs can be visited by which inputs [125].

In addition to software engineering tasks, searching for similar code can support secu-

rity tasks. Kim et al. [67] develop a high performant clone detection system, Vuddy, which

searches for vulnerable functions/methods in a target system. Each function/method in

the target system will be first fingerprinted by a hash function and will be compared with

vulnerable code recorded in a codebase. Feng et al. [43] devises the system, Genius, to

search for potential vulnerable function in Internet Of Things (IoT) devices, given a vul-

nerable function as a query. Genius fingerprints each function/method as a control flow

graph, where each vertex is a basic block of instructions and each edge is the control

100

dependency between two basic blocks. The approach of Genius is similar to our prior

work, DyCLINK [121], where the major difference is that DyCLINK encodes each execu-

tion of a method as a graph but Genius encodes each function/method as a graph. Feng

et al. attempts to use graph analysis to approximate malware’s behavior as well [44, 45].

However, their approaches invent a new type of graph called inter-component call graph,

where a vertex is a component in a programs and an edge encodes the communication

including actions and data types between components, to represent the behavior of An-

droid’s malware. Mamadroid [95] proposes a different perspective to approximate mal-

ware’s behavior: computing transitional probability between API calls (Hidden Markov

Model) as behavioral signatures of malware, where the transitional probability between

two API calls represent the probability that an API is called after another one.

Static features of programs have been studied for years and have been applied in many

use cases/applications, which have been discussed in this section. In recent years, re-

searchers attempt to apply other techniques, such as symbolic execution and data mining,

to advance the development of static features in programs.

5.2 Dynamic Detection of Similar Code

5.2.1 Revisit of Dynamic Features

Static features are not the only way to identify similar code. Some approaches attempt to

detect code having similar dynamic features (behaviorally similar code) despite syntactic

differences by using dynamic profiling. For instance, Elva and Leavens [39] proposes de-

tecting functional clones by identifying methods that have the exact same outputs, inputs

and side effects. The MeCC system [65] summarizes the abstract state of a program after

each method is executed to relate that state to the method’s inputs, allowing for exact

matching of outputs. Carzaniga et al. [26] studies different ways to quantify and mea-

sure functional redundancy between two code fragments on both of the executed code

101

statements and performed data operations.

Jiang and Su’s EQMiner [60] and the comparable system developed by Deissenboeck

et al. for Java [32] are two recent examples of dynamic detection of functional similar

code, which are highly relevant to our HitoshiIO system. EQMiner first chops code into

several chunks and randomly generates input to drive them. By observing output val-

ues from these code chunks, the EQMiner system is able to cluster programs with the

same output values. The EQMiner system successfully identified clones that are func-

tional equivalent. However, to apply such technique on object oriented language, multi-

ple technical challenges have been identified [32]. With data flow analysis and a simple

I/O based similarity model developed by us, we are able to detect functionally similar (not

necessarily equivalent) programs [123].

In addition to detecting behaviorally similar code in functionalities, we propose to

identify code having similar runtime executions (instruction graphs) [121], which we call

“code relatives”. Our prior work [122] addresses the challenges to detect behaviorally

similar code such as how to encode program behavior in a computational format.

5.2.2 Potential Use Cases of Dynamic Similar Programs

Compared with using static features to identify similar programs, applying dynamic fea-

tures is a relatively new area. Thus, we do not have as many applications by using dy-

namic features as using static ones. However, the experiment results of existing work

shows that dynamic features can help developers identify programs having similar dy-

namic behaviors without similar syntactic features, which can be hard for static analysis

to identify.

As we discussed in Section 5.2.1, the EQMiner system proposed by Jiang and Su [60]

identifies functionally equivalent code. Their experiment result shows that such dynamic

technique can detect more similar code than a static analyzer. A potential use case specu-

lated by them is to create a centralized API for all functionally similar program regardless

102

of their syntactic differences, which again can enhance the maintenance of a software sys-

tem. Such use case may be hard to be achieved by pure static analysis: a static analyzer

needs to understand the functionality of a program without executing it. According to

the user study conducted by LaToza et al. [79], 42% of developers agreed that functionally

similar code developed by different developers results in problems to maintain software

systems, which is the highest among six types of similar code (duplications) reported by

LaToza et al. We conjecture that this is because functionally similar code is the only type

that is possibly to be syntactically different, while the other five types are syntactically

similar at some levels.

In addition, LaToza et al. also pointed out the importance of program understand-

ing/comprehension: 66% of developers thought that code (program) understanding is a

serious problem, which is the highest percentage among all proposed problems during

software development [79]. An interesting finding in [79] is that program understanding

is not positively correlated to software design and development during daily lives of de-

velopers. We think that this is because most developers feel understanding programs (im-

plemented by other developers) is difficult, they would rather deign and develop software

by themselves without referring to existing useful code. While many static analysis tools

have been devised to support developers understanding programs, we speculate that the

lack of dynamic information of programs decreases the applicability of these static tools

on programs. How to integrate static analysis with dynamic analysis can be a challenging

direction for developing the next generation of program understanding tools.

