
Repurposing Software Defenses with Specialized Hardware

Kanad Sinha

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019

© 2019

Kanad Sinha

All rights reserved

ABSTRACT

Repurposing Software Defenses with Specialized Hardware

Kanad Sinha

Computer security has largely been the domain of software for the last few decades. Although

this approach has been moderately successful during this period, its problems have started becom-

ing more apparent recently because of one primary reason — performance. Software solutions

typically exact a significant toll in terms of program slowdown, especially when applied to large,

complex software. In the past, when chips became exponentially faster, this growing burden could

be accommodated almost for free. But as Moore’s law winds down, security-related slowdowns

become more apparent, increasingly intolerable, and subsequently abandoned. As a result, the

community has started looking elsewhere for continued protection, as attacks continue to become

progressively more sophisticated.

One way to mitigate this problem is to complement these defenses in hardware. Despite lacking

the semantic perspective of high-level software, specialized hardware typically is not only faster,

but also more energy-efficient. However, hardware vendors also have to factor in the cost of inte-

grating security solutions from the perspective of effectiveness, longevity, and cost of development,

while allaying the customer’s concerns of performance. As a result, although numerous hardware

solutions have been proposed in the past, the fact that so few of them have actually transitioned

into practice implies that they were unable to strike an optimal balance of the above qualities.

This dissertation proposes the thesis that it is possible to add hardware features that com-

plement and improve program security, traditionally provided by software, without requiring ex-

tensive modifications to existing hardware microarchitecture. As such, it marries the collective

concerns of not only users and software developers, who demand performant but secure products,

but also that of hardware vendors, since implementation simplicity directly relates to reduction in

time and cost of development and deployment. To support this thesis, this dissertation discusses

two hardware security features aimed at securing program code and data separately and details

their full system implementations, and a study of a negative result where the design was deemed

practically infeasible, given its high implementation complexity.

Firstly, the dissertation discusses code protection by reviving instruction set randomization

(ISR), an idea originally proposed for countering code injection and considered impractical in

the face of modern attack vectors that employ reuse of existing program code (also known as

code reuse attacks). With Polyglot, we introduce ISR with strong AES encryption along with

basic code randomization that disallows code decryption at runtime, thus countering most forms

of state-of-the-art dynamic code reuse attacks, that read the code at runtime prior to building the

code reuse payload. Through various optimizations and corner case workarounds, we show how

Polyglot enables code execution with minimal hardware changes while maintaining a small attack

surface and incurring nominal overheads even when the code is strongly encrypted in the binary

and memory.

Next, the dissertation presents REST, a hardware primitive that allows programs to mark mem-

ory regions invalid for regular memory accesses. This is achieved simply by storing a large, pre-

determined random value at those locations with a special store instruction and then, detecting

incoming values at the data cache for matches to the predetermined value. Subsequently, we show

how this primitive can be used to protect data from common forms of spatial and temporal memory

safety attacks. Notably, because of the simplicity of the primitive, REST requires trivial microar-

chitectural modifications and hence, is easy to implement, and exhibits negligible performance

overheads. Additionally, we demonstrate how it is able to provide practical heap safety even for

legacy binaries.

For the above proposals, we also detail their hardware implementations on FPGAs, and and

discuss how each fits within a complete multiprocess system. This serves to give the reader an

idea of usage and deployment challenges on a broader scale that goes beyond just the technique’s

effectiveness within the context of a single program.

Lastly, the dissertation discusses an alternative to the virtual address space, that randomizes

the sequence of addresses in a manner invisible to even the program, thus achieving transparent

randomization of the entire address space at a very fine granularity. The biggest challenge is to

achieve this with minimal microarchitectural changes while accommodating linear data structures

in the program (e.g., arrays, structs), both of which are fundamentally based on a linear address

space. As a result, this modified address space subsumes the benefits of most other spatial random-

ization schemes, with the additional benefit of ideally making traversal from one data structure to

another impossible. Our study of this idea concludes that although valuable, current memory safety

techniques are cheaper to implement and secure enough, so that there are no perceivable use cases

for this model of address space safety.

Contents

List of Figures iv

List of Tables vi

Acknowledgements vii

1 Introduction 1

1.1 Software Based Defenses . 4

1.1.1 Why Software? . 4

1.1.2 Can it Keep Up with Attacks? . 5

1.2 Hardware Based Defenses . 6

1.2.1 Why Hardware? . 6

1.2.2 But It is No Silver Bullet . 7

1.3 Thesis and Contributions . 9

2 Background 12

2.1 Baseline Architecture . 13

2.2 Semantic Metadata Based Defenses . 14

2.3 Tagged Defenses . 16

2.4 Cryptographic Defenses . 17

2.5 Logging or Monitoring Based Defenses . 18

3 Reviving Instruction Set Randomization with Polyglot 19

3.1 Introduction . 20

3.2 Background and Motivation . 23

3.2.1 Previous ISR Schemes . 23

3.2.2 ISR against Code-Reuse Attacks . 24

3.3 Adversarial Model . 25

3.4 System Architecture . 26

3.4.1 Software . 26

3.4.2 Hardware . 28

3.4.3 Design Choice Implications . 34

3.5 Implementation Details . 35

3.5.1 Software . 36

3.5.2 Hardware . 37

3.6 Security Analysis . 40

i

3.6.1 Motivating Strong Encryption . 40

3.6.2 Effectiveness . 42

3.6.3 Proof-of-Concept Exploit . 42

3.7 Ecosystem . 44

3.7.1 Challenges . 44

3.7.2 Distribution Models . 46

3.7.3 Key Management . 47

3.8 Evaluation . 47

3.8.1 Performance . 48

3.8.2 FPGA Implementation Results . 50

3.9 Related Work . 50

3.10 Conclusion . 52

4 Practical Memory Safety with REST 53

4.1 Introduction . 54

4.2 Motivation . 58

4.3 Hardware Design . 60

4.3.1 ISA Modifications . 61

4.3.2 Microarchitecture . 62

4.4 Software Design . 66

4.4.1 Userlevel Support . 67

4.4.2 System Level Support . 69

4.5 Hardware/Software Security . 70

4.5.1 Threat Model . 70

4.5.2 Hardware Discussion . 70

4.5.3 Software Discussion . 71

4.6 Evaluation . 75

4.6.1 Performance Overheads . 75

4.6.2 FPGA Area Overheads . 78

4.7 Related Work . 79

4.8 Conclusion . 82

5 Address Space as a Primary Line of Defense 85

5.1 Introduction . 86

5.2 Motivation . 87

5.2.1 The Address Interface . 88

5.2.2 Exploiting the AGI . 89

5.3 Related Work . 90

5.4 Apparent Address Space . 91

5.4.1 Security Implications . 93

5.4.2 Challenges . 94

5.5 Implementation . 95

5.5.1 Hardware Design . 95

5.5.2 Software Support . 98

5.5.3 Security Evaluation . 98

ii

5.5.4 Feasibility . 99

5.6 Conclusion . 99

6 Concluding Remarks 101

6.1 Lessons Learned . 102

Bibliography 105

Appendix 116

Algorithms Used to Leak XOR and Transposition Keys 116

iii

List of Figures

2.1 Generic baseline architecture and its hardware security mechanisms. 13

2.2 Hardware modifications for semantic metadata based defenses (highlighted). 15

3.1 High-level overview of Polyglot. 21

3.2 Modifications to page table. We use a reserved field in page-table value type field

to indicate a subsequent ISR PTE. The ISR PTE here corresponds to a page shared

between Processes A and B. PTD indicates a page table descriptor, which is a

pointer to the next level, whereas PTE is the final translation. 27

3.3 ISR page fault handling flowchart. 29

3.4 Hardware decryption scheme in Polyglot. On a page fault (left half), ISR PTE

contents are brought into the ITLB. On a cache miss (right half), a cache line is

decrypted using the page key before dropping into I-cache. 30

3.5 ISR binary generation for ELF binaries. Code pages are symmetrically encrypted.

Subsequently the symmetric keys are themselves asymmetrically encrypted with

the target system’s public key, and embedded within a new section of the ELF binary. 36

3.6 Encryption and decryption in the ECIES scheme. Letters in caps indicate points in

the Gaussian space which have consist of x- and y- coordinates. Base point, G, is

specified by the standards. 39

3.7 Distribution scheme for Polyglot binaries. 1 Vendor generates binary and at-

taches additional metadata to facilitate binary rewriting. 2 Binary rewriter at the

client side uses this metadata to randomize and encrypt the code, and generates

final ISR binary. 45

3.8 Performance overhead for SPEC and LMBench. 49

4.1 (A) Unsanitized memcpy bug reads sensitive data outside the benign buffer. (B)

REST tokens placed around the buffer detects this out-of-bounds access. 58

4.2 Code and address space transformation done by ASan. Memory accesses are in-

strumented to check against the corresponding value in the shadow memory (dark

region in figure), calculable with a simple mapping function, f 59

4.3 Breakdown of various sources of overhead in ASan with respect to a plain binary

using libc’s allocator. 60

4.4 Hardware modifications for REST include an extra metadata bit per cache line in

L1 data cache indicating whether it contains a token, and the token detector to

examine incoming data from lower caches and fill the token value into evicted lines. 62

4.5 Modifications to the LSQ. Added structures are noted in darker shade. 65

4.6 Flowchart showing write commit logic for REST 66

iv

4.7 (A) For stack safety we instrument the program to insert tokens around vulnerable

buffers. (B) Our allocator provides heap safety by surrounding allocations with

tokens and blacklisting deallocated regions in the quarantine pool. 68

4.8 Runtime overheads (over plain) of ASan and REST in the debug, secure, and per-

fect (zero-cost) hardware modes while providing full and heap safety. 76

4.9 Runtime overheads (over plain) of using 16B, 32B and 64B tokens in secure mode. 76

4.10 Runtime overheads (over plain) of heap protection with dlmalloc. ASan/REST and

ASan results are also shown again for reference. 78

5.1 Apparent Address Space as an Abstraction over the Virtual Address Space. 92

5.2 Tagging scheme employed for coloring memory objects in AAS. 97

v

List of Tables

3.1 Comparison of various ISR proposals. (∗Shared library support does not necessar-

ily imply sharing them across processes, unless code sharing is allowed.) 23

4.1 Actions taken on various operations for L1-D cache hits and misses. 64

4.2 Simulation base hardware configuration. 74

4.3 Comparison of previous hardware techniques (assuming single-core systems for

simplicity). †Although MPX-supported binaries execute with modules that are not

protected, metadata is dropped when such modules manipulate an MPX-augmented

pointer. ‡See text. 84

vi

Acknowledgements

This doctorate may not be the hardest thing I have attempted, but it is by far the hardest thing I

have achieved. There were times when doubts almost led me to quit, but I am glad I persevered.

Many are to blame for getting me past the finish line.

Needless to say, the biggest credit goes to my advisor, Simha. Beyond the wealth of know-

how I have acquired from him over the years, his most important lessons have been completely

non-technical. He has deeply affected my perception of knowledge, and reformed my outlook

towards learning in general. I am deeply grateful for his patience and encouragement throughout,

especially in times when research involved just hopelessly searching. If there is one thing I can

take away from my time here, I hope it is his ability to have faith in a vision.

I am also very grateful to the other faculty members at the department, particularly Luca Car-

loni, Martha Kim, Steve Bellovin, and Suman Jana, for the guidance and advice they provided me

whenever I sought them. From my numerous discussions and seminars with them, I am humbled

by the depth of their intellectual curiosity, and hope to emulate it in my future life. Last but not

least, I thank my unofficial “co-advisor”, Vasileios Kemerlis, who, while a graduate student here,

found the time and patience to show a novice the ropes in the tricky field of security research.

A lot of friends, especially past and present occupants of CSB 467, have brightened my grad-

uate life at Columbia. In no particular order, my heartfelt thanks to Hiroshi Sasaki, Melanie

Kambadur, Paolo Mantovani, Emilio Cota, Andrea Lottarini, John Demme, Adam Waksman,

vii

Yipeng Huang, Jared Schmitz, Miguel Arroyo, Joel Porquet, Chester Rebeiro, Kshitij Bharad-

waj, Giuseppe Di Guglielmo, Davide Giri, Luca Piccolboni, YoungHoon Jung, Young Jin Yoon,

Christian Pilato, Richard Townsend. Vasilis Pappas, Theofilos Petsios, David Williams-King, and

others. Of those I did not list, I cannot forget to name Adrian Tang, who motivated and distracted

me in the right ways and at the right times, especially when the weight of a PhD proved difficult to

bear.

Beyond Columbia, I was also lucky to have a few friends along the way, whose support and

help were crucial to get me where I stand now. Of them, I have to mention Alok Sood, who

consistently reminded me the meaning of friendship, Courtney Truesdell, who reminded me that

much of life is the people in it, and Amit Malik, who was always there even when he was not.

And finally, heartiest thanks to my family, the new ones I found in this country and those I left

at home. The warmth of their love (and food) buoys me in times when I am overwhelmed by the

life of a researcher. Especially, my parents, my gratitude to whom I cannot even begin to express.

In their endless pool of faith in me, I try to see my reflection when my own self-belief wanes. I

continue to strive to be the person they have always seen in me.

- Kanad

viii

To Baba and Mum,

and

my good friend, Alok

ix

CHAPTER 1

Introduction

Since the first stack overflow based computer worm was first launched by Robert Morris in 1988,

attackers have developed ever sophisticated techniques for bypassing program security, while the

defenders continuously try to develop measures to thwart them. Historically, this has resulted in

a fascinating trend of cat-and-mouse, so that attackers and defenders are always engaged in an

adversarial battle of one-upmanship. However, despite the best efforts of security researchers,

attacks are still widely prevalent costing organizations and users significant economic loss. While

there are many reasons for this, two major factors have persistently contributed to this state of

affairs over the long-term.

First, as sophisticated as attack techniques are becoming, it is trivial compared to the rate at

which the complexity of commercial software has grown. For instance, a modern browser in-

cludes a Javascript engine/interpretor, PDF viewer, multiple extensions, etc., is written in several

languages, and has tens of millions of lines of code. More complexity implies a higher density of

bugs, lower test coverage, and a larger attack surface. Pre-deployment detection of errors via test-

ing and validation techniques have come a long way in the recent past with significant research and

1

development being done in the areas of rapid bug detection with tools like AddressSanitizer [100],

larger test coverage with various forms of fuzzing, limiting the scope of bugs/attacks with soft-

ware fault isolation, and so on. Even so, the state-of-the-art in validation lags far behind still,

and is nowhere close to accounting for the discovery of all bugs and their scope of exploitation in

production software.

Another reason for this is the prevalence of memory-unsafe languages like C and C++, which

do not abstract away the address space and allow the program direct access to memory and its

contents. Unmitigated access to raw memory means bugs have a higher scope of impact since no

checks are built in at the language level to prevent semantically illegitimate accesses. The fact

that they have been around for decades also means that there is a significant legacy code base of

these languages. Although many type-safe languages have been developed since, prevalence of

legacy code and the speed advantage enjoyed by these unmanaged languages has resulted in their

continuing popularity among developers in the present and foreseeable future.

In response, security engineers have amassed a rich body of safety measures that aim to counter

attacks while being minimally intrusive on the program. Traditionally, these techniques have pri-

marily been implemented at various levels of software ranging from compiler-based static analyses

to runtime defensive monitors. Besides some basic hardware support like that for paging, this has

remained the status quo for the past few decades, wherein software has borne the brunt of the

responsibility for security. However, due to multiple factors, performance being foremost among

them, software-based security has not scaled well. As developers stack ever-increasing number

of features, while seeking to keep performance overheads at a minimum, it is thus the case that

security mechanisms are the ones that get side-tracked or abandoned.

To overcome this problem, hardware designers have lately picked up the gauntlet by providing

features that either augment existing security schemes or implement them in its entirety. Employ-

ing special hardware for this purpose is highly promising since it potentially mitigates the critical

issue of performance faced by software solutions. This has led to proposal of numerous hard-

ware based security solutions in the last decade. Furthermore, as the cost of failure and economic

2

demand for safety rises, hardware vendors have jumped into the fray, announcing numerous in-

struction set architecture (ISA) extensions. Consequently, major design houses like Intel, ARM,

and SPARC have introduced features to combat memory errors [3, 48, 53], pointer corruption [97],

control flow integrity [27], isolated execution [75, 84], etc. in recent years.

As heartening as this trend might seem, we have to ask ourselves one crucial question: for all

the advantages that specialized hardware provides and the number of hardware solutions proposed

so far, why are more of them not seen in deployment today or even included in future microproces-

sor iterations? The answer partially lies in the process of hardware design and the considerations

that go into it. Due to the long time-to-market (of the order of a few years typically), longevity of

architectural specifications, and relative immutability of hardware, vendors are hesitant in adding

new features if their effectiveness on deployment is uncertain. This is more pronounced when the

solution in question is complex, so that integrating it into existing designs becomes intrusive, ex-

pensive, and difficult to validate. Hence, the fact that most previously proposed solutions have not

translated to commercial implementations implies that hardware security researchers have not hit

the right trade off of the aforementioned criteria favorably.

To this end, my research has sought to explore and enable the design of hardware features

that are simultaneously effective as security measures, while requiring simple modifications to

hardware, thus increasing their chances of deployment. Three case studies are presented in this

dissertation that look at different approaches to securing program code and data against external

exploitation. Of the three, two are positive studies wherein the first discusses a technique for se-

curing code against runtime disambiguation and injection, whereas the second discusses a solution

for practically securing data against malicious memory corruption and manipulation. The third

case study presents a negative result involving a technique that seeks to secure the address space

as a whole against unwanted memory disclosures, but the implementation overhead was found to

be too high, thus making it impractical. With these studies, I hope to motivate the central thesis

of this dissertation that asserts the design of low overhead, low complexity, yet effective hardware

solutions to augment system security.

3

1.1 Software Based Defenses

1.1.1 Why Software?

Software based defensive schemes have been and remain the norm in the computer security, and for

good reason. Software is cheap to develop, deploy, and update. Thus, the time from the discovery

of a bug, to the development of its patch, to pushing the updates to client systems is fairly quick and

the process easy. In fact, most software systems are engineered and maintained to accommodate

such operations, with advances currently being made in even live patching of systems without any

downtime. This is especially critical for security patches, since some of these bugs can be exploited

en masse within a short period (especially for web-facing programs), thus increasing their fallout.

Additionally, since software solutions have access to the high-level semantic information of the

program, they are easier to reason about and apply. For instance, consider a simple buffer overflow.

At the level of the language, the notion of bounds exists and hence, it is easier to determine when

they have been violated. This information is absent at the machine level where all that is visible

is a flat memory space. Hence, a defense against overflows is potentially easier to implement at

the language level, than anywhere below. Consequently, a whole slew of compiler-based software

tools have been developed [38, 39, 62, 81] to ensure memory safety for C-based programs. In fact,

even hardware based defenses often rely on semantic information passed down to enforce bounds

more accurately [36, 79, 105].

A third reason is probably just awareness and the lack of efficient collaboration among soft-

ware and hardware researchers. Software bugs are easier fixed by people who understand software

and how/what attack vectors are/can be utilized to exploit them. Traditionally, software developers

have not had a good understanding of hardware microarchitecture or at least, do not have an open

channel of communication with hardware developers. Vice versa applies for hardware develop-

ers, who are generally unaware of security concerns in software, and do not necessarily have the

“hacker mindset”. They have only been concerned with power and performance which is what the

market has demanded of them thus far. The ramifications of this lack of awareness among hard-

4

ware designers was made painfully clear with the discovery of the Spectre [60] and Meltdown [68]

attacks, which are a direct consequence of some fundamental tenets of out-of-order processing,

namely speculative execution. Thus, the insular nature of software and hardware development has

contributed to an absence of cross-disciplinary approaches to mitigating persistent and potentially

forward-looking threat vectors effectively.