From a hardware perspective, if we can use dynamic analysis to cluster programs

based on their dynamic characteristics, we can increase the efficiency of hardware devel-

opers to design accelerators for specific programs in the same cluster. Demme and Sethu-

madhavan [34] propose to encode runtime behaviors of programs into dynamic data flow

graphs, where each vertex is a basic block of instruction and each edge is a real data de-

pendency between two basic blocks. They then cluster programs based on the similarity

103

of their representative graphs. Based on their observation, the clustering results based

on this dynamic graph feature of programs can explore the opportunity to optimize pro-

grams. For example, the programs in the same cluster based on their graph similarity can

support hardware developers to design an accelerator for these programs, because they

share the same dynamic features [33]. Our prior work HitoshiIO [123] and DyCLINK

[121] share the similar concept of [60] and [34] to analyze and classify programs based

on their dynamic behaviors. Our experiment result show that it is possible that dynamic

features of programs can offer better precision to classify programs, which can potentially

support some software engineering and security tasks, such as performance optimization

and malware detection.

Another line of use cases can be malware detection: a malicious application can have

different run-time behavior with what it claims to achieve for its users. For example,

a malicious weather forecast application may send the private information of an user

through SMS service, but it should only report weather conditions to the user. While

some of malware can be detected by dynamic analysis, we speculate that some malicious

programs such as logic bomb [48] that will only be triggered if some specific conditions

are met can be hard to be identified by dynamic analysis. This is because, again, dynamic

analysis requires meaningful workload to drive programs for exposing behaviors that

researchers want to observe. It can be difficult to develop an input generator, which can

create specific input to visit the malicious code in a program.

5.3 Learn from Programs

In addition to the approaches detecting similar code, we discuss several works relevant to

learn program features, such as identifier names and API usage from codebases. Raychev

et al. [111] develop a prediction engine, which first constructs a dependency network

based on known and unknown properties of the program, and then learns a probability

104

model. Such probability model can infer the unknown properties, such as identifier names

or variable types of programs. Nguyen et al. [106] propose to learn the usage of APIs from

code changes and then recommend API calls to developers. Gu et al. [53] applies a deep

learning algorithm to learn the mappings between method comments and API sequences.

The mapping can then be used to retrieve relevant API sequences based on developers’

queries.

These approaches learn features of programs by machine learning or natural language

processing models for augmenting their program analysis, which is relevant to our Mac-

neto system. Our Macneto system integrates the techniques of topic modeling [21] and

deep learning [119] with static call graph analysis of code to facilitate developers search-

ing for programs. While we believe dynamic analysis can help developers classify or un-

derstand program by their behaviors better, dynamic analysis suffers from high runtime

overhead to identify behaviorally similar code. By integrating machine learning models

with static analysis, we can approximate program behavior in a more economic way. The

insight we have for Macneto is that by treating binaries of programs as documents and

using the text mining model such as topic modeling, we are able to unveil and expose

program semantics without truly executing them. Further, once we can birthmark each

existing program binary via topic modeling, we can leverage the power of deep learning

to train a program classifier. Given an unknown program, we speculate that Macneto

can support developers efficiently search for similar and relevant programs in the exist-

ing codebases, which facilitate them to understand this unknown programwithout diving

into it.

5.4 A Comparison of Computing Similar Programs

What is the best method to compute similar programs is an open question: there can be

various directions to compute program/code similarity. In this chapter, we have already

105

discussedmultiple directions to detect and identify similar programs including static anal-

ysis, dynamic analysis and machine learning. However, we have to admit that these di-

rections may not be able to cover all similarities in code.

Our conclusion in this thesis is that computing code similarity should be target-driven:

based on a specific purpose, a researcher can first define his objective to detect simi-

lar code, and then devises and applies corresponding algorithm(s). For example, if a re-

search’s purpose is to identify and locate which programs that are syntactically similar in

a large codebase containing millions lines of code, a static code clone detector can offer

great efficiency and effectiveness. On the other hand, if a researcher wants to understand

and detect which execution patterns in run-time can be clustered together and can be pro-

cessed by a specific hardware accelerator, a dynamic analyzer may be a better choice than

a static analyzer, since static analyzer can at most approximate the run-time behavior of

programs.

While, again, we admit that offering the best direction/strategy to compute similar

programs/code is un-deterministic, here we provide a comparison of several important

factors to compute similar programs.

• Best Match vs. Preponderant Match: It is possible that a program has multiple

versions and/or executions, where we define them as occurrences of the program.

When a similar code detector attempts to compute the similarity between two pro-

grams, there can be multiple comparisons because of difference occurrences of a

single program. Then a problem can be raised: what will be the best method to

select proxy from these multiple comparisons?

Most of existing approaches, especially dynamic analyzers, [60, 123, 121], choose to

use the best match between two programs as the proxy

Sim(Pi, Pj) = max
a∈{occur(Pi)}
b∈{occur(Pj)}

(Sim(P a
i , P

b
j)) (5.1)

106

, where i and j are indices of programs, occur() is the function that generates a

set of occurrences of a program, a and b are indices of occurrences of Pi and Pj , re-

spectively, and Sim() is a similarity function computing the similarity between two

occurrences of two programs. With this best match approach, a similar code detec-

tor can identify the maximum set of similar programs given a single program: two

programs are deemed similar if one of their occurrences are similar. This approach

is suitable for researchers who are interested in knowing which programs are pos-

sibly replaced by a centralized API, because their best similarity is sufficiently high.

This approach can be a search engine to locate potential candidates in the codebase

with the highest recall.

In addition to using the best match among all occurrences between two programs

as the proxy, we can also take most occurrences of a pair of program into account

to compute similarity, where we name it as preponderant match. Rather than locat-

ing every potential candidate in the codebase (good recall), some researchers may

prefer to detect similar programs with good precision. In other words, they want to

realize which programs are frequently similar: preponderant occurrences of these

programs are similar. In this thesis, we attempt to reduce this preponderant match

between all occurrences between two programs as an Assignment Problem [78]

argmax
a∈{occur(Pi)}
b∈{occur(Pj)}

∑
a

Sim(P a
i , f : P a

i → P b
j) (5.2)

, where f is a bijection function that maps one occurrence of P a
i of Pi to one occur-

rence of P b
j of Pj for maximizing the similarity between all occurrences between

Pi and Pj . In the future, we plan to use the Hungarian Algorithm [78] to solve this

assignment problem between two programs.

• Static vs. Dynamic: In general, the advantage of static analysis is its performance,

because it is not required to execute programs. The recent static analyzers [115, 67]

107

can process millions lines of code in just few hours. However, since static analysis

does not execute programs, some software engineering tasks that required run-time

information of programs, such as clustering programs having similar functionality

or behavior, can be difficult to achieve. Some work [43, 95] including our Macneto

system attempt to leverage machine learning/data mining techniques to approxi-

mate run-time information of programs. While dynamic analysis suffers from per-

formance overhead because of instrumentation and run-time tracing, it is capable

to analyze true run-time functionality and behavior of programs [122, 123, 121].

• Normal Path vs. Erroneous Path: Before we start our discussion, we first define

normal paths in a program as the paths that will not throw exceptions during the

program execution, while erroneous paths as the paths that will generate exceptions

during the program execution. From the perspective of program analysis, in addi-

tion to analyzing normal paths in programs, some work focuses on analyzing code

in erroneous paths [57, 129]. If a researcher is more interested in how programs

handle errors/exceptions in a similar way than how programs actually function, he

or she has to analyze the error handling portion instead of the functional portion

in the program. This analysis can again be done either statically or dynamically.

For static analysis, a researcher can extract code fragments in catch blocks or

code fragments that result in exceptions to be thrown and then conduct further

analysis, such as how programs usually handle different types of exceptions. Some

languages, such as C, do not have try-catch block to conduct this static anal-

ysis, but some work has been proposed to identify error specifications [57, 129] to

locate error handling code. For dynamic analysis, a researcher can monitor execu-

tions of programs and record erroneous paths once exceptions or runtime errors

are thrown.

There is a fundamental problem for dynamic analysis, Input Generation: what will

be the suitable input to drive the program for exposing paths/functions/behaviors

108

that a researcher is interested? The test suites of a program can be a good resource

to explore useful inputs to drive programs. In fact, some tools and systems have

been developed to create test cases automatically [47, 107]. However, most of these

approaches adopt some search-based methodologies, which attempt to maximize

the code coverage of a program, which may not be directly applicable to drive a

program, if a research only attempts to analyze normal or erroneous portions of

the program. This is the reason that our HitoshiIO [123] and DyCLINK [121] sys-

tems exploit the existing workload to expose the true functionalities/behaviors of

programs instead of using these test case generation tools. While the input genera-

tion problem is out of the scope of this thesis, we will discuss a seed-based approach

to mitigate such problem in Section 5.5.

5.5 Future Work

In this chapter, we have discussed multiple methodologies to detect different types of sim-

ilar programs, including syntactically similar, conceptually similar, functionally similar

and behaviorally similar programs. While most existing approaches adopt static analysis

to detect similar programs, we focus more on leveraging the power of dynamic analysis

and machine learning to detect different types of similar programs. Our discussion in

Section 5.4 addressed two problems of similar program detection

• Undecidability of similar program detection: It is difficult to design the best algo-

rithm to detect similar programs, because different researchers may have different

targets/purposes to identify different types of similar programs. For example, if a

researcher attempts to locate all programs having the equivalent syntax, the pro-

grams having the same functionality is not necessary to be discovered. Thus, the

design of similar program detector should be problem/target-driven.

109

• Pros. and cons. of different similar program detection: Take static analysis and

dynamic analysis as the example. While static analysis is highly performant to pro-

cess high volume of code, it is not suitable to identify dynamically similar programs.

For dynamic analysis, even though it can capture more run-time information to de-

tect dynamically similar programs with syntactic differences, it suffers from high

execution overhead, which includes the original execution time and the tracing (in-

strumentation) time.