1.1.2 Can it Keep Up with Attacks?

For the past several decades, semiconductor technology has progressed in accordance with Moore’s

law, giving users exponential increments in performance year-on-year without any modifications

to code whatsoever. This blanket speedup of general purpose computation allowed increasingly

complicated and feature-rich applications to be deployed with nominal to no overhead apparent

to the user. Software-based security also benefited from this phenomenon; as these defenses be-

came more complex and hence, more compute- and/or memory-intensive, their overhead could be

accommodated due to faster execution speeds. However, as Moore’s law comes to an end, other

avenues for speeding up selective aspects of execution are now being explored (multicores, ac-

celerators, etc.). Although some specialized hardware modules for security have been developed

(TPMs [117], for instance), this new trend has had little to no positive effect on software secu-

rity. As a result, users are hesitant to employ software defense schemes that may be secure but

slow down the system noticeably. This is undesirable since contemporary attacks have evolved in

sophistication to the point that current defenses are not effective enough. Attackers are not only

exploiting the previous attack vectors in intelligent ways, but are also continuously inventing novel

ones. For instance, if we look at the root causes for remote code execution in Microsoft software

in the last few years [125], we see that not only are the classic memory attacks still valid and as

relevant, but new vectors like type confusion are exploding. With so many diverse threats to pro-

tect against, software based solutions struggle to meet the requirements of performance while still

being effective.

Furthermore, there is another reason that limits the effectiveness of some software based solu-

5

tions — privilege. Most of these solutions operate at the same privilege level, indeed in the same

address space, as the program. Any attacker advanced enough to have the capability to affect the

program, can, hence, affect the security measure as well. Stack canaries, for instance, have been

shown to be easily bypassable via simple brute forcing and/or disclosure of canary value [93].

1.2 Hardware Based Defenses

Due to the above shortcomings of software based defenses, security engineers have started looking

towards hardware for assistance, thus creating a new paradigm for defensive techniques. Doing so,

however, is not as simple as it seems. In order to develop truly secure and practical solutions in

hardware, it behooves us to understand the trade offs and considerations that guide their design.

1.2.1 Why Hardware?

As discussed above, the foremost argument for implementing defenses in hardware is, unsurpris-

ingly, performance. In fact, task-specific special purpose hardware is especially commonplace

nowadays with modern commercial system-on-chips containing multiple accelerators for common

applications like graphics and cryptography. Specialized hardware for a specific task is generally

better than an equivalent software implementation in terms of performance and energy, when the

task has a well-defined data set and is self-contained. The same principle applies for hardware

based defenses as well – if the solution involves operations being performed on clearly disam-

biguated data operands, it might be a good candidate for hardware implementation. Consider,

Softbound [81], a compiler based bounds checking solution aiming to provide spatial memory

safety, which checks the validity of every memory access against the bounds defined in the meta-

data for the pointer being dereferenced. These metadata are, in turn, stored at a known fixed offset

from the pointer. The hardware implementation of the same, Hardbound [36], brings down its

overhead from 79% to only 5%.

Additionally, there is also the advantage of privilege. Since hardware is at the root of all trust in

6

the system and has the higher privilege than any piece of software, defenses employed in hardware

are harder to disable, manipulate, and/or bypass1.

One general concern about hardware based solutions, however, is that they are too low-level

and hence, do not observe enough semantic information about the program to effectively detect

anomalous behavior. This does not always have to be the case, especially when the attack involves

a clear violation of architectural principles that reflect common program behavior (e.g., functions

should always return to the instruction after the corresponding call to it). Solutions to more com-

plicated problems have taken the following two approaches so far. Firstly, a hardware-software

co-design has been shown to be very effective wherein the hardware takes hints from software,

either at runtime or through metadata generated through compile-time analyses. Numerous past

works, especially in the area of memory safety, have taken this approach since it was observed in

many cases that identification of linguistic constructs like pointers and data structures completely

in hardware was imprecise and resulted in false positives/negatives [36]. Simple hints/annotations

at the program level, when possible, easily and efficiently mitigated this problem. The second

approach is a more recent one wherein the hardware infers semantic information via microarchi-

tectural events. This usually requires training against a golden model so that malicious behavior is

signaled whenever this expectation is violated. Although the latter technique has only been shown

to be effective for anomaly detection [34], it can potentially be used for detecting more specific

attack scenarios.

1.2.2 But It is No Silver Bullet

With all the benefits of hardware based defenses outlined above, the question we need to ask

ourselves then is, why not implement all or most defenses in hardware? Or more specifically,

where do we draw the line at which point it would make sense to implement a software technique

to hardware? To answer this question, we have to understand the various factors and trade-offs that

1This is a double-edged sword since hardware attacks can also be extremely potent. The recent Spectre, Meltdown,

and Rowhammer [59] attacks are cases to this point.

7

hardware vendors have to contend with for a design to make economic sense.

Performance. As fast as specialized hardware can be, they still usually do introduce some

slowdown. As such, engineers have to keep the slowdown figures of the design to a few percentage

points for it to be viable (depending on the context). Unless they are able to achieve this, the feature

will be deemed fairly slow for most practical purposes. It, thus, becomes a trade-off wherein the

vendor has to gauge performance overheads of the feature, how critical that security feature is for

the client’s application, and what portion of the total user base utilize those applications.

Effectiveness. This is a crucial factor especially for security measures, since, unlike other

performance or usability optimizations/extensions, security measures could potentially become

quickly outdated if a new attack vector is discovered. Because hardware is not easily updatable,

users would just be burdened with a useless, or in some extreme cases, harmful hardware feature,

rendering the vendor’s investment in the technology unprofitable. Given major hardware design

iterations take several years to go from conception to commercialization, vendors, thus, need to be

assured of the importance of the problem in question in the years to come, and the effectiveness of

the solution against unpredictable vectors within this period.

Complexity. The complexity of any feature directly correlates to the effort and cost of its

integration in the final product. This is because complex solution can interact with and occasion-

ally need modifications in multiple microarchitectural subsystems, thus raising not only the cost

of development but also that of validation. Since most commercial microprocessors are already

extremely intricate, introducing complex features, security or otherwise, entails an arduous effort,

and does not guarantee that new bugs will not be introduced. Furthermore, complex techniques

often require power hungry structures, thus increasing the energy budget of the chip, especially if

it is an always-on feature.

Longevity. Although hardware is not as immutable as most people imagine2, they are still

highly static compared to the flexibility offered by software. Architectural specifications persist

over multiple processor generations, users continue to use the same hardware for years on end.

2Vendors often release microcode patches to change the functionality of chips on the field.

8

Tying back to the long-term effectiveness of the measure, it becomes more critical to determine

whether the technique exhibits a conservative promise to be a significant deterrent for that attack

in the near future. Otherwise, it is hard to justify its inclusion in the final product.

A good hardware solution would, thus, have to assuage all of the above vendor concerns suf-

ficiently and convincingly to make its way into production and sustained usage. Consider Intel

MPX [53] for instance. It was released in commercial Intel Haswell processors in 2015, and fol-

lows the long line of work in the area of bounds checking support in hardware [36, 45, 79, 80].

This approach required fairly non-trivial changes to hardware and software, and consequently, due

to its many issues of compatibility and performance [86], MPX hardly made its way into popular

applications. In fact, support for MPX was recently retired in GCC9. Over the last decade, nu-

merous other hardware security features have been proposed in major architectural, systems, and

security conferences, and yet only a small handful can be seen in current chips. Even accounting

for the fact that, as with other technologies, security ideas need to be improved and cross-validated

over multiple iterations before they can be considered refined enough for commercial release, the

disparity between research and deployment in hardware security implies a lack of cognizance of

the above factors so far.

1.3 Thesis and Contributions

In the light of the above discussion, this dissertation makes the following thesis statement:

Hardware support for software-based defenses can not only complement but also improve their

efficacy and performance, without requiring extensive modifications to core microarchitecture.

To support the above thesis, this dissertation makes the following contributions in the form of

three case studies.

I. Securing Code. There exist two main attack vectors for compromising the integrity of code

and its flow in a program — code injection attacks and code reuse attacks3 [114]. Both of these

3Code pointer corruption might lead to either or both, but we treat it as a data-based attack for this discussion.

9

techniques have been documented for over 20 years, but are still relevant today. Although code

injection was largely mitigated as a primary vector with hardware features like the NX bit and

W⊕X, code reuse attacks are still being employed in the wild today. The first contribution of

this dissertation is to re-architect a technique called instruction set randomization (ISR) that is

considered highly effective against code injection attacks but fundamentally vulnerable to code

reuse. In fact with threat models relevant today, even ISR’s effectiveness against code injection

is questionable. By adding some hardware support, we demonstrate for the first time that our

variant of ISR not only prevents code injection attacks under current threat models, but could

also effectively counter state-of-the-art code reuse attacks. We achieve this by encrypting code

with strong cryptographic primitives statically, and decrypting them just before execution, without

adding significant performance overheads. Crucially, as asserted by the thesis of this dissertation,

we show how this can be made possible with modifications to the L1 instruction cache and the

MMU page walker, thus leaving other core substructures and data caches largely in tact. We also

provide a full-system view of this technique highlighting how its protection could be turned on

from the very first instruction executed at boot, and the distribution models that need to be in place

to accommodate a feature like this.

II. Securing Data. Next in the dissertation, we discuss a novel method for securing data

against common types of memory safety violations, which are one of the most long-standing and

critical threats in computer security. While previous solutions in this area were effective, they

required non-trivial changes to hardware, besides other drawbacks. Our technique, however, in-

troduced hardware support for a simple primitive, i.e., comparison against a large, predetermined

random value, and used this primitive to enable practical memory safety in the program with sim-

ple software support. Notably, since our primitive itself is so simple, its hardware support is also

very trivial (just a comparator at minimum). We also demonstrate how our technique introduces

nominal slowdown in the application and is able to provide heap safety even for legacy binaries.

III. Securing the Address Space. The final case study in this dissertation presents a negative

result, wherein we modify the virtual address space to present a randomized sequence of addresses

10

to the program instead of the traditional model where addresses follow a linear sequence. This

effectively serves to uniformly randomize of the entire address space at a very fine granularity.

We argue that doing so prevents the attacker from “traversing” from one data structure to another,

thus providing spatial memory safety. It was, however, determined that the implementation and

performance cost of this scheme would be too high and would, hence, fail the criteria of our

discussion thus far.

11

CHAPTER 2

Background

Before we dive into the case studies, it is useful to understand the general approaches towards

implementation of hardware solutions in order to gain a better insight into the related complexity

and sources of overhead, independent of the goal of the individual technique. Towards that end,

in this chapter, I will broadly classify past and present hardware security solutions that have been

proposed to aid or replace problems traditionally handled by software, and discuss the the nature of

modification necessary to accommodate them in a modern general-purpose microprocessor. This

classification will be based on the type of hardware implementation, rather than the problem it

solves or the effectiveness of different proposals constituting the class. In the subsequent chapters,

a detailed analysis of the related work for relevant topics will be presented. Also, note that there

are other classes of defenses that counter side channel attacks, provide isolation, etc., and so, are

tangentially related to code and data security, but from a hardware or privilege standpoint. Such

defenses are considered out of scope for the sake of this discussion.

12

���

���
��

��� ��

���	

��
���

�

���������

���

���

��

�
�

����
����

���
����

���

������	�

��
�

������
������

������
������

����

��������
�������
���������

�������
������	

���
���

���

���

���

Figure 2.1: Generic baseline architecture and its hardware security mechanisms.

2.1 Baseline Architecture

Prior to discussing various aspects of the cost and benefits associated with particular hardware

defenses and the changes they require, we provide the readers with a baseline architectural design

against which to evaluate hardware solutions, existing or new.

Figure 2.1 shows the baseline architecture that we use for illustrating all the security tech-

niques. The baseline shows a processor and off-chip components: the off-chip components include

DRAM, off-chip compute units which can be GPUs or FPGAs, a TPM and a I/O hub chip which

can connects to various peripherals. Inside the processor, without loss of generality, we assume a

single core processor but we will point out multicore related issues as they are relevant.

The core includes standard microarchitectural structures: the mode bits determine if the core is

in supervisory mode or user mode, the IL1 is the level 1 instruction cache that holds instructions,

the ITLB is the translation lookaside buffer which provides virtual to physical address translation

for instructions, an instruction fetch unit (IFU), a decoder, a register file that has integer and fp reg-

ister, an out-of-order issue and commit unit, and several structures for handling memory accesses.

The structures for handling memory accesses include a level 1 data cache, the load store queue

13

(LSQ) which is used to support reordering of memory requests, MMU which includes the data

translation lookaside buffer and different page walking or page walk caching mechanisms. Beyond

the core, we assume a L2 cache that is banked, each bank has tags and data. Our baseline chip

also includes some special purpose on-chip offload engines (such as a graphics core), a memory

controller that reorders and relays request to memory, and I/O controller that relays and manages

requests to I/O devices.

All of these on-chip structures are connected by an on-chip network. This baseline is abstract

and sufficiently representative to provide intuition on cost/complexity of hardware security mech-

anisms.

2.2 Semantic Metadata Based Defenses

This class of defenses associates semantic metadata with each pointer in order to ascertain that it

is never illegitimately dereferenced. This metadata could take the form of addresses, permissions,

and other semantic information regarding the corresponding data structure, and may be stored

along with the pointer or in a separate shadow space that reflects the program’s memory layout.

Works in this category have so far taken one of two forms.

In the first variant, the metadata is used to enforce bounds checking on the pointer at derefer-

ence. Each pointer is functionally associated with a corresponding start address and an end address

(or length) that specifies the bounds of the pointed structure. In some works, temporal information

is also stored that indicates the “version” of the structure, so that if the current structure is deal-

located and another allocated in the same region, a pointer dereference of the old structure can be

caught. The first hardware support for such a scheme was Hardbound [36], which did not enforce

temporal safety. Subsequent works [45, 79, 80] refined this technique to enforce more accurate

spatial and temporal bounds. Notably, Intel launched the MPX ISA extension [53] in 2015 that

brought this technology into a commercial domain.

The second variant in this class is capability based architectures. Capabilities are a form of

14

���

���
��

��� ��

���	

��
���

�

���������

���

���

��

�
�

����
����

���
����

���

������	�

��
�

������
������

������
������

����

��������
�������
���������

�������
������	

���
���

���

���

���

Figure 2.2: Hardware modifications for semantic metadata based defenses (highlighted).

access-control and can be loosely defined as tokens necessary to access a particular resource. Con-

ceptually they can be represented as a data structure consisting of a unique resource-identifier and

the associated credential. Privileges are acquired by entities when they receive the appropriate to-

ken. These tokens must be unforgeable and are passed to entities, preferably according to the prin-

ciple of least privileges. Although considered an obsolete technology until recently, CHERI [126]

and its follow-up works [22, 23, 123] have revived it, and demonstrated its viability in a practical

setup.

Hardware Modifications. Although individual proposals have their own unique design points

and optimizations, here we outline common features of a naive design for a typical scheme in

this class. Such system conceptually require wider data-paths and memory elements, and access

checking circuitry on memory accesses to impose rules dictated by the metadata, which have to be

separately accessed. Often techniques provide a separate metadata cache and TLB at the L1, thus

functionally extending the existing caches and TLB, to enable fast lookup of metadata. Notably,

WatchdogLite handles metadata explicitly just like regular data, while CHERI uses a capability

coprocessor a placed next to the pipeline to perform the latter. The hardware units that are affected

are shown in Figure 2.2.

15

2.3 Tagged Defenses

This type of defense is similar to the previous class in that they use metadata (often called tags, in

this context), but in this class they are usually just one or a few bits. The tags indicate a state, only

meaningful in the context the defense operates. Depending on the solution, these tags could be se-

mantically attached to memory locations, pointers, and/or data. For instance, some techniques [96,

107, 119] attach tags to memory to validate if can be accessed or not. Some [3, 48] go still further

by attaching tags to pointers as well, to enforce a degree access control by mandating that tags of

pointers and accessed location match.

A more advanced form of this class of defense is dynamic information flow tracking (DIFT) [113].

DIFT uses metadata or taints to track the flow of untrusted information within the system, to make

sure that it does not unexpectedly affect any trusted or secret portion of the system, or otherwise

leak it on untrusted channels. The idea is that if at least one of the operands for an operation is

untrusted, the output is untrusted as well and should be limited in its ability to interact with other

elements of the program. The same goes for all operations involving this output, and so on. De-

pending on how the tags are propagated and checked, what gets tainted, and who monitors them,

DIFT can be used for a variety of purposes from access control to information leakage.

Hardware Modifications. The degree of tagging support is dependent on what is being tagged

and how tags are propagated. Conceptually, the modifications required are similar to the previous

class. To detect flow of data through the processor, the data pathways – memory elements (register

file, microarchitectural registers, and buffers) and buses/interconnection networks – have to be

extended by the tag-width. In practice, however, when the tags are narrow enough, some solutions

have leverage/repurpose ECC bits in main memory for tags [3, 48]. Some current solutions aimed

at 64-bit architectures also use the unused higher order of the address to store pointer tags, thus

significantly lowering the hardware requirements. Depending also on whether the data and tags

can be atomically accessed, one or more memory accesses may be necesssary for each data access.

Additionally, for DIFT, to taint the output of operations involving tainted data, a small OR gate

is necessary around computational units which takes as input the taint statuses of the inputs, and

16

marks the output tainted if any of the inputs are tainted. Since both classes are based on per

memory metadata, the hardware modifications for this class are similar to that of the previous class

shown in Figure 2.2.

2.4 Cryptographic Defenses

Although cryptography has been a popularly used mechanism for data integrity and secrecy, there

have only been a handful proposals that utilize it to protect code and data at the process abstraction

level. Hence I will give a brief overview of some notable techniques individually below.

ASIST [88] is the first hardware scheme proposed to support ISR (discussed in more detail

in chapter 3). Essentially, it encrypts program code with simple XOR or bit transposition. This

is done at runtime with a simple key, programmable into a register, which decrypts instructions

just before they are stored in the L1 instruction cache. Polyglot [104] operates similarly except

it uses stronger AES encryption, besides asymmetrically encrypting the code encryption keys as

well. Details of these technique are discussed in more detail in the next chapter.

Recently, a similar randomization technique, called HARD [8] for data was proposed that stat-

ically determined equivalence classes of data based on the instruction they were accessed from.

These classes were then XOR-encrypted with the same key and the key associated with the in-

struction(s). Recently, ARM also announced a pointer authentication technology [97], wherein all

pointers can be encrypted with a master key and authenticated at dereference. This is to counter

out-of-band corruption or forging of original pointers, for instance, through an overflow of a buffer

into a neighboring pointer variable.

Hardware Modifications. The techniques outlined above have completely different purposes

and hence do not share any common design features except the addition of a decrypting unit. For

ASIST and Polyglot, this unit is added at the memory facing interface of the L1 instruction cache

and is just a XOR or a large decoder structure. In case of ARM pointer authentication, although

design details have not been disclosed publicly, a naive design would introduce an encryption and

17

decryption engine in the pipeline as an additional functional unit. HARD also adds caches around

the pipeline and decryption units. Overall, above techniques introduce small overheads on the

baseline architecture depending on the specific cryptographic algorithm used and where in the data

path the operations occur.