As we discussed in Section 5.4, dynamic analysis can suffer from the input genera-

tion problem. The dynamic analysis tools, HitoshiIO and DyCLINK, we developed in

this thesis are no exceptions. One of the major problems to generate meaningful input or

workload to drive problem is that it lacks well-defined interfaces of each program for the

input generator to understand which values will be meaningful to generate. The rise of

microservices architecture [103] can be an opportunity for solving the interface problem.

Microservices are “Loosely coupled, service oriented with bounded contexts” according

to Adrian Cockroft [103]. An important feature of microservices is that each microservice

has well-defined API (interface) so that users and/or other services can invoke it conve-

niently. If we can take the existing microservices as the seeds and record their I/Os, we

can then replay the workload of a microservice on other similar ones to conduct dynamic

analysis. While this idea attempts to solve the input generation problem from a different

angle with the existing work that generates input randomly [107], we look forward to

developing this idea and evaluating its performance with the existing work.

In this chapter, we propose two applications. We attempt to integrate the pros. of

different types of similar program detectors to achieve some tasks which may not be

achieved by a single detector easily.

Recommendation of Error Handling Code: This idea is inspired by the existing

work [57, 129] that attempts to locate bugs in code fragments that are responsible to

handle errors in programs. Our target is different: we attempt to recommend or notify

110

developers which types of error handler that they may need based on functions/methods

they have already implemented. Before we discuss our approach, we define code in try

blocks as normal fragments, code incatch block as error handlers and code infinally

as state cleaner (which will clean the state of the current program). First, we can use a syn-

tax analyzer to separate each function/method in each program in the codebase into three

types of code fragments we just defined. For the next step we can apply either static or

dynamic similar code detector to first cluster programs based on their normal fragments.

In other word, we attempt to group functions/methods having similar syntax/functional-

ity/behavior disregarding how they handle errors and clean program states. Then given

a program cluster, we then conclude sub-clusters based on their error handlers. For each

program cluster, we can then compute a conditional probability

P (Subjeh|Clusterinf) =
programs in the sub cluster j
all programs in the cluster i (5.3)

, where Subjeh represents the jth sub-cluster of error handlers and Clusterinf represents

the ith program cluster based on their normal fragments. Based on Eq. 5.3, we can then

compute the conditional probability for each error handling sub-cluster for an unknown

method that only have normal fragment without error handlers. We can finally sort each

sub-cluster, which represents a type of error handler, and offer the developer a list of error

handlers to follow.

Multiphase Similar Code Detection: In this thesis, while we explore multiple ap-

proaches/features to detect different types of similar code, we find that each approach/fea-

ture has its own pros. and cons. Is it possible the integrate the pros. of different similar

code detector for offering developers more insight to understand their software systems

or search for code they want? We propose to conduct Multiphase detection, which is a

generic version of recommending error handling code. For example, if a developer is

interested in analyzing the syntactic differences between functionally similar programs,

111

he or she can first cluster programs by their functional similarity, and then construct

sub-groups via computing syntactic similarity between programs in the same functional

cluster. It is possible that we can then recommend/notify the developer that given the

same functionality, there are other versions of code that is shorter (less lines of code) or

has succinct syntax. It is also possible that the developer can then create a centralize APIs

by first selecting the best version of code (where “best” here can be defined by the de-

veloper) in the functional cluster, and then replace all other versions of code in the same

functional cluster by this best version. For automatically API replacement, we can con-

sider to apply the existing systematic editing techniques [101, 74]. However, functionally

similar programs can have very different syntaxes, but the existing approaches focus on

automatically or semi-automatically editing programs that are syntactically similar. How

to normalize these functionally similar but syntactically different programs can be one of

our future research directions.

112

Chapter 6

Conclusions

Detecting similar code/program has been studied for years for supporting many soft-

ware engineering tasks. While most existing work discusses how to detect programs

having similar syntax (programs that look alike), we discuss another type of feature, pro-

gram behavior, to cluster or classify programs (programs that behave alike) in this thesis.

The definition of similarity between programs can be subjective and is nondeterministic.

However, we believe that the approaches and features of code in this thesis offer a new

perspective other than traditional syntactic similarity for researchers/developers to study

and build applications based on behavioral similarity of code.

In this thesis, we propose three types of behavioral features to detect similar programs:

functionality, execution and topic distributions in program binary. Given these behav-

ioral features, we develop and open-source the systems/tools to facilitate researchers

conducting further study. We first discuss the new technique, in-vivo similar code de-

tection (Chapter 2), which leverages meaningful inputs to expose true functionalities of

programs. Our system, HitoshiIO, uses an I/O based similarity model developed by us

to detect functionally similar programs. In addition to using functionality as the proxy

of program behavior, we propose using program execution as the proxy (Chapter 3). We

build the system DyCLINK, which encodes program executions in dynamic instruction

graphs, We call the programs with high execution (graph) similarity as code relatives.

While HitoshiIO and DyCLINK both use dynamic analysis to expose program behav-

iors, expensive run-time overhead can be a program to process large volume of code (Big

Code). However, static analysis may not be able to capture the true behavior of a program,

113

which requires executing such program. Our insight here is to integrate static analysis

with machine learning models to approximate program behaviors. We develop Macneto

(Chapter 4), which identify topic distributions of a program in its executable (machine

topics) as its behavior proxy. Based on machine topics, we show that Macneto can ac-

curately deobfuscate programs after its syntax and/or lexical information are altered.

As we discussed repeatedly in this thesis, the definition of code similarity is subjective.

Thus, we summarize existing approaches and our developments in this thesis and envision

the future work and potential applications based on code similarity (Chapter 5). Given

the extensive definitions of code similarity, I look forward to solving practical problems

in software engineering and security.

114

Bibliography

[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Learning nat-
ural coding conventions. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 281–293, 2014.

[2] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. Suggesting
accurate method and class names. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 38–49, 2015.

[3] Allatori. http://www.allatori.com.

[4] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric re-
gression. The American Statistician, 46(3):175–185, 1992.

[5] Amazon ec2. http://aws.amazon.com/ec2/instance-types/.

[6] Android build numbers. https://source.android.com/source/build-numbers.

[7] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model
selection. Statistics Surveys, 4:40–79, 2010.

[8] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. Linguistic
antipatterns: What they are and how developers perceive them. Empirical Software
Engineering, 21(1):104–158, 2016.

[9] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. DREBIN: effective and explainable detection of android malware in your
pocket. In 21st Annual Network and Distributed System Security Symposium, NDSS
2014, 2014.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 259–269, 2014.

115

[11] Asm framework. http://asm.ow2.org/index.html.

[12] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. Mining apps for abnormal usage of
sensitive data. In 2015 International Conference on Software Engineering (ICSE), ICSE
’15, pages 426–436, 2015.

[13] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library detection
in android and its security applications. In Proceedings of the 2016 ACM SIGSACCon-
ference on Computer and Communications Security, CCS ’16, pages 356–367, 2016.

[14] Brenda S. Baker. A program for identifying duplicated code. In Computer Science
and Statistics: Proc. Symp. on the Interface, pages 49–57, 1992.

[15] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clus-
teringwith bregman divergences. J. Mach. Learn. Res., 6:1705–1749, December 2005.

[16] Veronika Bauer, Tobias Völke, and Elmar Jürgens. A novel approach to detect un-
intentional re-implementations. In Proceedings of the 2014 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME ’14, pages 491–495, 2014.

[17] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In Proceedings of the International
Conference on Software Maintenance, ICSM ’98, pages 368–377, 1998.

[18] Jonathan Bell and Gail Kaiser. Phosphor: Illuminating dynamic data flow in com-
modity jvms. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’14, 2014.

[19] Jonathan Bell, Gail Kaiser, EricMelski, andMohanDattatreya. Efficient dependency
detection for safe java test acceleration. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, pages 770–781, 2015.

[20] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical
Deobfuscation of Android Applications. In 23rd ACM Conference on Computer and
Communications Security, CCS 2016, pages 343–355, 2016.

[21] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993–1022, March 2003.

[22] James F. Bowring, James M. Rehg, and Mary Jean Harrold. Active learning for
automatic classification of software behavior. In Proceedings of the 2004 ACM SIG-

116

SOFT International Symposium on Software Testing and Analysis, ISSTA ’04, pages
195–205, 2004.

[23] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. In Proceedings of the Seventh International Conference on World Wide
Web 7, WWW7, pages 107–117, 1998.

[24] Simon Butler, Michel Wermelinger, and Yijun Yu. Investigating naming convention
adherence in java references. In Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on, pages 41–50, 2015.

[25] Gerardo Canfora, Luigi Cerulo, andMassimiliano Di Penta. Tracking your changes:
A language-independent approach. IEEE Software, 26(1):50–57, 2009.

[26] Antonio Carzaniga, Andrea Mattavelli, and Mauro Pezzè. Measuring software re-
dundancy. ICSE ’15.

[27] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of
string distance metrics for name-matching tasks. In Proceedings of IJCAI-03 Work-
shop on Information Integration, pages 73–78, 2003.

[28] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proffing, and
obfuscation: Tools for software protection. IEEE Trans. Softw. Eng., 28(8):735–746,
August 2002.

[29] Christian S. Collberg, Clark Thomborson, and Gregg M. Townsend. Dynamic
graph-based software fingerprinting. ACM Trans. Program. Lang. Syst., 29(6), Octo-
ber 2007.

[30] The java-util library. https://github.com/jdereg/java-util/.

[31] The website of deguard. http://apk-deguard.com/.

[32] F. Deissenboeck, L. Heinemann, B. Hummel, and S. Wagner. Challenges of the
dynamic detection of functionally similar code fragments. In Software Maintenance
and Reengineering (CSMR), 2012 16th European Conference on, pages 299–308, 2012.