2.5 Logging or Monitoring Based Defenses

Many novel ideas have lately been proposed that leverage microarchitectural logs present in mod-

ern microprocessors (hardware performance counters, branch direction stores, etc.) to detect at-

tacks or otherwise anomalous program execution. One of the challenges of utilizing hardware logs

is the fact that they may not capture enough information about the execution software, be it the OS

or individual programs on it, so much so that any kind of semantic information about the past or

present state of execution may not be discernible. To illustrate through a naive example, could one

be able to detect that a buffer overflow attack has occurred just by looking at the cache-miss coun-

ters? Luckily, modern microprocessors usually maintain a host of different counters or records that

have been shown to reflect program behavior fairly well [102]. Depending on the complexity of

information sought, some form of heuristic post-processing of these data may be required though,

thus requiring an offline software component (running on a separate core, for instance) to process

the data and raise the alarm when necessary.

Hardware Modifications. Usually these solutions require very little hardware modifications,

since the bulk of the logs are already present in the microarchitecture. Synthesizing this informa-

tion may however require a small hardware component (in SCRAP [55], for instance), unless this

task is offloaded to software [34, 87].

18

CHAPTER 3

Reviving Instruction Set Randomization with Polyglot

Instruction set randomization (ISR) was originally proposed as a countermeasure against code in-

jection attacks. However, it is largely considered to have lost its relevance due to the pervasiveness

of code-reuse techniques in modern attacks, against which ISR is fundamentally ineffective. Ad-

ditoinally, code injection no longer remains a foundational component in contemporary exploits.

This chapter revisits the relevance of ISR in the current security landscape. We show that

prior ISR schemes are ineffective against code injection, but can be made effective against code-

reuse attacks, and even counter state-of-the-art variants, such as “just-in-time” ROP (JIT-ROP).

Yet, certain key architectural features are necessary for enabling these capabilities. We implement

a new ISR system, namely Polyglot, on a SPARC32-based Leon3 FPGA that runs Linux. We

show that our system incurs a low performance overhead (4.6% on a subset of SPEC CINT2006)

and defends against real-world (JIT-)ROP exploits, while still supporting critical features like page

sharing. Polyglot is also the first ISR implementation to be applicable to the entire software stack:

from the bootloader to user applications.

19

3.1 Introduction

Instruction set randomization (ISR) was proposed as a way of mitigating code injection attacks [7,

56]. Specifically, ISR involves randomizing the underlying instruction-set architecture (ISA) of a

CPU, thereby giving the appearance of a unique instruction set to every program. For instance,

the opcode 0xa may denote XOR on one machine, but may be invalid on another. This prevents

an unauthorized party (attacker) from using the same exploit on multiple targets—any injected

(shell)code must adhere to the unique ISA used by the vulnerable program to be effective.

ISR implementations typically “emulate” the random ISA using a layer of encryption. Code

is encrypted at the binary level and decrypted on-memory, right before execution. Apart from

ASIST [88], the only hardware-based ISR scheme to date, all previous solutions [7, 16, 51, 56, 95]

are software-based and primarily utilize dynamic binary instrumentation frameworks, like Pin [71].

This method for generating diversity is far simpler than customizing the decoder on each chip to

implement random instruction mappings or changing the microarchitecture of every CPU instance.

However, ISR has a major drawback that impedes its widespread adoption—it is completely

ineffective against code-reuse attacks, which is the typical cornerstone of modern exploits [21, 89,

90, 101]. This is because code-reuse attacks, as the term implies, stitch together legitimate code

pieces, already present in the address space of a running process. Additionally, as we show later,

once an attacker has the means to overcome techniques like W⊕X, ISR can be trivially bypassed

as well. Hence, even as a defense against code injection, ISR is no more effective than other

established techniques.

Aside from this fundamental limitation, all the previously-proposed ISR schemes also suffer

from one, or more, of the following major issues:

1 Unfavorable performance–security trade-offs. Since instructions are decrypted at runtime,

the decryption process falls squarely in the critical path of instruction execution and the associated

latency is hard to amortize. Hence, weak encryption schemes are traditionally used to offset this

overhead, resulting in new attacks [109, 124].

2 No self-protection. Since most previous solutions are software-based, they: (a) expose a

20

Figure 3.1: High-level overview of Polyglot.

large trusted computing base (TCB), and (b) can be turned off easily, because the enabling frame-

work executes at the same privilege level with the protected application(s).

3 Incongruent with modern software systems. Previous schemes provide limited or no support

for shared libraries and page sharing. Hence, they are impractical in modern settings, as they incur

large memory overheads [6].

4 Archaic threat model. Previous approaches do not consider memory disclosure vulnerabil-

ities as part of their threat model. Yet, arbitrary memory reads are a standard component in recent

work in the area [5, 29, 33, 46, 106], and quite popular to present-day attacks.

In this work, we propose Polyglot, a hardware-based ISR scheme that concurrently addresses

all the above concerns. Polyglot not only improves significantly the traditional security properties

of ISR, but also counters state-of-the-art code-reuse attacks, which are a novel and more relevant

target for this technique. We utilize strong encryption (AES [110] and ECC), successfully over-

coming the challenges of impractical performance by removing decryption from the critical path

with microarchitectural optimizations. We present two schemes: (a) one with no overhead in prac-

tical systems, catering to the standard threat model used in anti code-reuse-attacks proposals; and

21

(b) another with nominal overhead to counter a stronger threat model. Unlike most prior work, we

encrypt at the page, instead of application, granularity. This not only enables richer diversifica-

tion, but also allows us to trivially support page sharing and seamlessly apply ISR to the system

software (OS, hypervisor, etc.). We are also the first to show how ISR functionality can be logi-

cally extended to operate from system boot time, when the memory management unit (MMU), and

hence paging, is disabled. Consequently, our implementation of ISR is available from the very first

instruction that the system executes.

Figure 3.1 provides an overview of Polyglot. Binaries are encrypted page-wise with AES,

while upon execution, the hardware memory controller (with the help of the OS) decrypts the

executing instructions as they are transferred into the cache, so that the program remains encrypted

in memory. We elaborate on the rationale and motivation of such a design in next section.

In summary, this work makes the following contributions:

• We propose Polyglot, a hardware-assisted ISR implementation, and demonstrate for the first

time that it can be used as a defense not only against code injection, but also against (static

or dynamic) code-reuse attacks (CRAs) that are a more critical extant threat. In addition, we

show how prior proposals fail to fit into this role.

• We overcome the security-performance tradeoffs exhibited by previous ISR proposals, and

illustrate how Polyglot can be performant despite using strong cryptographic schemes.

• We uphold the principles of scalable software design by supporting shared libraries and page

sharing.

• We implement a SPARC32-based prototype, based on the Leon3 open-source SoC pack-

age [66], which allows us to study and demonstrate the full-system viability of our proposal.

This enables us to practically evaluate the system from a performance and security stand-

point.

22

3.2 Background and Motivation

In this section, we give a brief overview of previous work on ISR, and claim that in the face of

modern exploitation techniques, ISR is completely ineffective. Subsequently, we motivate a novel

way in which ISR can become valuable again, when combined with other protection mechanisms,

albeit only if strong encryption is employed.

3.2.1 Previous ISR Schemes

Proposal
HW

Based

Encryp-

tion

Granu-

larity

Shared

Libs∗

Code

Shar-

ing

Self-

modifying

Code

Scope Slow-

down

Barrantes et al. [7] ✗ XOR Proc. ✗ ✗ ✗ App. High

Kc et al. [56] ✗ XOR Proc. ✗ ✗ ✗ App. High

Hu et al. [51] ✗ AES Proc. ✗ ✗ ✗ App. High

Boyd et al. [16] ✗ XOR Proc. ✗ ✗ ✗ App. Med.

Portokalidis et al. [95] ✗ XOR Proc. ✓ ✓ ✓ App. Med.

Papadogiannakis et al.

[88]

✓
XOR,

Trans/on

Proc.,

Kernel
✓ ✗ ✓

App.,

Kernel
Negl.

Polyglot ✓
AES,

ECC

Mem.

page
✓ ✓ ✓

App.,

Kernel,

Boot-

loader

Low

Table 3.1: Comparison of various ISR proposals. (∗Shared library support does not necessarily

imply sharing them across processes, unless code sharing is allowed.)

Most prior ISR attempts are software based (see Table 3.1), and typically implement random-

ization using dynamic binary instrumentation tools, such as Pin [71], or platform emulators, like

Bochs [64]. Obviously, an attacker can turn off, or subvert, such components as they execute at

the same privilege level as the protected application. Apart from other practicality issues, they also

exhibit significant slowdowns [95] and were demonstrated to be bypassable [109, 124], due to their

use of weak XOR-based encryption.

ASIST [88] sidesteps problems with performance and (the lack of support for) shared libraries

by providing hardware support for ISR, and incorporates the best practices of most of the previous

techniques. ASIST allows two types of weak encryption: XOR and transposition. The encryption

23

keys are unique to every process, and can be generated either at compile time, in which case the

application statically links with all its dependencies, or at load time, where the pages are encrypted

dynamically. The latter mode allows shared libraries, but does not allow sharing them between

applications, thus incurring a significant (memory) overhead [6]. Absence of page sharing also

precludes the copy-on-write primitive, significantly increasing the overhead of fork.

3.2.2 ISR against Code-Reuse Attacks

Code-reuse techniques are the attackers’ response to the increased adoption of hardening mech-

anisms, like non-executable memory (NX), in commodity systems. The main idea behind code-

reuse is to construct the malicious payload by reusing instructions already present in the address

space of a vulnerable process [101]. This powerful technique gives the attacker the same level

of flexibility offered by arbitrary code injection, without injecting any new code at all; the mali-

cious payload consists of just a sequence of gadget addresses intermixed with any necessary data

arguments.

ISR is fundamentally ineffective against code-reuse attacks (CRAs), since attackers can con-

struct their payload without knowing how the instructions have been scrambled. One only needs

to know the location of the appropriate gadgets.

In the presence of various code-randomization schemes [63], state-of-the-art CRAs have been

evolved to discover gadgets dynamically, at runtime, by scanning code pages [106]. To prevent

this, two conditions have to be met:

1 The host binary should differ from the attacker’s copy.

2 Code should not be readable.

These two conditions are sufficient, as an attacker can neither scan binaries at the host, nor use

their own copy in conjunction with the diversified copy to mount a CRA. (Note that this does not

rule out data-only attacks [19].)

To this end, we propose combining ISR with a fine-grained (code) randomization scheme to

thwart state-of-the-art CRAs. While the latter satisfies condition 1 an ideal ISR implementation

24

can also indirectly prevent condition 2 by revealing (ideally irreversible) encrypted text when

code is read.

However, if ISR, plus diversification, is all that is needed, can we just combine code random-

ization with any of the previous ISR proposals? In other words, can we use ISR based on weak

encryption to fulfill the above conditions? Unfortunately, encryption schemes such as XOR and

bit transposition can be easily bypassed, even under the presence of fine-grained diversification;

during our preliminary experiments we were able to leak keys for the two schemes easily, using

entirely architecture- and ABI-independent methods (we elaborate more in Section 3.6.1). Hence,

we argue that using stronger encryption, at low cost, is pivotal in providing effective ISR-based

protection.

3.3 Adversarial Model

We assume that the chip manufacturer is trusted and the attacker is incapable of physically probing

the contents of the chip. We also assume that the processor supports some form of W⊕X mecha-

nism (e.g., NX bit). In addition, the OS and the essential system components are otherwise trusted

to perform their duties faithfully. Note that side-channel attacks are considered out of scope. We

present two versions of Polyglot in this work, which are geared towards two adversarial models.

• Adversarial Model A. Under this model, the adversary has access to the source code and/or

a non-randomized version of the target program. She is aware of memory corruption bugs in it

that can be exploited to gain arbitrary read and write capabilities. The same applies in the kernel

setting, but the MMU-related structures are assumed to be protected with existing defenses [32,

122]. Lastly, the attacker also has the ability to carry out a finite number of brute force attacks

before being detected. In this scenario, the first variant of Polyglot, namely Polyglot-A, seeks to

protect against runtime code-reuse attacks.

This model is identical to previous studies regarding runtime CRAs [29, 46, 106], both offen-

25

sive and defensive, with the additional extension to the kernel.

• Adversarial Model B. Under this model, the adversary does not have access to the source

code, but is more capable: she can subvert the OS, including the MMU structures, can access the

randomized binary, and has physical access to the system allowing her to snoop/probe the buses,

memory, and system peripherals other than the processor internals. In other words, we consider

the processor to be the only component in our TCB.

This model clearly goes beyond CRAs and targets (static and dynamic) code leaks in general.

In this case, Polyglot-B tries to prevent theft of application keys, and hence, plaintext code.

3.4 System Architecture

In this section, we present Polyglot’s architectural design, detailing our software and hardware

modifications, and how they inter-operate to achieve our goals.

3.4.1 Software

Binary Generation. To create an “ISRized” binary, we symmetrically encrypt a diversified ver-

sion of it, at page granularity, with randomly generated keys. (Note that only executable sections

are encrypted.) These key-to-address mappings are then asymmetrically encrypted using the target

processor’s public key and packaged into the binary itself. Since code is encrypted at a page gran-

ularity, the executable, and its required shared libraries, possibly encrypted by different sources,

are able to interoperate. Additionally, asymmetric encryption ties the binaries to their respective

hosts.

Binary Execution. The dynamic loader and the OS are responsible for extracting the encrypted

keys from ISRized binaries. In particular, the OS is in charge of them, during its execution lifetime,

and for setting up the process’ page tables, as well as its own, in a format expected by the hardware.

(Note that our scheme allows code pages to exist in plaintext if necessary.) Additionally, since we

encrypt at page-granularity, code sharing for shared libraries, as well as for forked processes, is

26

��������	
�

��������	
�

�
��	
�

��������	
�

�
��	
�

���

	����
��������	�����

��������	
�

	����
��������	�����

	����
��������	�����

�
��	
�

	����
��������	�����

Figure 3.2: Modifications to page table. We use a reserved field in page-table value type field to

indicate a subsequent ISR PTE. The ISR PTE here corresponds to a page shared between Processes

A and B. PTD indicates a page table descriptor, which is a pointer to the next level, whereas PTE

is the final translation.

readily supported, i.e., by using the same translation entry among the page tables of processes that

share a particular page (see Figure 3.2).

Supporting ISR at the kernel level is achieved simply by changing the kernel’s own page map-

ping(s) to an ISR-PTE version. Overall, our modifications added ∼1100 LOC to the Linux kernel

(v3.8.1). Since paging is disabled at system boot, we randomize the bootloader by encrypting the

whole image according to its layout in physical memory, so that encrypted execution is enabled

from the very first instruction. Care is taken, however, to ensure that when the MMU is turned on,

and paging enabled, the respective keys match (i.e., before and after enabling virtual addressing).

27

3.4.2 Hardware

All previous ISR implementations suffer either from prohibitive slowdowns, weak security, or

both. Polyglot however aims to overcome both, and proper hardware support plays a crucial role

in this.

Given our threat model, we face quite a few challenges. Firstly, because the attacker can read

and modify program memory and can probe system buses, we can allow decryption only inside

the processor. But symmetric decryption has non-trivial latency. Adding it to the instruction-

fetch critical path is not practical. In the same vein, the keys themselves cannot be stored in

memory in plaintext and so, have to be decrypted inside the processor. Asymmetric decryption,

however, has orders of magnitude higher latency than symmetric decryption. The main design

challenge is thus to absorb or amortize these overheads as much as possible. Furthermore, secure

key management being a key component of any encryption scheme, has to be considered at every

step of the full-system design. For Polyglot-B, since our TCB is just the processor, we want code

and keys to be encrypted at all times while outside the chip. Furthermore, it is preferable that these

challenges be addressed with minimal changes in and as simple extensions of already-prevalent

system architecture design. In our implementation, modifications mostly occur in the instruction

page fault and instruction cache miss pathway.

Instruction Page Fault.

First we explain the basic changes required to enable the simpler version of Polyglot that does

not require key-encryption, and then describe simple additions to this framework to support key-

encryption.

Since keys are associated with every code page, it is convenient to fetch keys for a particular

page while processing the corresponding fault. To do so, we require that last-level PTEs contain

the translation as well as the associated key for code pages. The ISR PTE, thus, consists of the

actual translation followed by the key for the page. To denote an ISR PTE we use a reserved value

in the type field of a page-table value as shown in Figure 3.2.

28

���������	

�	����
���
���� �������
��������

��������� ���������

��	�	
�����	�����	�	
�����	����

����
����

��	�	
�����	���

������

!��
!�� "�"�

Figure 3.3: ISR page fault handling flowchart.

An interesting design challenge now is that since ISR PTEs are longer than a word and do

not otherwise conform to a power-of-two alignment, the traditional method of offset-based PTE

fetching does not work. We solved this by extending the original page walk scheme by one more

level of indirection. Instead of storing the physical address of another table to offset into, we store

the physical address of the ISR PTE entry itself at the penultimate level. This design allows the

OS to arrange these entries in whichever way it deems convenient – either as a contiguous table,

or as discrete entries in memory. The hardware page-walk scheme is agnostic to this organization.

On a page fault, the origin of the fault (DTLB or ITLB) determines whether a code or data

page is expected, and fault-handling is done appropriately (as shown in Figure 3.3). If the fault is

on a code page, the table walk proceeds as usual until an entry with the ISR type is encountered.

This indicates to the MMU that the next level is an ISR PTE. The walk mechanism procures the

key and translation from the physical address found at this level and stored in the ITLB. A normal

PTE for a code page fault indicates an unencrypted page. If an invalid entry is found during the

walk instead, the page fault handler in the OS is invoked as usual. The OS is then responsible for

setting up the tables in a manner expected by the hardware.

On the other hand, if an ISR page is encountered on a data page walk, the key is ignored and

only the translation is forwarded to the DTLB. In this way, we effectively allow data and code

29

����

���

���	
���
�	

����������

���	
���
�	

�

����

���

�����

�

�������

��� ������	���

�������

� ��

���

���������

���������

�
�
�
�
��

��
	
��

�
�
�
!

�
�
��

��
�

�
�
�
!

�
� �
����
�

��� ������	���

�

���������

�
� �
����
�

��� ������	���

�

���������

��
�
� �
����
�

��� ������	���

�

Figure 3.4: Hardware decryption scheme in Polyglot. On a page fault (left half), ISR PTE contents

are brought into the ITLB. On a cache miss (right half), a cache line is decrypted using the page

key before dropping into I-cache.

to exist in the same page—code accesses to an ISRized page fetch and use the decryption key to

decrypt code, while data accesses to the same page will fetch contents as is. This means that code

can be treated as data, i.e., can be read and written to. However to allow correct decryption, data

and code must either be aligned at cache block width, or, if they exist within the same line, ensure

that the data is immutable. This can be done either by the compiler or the user.

An extra level of walk is added to the original mechanism when an ISR PTE is encountered.

On encountering it, the hardware uses the the entry as the pointer to the actual translation, and

fetches the ISR PTE from that address. The ITLB was modified to hold an additional key-field for

each entry. If no ISR entries are found, the walk procedure continues as before.

An overview of how execution proceeds in hardware is shown in Figure 3.4. On encountering a

fault to a code page (step 1), the MMU walks the page table and finds the corresponding ISR PTE

consisting of the translation and the asymmetrically-encrypted key. At this point, it sequentially

fetches the actual translation (step 2) as well as the the key and is deposited into the ITLB. Here

onwards, any i-cache miss originating from this page is decrypted with this key (step 4), before

being stored in the I-cache. As long as this instruction is not evicted, execution uses the decrypted

instruction.

Enabling Key-encryption for Polyglot-B. Doing so requires one additional change in the scheme

30

described above. We require that each processor have an asymmetric key-pair associated with it.

While the public portion of it can be revealed, the private portion never leaves the chip.