[33] John Demme. Overcoming the Intuition Wall: Measurement and Analysis in Com-
puter Architecture. PhD thesis, New York, NY, USA, 2014. AAI3611781.

117

[34] John Demme and Simha Sethumadhavan. Approximate graph clustering for pro-
gram characterization. ACM Trans. Archit. Code Optim., 8(4):21:1–21:21, January
2012.

[35] Dex2jar. https://github.com/pxb1988/dex2jar.

[36] Nicholas DiGiuseppe and James A. Jones. Software behavior and failure clustering:
An empirical study of fault causality. In Proceedings of the 2012 IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation, ICST ’12, pages
191–200, 2012.

[37] Dyclink github page. https://github.com/
Programming-Systems-Lab/dyclink.

[38] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. Blanket exe-
cution: Dynamic similarity testing for program binaries and components. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 303–317, 2014.

[39] Rochelle Elva and Gary T. Leavens. Semantic clone detection using method ioe-
behavior. In Proceedings of the 6th International Workshop on Software Clones, IWSC
’12, pages 80–81, 2012.

[40] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems code.
In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles,
SOSP ’01, pages 57–72, 2001.

[41] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. discovRE: Ef-
ficient Cross-Architecture Identification of Bugs in Binary Code. In 23rd Annual
Network and Distributed System Security Symposium (NDSS), February 2016.

[42] The f-droid repository. https://f-droid.org/.

[43] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. Scalable graph-based bug search for firmware images. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 480–491, 2016.

[44] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based
detection of android malware through static analysis. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 576–587, 2014.

118

[45] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. Automated
synthesis of semantic malware signatures using maximum satisfiability. In 24th
Annual Network and Distributed System Security Symposium, NDSS 2017, 2017.

[46] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.
IEEE Trans. Softw. Eng., 14(10), October 1988.

[47] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ESEC/FSE ’11,
pages 416–419, 2011.

[48] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Triggerscope: Towards detecting logic bombs in
android applications. 2016 IEEE Symposium on Security and Privacy (SP), 00:377–
396, 2016.

[49] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic
clones. In Proceedings of the 30th International Conference on Software Engineering,
ICSE ’08, pages 321–330, 2008.

[50] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. Some from here,
some from there: Cross-project code reuse in github. In Proceedings of the 14th
International Conference on Mining Software Repositories, MSR ’17, pages 291–301,
2017.

[51] Google code jam. https://code.google.com/codejam.

[52] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking
app behavior against app descriptions. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, pages 1025–1035, 2014.

[53] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep api learn-
ing. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, FSE 2016, 2016.

[54] Christian Hammer and Gregor Snelting. An improved slicer for java. In Proceedings
of the 5th ACM SIGPLAN-SIGSOFTWorkshop on Program Analysis for Software Tools
and Engineering, PASTE ’04, pages 17–22, 2004.

[55] Hitoshiio github page. https://github.com/
Programming-Systems-Lab/ioclones.

119

[56] Einar W Høst and Bjarte M Østvold. Debugging method names. In European Con-
ference on Object-Oriented Programming, pages 294–317, 2009.

[57] Suman Jana, Yuan Jochen Kang, Samuel Roth, and Baishakhi Ray. Automatically
detecting error handling bugs using error specifications. In 25th USENIX Security
Symposium (USENIX Security 16), pages 345–362.

[58] Oracle jdk 7. http://www.oracle.com/technetwork/java/
javase/downloads/jdk7-downloads-1880260.html.

[59] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In Proceedings of the 29th
International Conference on Software Engineering, ICSE ’07, pages 96–105, 2007.

[60] Lingxiao Jiang and Zhendong Su. Automatic mining of functionally equivalent
code fragments via random testing. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA ’09, pages 81–92, 2009.

[61] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. Code similarities
beyond copy & paste. In Proceedings of the 2010 14th European Conference on Soft-
ware Maintenance and Reengineering, CSMR ’10, pages 78–87, 2010.

[62] Java virutal machine speicification. http://docs.oracle.com/javase/
specs/jvms/se7/html/. Accessed: 2015-02-04.

[63] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: Amultilinguistic
token-based code clone detection system for large scale source code. IEEE Trans.
Softw. Eng., 28(7):654–670, July 2002.

[64] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. Workload characterization
and prediction in the cloud: A multiple time series approach. In 2012 IEEE Network
Operations and Management Symposium, NOMS 2012, pages 1287–1294, 2012.

[65] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. Mecc: Memory
comparison-based clone detector. ICSE ’11.

[66] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An empirical study
of code clone genealogies. ESEC/FSE-13, 2005.

[67] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. VUDDY: A scalable
approach for vulnerable code clone discovery. In IEEE S&P, pages 595–614, 2017.

120

[68] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, July 1976.

[69] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[70] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in
source code. In Proceedings of the 8th International Symposium on Static Analysis,
SAS ’01, pages 40–56, 2001.

[71] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract
syntax suffix trees. In Proceedings of the 13th Working Conference on Reverse Engi-
neering, WCRE ’06, pages 253–262, 2006.

[72] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Giuliano Antoniol, and Yann-Gael
Gueheneuc. Madmatch: Many-to-many approximate diagram matching for design
comparison. IEEE Transactions on Software Engineering, 39(8):1090–1111, 2013.

[73] Jens Krinke. Identifying similar code with program dependence graphs. In Proceed-
ings of the EighthWorking Conference on Reverse Engineering (WCRE’01), WCRE ’01,
pages 301–, 2001.

[74] Giri Panamoottil Krishnan and Nikolaos Tsantalis. Refactoring clones: An opti-
mization problem. In Proceedings of the 2013 IEEE International Conference on Soft-
ware Maintenance, ICSM ’13, pages 360–363, 2013.

[75] D. E. Krutz and E. Shihab. Cccd: Concolic code clone detection. In Reverse Engi-
neering (WCRE), 2013 20th Working Conference on, pages 489–490, 2013.

[76] Daniel E. Krutz and Wei Le. A code clone oracle. MSR ’14.

[77] Adrian Kuhn, Stéphane Ducasse, and Tudor Gírba. Semantic clustering: Identifying
topics in source code. Inf. Softw. Technol., 49(3):230–243, March 2007.

[78] H. W. Kuhn and Bryn Yaw. The hungarian method for the assignment problem.
Naval Res. Logist. Quart, pages 83–97, 1955.

[79] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models:
A study of developer work habits. In Proceedings of the 28th International Conference
on Software Engineering, ICSE ’06, pages 492–501, 2006.

121

[80] Page Lawrence, Brin Sergey, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford University,
1998.

[81] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. What’s in a
name? a study of identifiers. In Program Comprehension, 2006. ICPC 2006. 14th IEEE
International Conference on, pages 3–12, 2006.

[82] Michael Levandowsky and David Winter. Distance between sets. Sci. Comput.
Program., 234:34–35, November 1971.

[83] Jingyue Li and Michael D. Ernst. Cbcd: Cloned buggy code detector. ICSE ’12.

[84] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. Droidra: Taming
reflection to support whole-program analysis of android apps. In Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA 2016, pages
318–329, 2016.

[85] Sihan Li, Xusheng Xiao, Blake Bassett, Tao Xie, and Nikolai Tillmann. Measuring
code behavioral similarity for programming and software engineering education. In
Proceedings of the 38th International Conference on Software Engineering Companion,
ICSE ’16, pages 501–510, 2016.

[86] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: A tool for
finding copy-paste and related bugs in operating system code. In Proceedings of
the 6th Conference on Symposium on Opearting Systems Design & Implementation -
Volume 6, OSDI’04, pages 176–192, 2004.

[87] Ben Liblit, Andrew Begel, and Eve Sweetser. Cognitive perspectives on the role
of naming in computer programs. In Proceedings of the 18th annual psychology of
programming workshop, 2006.

[88] Mario Linares-Vásquez, Collin Mcmillan, Denys Poshyvanyk, andMark Grechanik.
On using machine learning to automatically classify software applications into do-
main categories. Empirical Softw. Engg., 19(3):582–618, June 2014.

[89] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: Detection of software
plagiarism by program dependence graph analysis. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’06, pages 872–881, 2006.

122

[90] Douglas Low. Protecting java code via code obfuscation. Crossroads, 4(3):21–23,
April 1998.

[91] Jonathan I. Maletic and Naveen Valluri. Automatic software clustering via latent
semantic analysis. In Proceedings of the 14th IEEE International Conference on Auto-
mated Software Engineering, ASE ’99, pages 251–, 1999.

[92] Mallet: Machine learning for language toolkit. http://mallet.cs.umass.edu/.

[93] AndrianMarcus and Jonathan I. Maletic. Identification of high-level concept clones
in source code. In Proceedings of the 16th IEEE International Conference on Auto-
mated Software Engineering, ASE ’01, pages 107–114, 2001.

[94] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-
code traceability links using latent semantic indexing. In Proceedings of the 25th
International Conference on Software Engineering, ICSE ’03, pages 125–135, 2003.

[95] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. MaMaDroid: Detecting Android Mal-
ware by Building Markov Chains of Behavioral Models. In 24th Annual Network
and Distributed System Security Symposium, NDSS 2017, 2017.

[96] Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

[97] Apache maven. https://maven.apache.org.

[98] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. Detecting similar soft-
ware applications. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 364–374, 2012.

[99] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
Portfolio: Finding relevant functions and their usage. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 111–120, 2011.

[100] Guozhu Meng, Yinxing Xue, Zhengzi Xu, Yang Liu, Jie Zhang, and Annamalai
Narayanan. Semantic modelling of android malware for effective malware com-
prehension, detection, and classification. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 306–317, 2016.

123

[101] Na Meng, Lisa Hua, Miryung Kim, and Kathryn S. McKinley. Does automated
refactoring obviate systematic editing? In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages 392–402, 2015.

[102] Christian Murphy, Gail Kaiser, Ian Vo, andMatt Chu. Quality assurance of software
applications using the in vivo testing approach. ICST ’09.