In this case, the keys in the ISR-PTEs are asymmetrically encrypted with the processor’s public

key. The only change now would be made in the ISR-PTE fetching step during a page-walk (step

2 in the figure). Instead of directly depositing the key in ITLB, it is decrypted first according to

the Elliptic Curve Integrated Encrypted Scheme (ECIES) [72]. We ignore the key authentication

portion of the standard however.

We added the requisite ECC-162 and SHA-256 accelerators to the MMU, where they perform

key decryption. However, we have now inserted asymmetric decryption into the critical path of

code-page fault resolution, thus adding a non-trivial latency to it. We rely on the fact that code

page faults are not common. We see in our evaluations that this assumption is true for most parts

and the performance hit is largely unnoticeable.

Furthermore, since our scheme is easily integrated with page-walking, we make a simple and

inexpensive extension in our design to provide encryption at two other, non-page granularities

as well. In typical page-tables, the level determines the memory region covered by the PTE. In

SPARC32 specifications, a level-3 PTE covers 4kB, level-2 covers 256kB, while level-1 covers

16MB. Our simple optimization, allows a single key to be associated with these memory granu-

larities depending on which level the PTE exists at. This is useful in mapping large regions of

code, without using up a lot of space for keys. We found this particularly useful while mapping the

kernel’s own page tables, especially when set up by the bootloader.

Instruction Cache Miss.

On an I-cache miss, as instructions are fetched from memory, they are decrypted and stored in

plaintext in the I-cache. D-cache miss handling remains unaltered. The challenge however is

that although symmetric decryption is much faster than asymmetric decryption, instruction fetches

are fairly more common. Adding decryption latency to the critical path will cause impractical

performance overheads. This is the main reason prior work opt for inexpensive encryption like

31

XOR or bit-transposition.

To overcome this, we use symmetric encryption in counter mode [40]. In this mode, the actual

decryption is performed on a counter value, which is then (traditionally) XOR’ed with the actual

data to obtain plaintext. Given the fact that XOR is a cheap operation, if we could determine

the appropriate counter value when the miss is encountered and start decrypting early, instruction

fetch and decryption could proceed in parallel. Moreover, if fetch latency is greater than decryption

latency, no performance overhead would be observable.

The counter itself need not be secret as long as they are not repeated for the same key. We

obtain the counter from the lower bits of memory address (see Figure 3.6). Essentially the counter

equals the block offset into the page. Notably, since the counter can be determined from the address

itself, decryption and fetch request dispatch commence simultaneously. We are able to absorb the

decryption latency in this manner.

The Leon3 SPARC32 implementation only has a single level of split caches. Hence we place

the AES decryptor at the I-cache/memory interface. In our prototype, since the cache line itself

is 32B long while an AES block is 16B, we divide the line into two chunks and decrypt them

simultaneously with two separate counter values trivially derivable from the address. A naive way

of implementing this process would be to fetch the whole line and decrypt it all at once, thus

nullifying two important fetch optimizations. The first of these optimizations streams words into

the core as well as the cache as they are fetched instead of delaying the stream until the entire line

has arrived. The second optimization starts fetching from the requested portion of the line, which

may not necessarily be the first word of it. With counter-mode encryption, we are able to maintain

both optimizations. We do so by XOR’ing the decrypted data with the blocks as they stream from

memory.

Modern systems, however, have many levels of unified cache. In such systems, we propose that

the decryptor be placed between the lowest-level cache (LLC) and memory for energy and perfor-

mance reasons. However since we only want to decrypt code, we will have to track the source

of the miss all the way to this level, and selectively decrypt replies bound for the I-cache. With

32

this scheme instructions are decrypted before being filled into the LLC, and remain decrypted in

the lower levels where most of the accesses hit. Most importantly, since in these systems, mem-

ory latency is much higher than symmetric decryption latency, decryption cost can be completely

hidden. Thus symmetric decryption incurs near-zero performance hit, depending on the implemen-

tation and operational factors (bandwidth, pipelining, placement on chip, etc.). This is significant

especially for Polyglot-A since symmetric decryption latency is the only source of overhead here.

Low-level Shared Caches. Pushing decryption beyond the L1 creates a security vulnerability.

Assuming a shared L2, say a cache block was fetched from DRAM into the L2 in response to

a data load request. Now if this data is also requested by the L1-I, the block, which came in as

data without going through the decrypting process, will be fed as is to the L1-I, thus completely

bypassing ISR. An attack vector to exploit this might involve first loading the shell-code, crafted

in native ISA, as data, and referencing the same locations for execution soon thereafter while they

are still in L2. Conversely, consider the case when a code block in L2 is eventually requested by

the L1-D. In such a scenario, a well-crafted attack can read off decrypted instructions just after

they are executed.

We prevent this by tracking instruction and data blocks in all shared caches, by adding a bit

to each cache block indicating whether it is instruction or data. This bit is set by tracking the

source of the miss, i.e., the instruction or the data cache. Cross-sharing between the split caches

is then forbidden, either directly or through L2. If L2 receives a request from the L1-I for a block

marked data, that block has to be flushed to memory and fetched again, this time going through the

decryption process. Similarly, when a block marked instruction is requested as data, it is flushed

and fetched again; only now the decryption module will be bypassed.

MMU-less Execution.

The above design changes deal with the common case of an active MMU, when paging is on. Since

we want ISR support on at all times, we have to support encrypted execution from the very first

instruction executed on boot-up. In this situation, the process is almost the same except the key is

33

acquired not from a PTE but directly from a memory location specified by the user. Design-wise,

during this phase, the I-cache changes still remains in play, while the page-walk modifications are

disabled.

Portability to Other Architectures.

Although our implementation employs some SPARC-specific optimizations (e.g., page-level based

encryption granularity), the fundamental ideas are portable across architectures. Even a fixed-

width architecture is not necessary—the same principles apply if an instruction is broken down

over two cache lines. However, we do need a way of denoting ISR pages in the PTE1, as well as

an extra tag bit in the I-cache. Most critically, we make or require no changes to the processor core

architecture.

Importantly, by completely separating the set of ISR changes within the cache and MMU mod-

ules, we keep the core-cache interface intact. Thus, our mechanism is oblivious to complex core

mechanics like super-scalar, branch-prediction, SMT, etc. We foresee these mechanisms to help

our cause by hiding the memory latency associated with code decryption.

As far as software is concerned, the only changes we made that are SPARC-specific is during

the booting process of the kernel and bootloader. We see no reason to believe the same should be

impossible to port in other architectures.

3.4.3 Design Choice Implications

Encryption Algorithms. We use ECC, instead of RSA (i.e., the more popular asymmetric ci-

pher), since ECC has shorter key lengths and encryption/decryption latencies. Furthermore, the

use of counter mode block encryption guarantees that the encrypted code is position dependent

and prevents splicing attacks (i.e., copying encrypted code and reusing it elsewhere).

Page Table. Page-level (encryption) granularity implies that brute-forcing, or careful dictionary-

like attacks on a particular page, reveals nothing about the rest of the system.

1x86 extended page-table (EPT) format has unused mappings [52].

34

Allowing Data Accesses to ISR Pages. Previously-proposed systems that seek to disallow run-

time code-scanning make code pages execute-only. We could easily achieve the same by faulting

whenever data page walks encounter an ISR PTE. However, this requires strict segregation be-

tween code and data at the page granularity. Although a more secure option, we considered this

approach limiting in terms of convenience of development, deployability, and practicality.

Syscall Interface. Our mmap variant is used by user applications to map encrypted pages into

a process. This is a weak link as it can be exploited by an attacker. Additionally, the original

mmap is still allowed to load unencrypted code. While the former allowance was indispensable

from a practicality standpoint, the latter was necessary for the sake of convenience; variants of

our architecture can forbid it. Note that introducing this system call does not make Polyglot more

vulnerable to the attack against ASIST that we outlined earlier.

Key Handling. This is one of the most crucial aspects of any crypto-system design. In Polyglot,

the symmetric keys are included in the binary. Since these keys are asymmetrically encrypted,

Polyglot is safe even against binary code leaks, when an attacker obtains the binary itself or the OS

is adversarial2. Another implicit assumption is that the private key, specific to a chip, is irretrievable

by the attacker. In extreme cases, where the physical tampering of the chip is a concern, the private

key could be based on a physically unclonable function [44] that is automatically destroyed if

anyone tries to tamper with it.

3.5 Implementation Details

The goal of developing the prototype is to provide a platform for full system bring-up as well as

to understand its impacts in the context of fully fleshed out microarchitecture. To this end, we

implemented Polyglot in accordance with the design principles described in the previous section.

In this section, we provide the specific implementation details of the same.

2Note that an adversarial OS can mount additional types of attacks, such as Iago attacks[iago].

35

�����

����	�
���

������
�

�

���������������

����

�����

����	�
���

������
�� �

�����

����	�
���

�

������
��

�����
���������
���

���������� �����������!"

Figure 3.5: ISR binary generation for ELF binaries. Code pages are symmetrically encrypted.

Subsequently the symmetric keys are themselves asymmetrically encrypted with the target sys-

tem’s public key, and embedded within a new section of the ELF binary.

3.5.1 Software

Binary-Creation. We modified objcopy to perform binary encryption – it takes a modified ELF

binary as an input, and encrypts the binary page-wise with AES-128 and adds the key-to-address

mappings to the .isr_map section as discussed before (Figure 3.5). When key encryption is

requested, we use ECC-162 and SHA-256 for encryption according to the ECIES protocol. For

our implementation, encryption is automated and we did not have to change the source code of

any program to accommodate it. The loader is modified to parse the new ELF section and use the

mmap variant to communicate the key ranges while loading shared libraries.

36

Kernel. We had to modify the ELF binary-parsing and virtual memory modules of the kernel to

support Polyglot. This involved extracting the key-range mappings from the ELF file, and setting

up the page tables for the process appropriately. Other modifications included changing page-fault

mechanism, allowing proper page-sharing (in the case of forks and shared-libraries), and process

tear-down.

Randomizing the kernel itself required two changes. Firstly, we had to change the kernel’s

own page-mapping to an ISR-PTE version. In SPARC, the level at which a PTE is found in

the page-table dictates the memory coverage of that mapping (more details in the next section).

Consequentially, the Linux kernel just uses one entry in the first level of the page-table with a

coverage of 16MiB. We just changed this to an ISR-PTE of the format described before. Secondly,

the SPARC/Linux does some code-patching during boot according to the exact processor version

it detects. We modified these portions and hard-coded the proper versions for our hardware, so as

to remove all runtime code-patching.

Overall, our modifications added about 1100 LOC to Linux kernel version 3.8.1.

Bootloader. We use mklinuximg-2.6.36 package [78] as the bootloader. Overall, it boots

with the MMU disabled and is responsible for assessing the runtime hardware, copying a portion

of itself that persists after the kernel has booted, and then loading the kernel itself. To enable ISR

on the bootloader, we encrypt as usual and modify the kernel’s and its own page-mappings.

3.5.2 Hardware

We implement our prototype on the 32-bit SPARC-based Leon3 SoC package [66]. Our main

hardware changes involves modifying the page-walk and the instruction-miss mechanisms. For

the two variants of Polyglot, the only difference is the presence of an asymmetric unit in the page

translation fetching pathway.

Page-walk. An extra level of walk is added to the original mechanism when an ISR PTE is

encountered. To denote an ISR PTE we use a reserved value in the type field of a page-table value

as shown in Figure 3.2. When this is encountered, the hardware uses the rest of the entry as the

37

pointer for the actual translation, and fetches the ISR PTE from that address. The ITLB was mod-

ified to hold an additional key-field for each entry. If no ISR entries are found, the walk procedure

continues as before. Another important optimization was to modify the memory controller to sat-

isfy ISR requests in burst mode instead of the original configuration of exclusively fetching one

word from memory at a time.

For asymmetric decryption, the processor’s private key is used in accordance with the ECIES

protocol to derive the symmetric key as shown in Figure 3.6, and complements the binary en-

cryption process described before. We added the requisite ECC-162 and SHA-256 accelerators

to the MMU, where they perform key decryption in accordance to the protocol. The accelerators

themselves were not optimized for this particular operating scenario.

Furthermore, since our scheme is easily integrated with page-walking, we make a simple and

inexpensive extension in our design to provide encryption at two other, non-page granularities

as well. In typical page-tables, the level determines the memory region covered by the PTE. In

SPARC32 specifications, a level-3 PTE covers 4kB, level-2 covers 256kB, while level-1 covers

16MB. Our simple optimization, allows a single key to be associated with these memory granu-

larities depending on which level the PTE exists at. This is useful in mapping large regions of

code, without using up a lot of space for keys. We found this particularly useful while mapping the

kernel’s own page tables, especially when set up by the bootloader.

Instruction-fetch. The Leon3 SPARC32 implementation only has a single level of split caches

(L1-I and L1-D). Hence we place the AES decryptor at the I-cache/memory interface. Furthermore,

we also did not need to implement the shared cache modifications proposed in the previous section.

For symmetric encryption, we use AES-128 to decrypt the fetched cache-line. In our proto-

type, since the cache line itself is 32B long, we divide the line into two chunks and decrypt them

simultaneously with two separate counter values. A naive way of implementing this process would

be to fetch the whole line and decrypt it all at once, thus nullifying two important fetch optimiza-

tions. The first of these optimizations streams words into the core as well as the cache as they are

fetched instead of delaying the stream until the entire line has arrived. The second optimization

38

��������	
�����

�
���
����������
����������������� ��
�

�	�
��
��	��������
��
��

��	����	����
��

� ��

�!�"

"#!

����$ �%&��' (

� �

�

)��
��
��	���	�*�
���
��

�

�!�"

"#!

����$ �%&��' (

��
+���

��,�-
����

!�"�!�"

./01/0

!��
���

%2�

3����,���	

3����,����

400

Figure 3.6: Encryption and decryption in the ECIES scheme. Letters in caps indicate points in

the Gaussian space which have consist of x- and y- coordinates. Base point, G, is specified by the

standards.

starts fetching from the requested portion of the line, which may not necessarily be the first word

of it. With counter-mode encryption, we are able to maintain both optimizations.

Since the counter can be determined from the address itself, decryption and fetch request dis-

patch commence simultaneously. To accommodate the optimizations described above, correspond-

ing block of the encoded cipher is XOR’ed as words are streamed from memory.

Importantly, our modifications to the I-cache involved changing its state machine in a manner

that did not affect its interface with the pipeline. Thus, by completely containing the complete

set of ISR changes within the cache-MMU modules and keeping transparent to the pipeline, we

managed to keep the execution engine in tact.

• Portability to Other Architectures. Although our implementation employs some SPARC-

39

specific optimizations (e.g., page-level based encryption granularity), the fundamental ideas are

portable across architectures. Even a fixed-width architecture is not necessary – the same principles

apply if an instruction is broken down over two cache lines. However, we do need a way of

denoting ISR pages in the PTE3, as well as an extra tag bit in the I-cache. Most critically, we make

or require no changes to the processor core architecture.

As far as software is concerned, the only changes we made that are SPARC-specific is during

the booting process of the kernel and bootloader. We see no reason to believe the same should be

impossible to port in other architectures.

3.6 Security Analysis

Evaluating novel defenses is non-trivial since it changes the basic assumptions for prior attacks

thus rendering them ineffective. However, this does not necessarily guarantee its security. More-

over, practical implementations of conceptually secure principles may expose vulnerable inter-

faces. Here, we examine the rationale behind Polyglot’s design decisions and discuss their effec-

tiveness from a security standpoint.

3.6.1 Motivating Strong Encryption

To demonstrate the fact that strong encryption is critically essential, we try to extract the XOR- and

transposition- randomization key from a diversified SPARC binary. We use ASIST’s encryption

parameters as the standard for this analysis.

Our setup is as follows. We use uClibc-0.9.33.2 [118] for SPARC32 as the base binary, which

has 1025 functions comprising about 300kB of code. We assume that program bugs allow arbitrary

memory reads and that locations of some functions can be leaked through memory disclosures.

The plaintext, non-randomized binary is also considered to be available. We emulate three popular

randomization schemes – function and basic-block permutation, and instruction replacement/in-

3x86 extended page-table (EPT) fomat has unused mappings [52].

40

sertion. For the latter, we replace/insert instructions aggressively with a probability of 25%. Note

that this is not an actual attack, only a feasibility study to quantify the hardness of successfully

attacking such systems. We, therefore, purposefully keep our approaches generic by not using any

architecture-specific factors and examine the number of functions to be leaked before we can ex-

tract the key. Here, we present the fundamental insights for breaking each scheme and the results.

The detailed pseudocode of the algorithms used to carry out the following attacks are listed in

Appendix 6.1.

Attacking XOR. The main insight we use to break this scheme is that XOR’ing two values, en-

crypted with the same key, yields the same result as XOR’ing the two corresponding plaintext

values: (a ⊕ key) ⊕ (b ⊕ key) = a ⊕ (key ⊕ key) ⊕ b = a ⊕ b. Additionally, we note that for

128b XOR, every fourth word uses the same key-chunk. By exploiting these points, we needed

to examine an average of 5 functions over 100 separately randomized versions of this binary to

discover the key.

Attacking Bit-transposition. Even though key-guessing is theoretically easier for bit-transposition

than it is for XOR (32! choices for the former as opposed to 2128 for the latter), we found that break-

ing transposition was more complicated in the presence of diversification.

For transposition, correctly identifying the plaintext-ciphertext instructions pair is key, which

is hard when code is diversified. The main insight in breaking transposition is that randomiza-

tion occurs at an instruction granularity. An instruction will, therefore, have the same cipher form

regardless of its surrounding instructions or location. Our approach then was to do a frequency

analysis of instructions to find possible plaintext-ciphertext pairs. This would have been straight-

forward had we not used instruction replacement/insertion as one of the randomization schemes.

Using the above approach, we needed to examine an average of 51 functions over 100 separately

randomized versions of the test binary to guess the key.

Take-aways. Clearly, diversification schemes can be adapted to make these attacks harder. How-

ever, any practical attack would certainly be more sophisticated, utilizing not only architectural

(e.g., instruction encodings) and/or ABI (e.g., function prologue/epilogue formats) information,

41

but also code-specific knowledge. This makes them significantly more effective. Such attacks can,

however, be easily thwarted by employing cryptographically robust encryption. Additionally, if

done at a fine granularity, reversing one block does not jeopardize the rest of the system. Polyglot

achieves both goals – it uses AES and ECC, and encrypts at the page-granularity – while being

performant and scalable.

3.6.2 Effectiveness

Polyglot is essentially meant to demonstrate that ISR is not just a defense against code-injection,

but can be an effective counter to code-reuse attacks as well. We discussed its effectiveness in the

former avatar in Section 5.2. Here we analyze its effectiveness against the latter.

Firstly, since we rely on static randomization, we are limited by its robustness. However since

Polyglot is independent of it, we assume it is impregnable for the sake of this discussion. We also

assume that the encryption used is strong enough to be practically irreversible.

As such, static ROP is clearly ineffective since the code memory differs from the attacker’s

expectation of it based on his own copy. Furthermore, attempts at reading plain code at runtime

will also fail since the read code cannot be disassembled sanely. Thus, Polyglot is completely

secure against static as well as JIT-ROP attacks based on runtime code-scanning.

However, since ISR does not modify data layout, it is susceptible to information disclosures

through data. Consequently, if one were to leak function pointers, it is possible to carry out

function-reuse attacks such as ret2libc [35] and COOP [30, 98]. This is because although we

randomize the structure of the function, we do not change it functionally. Some forms of data-

space randomization [10, 18] and virtual-table protection mechanisms [bounov16, vtrust] may

be effective in this context.

3.6.3 Proof-of-Concept Exploit

The main benefit of ISR against CRAs is that gadget-building attempts that rely on arbitrary mem-

ory reading capability to read a process’ code at runtime will fail because it reads encrypted code.

42

Additionally since the code is strongly encrypted it cannot be reversed. Even if the attacker some-

how gains that ability, we keep the keys encrypted in memory.

To assess the effectiveness of Polyglot against direct ROP/JOP attacks, we retrofitted CVE-

2013-6282 to Linux kernel v3.8.1 (the original vulnerability affected the ARM v6 and v7 platforms

only). Next, we ported the respective (publicly-available) exploit [42] to the SPARC architecture

and verified that the exploit was successful on the vanilla kernel. Note that the original exploit for

CVE-2013-6282 did not use ROP; it used the return-to-user (ret2usr) technique [57], which relies

on forcing the kernel to execute shellcode placed in user space. We kept the relevant part(s) for

triggering the vulnerability, and replaced the shellcode with a ROP (SPARC) payload. Lastly, we

tested the exploit when the same kernel is statically randomized (using a simple scheme that entails

function permutation [11, 58] and NOP insertion [57]), and, as expected, it failed, as the respective

ROP payload relied on pre-computed gadget addresses, none of which remained correct.

As there are no publicly-available JIT-ROP exploits for the SPARC architecture, we retrofitted

an arbitrary read-and-write vulnerability in the debugfs pseudo-filesystem [28], reachable by

user mode4. Next, we modified the previous exploit to abuse this vulnerability and disclose the

locations of required gadgets by reading the (randomized) kernel .text section. Armed with

that information, the payload of the previously-failing exploit is adjusted accordingly. We first

tested with ISR enabled, to verify that JIT-ROP works as expected, and indeed bypasses the static

randomization scheme(s). Then, we enabled ISR and tried the modified exploit again. This attempt

failed, as the code could not be read. In addition, we verified that all code reads yield encrypted

content. Finally, reading page tables yielded the asymmetrically encrypted keys. We also verified

the above behavior using a hardware debugger by directly reading contents from memory.

4The vulnerability allows an attacker to set (from user mode) an unsigned long pointer to an arbitrary address

in kernel space, and read/write sizeof(unsigned long) bytes by dereferencing it.

43

3.7 Ecosystem

Although we have discussed Polyglot in the context of a local system so far, security is ultimately

a full-system property and depends to a large extent on the entire operating ecosystem. Below we

will discuss some of the challenges of integrating Polyglot to contemporary software ecosystems,

and discuss possible solutions to mitigate them. As we observe below, although these challenges

are non-trivial, our scheme allows for a high degree of flexibility and can be adapted to most

deployment and distribution environments.

3.7.1 Challenges

Distribution Models. Current models of software distribution are based on dispersing a single bi-

nary variant globally, making them simple and efficient from a deployment perspective. On the

contrary, Polyglot requires every system have a secret and “personalized” binary version. This

requirement for one ISR binary variant per machine is non-trivial to accommodate in current dis-

tribution systems for multiple reasons.

Firstly, the process of ISR’izing every binary by randomizing and encrypting has to be carried

out either at the vendor or the user side. There are logistical challenges to both. At the vendor side,

customizing each binary will incur high overheads and may not be attractive from the perspective

of cost- and resource-efficiency for the vendor. At the user side, the main challenges involve error

reporting, patching, code signing, and other operations which do not lend themselves well to binary

heterogeneity. Impractical overheads (e.g., increased installation and load times) also have to be

avoided at all costs. Additionally, in closed source models, user side randomization would entail

binary rewriting, which have traditionally had performance and correctness issues [63].

Secondly, since Polyglot’s security is fundamentally dependent on the secrecy of the crypto-

graphic keys, any scheme has to prevent their leakage to malicious parties. Vendor side random-

ization implies that user keys will have to be shared with the vendors. This in turn increases the

complexity and attack surface for binary transfering operations, even when the vendors themselves

44

�������

��	�

���	���

�

��	�� ������

��������
������

��������

�

����������

���	���

Figure 3.7: Distribution scheme for Polyglot binaries. 1 Vendor generates binary and attaches

additional metadata to facilitate binary rewriting. 2 Binary rewriter at the client side uses this

metadata to randomize and encrypt the code, and generates final ISR binary.

are trusted, further disrupting currently established ecosystems.

Key Management. Furthermore, on a more local scope, our proposal so far espouses a single

asymmetric key pair per machine. This allows the private key to even be hard-coded into the chip5.

However, most systems today are multi-user and support virtualization of various guest systems.

To have a single key pair in this case would be impractical, undesirable, and insecure.

45

3.7.2 Distribution Models

To address this challenge, we envision a solution that is largely based on recent work that miti-

gates the practical problems of integrating code randomization in contemporary distribution sys-

tems [61]. This is achieved by generating additional compiler metadata during compilation and

linking, with the goal of assisting arbitrary randomization schemes by binary rewriting, as well as

code encryption (as shown in Figure 3.7). By maintaining the metadata, this approach also allows

binary de-randomization so that bug reporting, patching, and other similar operations can be per-

formed as easily. As we discuss below, this approach is scalable while not being overly disruptive

of existing distribution mechanisms.

The open-source model presents the simple case, wherein the source code itself is procured, and

subsequently compiled and installed locally6. In this case, the binary can be completely ISR’ized

within the local machine, thus requiring no modifications in the distribution environment whatso-

ever. Any vendor side reporting (e.g., for bugs) would be preceded by de-randomization with the

help of binary metadata. The closed-source model, on the other hand, is slightly more complicated

and cannot accommodate the above solution as naively. In this scenario, we have software ven-

dors distributing a single binary as usual, but packing the compiler metadata into it as well. Once

downloaded on the local system, this metadata can then be used for accurate and flexible random-

ization at the user side. Note that knowledge of the metadata for a publicly available binary does

not compromise the randomization of the deployed ISR binaries.

Notably, in both cases, remote distribution, handling, and management of Polyglot keys be-

tween the vendor, the requesting machines, and/or any trusted centralized intermediary is unnec-

essary (although a trust in the developer is a minimum). The encryption process in both cases

can be performed within a container or enclave [75] for added security. As such, the additional

5In the extreme case, if physical tampering were a concern, the private key could even be based off a physically

unclonable function, which are hardware instance-specific signatures, usually based on some physical property unique

to it [44].

6Modern open source distributions (e.g., Linux-based ones) often employ package management systems, that in-

stall pre-compiled binaries rather than compiling individual programs. These systems can use a solution similar to that

for closed-source models.

46

attack surface is reduced to securing the container and its usage locally. The modified installation

process, then, would just be similar to the original process, plus invoking this ISR’ization module.

3.7.3 Key Management

Multiple ISR domains within a single machine could be easily accommodated by making the

private key programmable, by introducing a special key register that can be loaded with the private

key. Isolation techniques, like SGX, can again be employed for safe key setting/unsetting. Thus,

in a multi-user system with per-user binaries, session setup could involve loading the user’s private

key in the key register. Alternatively, a more lax setup could involve loading a key-pair per binary.

Ultimately, any point on this spectrum of flexibility can be imposed by a privileged user. Similarly,

in a system with virtualization, the hardware can allow each guest to load their own private key.

Care must be taken, however, to extend guest isolation to keys (by unloading keys when guests are

switched, for instance).

3.8 Evaluation

To evaluate Polyglot, we implemented our design on a Xilinx Virtex5-based XUPV5-LX110T

FPGA board. Our implementation is based on the SPARC32-based Leon3 package, and our setup

has 256MB of RAM, a portion of which is used as a RAM disk (ramfs). On the software side,

we used Linux v3.8.1 and uClibc v0.9.33.2. The core utilities were provided through BusyBox

v1.23.2. Our system ran with encrypted versions of all the above modules, as well as an encrypted

bootloader. For hardware, we used the default Leon3 configuration, sporting an in-order SPARC32

core with no speculation or branch-prediction. Lastly, we use a 64-entry ITLB and a 4-way 32kB

I-cache.

It should be noted that even though we run regular workloads on our prototype, the FPGA plat-

form’s properties differ from a regular computer in ways that affect our results adversely. Given

that TLB and cache misses are the main sources of overhead, overhead reductions are bound to be

47

significant, if structures comparable to those found in contemporary systems are used.7 Addition-

ally, decryption latency in our case is larger than the latency of memory fetches, while this is not

the case for regular systems — our prototype’s AES implementation takes 22 cycles to decrypt,

while memory fetch, in modern computers, takes about an order of magnitude longer [92].

3.8.1 Performance

SPEC. We ran the integer benchmarks of the SPEC CPU2006 benchmark suite [49]. Due to

memory limitations on the board, we could only run test inputs and were unable to run all the

benchmarks. Note that SPEC benchmarks have been shown to be redundant in metrics (i.e., I-

cache and ITLB misses) that are exactly relevant to us [94], and to the extent of our experiments,

our results corroborated those findings. Accordingly, perl should predictably have similar results

as go, while astar should be similar to sjeng. Hence, of the SPECint programs, only xalanc’s

behavior remains unknown.

Results are presented in Figure 3.8-a. We evaluate Polyglot with three configurations: without

randomization, and with function permutation and NOP insertion; in the former, the order of func-

tions in the final binary is randomized, while in the latter, we insert up to 8 NOPs at function entries

and after every call site, preceded by a jump to bypass the NOP-sled. Given that we are sensitive

to code-misses, these choices are significant (the former does not add to the code size, while the

latter does). From the observed data, we see that ISR incurs an overhead of 4.6%. gcc performs

particularly badly with an overhead of 24.9%, which was a result of an inordinately high rate of

ITLB misses (7,376.15 /sec, versus 115.34 /sec for the rest). In fact, if we neglect gcc, the rest of

the benchmarks have a mean overhead of 2.38%.

For the randomization schemes, function permutation does better, with an overhead of 5.3%,

while NOP insertion is more expensive: 7.4%. Again, gcc was the only outlier with 6% increase

in overhead, suffering 15,450 ITLB misses/sec. A similar trend is seen with the NOP insertion

7For example, ARM Cortex A-15 typically has multi-level caches, and corresponding TLBs, for each level, i.e., a

split 32-entry, fully associative L1, and a 512-entry, 4-way unified L2 [4].

48

 0

 5

 10

 15

 20

 25

 30

 35

 40

bzip2

gcc
m

cf
gobm

k

hm
m

er

libquantum

h264ref

om
netpp

sjeng

G
eoM

ean

R
u
n
ti
m

e
 o

v
e
rh

e
a
d
 (

%
a
g
e
)

SPEC

Plain ISR
ISR + Func
ISR + NOP

-5

 0

 5

 10

 15

 20

 25

 30

syscall

read
w
rite

stat
open/close

fork+execve

fork+/bin/sh

fork+exit

R
u
n
ti
m

e
 o

v
e
rh

e
a
d
 (

%
a
g
e
)

LMBench

Plain ISR
ISR + Func
ISR + NOP

Figure 3.8: Performance overhead for SPEC and LMBench.

scheme. Note though that the NOP-randomized binaries themselves exhibit a mean overhead of

1.8%. Based on the above observations, we recommend using in-place code-randomization tech-

niques [89] in Polyglot that do not substantially add to code size. With better code-caching support,

however, this might be moot.

49

Kernel. To evaluate the slowdown caused by the encryption of the kernel, we run the LMBench

kernel test suite [76] with the same set of variants. We measure the null system call as well as

a few other (critical) ones: read, write, stat, open/close. Importantly, we also measure

process creation latency with fork+{execve, /bin/sh, exit}. Figure 3.8-b shows the over-

head of encrypted (ISR) over native. We notice similar trends, with overheads for plain ISR being

the lowest (0-16%), and ISR+NOP exhibiting the highest cost (4-30%).

3.8.2 FPGA Implementation Results

Our modifications to the base Leon3 implementation increased LUT usage from 13,986 to 49,724,

a significant portion of which was taken up by the cryptoblocks (approx. 17k LUTs) and the

ITLB key storage table (approx. 12k LUTs). Since we did not optimize the accelerators for

this particular design, we believe that there is plenty of space for improvement (both in terms

of area and performance). For instance, instead of using two separate AES-128 accelerators to

decrypt a 256B cache-block, we could merge them to a single accelerator, since they share the same

key and have almost identical counters. Furthermore, our modifications to the Leon3 distribution

synthesizes at the same clock frequency.

3.9 Related Work

We covered prior ISR work in Section 5.2. In this section, we survey other hardware- and software-

based protection schemes, relevant to Polyglot.

• Code Diversification. This line of work seeks to prevent CRAs through diversification. More

specifically, this flavor of defenses randomize each instance of a binary, or execution, so that the

attacker has only a probabilistic chance of succeeding in finding the necessary gadgets. ASLR [91]

and many finer-granularity variants of it [63] were proposed towards this end. The common weak-

ness in this class of defenses is that the randomization is static, and relies on the fact that informa-

50

tion about a particular instance (of it) cannot be leaked. It has, however, been shown that attacks

based on memory disclosure [14, 98, 99, 106] can dynamically harvest gadgets, thereby disproving

this assumption.

Recent defenses against the above can be mainly divided into three categories:

1 Execute-only Memory. Works in this area [5, 17, 29, 46] prevent dynamic code memory

scanning by making code pages execute-only. Just this measure, however, is not good enough since

code pointers can be harvested from data pages as well [26, 33]. Besides, this class of defenses

does not support intermingling data and code.

2 Code-pointer Hiding. Memory disclosures can be mitigated by preventing the leakage of

code pointers, direct (e.g., branch targets) or indirect (i.e., function pointers, return addresses), in

the first place. Previous work in this category [6, 29, 30, 70] achieved this via a level of hidden or

monitored indirection and/or encoding.

3 Gadget Invalidation. Such schemes dynamically modify the program’s structure (actively

or reactively) so that by the time the (harvested) gadgets are employed they are no longer avail-

able [12, 33, 115].

Polyglot broadly falls into category 1 . While previous proposals actively disallowed reading

code, essentially enforcing a no-read property on code pages, we allow code reads while obfuscat-

ing readable code. This, in turn, allows us to intermingle code and data, unlike other proposals.

We also show our work to be seamlessly applicable to higher-privileged system software. Lastly,

none of the previous schemes offers the degree of protection against static binary leaks that we do.

• Isolated Execution. These technologies provide a secure, opaque compartment for programs

to execute, without the risk of being spied on by other entities, even those executing at a higher

privilege level. First introduced in XOM [116], a slew of software [73, 74] and hardware [41,

65, 112] based techniques have since been proposed; Intel’s SGX [75] is an example of the latter

category.

In particular, the latter category seeks to provide integrity and confidentiality of both code

51

and data, even in the presence of a malicious operating system. The idea is to achieve security

by encrypting code and data outside the TCB (typically the processor), while providing isolation

within. Some schemes include memory within their TCB, and simply decrypt the sensitive code

at load time, while guaranteeing its integrity thereafter. Others decrypt instructions as they stream

into the processor. Although used in other contexts [103, 111, 127], as far as we know, we are the

first to employ symmetric encryption in counter mode in order to mask the instruction-decryption

overhead. Additionally, isolation techniques cannot cleanly support shared libraries, due to their

strict threat model, requiring extensive changes to software. Design changes further need to ensure

the proper modularization of secure components lest the attacker gains entry into a compartment.

In brief, we avoid the complexities of the larger problem isolation targets, and, thus, are able to

provide a more lightweight solution.

3.10 Conclusion

In this chapter, we present the design of Polyglot, a hardware-based ISR scheme, which eschews

weak cryptography, as used by previous ISR proposals, by employing AES and ECC at the page

granularity. We also develop microarchitectural optimizations to reduce performance overheads

typically associated with hardware implementations of these cryptographic algorithms. Our so-

lution enables page sharing between applications and strong encryption with low performance

overheads. Furthermore, we allow instructions to be encrypted right from system boot. Most

importantly, we show how Polyglot can counter state-of-the-art ROP attacks, which ISR was tra-

ditionally considered ineffectual against. These features have not been achieved in any prior ISR

implementation, and, therefore, provide a promising primitive.

52

CHAPTER 4

Practical Memory Safety with REST

Programmers using type unsafe langauges such as C and C++ create many opportunities for at-

tackers to exploit memory safety violations. The severity and prevelance of the memory safety

problem combined with the demand for low-overhead solutions has renewed interest in hardware

support to mitigate these problems.

In this chapter, we discuss Random Embedded Secret Tokens (REST), a simple hardware prim-

itive to provide content-based checks, and show how it can be used to mitigate common types of

spatial and temporal memory errors at very low cost. REST is simply a very large random value that

is embedded into programs. To provide memory safety, REST is used to bookend data structures

during allocation. If the hardware accesses a REST value during execution, due to programming

errors or adversarial actions, it reports a privileged memory safety exception.

Implementing REST requires 1 bit of metadata per L1 data cache line and a comparator to check

for REST tokens during a cache fill. The software infrastructure to provide memory safety with

REST reuses a production-quality memory error detection tool, AddressSanitizer, by changing less

than 1.5K lines of code.

53

REST based memory safety offers several advantages compared to extant methods: (1) it does

not require significant redesign of hardware or software, (2) the overhead of heap and stack safety

is 2% compared to 40% for a software equivalent (AddressSanitizer), (3) the security of the mem-

ory safety implementation is improved compared AddressSanitizer, and (4) REST based memory

safety can mitigate heap safety errors in legacy binaries without recompilation or source code.

These advantages provide a significant step towards continuous runtime memory safety monitor-

ing and mitigation for legacy and new binaries.

4.1 Introduction

Memory corruption errors have been one of the most persistent and long-standing problems in

computer security. However, practical and effective solutions to this challenge, although critical to

secure program operation, remains an elusive goal to this day. In fact, heap-based memory attacks,

exploiting out-of-bounds heap read/writes and use-after-free (UAF) bugs alone, accounted for 80%

of root causes that led to remote code execution (RCE) in Microsoft software in 2015 [125].

Previous hardware techniques to address memory safety concerns are broadly based on two

approaches — whitelisting safe memory regions and blacklisting (some portion of) unsafe memory

regions. Previous work in the former approach, broadly referred to as bounds checking, associates

metadata with every pointer indicating the bounds of the data structure it can legitimately access,

and flagging any access outside those bounds as memory errors. In the latter approach, commonly

called the tripwire approach, critical locations in the address space (for instance, both ends of an

array) are marked invalid and any access to them raises a memory violation exception.

Whitelisting approaches [36, 45, 53, 79, 80, 126] offer stronger security guarantees since they

monitor all memory accesses against exact bounds. Another advantage to per-pointer metadata is

that some of these mechanisms also maintain liveness/version information about data structures

they point to, thus detecting dangling pointers in addition to out-of-bound errors. However, they

suffer from one or more of the following problems.

54

1 Performance Overhead. Since they monitor every pointer dereference, the performance

overhead scales with the number of dynamic pointer dereferences. For each of these dereferences

there is at least one additional memory instruction for loading the meta data and one comparison

operation for checking the data. Even if some overhead can be mitigated by optimizations such as

caching, the energy overheads due to the additional instructions are not easily mitigated.

2 Implementation Overhead. They usually require significant hardware modifications in-

cluding modifications to the cache hierarchy [36, 79], execution pipeline [36, 53, 79], or even

addition of coprocessors [126].

3 Inaccurate/incomplete Coverage. Since most of them rely on static pointer analyses

for metadata propagation during pointer operations, any inaccuracy in pointer identification leads

to incorrect/unstable program behavior. This is especially problematic in the C-memory model,

which allows interchangeability between pointer and native data types [24]. Additionally, this also

necessitates source code availability, thus preventing such techniques from being compatible with

legacy binaries.