[103] State of the art inmicroservices. https://www.slideshare.net/adriancockcroft/dockercon-
state-of-the-art-in-microservices.

[104] Mysql database. https://www.mysql.com.

[105] Lindsay Anne Neubauer. Kamino: Dynamic approach to semantic code clone detec-
tion. Technical Report CUCS-022-14, Department of Computer Science, Columiba
University.

[106] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N. Nguyen, and Danny Dig. Api code recommendation using
statistical learning from fine-grained changes. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016,
2016.

[107] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
directed random test generation. In Proceedings of the 29th International Conference
on Software Engineering, ICSE ’07, pages 75–84, 2007.

[108] Theofilos Petsios, Adrian Tang, Salvatore J. Stolfo, Angelos D. Keromytis, and
Suman Jana. NEZHA: Efficient Domain-independent Differential Testing. In Pro-
ceedings of the 38th IEEE Symposium on Security & Privacy, San Jose, CA, May 2017.

[109] Proguard. http://proguard.sourceforge.net.

[110] V. Rastogi, Y. Chen, and X. Jiang. Catch me if you can: Evaluating android anti-
malware against transformation attacks. IEEE Transactions on Information Forensics
and Security, 9(1):99–108, 2014.

[111] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program prop-
erties from ”big code”. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, 2015.

124

[112] Kaspar Riesen, Xiaoyi Jiang, and Horst Bunke. Exact and inexact graph matching:
Methodology and applications. In Managing and Mining Graph Data, volume 40 of
Advances in Database Systems, pages 217–247. Springer, 2010.

[113] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach. Sci. Comput.
Program., 74(7):470–495, May 2009.

[114] Chanchal Kumar Roy and James R. Cordy. A survey on software clone detection
research. SCHOOL OF COMPUTING TR 2007-541, QUEEN’S UNIVERSITY, 115, 2007.

[115] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal Roy, and Cristina Lopes.
SourcererCC: Scaling Code Clone Detection to Big Code. ICSE ’16.

[116] Trevor Savage, Bogdan Dit, Malcom Gethers, and Denys Poshyvanyk. Topicxp:
Exploring topics in source code using latent dirichlet allocation. In Proceedings of
the 2010 IEEE International Conference on Software Maintenance, ICSM ’10, pages
1–6, 2010.

[117] David Schuler, Valentin Dallmeier, and Christian Lindig. A dynamic birthmark for
java. In Proceedings of the Twenty-second IEEE/ACM International Conference on
Automated Software Engineering, ASE ’07, pages 274–283, 2007.

[118] Similarweb. https://www.similarweb.com. Accessed: 2017-08-08.

[119] Richard Socher, MilindGanjoo, ChristopherDManning, andAndrewNg. Zero-shot
learning through cross-modal transfer. InAdvances in neural information processing
systems, pages 935–943, 2013.

[120] Kathryn T. Stolee, Sebastian Elbaum, and Matthew B. Dwyer. Code search with
input/output queries. J. Syst. Softw., 116(C), June 2016.

[121] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail
Kaiser, and Tony Jebara. Code relatives: Detecting similarly behaving software.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2016, 2016.

[122] Fang-Hsiang Su, Jonathan Bell, andGail Kaiser. Challenges in behavioral code clone
detection. In Proceedings of the 10th International Workshop on Software Clones,
IWSC 2016, 2016.

125

[123] Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, and Simha Sethumadhavan. Identifying
functionally similar code in complex codebases. In Proceedings of the 24th IEEE
International Conference on Program Comprehension, ICPC 2016, 2016.

[124] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Moham-
mad Mamun Mia. Towards a Big Data Curated Benchmark of Inter-project Code
Clones. ICSME ’14.

[125] Symbolic execution for finding bugs. https://www.cs.umd.edu/ mwh/se-
tutorial/symbolic-exec.pdf.

[126] Armstrong A Takang, Penny A Grubb, and Robert D Macredie. The effects of com-
ments and identifier names on program comprehensibility: an experimental inves-
tigation. J. Prog. Lang., 4(3):143–167, 1996.

[127] Haruaki Tamada, Masahide Nakamura, and Akito Monden. Design and evaluation
of birthmarks for detecting theft of java programs. In Proc. IASTED International
Conference on Software Engineering, pages 569–575, 2004.

[128] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wol-
fram Schulte. Mseqgen: Object-oriented unit-test generation via mining source
code. ESEC/FSE ’09.

[129] Yuchi Tian and Baishakhi Ray. Automatically diagnosing and repairing error han-
dling bugs in c. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, pages 752–762, 2017.

[130] The xstream library. http://x-stream.github.io/.

[131] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.
Appcontext: Differentiating malicious and benign mobile app behaviors using con-
text. In Proceedings of the 37th International Conference on Software Engineering,
ICSE ’15, pages 303–313, 2015.

[132] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. Min-
ing version histories to guide software changes. In Proceedings of the 26th Interna-
tional Conference on Software Engineering, ICSE ’04, pages 563–572, 2004.

126