Alternatively, tripwires, originally proposed for software, are not a commonly explored tech-

nique in hardware [96, 107]. These techniques provide a relatively fast mechanism for marking

memory locations invalid. By associating metadata with the locations instead of their pointers,

they avoid metadata propagation costs, thus mitigating some drawbacks of whitelisting techniques.

However, this comes at the expense of weaker security guarantees since they do not detect all spa-

tial violations (specifically ones that access unmarked regions). In fact, these techniques target a

specific access pattern which is commonly responsible for memory overflows. This pattern man-

ifests itself when the program sequentially starts accessing locations beyond the bounds of the

data structure (in a loop, for instance). Previous attempts at hardware support for tripwire imple-

mentation have required non-trivial hardware modifications (including storage of metadata) and/or

incurred non-trivial performance penalty. Furthermore, previous hardware techniques in this cate-

gory only focus on detecting out-of-bounds accesses and do not address temporal memory safety

even though it accounted for 51% of RCE exploits in Microsoft software in 2015, whereas the

55

former accounted for 28.5% [125].

Additionally, checks performed by previous schemes were tag-based, in that they use metadata

tags, stored in a region separate from program data, to compare and verify access validity. This, in

turn, requires (explicit or implicit) out-of-band fetching and processing of metadata.

In this chapter, we propose Random Embedded Security Tokens (REST), a hardware primitive

for content-based checks, and describe a framework based on a primitive enabling programs to

blacklist memory regions at a low overhead. This primitive allows the program to store a long

unique value, a token, in the memory locations to be blacklisted and issues a privileged REST

exception if it is ever touched with a regular access. We propose a low overhead, low complexity

microarchitecture for detecting these tokens. When an L1 data cache line is filled, that memory line

is checked for the REST token value and if so, marked as such. If a memory instruction accesses

that marked line, we throw an exception. These hardware modifications are trivial, requiring no

modifications to either the core design, or the coherence and consistency implementations of the

cache, even for multicore, out-of-order processors. Ours is also the first scheme to rely on content-

based checks wherein the metadata is stored alongside program data and requires no modification

of the program’s overall memory layout. Token checks are performed directly on all data accessed

by the program and requires no behind-the-scene metadata processing.

The rest of our framework is based on a software tripwire-based scheme, AddressSanitizer

(ASan) [100], which consists of a compilation framework and runtime library that automatically

fortifies programs against memory errors without any programmer effort. ASan is a highly popular

memory error detector, used in the testing infrastructure of production softwares such as Fire-

fox [43] and Chromium [25]. However, due to its high performance overhead (~1.4x), it is mainly

used for software testing and debugging, not in deployment builds. Comparatively, REST incurs

an overhead of 2% on the SPEC benchmarks while not only providing the same scope of protec-

tion as ASan, but even improving its security in several aspects. Moreover, our technique is also

able to provide heap safety for legacy binaries at similar overheads. Additionally, as we show

later, the observed overheads are completely attributable to the software framework; our hardware

56

1 int tls1_process_heartbeat(SSL *s) {

2 unsigned char *p = &s->s3->rrec.data[0];

3 unsigned short hbtype = *p++;

4 unsigned int payload;

5

6 /* Attacker-controlled memcpy length */

7 n2s(p, payload);

8

9 if (hbtype == TLS1_HB_REQUEST) {

10 unsigned char *buffer =

11 OPENSSL_malloc(payload);

12

13 /* Vulnerable OOB memory read */

14 memcpy(buffer, p, payload);

15 ...

Listing 4.1: Heartbleed out-of-bounds memory read bug.

primitive incurs nearly zero additional performance overhead, and has negligible implementation

complexity.

We illustrate the basic idea of our defense with a simplified version of CVE-2014-0160 [31], a

bug commonly known as the Heartbleed vulnerability reported in OpenSSL 1.0.1, as shown in the

code shown in Listing 4.1.

Line 7 in the listed routine contains the overflow bug wherein the payload length, payload,

is used to determine the size of data to be copied into the response packet without checking its

validity. The resulting exploit can then be used to leak sensitive information such as passwords,

usernames, secret keys etc., to the client. Furthermore, common protections involving (stack or

heap) canaries would be unable to detect this attack, since it involves a read overflow and does not

otherwise corrupt any program state. To prevent this, REST tokens are placed around the source

buffer to be copied, so that when access goes beyond its bounds, a security exception is triggered,

as shown in Figure 4.1.

57

Benign Buffer

*p

Sensitive Data

(passwords)

Sensitive Data

(credentials)

(A) Out-of-bounds Read

(Vulnerable)

Benign Buffer

*p

Sensitive Data

(passwords)

Sensitive Data

(credentials)

REST Tripwire

REST Tripwire

(B) Out-of-bounds Read

(Tripwire-protected)

Over-read
stopped

M
e

m
o

ry
 r

e
a

d
 o

p
e

ra
ti
o

n

Figure 4.1: (A) Unsanitized memcpy bug reads sensitive data outside the benign buffer. (B) REST

tokens placed around the buffer detects this out-of-bounds access.

4.2 Motivation

Functionally, REST provides similar safety features as ASan, a state-of-the-art memory error de-

tector widely used for verification and debugging. Despite its effectiveness, it is not used as a live

security scheme due to its performance overheads.

ASan implements a software tripwire-based system, wherein blacklisted zones (also called

redzones) are placed around sensitive data structures. It then detects erroneous program behavior

that leads to illegitimate accesses of these location (in case of an overflow, for instance). To do so,

ASan primarily relies on two techniques — shadow memory and memory access instrumentation

(see Figure 4.2). Firstly, it reserves a chunk of memory, called shadow memory, that contains

metadata and should never be explicitly accessed by the program. The rest of the address space

maps to its corresponding shadow location via a simple mapping function. Additionally, ASan

imposes memory-safe program behavior by checking the validity of every memory access against

the metadata for the accessed location. This is achieved by statically instrumenting the program to

insert checks before every memory access. When data structures are deallocated, the corresponding

58

Original

Shadow Memory

addr

f (addr)

Data Memory SpaceCode

*addr = val

if isInvalid(f (addr))
 throw error;

ASan-Instrumented

*addr = val

Original

Figure 4.2: Code and address space transformation done by ASan. Memory accesses are instru-

mented to check against the corresponding value in the shadow memory (dark region in figure),

calculable with a simple mapping function, f .

regions are marked invalid by zeroing out the corresponding metadata.

Sources of Overhead. In terms of performance, ASan has four major sources of overhead. 1

ASan uses a custom allocator designed with security in mind that maintains separate pools for free

memory (from which new allocations are made) and deallocated memory (consisting of recent

deallocations), and allows virtually no allocation reuse in order to prevent use-after-free (UAF)

errors. Hence, it is slower than other allocators which are primarily designed with performance as

a first-order feature. 2 ASan inserts code at function prologues and epilogues to modify the stack

frame by inserting and aligning stack variables in order to deter stack attacks. 3 Instrumentation

for validating memory accesses, as discussed above, also contributes towards ASan’s slowdown.

4 Furthermore, since memory checks cannot be inserted in third party libraries, ASan partially

mitigates the problem by intercepting common libc data-handling API calls (e.g.,strcpy and

memcpy) to verify that no invalid access occurs therein for the particular set of arguments.

Figure 4.3 provides a breakdown of these components for the SPEC CPU2006 benchmarks sim-

ulated on an in-order core1. As we see in the figure, memory access checks (3 and 4) account

for the most persistent and grievous source of overhead, although the allocator also contributes

1The memory side configuration is same as in Table 4.2.

59

bzi
p2

go
bm

k gc
c

lib
qu

an
tum ast

ar
h2

64 lbm na
md

sje
ng

sop
lex

xa
lan

c

hm
mer

1

2

3

4

5

6
API Intercept

Memory Access Validation

Stack Frame Setup

Allocator

Figure 4.3: Breakdown of various sources of overhead in ASan with respect to a plain binary using

libc’s allocator.

significantly for benchmarks that make frequent heap allocations. In the subsequent sections, we

show how our scheme removes the overheads associated with most of these components.

Notably, ASan’s developers also consider potential hardware assistance [2] to speed up meta-

data lookup and memory access checks transparently by encoding the corresponding logic within

a single architectural instruction in a design similar to Watchdoglite [80]. As such, ASan-fortified

programs could compress the entire memory-access validation into a single instruction, thus op-

timizing the expensive operations, but not necessarily removing them. Furthermore, although

Watchdoglite has been shown to be highly effective for memory safety in its own respect, such a

design would suffer from some of the drawbacks of bounds checking schemes discussed earlier

and would necessarily require recompilation. We discuss and contrast similar hardware techniques

in more detail in section 4.7.

4.3 Hardware Design

Since REST hardware aims to detect and flag accesses to tokens, our main challenge is to be per-

formant by hiding latencies associated with additional memory checks, while maintaining existing

60

microarchitectural optimizations and ensuring the integrity of token semantics. Modifications for

REST consists of extending the ISA with two new instructions and an exception type, as well as

microarchitectural modifications to support them with minimal overhead. We discuss these aspects

of the REST primitive design below.

4.3.1 ISA Modifications

The width of the token is that of a cache line (64B in our system), and its value is held in a token

configuration register (which is not directly accessible to user-level applications). Two instructions

are added to set (store) and unset (remove) tokens in the application:

1 arm <reg> This instruction stores a token at location specified in register reg, which

should be capable of addressing the entire address space. The implicit operand in this instruction is

the token value stored in the token configuration register. The specified location has to be aligned

to the token width, otherwise a precise invalid REST instruction exception is generated.

2 disarm <reg> This instruction overwrites a token at location specified in the register

<reg>, which should be capable of addressing the entire address space, with the value zero. The

specified location also has to be aligned to the token width, otherwise a precise invalid REST

instruction exception is generated. Additionally, in case there is no token at the location, a REST

exception is generated as well.

When a REST exception is triggered, the exception is handled by the next higher privilege

level. If the exception is generated at the highest privilege mode, we consider it a fatal exception.

We also assume the faulting address is passed in an existing register.

Setting the token value is done through a store instruction that writes to a memory-mapped

address. Depending on the token width, one or more stores might be necessary to set the full token

value. This operation can only be performed by a higher privileged mode.

We also provide two modes of operation, debug and secure. The secure mode is expected to be

the typical mode of operation for programs in deployment and does not guarantee precise recovery

of program state on a REST exception (behavior for other exceptions remains unchanged). In the

61

�

�����

��	
� ��

��
��
�

�
���

��		

��������

���� ����������

Figure 4.4: Hardware modifications for REST include an extra metadata bit per cache line in L1

data cache indicating whether it contains a token, and the token detector to examine incoming data

from lower caches and fill the token value into evicted lines.

debug mode, the entire program state at the time of REST exception can be precisely recovered

by the exception handler. Thus, this mode is intended for use by developers. The current mode of

operation can be configured by setting a bit in the token configuration register.

4.3.2 Microarchitecture

In our design, loads and stores check the accessed data against the token value and raise an excep-

tion in case of a match. Thus, logically each load becomes a load followed by a comparison of the

loaded value with the token, while a store becomes a load of the value to be overwritten, a compar-

ison with the token value, followed by the store. Additionally, reading and/or writing a 64B token

value would involve data transfers over multiple cycles, since data buses are narrower. Naively

implemented, this could increase the latency and energy of memory operations significantly.

We show a novel construction for REST that minimizes changes to load store pipelines and

latency for memory operations. Our key observation is that checks necessary for the REST system

can be performed when the cache lines are installed or accessed instead of explicitly fetching the

values and checking them.

Cache Modifications. We extend each cache line in the L1 data cache to include one additional

bit to indicate if that line contains a token. Note that since tokens are aligned, a token is guaranteed

62

to be contained within a single line. When a cache line is being installed, the value of that line is

compared to the token value register and in case of a match, the token bit corresponding to that

line is set. Since cache fills typically happen over multiple cycles the token comparison can be

decomposed into small manageable compare operation, say a 32b compare per cache fill stage, to

reduce energy. After the fill, memory operations that access lines with the token bit set are flagged

to throw a REST exception.

A disarm instruction unsets the token bit corresponding to the accessed line and concurrently

zeroes out the entire cache line. Since such an operation involves all data banks of the cache,

disarm writes incur an additional, typically one cycle, latency. Additionally, disarms raise a REST

exception if the token bit is not set on the destination line, thus ensuring that the program can only

disarm armed locations. The arm instruction sets the token bit of the accessed line, but does not

write the token value into it; the token values are written out when the line is evicted from the L1

data cache. This construction ensures that arm operations that hit in the cache complete in a sin-

gle cycle, despite being a wide write. Our construction works naturally for write-allocate caches,

which is one of the most commonly used allocation policies supported in current microarchitec-

tures.

LSQ Modification. Since arm and disarm instructions write values, they are functionally

stores and handled as such in the microarchitecture with one key difference. Unlike stores, the

arm and disarm instructions should not forward their values to younger loads, as this will violate

the invariant that the REST token must be a secret. One simple way to provide this invariant is to

serialize the execution of arm and disarm execution, i.e., ensure that an arm or disarm instruction is

the only inflight instruction when it is encountered in the decode stage. This option, while simple

to implement, can introduce significant performance penalities.

Instead of serialization, we next describe design to prevent such forwarding in a common (and

complex) structure used to support store to load forwarding, the load-store queue (LSQ). Consider

a scenario where an arm request is closely followed by a read to the same cache line. In this case

the load may “hit" the in-flight arm in the LSQ, thus forwarding an otherwise illegal read. When

63

Action LSQ Cache Hit Cache Miss

Arm Create entry in SQ, tag as arm. Set token bit Fetch line, set token bit.

Disarm Raise exception if SQ has dis-

arm for same location. Else in-

sert entry with no store value

in SQ, tag as disarm.

If token bit unset, raise excep-

tion. Else clear line, unset token

bit(s).

Fetch line, set token bit if it has

token. Proceed as hit.

Load If value can be forwarded from

armed SQ entry, raise excep-

tion. As usual otherwise.

If token bit set, raise exception.

Else read data.

Fetch line, set token bit if it has

token. Proceed as hit.

Store (Se-

cure)

Raise exception if SQ has arm

for same location. As usual

otherwise.

If token bit set, raise exception.

Else write data.

Fetch line, set token bit if it has

token. Proceed as hit.

Store (De-

bug)

Raise exception if SQ has arm

for same location. As usual

otherwise.

If token bit set, raise exception.

Else write data.

Fetch line, set token bit if it has

token. Delay store commit till

ack from L1-D.

Coherence

Msgs.

N/A As usual. As usual.

Eviction N/A If token bit set, fill token value

in outgoing packet.

N/A

Table 4.1: Actions taken on various operations for L1-D cache hits and misses.

this case is encountered, we throw a privileged REST exception.

This exception support can be implemented without any additional state or impact on LSQ

access timing. To do so, we incorporate the REST violation check into the existing matching logic

simply by breaking the match down to perform two matches — one an address match for the cache

line address and another for the remaining — and adding a few logic gates (as shown in Figure 4.5).

Additionally since the arm and disarm write values are implicit and known by the cache, we do

not attach a value with the corresponding entry in the store queue. With these modifications, LSQ

access latencies and data widths remain unchanged despite the introduction of very wide writes.

Such address modifications may be necessary at other places in the microarchitecture where store

to load forwarding may occur.

Exception Reporting. We can further optimize the performance cost of REST by being flexble

about how and when exceptions are reported. Supporting precise exceptions with REST requires

disabling performance optimizations such as critical-word first, and early and eager commit of

stores that are common in modern processors. However, REST exceptions do not have to be re-

64

�������

���

�	
	

���

�

�

�

�	
��

���
�

����

�
��	

��

�

�	
��

�������

Figure 4.5: Modifications to the LSQ. Added structures are noted in darker shade.

ported precisely especially when it is used for monitoring for security violations during deployment

as in these cases the user is typically interested in knowing if a security violation occurred or not,

and not the state of the machine when the violation occurred.

If the L1 data cache supports critical-word first fetching, the access request may be satisfied

before the whole line has arrived and a match determined. This creates the possibility of a delay

between load commit and the security check, especially when the load is at the head of the ROB and

is committed as soon as the critical word arrives but the entire line has not. In the debug mode, loads

are not released from the miss status handling registers (MSHRs) as long as the delivered word

partially matches the token value. On a mismatch, the load is released without any performance

penalty. In the secure mode, REST exception is reported independent of the load commit.

Additionally, since stores are committed from the ROB as soon as the store/arm/disarm be-

comes the oldest instruction, REST violations due to a faulty access might not be resolved in time.

By the time the violation is detected at the cache and the response is received at the ROB, the

offending instruction may have retired. This will result in an imprecise REST exception. In the de-

bug mode, we guarantee precise exceptions by delaying store commit until writes complete. These

modifications in commit logic are summarized in Figure 4.6.

Modifying Token Width. Although the width of our token is same as that of a cache line,

65

����������	
�

�
���

���������������������

�����������

������
���
����

�����������������������
��

������
�� �����

���

���������������!�
"���
��

��� �����!��

#
$��

������
���
����	������������������

�������
��
��������

Figure 4.6: Flowchart showing write commit logic for REST .

it can be reduced for security and performance reasons. For instance, instead of a full cache line

width, half or quarter cache line tokens may be used. Most changes described above can be simply

scaled to accommodate this. For instance, the token value register can be smaller, and the number

of token bits per line will increase to 2 and 4 for 32- and 16-byte tokens respectively. Because

of the simplicity of scaling, the same system can accommodate multiple token widths and switch

according to the needs of the executing program.

4.4 Software Design

The REST primitive described above provides programs the capability to blacklist certain memory

locations and disallow regular accesses to them. In this section, we describe how programs can

leverage this primitive to obtain spatial and temporal memory safety with little to no changes in its

construction and/or layout.

66

4.4.1 Userlevel Support

We base our software design on ASan, which is a highly popular open-source memory error de-

tection tool. REST ’s software framework, however, uses tokens instead of metadata to denote

redzones. This obviates two major components of ASan’s original design. Since our hardware

continuously detects access to tokens without software intervention, monitoring every program

read and write in software becomes unnecessary. Thus, memory operations no longer need to

be instrumented for checking access validity. Secondly, since REST tokens do not require sep-

arate maintenance of metadata, the need for shadow memory is eliminated as well. Combined,

this essentially eliminates the two major sources of ASan’s performance and memory overheads,

simplifying its implementation complexity.

Protecting the Stack. As shown in Figure 4.7, protecting vulnerable stack variables involves

placing redzones around it. This is done by code added at the function prologue, so redzones isolate

these variables from the other local variables. The size of each redzone is chosen as a multiple of

the token width and is based on the size of the data structure. Subsequently, overflows during the

frame’s lifetime are detected when accesses go past their boundaries and into one of the redzones.

Code is also inserted at the function epilogue to clean up the tokens so that future frames inherit a

clean stack.

Since the above changes involve modifying the stack layout, REST requires that binaries be

compiled with our plugin. However, since stack attacks have become an insignificant threat vector

in recent years [125], users may also choose to forego stack protection, if performance is a concern,

and just opt for heap protection as described next.

Protecting the Heap. REST secures the heap with a custom allocator adapted from ASan.

Spatial heap protection is provided by ensuring that the allocator surrounds every allocation with

redzones (see Figure 4.7). These redzones not only separate the allocations from each other but

also from the metadata.

Temporal bugs are prevented by filling all freed allocations with tokens and placing them in

a separate quarantine pool, instead of the pool of free memory from which new allocations are

67

void foo() {

 char redzone1[64];

 char arr[16];

 char padding[48];

 char redzone2[64];

 arm(redzone1);

 arm(redzone1);

 ...

 disarm(redzone1);

 disarm(redzone2);

 return;

}

REST-Instrumented Code

Benign Buffer

arr

padding

Return Address

redzone1

redzone2

Stack Memory

to
w

a
rd

s
 s

m
a

lle
r

a
d

d
re

s
s
e

s

(A) Stack Safety

(B) Heap Safety

Free Pool

Quarantine Pool

Allocated
Memory Chunks

Allocation Metadata

Allocated Space

REST Tripwire

Allocated Space

REST Tripwire

malloc()

free()

Figure 4.7: (A) For stack safety we instrument the program to insert tokens around vulnerable

buffers. (B) Our allocator provides heap safety by surrounding allocations with tokens and black-

listing deallocated regions in the quarantine pool.

assigned. They remain there until the free memory pool has been sufficiently consumed at which

point, they are disarmed and released for reallocation. Hence, UAF attacks are mitigated since

freed allocations remain blacklisted and any attempts at accessing them via dangling pointers or

double frees are caught.

We make one modification to ASan’s free pool management however. ASan originally main-

tains the invariant that all entries in its free and quarantine pool be blacklisted. This necessitates

blacklisting newly mapped region from the system, and mark them valid just before allocation. For

REST we relax the invariant to guarantee that only quarantined regions are blacklisted while those

in the free pool are zeroed. This is because blacklisting, in our case, involves storing tokens all

68

over the newly mapped regions and is hence slower than just rewriting corresponding metadata as

is done by ASan. Our invariant is maintained for reused regions since disarms zero out memory

before they are moved to the free pool and reallocated, thus avoiding uninitialized data leaks.

One key advantage of our protection mechanism is that it works with legacy binaries. Since

REST performs memory access checks in hardware, heap protection in our case does not require

any instrumentation of the original program and can thus be availed even by legacy binaries, as long

as our custom allocator is used (with LD_PRELOAD environment variable in Unix-based systems,

for instance).

Porting to dlmalloc. ASan was originally designed for effectiveness, not performance. Its

allocator follows the same principle and is, hence, significantly slower than other popular allo-

cators. So, in order to test the portability of our scheme and simultaneously switch to a lower

overhead alternative, we implemented the principles outlined above to dlmalloc, a classic allo-

cator from which glibc’s allocator is derived2. Functionally, the modifications were exactly as

described above. The quarantine list was implemented as a simple queue of freed allocations. Once

the ceiling of quarantined memory is reached, allocations are released in FIFO order until the size

of the pool goes below the stipulated maximum. This naive releasing scheme, however, introduces

the security problem of predictability. We discuss this aspect more in Section 4.5.

Overall, the entire porting process was fairly straight-forward and did not require modification

of the allocator’s core algorithm. Overall, our changes added only about 200 LoC to the original.

4.4.2 System Level Support

At the system level, we propose having a single token value. As will be discussed in section 4.5, the

token widths are sufficiently long that the chances of a random program value matching a token is

vanishingly small (see subsection 4.5.2). However, leaking this value via physical or side-channel

attacks might still be possible and would compromise the entire system. So periodically this token

value can be rotated (at reboot, for instance). Our design for heap safety allows this model without

2Besides other optimizations, dlmalloc does not have thread safety, whereas the glibc allocator does.

69

the need for recompilation.

Alternatively, a unique token value could be used for every process with the OS maintaining

them across context switches. This design requires some changes to the OS such as the generation

of token values and the ability to deal with tokens from different processes when processes are

cloned or communicate with each other.

4.5 Hardware/Software Security

4.5.1 Threat Model

In line with recent related work regarding memory error based attacks and defenses, we assume the

following in and of our system. The target program has one or more memory vulnerabilities, that

can be exploited by an attacker operating at the same privilege level to gain arbitrary read and/or

write capabilities within the execution context. We do not make any assumptions as to how these

vulnerabilities arise or what attack vectors are used to exploit them. We also assume that the target

has common hardware defenses available in most systems today (e.g., NX-bit). Furthermore, we

assume that the hardware is trusted and does not contain and/or is not subjected to bugs arising

from improper usage parameters resulting in glitching, physical, or side-channel attacks.

4.5.2 Hardware Discussion

In this section, we discuss the security implications of our token primitive independent of the

software framework utilizing it.

• Token Width. A key assumption of our design is that token detection does not suffer from false

positives, which occur when token exceptions are triggered by a legitimate chunk of program data.

Three conditions have to be met for this.

1 The data chunk equals token value,

2 It is aligned to token width, and

70

3 It is fetched into the L1 data cache, thus passing through the token detector. If data tran-

siently acquires the token value while already in L1 data cache or any other part of the memory

subsystem, no exception is raised.

To avoid false positives, it is therefore critical not only to choose a properly random token value

but also an appropriate token width. In our design we choose a width of 512 bits, which makes the

chances for a program data chunk causing a false positive less than 1

2512
3. Alternatively, smaller

token widths of 256, 128 or even 64 bits are also usable for overhead reduction. As discussed in

section 4.3, these widths should entail minimal changes in our original design and can be supported

simultaneously. In such systems, depending on the requirement models, it is possible to have a

scheme where programs execute with low token widths first and restart with higher token widths

in case a REST exception is detected.

• Immutability and Unmaskability. REST makes sure that once a token is set, it can only be

removed through a disarm operation and cannot be otherwise overwritten (or even read) by any

process at the current privilege level. Additionally, REST exceptions cannot be masked from the

same privilege level. These measures ensure that adversaries cannot exploit inter-process, inter-

core, or inter-cache interactions to bypass token semantics.

• Detector Placement. We place our detector at the the L1 data cache in order to keep the other

caches unmodified and hence, minimize design costs. Consequently, however, REST does not

catch token accesses via means that completely sidestep the cache (e.g., DMA).

4.5.3 Software Discussion

While REST is based on ASan, it improves upon ASan’s security in a number of ways. In this

section, we elaborate upon the weaknesses of ASan, if/how REST mitigates them, and whether we

3For simple reference, a maximum of 248 token-aligned data chunks can reside in a 64b address space simultane-

ously. Additionally, a modern system operating at 3GHz would need ~10145 years to guess a 512b random value via

simple increment operations.

71

introduce any vulnerabilities of our own.

• False Negatives. Token width affects token alignment and therefore, the target data structures4.

Imposing this granularity on program data, in turn, introduces small gaps between variables. For

instance, in Figure 4.7, REST adds a pad space adjacent to an array to conform to the granularity

requirement (64B in the figure). This introduces the scope for false negatives, wherein REST is

unable to detect overflows that are small enough to spill into the pad, but not into the token itself.

This implies that although we still protect against read/write overflows, our system is vulnerable

uninitialized data leaks in the stack [69], which can be simply prevented by zeroing out the padding

or using narrower tokens. Uninitialized data leaks are not a problem in the heap, however, due to

our invariant that all regions in our allocator’s free pool are zeroed.

• Brute-force Disarm. Our decision to mandate precise specification of an armed location while

disarming is to counter a scenario when an attacker has somehow obtained control of a disarm

gadget (i.e., can influence its address argument), but does not accurately know the layout regarding

which memory locations are specifically armed. In such a scenario, this design decision prevents

attackers from blindly disarming swathes of memory regions. Properly compiled code, however,

should have no problems due to this stipulation.

• Privilege. Although used in some security mechanisms [121], ASan was primarily developed

for debugging. While it can serve as a security tool under weak threat models and performance

requirements, realistically it has limited utility as one. This is primarily because its framework is

implemented at the same privilege level as the program itself. While the location of shadow mem-

ory is randomized, it remains open to memory disclosure attacks, upon which the metadata can

be easily tampered with. Memory access monitoring, while statically baked into the program, can

also be subverted with carefully crafted code gadgets or even simple code injection. We overcome

this issue by raising a REST violation on a token, regardless of privilege.

• Handling setjmp/longjmp. Since the program can neither probe for the presence of a

token, nor does it keep a log of all armed locations, disarming necessarily needs to be carried out

4ASan also imposes alignment on protected data structures [1].

72

in the presence of a known reference point. For the stack, frames serve this purpose, i.e., for a

given function, arms/disarms occur at fixed offsets within the frame. Consequently, we could not

extend REST ’s protection to support programs that use setjmp/longjmp since these instructions

alter the stack layout. ASan takes a very conservative approach in such cases by zeroing out the

metadata, and hence whitelisting the entire region of the current stack. We cannot take the same

approach since we do not keep track of active tokens on the stack. Providing a secure and cheap

mechanism for handling this case remains a topic of future research.

• Predictability. Our design, as well as ASan’s, suffers from predictable layout as attackers can

simply jump over redzones (countered to some extent by adjusting redzone size according to the

buffer size). Although we do not use it in our system, we recommend that REST be used in

conjunction with some variant of layout randomization, depending on the usage scenario. Layout

randomization for the heap [9, 85] and stack[20, 89] have already seen a significant amount of

work in recent times and has been shown to be easily and effectively applicable. Alternatively,

programs could also sprinkle arbitrary tokens across the data region in a configurable manner

to catch such attempts. Furthermore, randomization could also be added to the order in which

quarantined memory is released in order to augment temporal safety provided by this technique.

• Temporal Protection. In terms of temporal safety, ASan’s, and consequently our guarantees

are incomplete since we unmark previously allocated blocks when we reallocate them, after which

point, dangling pointers or double frees can no longer be detected. This can be prevented to

some extent by using heuristics such as reducing reallocation predictability by maintaining some

degree of randomness for new allocations and ensuring that its entropy is never compromised by

maintaining a large enough free memory pool. In our setup, however, we rely on ASan’s existing

allocation algorithm and do not augment it any further.

• Composability and Coverage. In order for ASan to be effective, all memory accesses to user

data need to be monitored. Hence, it is essential that all software modules (the main program and

shared libraries) be compiled with ASan support. Consider a situation where the program itself

has been compiled as desired but a third-party library has not. In such a case, if the library has

73

C
o
re

Frequency 2 GHz

BPred L-TAGE, 1+12 components, 31k entries total

Fetch 8 wide, 64-entry IQ

Issue 8 wide, 192-entry ROB

Writeback 8 wide, 32-entry LQ, 32-entry SQ

M
em

o
ry

L1-I 64kB, 8-way, 2 cycles, 64B blocks, LRU replacement, 4 20-entry

MSHRs, no prefetch

L1-D 64kB, 8-way, 2 cycles, 64B blocks, LRU replacement, 8-entry write

buffer, 4 20-entry MSHRs, no prefetch

L2 2MB, 16-way, 20 cycles, 64B blocks, LRU replacement, 8-entry write

buffer, 20 12-entry MSHRs, no prefetch

Memory DDR3, 800 MHz, 8GB, 13.75ns CAS latency and row precharge, 35ns

RAS latency

Table 4.2: Simulation base hardware configuration.

faulty code resulting in buffer overflow and it operates on a ASan-augmented buffer, the scope for

exploitation still remains since read/writes in the library are not being monitored. The reverse situa-

tion also applies when the fortified code is in the ASan-augmented program but the data originates

in the library, since the foreign buffer does not have the right bookends. Hence, ASan requires

both access monitoring and metadata maintenance, one or both of which might break when using

non-ASan augmented modules. Analysing and instrumenting the shared libraries at runtime would

incur a huge performance penalty (as demonstrated by tools like Valgrind [83])5.

REST relaxes this requirement greatly by not requiring explicit access monitoring. Thus, as

long as the data itself is properly bookended, it does not matter whether the code accessing it has

been instrumented or not. As such, it is more compatible with untreated external libraries. Since

token access also generates exceptions at higher privileged levels, token manipulation via syscalls

is also prevented.

74

4.6 Evaluation

4.6.1 Performance Overheads

We implement REST in the out-of-order CPU model of gem5 [13] for the x86 architecture. Due

to its limited support for large memory mappings, we were unable to run x86/64 binaries since

gem5 could not accommodate ASan’s shadow memory requirements. Consequently, we simulate

32-bit i386 binaries of the SPEC CPU2006 C/C++ benchmark on the modified simulator in the

syscall emulation mode with a configuration shown in Table 4.2. The arm and disarm instruc-

tions were implemented by appropriating the encodings for x86’s xsave and xrstor instructions

respectively, which are themselves unimplemented in gem5.

The benchmarks were compiled with Clang v5.0.0 with "-mno-omit-leaf-frame-pointer

-fno-optimize-sibling-calls -fno-omit-frame-pointer -mno-sse -O3" flags. We

run these programs to completion with the test input set. Since executions with these inputs spend a

significant amount of time initializing (and allocating) compared to the ref input set, this choice of

input sets should reflect on our results adversely since the overheads associated with our allocator

will not be amortized with computation as well as in the case of ref inputs.

To evaluate REST , we compare it against two baselines — unsafe, plain binaries using the stock

libc allocator, and binaries fortified with ASan. We evaluate two modes, secure with imprecise

exception and debug with precise exceptions, for two defensive scopes, full (i.e., stack and heap)

and heap only. Additionally, we present another category of numbers for perfect, zero overhead

REST hardware (referred as PerfectHw) as a limit study of the current hardware design’s optimal-

ity. The results are presented for each benchmark in Figure 4.8 as slowdowns relative to the unsafe

binary.

REST vs. Baseline. In the secure mode, REST shows an overhead of 26% and 22% while

providing full or heap safety respectively. For the debug mode, the corresponding values are 71%

5ASan mitigates this to some extent by intercepting common library calls (like strcpy), checking the input data

appropriately before the call.

75

0
20
40
60
80

100
120
140
160
180

bzip2

gobmk
gcc

lib
quantum

astar
h264

lbm
namd

sjeng
soplex

xalanc

hmmer

GeoMean

O
v
e
rh

e
a
d
 (

%
)

ASan Debug Full Secure Full PerfectHW Full Debug Heap Secure Heap PerfectHW Heap

403%
450%
249%

248%
440%
240%
239%

Figure 4.8: Runtime overheads (over plain) of ASan and REST in the debug, secure, and perfect

(zero-cost) hardware modes while providing full and heap safety.

0
10
20
30
40
50
60
70
80
90

bzip2

gobmk
gcc

lib
quantum

astar
h264

lbm
namd

sjeng
soplex

xalanc

hmmer

GeoMean

O
v
e
rh

e
a
d
 (

%
)

16 Full 32 Full 64 Full 16 Heap 32 Heap 64 Heap
252%
250%
249%248%

242%
239%

Figure 4.9: Runtime overheads (over plain) of using 16B, 32B and 64B tokens in secure mode.

and 64% respectively. In both modes, we find that the overall trend is roughly consistent with

the results presented in Figure 4.3. Relative to ASan, REST does not perform memory checks

(via explicit program instrumentation or libc call interception). In case of just heap safety, it

additionally does not bear the cost of stack instrumentation. Accordingly, we observe that the

numbers for REST ’s full safety follow the expected trend. gcc and xalanc exhibit especially high

overheads since they use the allocator more frequently than others (as also indicated in Figure 4.3),

which provided the breakdown of various components of REST ’s slowdown. Especially in the case

of xalanc which makes a high frequency of allocations (0.2 allocations per kilo-instructions), the

allocator overheads dominate significantly compared to other benchmarks. Benchmarks that use

the allocator more sparingly (lbm and sjeng, for instance, which make less than 10 allocation

calls overall) have little to negligible overheads.

These results additionally indicate that our allocator, based on ASan, is a major contributor

to REST ’s overhead. This is evidenced by the fact that the full and heap safe categories exhibit

almost equal overheads, differing only by 0.16% on average. Thus, if recompilation is an option

76

for users, REST could provide stack safety at nominal extra cost. We chose to use the ASan

allocator for convenience; in the future, we plan to design a custom REST allocator that could

potentially mitigate some of the observed overheads.

The difference in runtimes for the secure and debug modes arises due to the fact that, in the

debug mode, we delay store commit until the corresponding write completes. In our simulated

out-of-order core, although the impacts of this change manifests in many ways, a few side-effects

were predominantly observed. First, unsurprisingly we found that the number of cycles the ROB

was blocked by a store was about an order of magnitude higher in the debug mode. IQ occupancy

was also severely affected for the latter case, especially for xalanc that had the number of cycles

IQ was full in the secure and debug modes differed by more than 100x. Notably, we also did not

observe a lot of traffic at the main memory interface due to token fills, indicating that most token

accesses hit in the cache and do not otherwise contribute to memory access bandwidth for any

of the benchmarks in either mode (only 0.04 tokens per kilo-instructions crossed the L2/memory

interface for xalanc in the secure full run).

Software vs. Hardware. To distinguish between the overheads added by our software and

hardware modifications, we run the REST binaries on stock hardware with one key modification

— each arm and disarm in the binaries is replaced by one regular store. This simulates a situation

wherein our REST hardware modifications for managing and checking tokens have zero cost. The

runtimes for this set of experiments are shown in Figure 4.8, denoted by the PerfectHW Full and

PerfectHW Heap bars. As these results show, the overheads incurred by the perfect REST hardware

are not significantly different from that seen in the secure mode, being only 0.2% lower for full

protection and for heap protection. This implies that the cost of the REST primitive in hardware

is nearly zero and that the entirety of the performance overheads in the secure mode are solely an

artifact of its software component, especially the allocator.

Token Widths. Token widths while affecting the security of a system might also potentially

affect its performance, since smaller token widths might allow better cache utilization. In order to

evaluate this we configure our implementation to utilize tokens of 16B and 32B and perform the

77

0

20

40

60

80

100

bzip2

gobmk

lib
quantum

astar
h264

lbm
namd

sjeng
soplex

xalanc

hmmer

GeoMean

O
v
e
rh

e
a
d
 (

%
)

Dlmalloc/REST Secure ASan/REST Secure ASan

240%403%

Figure 4.10: Runtime overheads (over plain) of heap protection with dlmalloc. ASan/REST and

ASan results are also shown again for reference.

experiment for all modes. The corresponding results are shown in Figure 4.9. Overall, we see that

choosing any single token width does not make a significant difference in terms of performance.

In the general case, users might thus freely choose robustness in the form of wider tokens, without

compromising performance.

dlmalloc vs. ASan. We also ran the above experiments with our modified dlmalloc for heap

safety. Our baseline for these experiments was the plain binary run with regular glibc with the

original dlmalloc as the allocator. These results are shown in Figure 4.10. We notice that the

overheads are significantly lower for all benchmarks. Of note is xalanc, whose overheads drop

dramatically from 249% to 15%. With the new allocator, our overall slowdown drops to less than

4%.

4.6.2 FPGA Area Overheads

We implemented the REST modifications on the Leon3 SoC package, which consists of a SPARC32

V8 processor. Leon3 has one level of split data and instruction caches of 16B width, which are

not write allocate. So, for our modifications, we first change Leon3’s data cache to a write allocate

version, and implement the REST changes on top of it. For the sake of this analysis, we consider

the Leon3 cache with our write-allocate modifications to be our base design. The design was then

synthesized and implemented on a Xilinx Virtex-7 based VC707 board.

Overall, we added less than 200 lines of VHDL to the data cache’s RTL. The modifications did

not affect timing and added ~100 LUTs to the synthesized design.

78

4.7 Related Work

Memory safety implies two types of protections — spatial and temporal. Spatial memory errors

usually manifest in two different ways depending on program behavior. Overflow-style errors

are a result of a sweeping or linear access pattern wherein the code sequentially starts accessing

locations beyond the bounds of the data structure. Alternatively, invalid reads/writes might also

occur if a pointer is corrupted/overwritten resulting in a access pattern that can be more precise

or targeted. Protection schemes can be characterized depending on which pattern they detect. In

terms of temporal protection, schemes can be characterized by the time window within which

their protection lasts. Some schemes provide complete protection by detecting dangling pointers

for the duration of the entire execution, while others only do so until the invalid region has been

reallocated again.

Since memory safety has been a persistent problem for decades, a lot of work has been done

to address it, especially in software [114]. In this section, we only discuss relevant hardware

techniques proposed towards solving this problem (summarized in Table 4.3) below.

• Bounds Checking. Hardware-based bounds checking [36, 45, 79, 80] solutions were proposed

to mitigate the problems of high performance overhead associated with software enforced bounds-

checking [54, 81, 82] while retaining its effectiveness. They were quite successful in this regard,

bringing down the performance penalty significantly (Hardbound [36] reported considerably lower

overheads than the others but does not provide temporal safety). There are a few differences

between them and REST , however. This is because of the fact that while bounds-checking performs

complete monitoring of out-of-bounds accesses (assuming pointer identification in hardware is

perfect), REST only detects errors when the blacklisted locations are accessed and hence, provides

weaker security guarantees. The advantages of the latter approach, however, are lower overheads

and complexity.

Firstly, REST ’s memory overhead scales with the number of protected data structures, not

pointers to them, and does not need separate memory to do so. We also do not require storage

in the chip itself, other than a register at the L1 data cache. On the other hand, most previous

79

works store metadata in a shadow space, a memory region containing metadata for every location

of the address space. This results in fast metadata access since calculating its location inside the

shadow space is derivable by a simple arithmetic operation on the pointer address. But it is also

highly inefficient in terms of storage since all of the address space is shadowed even if a negligible

fraction of it is actually occupied by pointers. Watchdog [79] and Watchdoglite [80] reported ~56%

increase in memory usage for SPEC CPU benchmarks. In terms of on-chip storage, all schemes,

with the exception of Watchdoglite, introduce some form of fast-lookup memory, such as caches,

in order to speed up metadata lookup and hence, pointer operations.

Most of these schemes also introduce non-trivial hardware logic to the chip microarchitecture.

Hardbound and Watchdog inject micro-op around memory accesses instructions at runtime. Safe-

Proc and Watchdoglite, on the other hand, rely on the compiler to explicitly insert instructions in

the program to this end, enabling static analyses to optimize these operations. Furthermore, Watch-

dog logically extends the physical register file to accommodate metadata, whereas the others use

existing registers, thus increasing register pressure. REST ’s detection logic is vastly simpler since

we do not perform checks for spatial and temporal violations in the pipeline for every memory ac-

cess. Since we defer the detection responsibilities completely to the caches, the core architecture

itself remains unchanged, also making register pressure a non-issue.

Additionally, reliance on compiler support implies these systems have limited composability

with software (such as third-party libraries) which have not undergone the necessary static trans-

formations. This means they necessarily require shared libraries that have been compiled similarly.

Critically however, a kernel that is unaware of this scheme could cause errors and presents a po-

tential vulnerability for such systems. For instance, an attacker could influence the size arguments

of a data-manipulating syscall to corrupt sensitive data. Since REST associates metadata with the

data structure and not its pointers, we do not have to worry about static pointer analyses (or their

accuracy). The compiler support necessary for REST is, hence, significantly simpler (LLVM’s

ASan module has only 2129 LoC with our modifications).

Notably, Intel Memory Protection Extensions (MPX) [53] marks the first commercial support

80

for this technique. However, it faces a few compatibility issues and exhibits high performance

overheads [86].

• Tagging. Some defenses “color” memory regions by associating tags with them and checking

these tags when they are accessed. HDFI [107] marks memory locations with a 1-bit tag, that

subsequently indicates whether that location can be accessed via regular load/stores. Although it

is quite flexible and exhibits nominal overhead, its hardware requirements are higher than ours.

SPARC ADI [48] uses a 4-bit coloring scheme, using the 4 most significant bits of a 64b pointer

for this purpose. On an access, the hardware checks whether the tags of the pointer and accessed

regions match. They also require a custom allocator responsible for coloring heap allocations

but do not require that programs be recompiled to avail this feature. Although full details of the

microarchitecture have not been disclosed, at a minimum they require 4 bits of metadata per cache

line at all cache levels. Spatial overflows are prevented by annotating adjacent allocations and

their metadata with different tags, while temporal overflows are prevented by changing tags on

deallocation. However, due to the limited number of available tags, memory regions might reuse

tags after being reallocated enough times (via heap feng-shui attacks [108], for instance) after

which dangling pointer access will go undetected. Moreover, since they modify pointer format,

(legacy) programs that do special pointer operations involving compression or irregular arithmetic

will be incompatible with this technology. We do not face these problems.

• Capabilities. Capability-based architectures [120, 126] are another metadata-based secure hard-

ware design that offer stronger security guarantees than us. Here, all pointers are augmented with

metadata that goes beyond bounds information (permission, for instance). Particularly, works in

the CHERI project [22, 126] have demonstrated its applicability in the modern era on a whole-

system level, not just for applications, for a MIPS 64-bit in-order processor. However, this support

comes at the expense of high performance and area overheads, although the authors acknowledge

open areas of optimization in their design.

• Watchpoints. This class of solutions aim to provide a high number of hardware data watch-

points, primarily for debugging. iWatcher [128] was one of the first hardware techniques proposed

81

to this end and functionally provided support for a high (but limited) number of programmable

hardware watchpoints at a relatively low overhead compared to some software solutions, but re-

quired that the affected physical pages be pinned to physical memory and not be swapped out.

Although they did not explore memory safety as an application, Greathouse et al. [47] solved both

problems by providing unlimited watchpoints and allowed pages to be swapped out by storing

metadata separately.

• Others. SafeMem [96] repurposed error checking ECC bits in main memory to mark memory

locations invalid in order to detect spatial memory errors. They did so by setting the parity state

to an error value, so that accesses to those locations trigger exceptions, thus trading reliability

for safety. However, each set/unset operation is quite expensive with latencies comparable to an

mprotect syscall. Additionally, it did not support the swapping main memory contents to disk.

Memtracker [119] associates state with each memory location by monitoring accesses to them.

They however, do not make any modifications to the allocator to inhibit allocation reuse, and so

are more vulnerable to temporal attacks. Besides the above solutions, ARM recently announced

pointer authentication in select chips [97] that counter pointer corruption and forging, but do not

protect against general temporal or spatial attacks.

4.8 Conclusion

In this chapter, we proposed REST , a primitive for content based checks and showed how it can be

used to creae a low complexity, low overhead implementation for improving memory safety. REST

itself requires local modifications that integrates within existing hardware intefaces. It incurs a low

performance penalty for stack and heap safety, which is 22-90% faster than comparable state-of-

the-art software implementations, while additionally being more secure and providing heap safety

for legacy binaries.

There are many open areas of optimization and extension to REST . The REST software com-

ponents viz., the repurposed Address Sanitizer allocator, accounts for almost all of the slowdown

82

in the secure mode. An allocator designed to take advantage of REST properties and requirements

could be significantly faster. Similarly, for hardware, our goals was to minimize number of opti-

mizations: however, a few additional microarchitectural optimizations such as a dedicated cache

for REST lines has potential to decrease overheads further, especially for the debug mode and for

programs that make frequent allocations. Finally, we only explore REST at the application level in

this chapter; extending and supporting it at the system level and for heterogeneous architectures,

will increase system security and reliability.

The benefits of REST go well beyond memory safety. As a primitive for performing content-

based checks in hardware, it provides a number of opportunities not only for improving other

aspects of software security (e.g., control flow), but also programmability and performance. De-

veloping these new applications using REST can bring significant exciting benefits.

83

Proposal
Spatial

Prot.

Temporal

Prot.

Shadow

Space

Com-

pos-

ability

Perf.

Over-

head

Hardware Modifications

Hardbound [36] Complete None ✓ ✗ Low µop injection, L1 cache & TLB

for tags

SafeProc [45] Complete Complete ✗ ✗ Low Multiple CAMs and memory

units, hardware hash table, hash

table walker

Watchdog [79] Complete Complete ✓ ✗ Moderate µop injection, pointer lock-ID

cache, dangling pointer monitor

Watchdoglite [80] Complete Complete ✓ ✗ Moderate Nominal

Intel MPX [53] Complete None ✗ ✗† High Not known

HDFI [107] Linear None ✓ ✓ Negligible Wider buses and cache lines,

tag-aware memory controller

with caches, tag table

ADI [48] Linear‡ Until

realloc‡
✗ ✓ Negligible 4b per cache line at all cache

levels‡

CHERI [126] Complete Complete ✗ ✗ Moderate Capability coprocessor tightly

integrated with in-order pipeline

iWatcher [128] N/A N/A ✗ ✓ High Per-byte cache line metadata, a

multi-entry table, small meta-

data victim cache at L2

Unlimited

watch-

points [47]

N/A N/A ✗ ✓ High Range cache, metadata TLB

Safemem [96] Linear None ✗ ✓ High Repurpose DRAM’s error-

correction bits

Memtracker [119] Linear Until re-

alloc

✓ ✓ Low Metadata caches, monitoring

unit in pipeline

ARM Pointer

Authentica-

tion [97]

Targeted None ✗ ✓ Negligible Not known

REST Linear Until re-

alloc

✗ ✓ Moderate 1 metadata bit per L1-D line, 1

comparator

Table 4.3: Comparison of previous hardware techniques (assuming single-core systems for sim-

plicity). †Although MPX-supported binaries execute with modules that are not protected, metadata

is dropped when such modules manipulate an MPX-augmented pointer. ‡See text.

84

CHAPTER 5

Address Space as a Primary Line of Defense

The virtual address space is a fundamental abstraction in computer systems, the properties it grants

and its implementation being uniform across architectures. Programs executing in this environ-

ment can use virtual addresses to access content in any location, as long as these properties are

not violated. Valid generation and usage of addresses follow strict but simple rules, such as lin-

ear progression of addresses and page granularity of permissions, that are derived from the same

properties. Software attacks, which run within the context of the program, are also bound to these

same rules and abuse them at runtime to achieve their goals.

In this chapter, we argue that these rules of generating valid addresses are overly liberal. In-

stead, we propose and define an alternative address space abstraction, called the apparent address

space (AAS), that makes statically unintended usage and generation of addresses harder at run-

time, thus limiting the capabilities of runtime attacks. Subsequently, we propose some hardware

implementations for this idea, and conclude that, although the idea may sound novel in theory, the

implementation cost does not justify the benefits, when viewed as a standalone defense mechanism.

85

5.1 Introduction

Current principles of program execution are tightly coupled to the notion of an address space.

In this respect, “address” is a form of information used by the program. While most addresses

are statically baked into the program, it is also made available dynamically (to a degree that is

architecture-dependent). Like the program itself, most attacks leverage this very fact by, implicitly

or explicity, extracting and using address-related information available at runtime via what we term

the address-interface to bypass defense measures.

Virtual address space (VAS) is a highly entrenched concept in modern system and application

design, wherein each program operates in an isolated, sanitized view of its accessible memory. This

view of the VAS has an implicit property — a system-wide consensus that address progression is

a linear sequence. Thus, the “next” location can be calculated by simply incrementing the current

address, whereas the “previous” location is the result of a simple decrement. Formally, given a

location x, the locations before and after can be calculated with the following sequence-functions.

previous(x) = x− 1

next(x) = x+ 1

(5.1)

Thus, code executes in a straight line (i.e., fetches instructions from subsequent memory ad-

dresses) unless explicit control-flow change occurs, and data of size greater than native types

(strings, structs, etc.) are arranged contiguously. This agreement allows various architectural,

system, and compiler optimizations to be engineered towards efficient and performant program

execution.

The fact that virtual-addresses progress in a linear sequence can, however, be exploited allow-

ing an attacker to blindly probe or stride the address-space in order to leak or corrupt program

state. Consider the classic attack of return address corruption via a buffer overflow vulnerability.

In this case, the attack overflows the exploitable buffer to reach the return address slot. While this

is a result of the operational design of stack frame layouts, it can also be generally ascribed to the

86

fact that programs are architecturally presented a flat view of the virtual address space. Underlying

these attacks is the implicit knowledge of the fact that not only are the sequence functions publicly

known, but they are also quite simple and uniform, even across architectures. This gives rise to

unintended and traversable proximities among locations of memory objects (code or data), that are

not always a program requirement and exist solely as an artifact of the linear nature of the address

space. The only hard deterrent to invalid linear accesses is enforced at the page granularity, which

in many cases is too coarse and easily surmountable.

To make matters worse, addresses are also often embedded into the program itself or injected

explicitly or implicitly. When leaked, these can then provide the basis for attacks to access other

adjacent locations using the VAS sequence functions.

In this chapter, we posit that granting this degree of latitude when it comes to specifying and

enumerating addresses is not only overly simplistic and unnecessary, but even harmful from a

security perspective. To mitigate these problems while keeping implementation costs low, we pro-

pose the apparent address space (AAS) as an abstraction layer over the traditional virtual address

space (VAS). As with the physical and virtual address abstractions, programs can only view the

AAS, while the system backend is aware of the VAS. Additionally, the AAS possesses certain

properties that makes implicitly imposes memory protection at a fine granularity. As we attempt

to deal with the challenges of a hardware-software design of this, we, however, realize that the

benefits it provides relative to other works in the area are not commensurate to the complexity of

its implementation.

5.2 Motivation

In this section, we define the address interface in more detail, outlining how it is a seldom consid-

ered but crucial aspect of program execution as well as software attacks. We will then propose an

address space abstraction that significantly reduces the scope of this interface, making it hard for

statically unintended behavior, as is leveraged in software attacks.

87

5.2.1 The Address Interface

Address is an architectural alias for identifying locations and their contents uniquely. In the context

of user-space programs, this corresponds to the virtual address. We define the runtime address

generation interface (AGI) as the means by which a program can derive and/or generate addresses

at runtime. There are broadly two aspects to it.

Injected Addresses. First among these are the addresses embedded or injected into the pro-

gram directly. These are the primary sources of addresses in the program and can be introduced

into the program by the following means.

• Via compilation and loading. The compiler framework embeds jump offsets and address

variables in the program. Part of this responsibility is also shared by the loader for position-

independent code and dynamic loading.

• Via syscalls. Syscalls are the conduit for processes to interact with the outside world and

manage available resources. As such, the OS will often introduce new, valid addresses into

a program as defined by the syscall interface. For instance, heaps are initially allocated

through a syscall (mmap or brk on Unix based systems) and subsequently managed by a

memory manager.

• Via architectural vectors. Some architectural registers, like the frame-pointer, stack-pointer,

and program counter, may also expose addresses to the program, directly or indirectly. Addi-

tionally, some ISA operations, like function calls and exceptions, also inject valid addresses

into the process’ purview.

Generated Addresses. A secondary source of addresses in the program are the new ones that

are generated from primary addresses noted above via the sequence functions. This is a critical

property of the AGI because it allows the program to represent and specify contents of non-native

sizes with a single “name”. Hence, an array can be represented with the address of the first lo-

cation; the location of any subsequent element is obtained as an offset from the head element.

88

Similarly, an entire function of code can be represented with just the function address. Given this

one representational alias, the locations of the rest of the content (e.g., other elements in the ar-

ray or instructions in the function) can be calculated using the sequence functions. Without them,

non-native memory objects would have to be individually specified, making programming as we

know it infeasible. The VAS, regardless of underlying architecture, universally follows the simple

sequence functions defined in Eqn. 5.1.

Thus, the AGI can be completely specified using the explicit address sources and sequence

functions mentioned above, with minor variations depending on the platform, ABI, etc.1

5.2.2 Exploiting the AGI

Since software attacks work within the context of the program, they also use the AGI. Depending

on the vulnerabilites and vectors, they do so using one or a combination of the following tech-

niques:

1 Leak valid address. Memory disclosures can occur as a result of a myriad of reasons,

ranging from programming bugs to language stipulations to architectural ABI regulations, or a

combination of them. Although many defenses have been proposed against them, the sheer variety

of their causes makes coming up with comprehensive generic solutions a hard endeavor.

2 Hijack one or more of the program’s address usage gadgets. Often vulnerabilities result in

attackers being able to manipulate memory access code snippets in the program. For instance,

an attack could utilize an overflow bug in a program loop to make out-of-bounds reads/writes.

Alternatively, if he can control the input address to the loop, program state can be easily leaked or

corrupted [50].

3 Inject/reuse code. With this powerful capability, the attacker is able to inject arbitrary code

into the program or execute snippets of the program’s own code to achieve the same functionality.

Getting to this point is generally preceded by one or both of the previous steps.

Even with memory disclosures, malicious attempts at reading or modifying the targeted, sensi-

1Since we consider contents at the machine, raw memory level, we discount languages from the discussion.

89

tive memory objects rarely pan out in the very first step and in practice, proceed in stages employ-

ing any or all of the means stated above. Regardless of the methods or operational requirements,

attacks usually try to “reach” the object of interest from another object that the attacker did gain

access to or can control. This general principle of traversing is widely applicable and used both in

the wild as well as in research. For instance, this theme is the fundamental premise of all overflow

attacks. The Heartbleed bug [31], affected OpenSSL 1.0.1, used a classic buffer overflow vulner-

ability using the innocuous heartbeat object to reach more sensitive data. Alternatively, a widely

used category of egg-hunting shellcode [77] scans the address space for the injected code to jump

into. In the research domain, some recently published attacks [14, 106] scan the code memory to

dynamically harvest gadgets in order to execute a code-reuse attack [101].

Since memory disclosures themselves are a shifting gap to plug due to the widely varying

nature of its causal factors, the AGI is a more promising target for hardening, especially since its

properties are highly uniform and widely applicable. Hence, in line with the principle of least

privilege and information, the ideal goal of securing this interface is to reveal only those addresses

necessary for execution, as foreseen by the developer and encoded in the program semantics. Any

other address value should not be exposed via injection or in-program generation.

5.3 Related Work

Randomization is popularly considered a measure to counter predictable program layout. However,

most of recent proposals in this direction have targeted code at different granularities [63]. Some

schemes have specifically targeted the heap [9, 85] and the stack [20, 89], while a few schemes have

targeted data layout in general [10, 18, 67]. Even so, the coarse granularity of page permissions

and their static nature implies that static randomization can be subverted with runtime memory

scanning [106]. The recently proposed hardware based data randomization scheme, HARD [8],

creates equivalence classes of data with context sensitive static analyses and encrypts the different

classes separately. It is, hence, somewhat resilient to runtime scanning, but still suffers from

90

pathological problems arising from inaccuracy of the compiler analysis, in which case pointers

to equivalent data structures can point to any structure in the class.

Bounds-checking is also an oft-explored idea in this regard. Software versions of it are inef-

fective against the adversary outlined by our threat model. Hardware enforced fat-pointers [36,

45, 79, 80] are not only expensive and complicated, but are based on a flawed assumption – the

attacker always receives a properly created pointer and cannot otherwise create or manipulate the

creation of one. This is not the case for our powerful adversary. Capabilities [120, 126] have also

been shown to be effective in this regard. But they require significant hardware re-engineering, so

we will discount them from this discussion.

Alternatively, hardware tripwire schemes [96, 105, 107] implement the much simpler primitive

allowing the program to mark certain memory regions invalid. The program then utilizes it to

mark certain data or the memory around it invalid. Although these techniques present very low

overheads, they can be easily bypassed by simply jumping over the invalidated regions (assuming

their locations are known) while traversing the address space.

5.4 Apparent Address Space

Seeing how the AGI can be abused by attackers, it becomes pertinent for us to judiciously expose

it to the program. In order to limit the degree of information available through it, we propose the

apparent address space (AAS), which is an abstraction over the virtual address space but does

not expose sequential addressing (as shown in Eqn. 5.1). Instead the AAS exhibits the following

sequence functions,

xAA = fkey(xVA)

previous(xAA) = fkey(xVA +m)

next(xAA) = fkey(xVA −m)

(5.2)

91

❢

������

����

������

����
�

����
�

����
	

��������	

����

����

	��������	

����

����

Figure 5.1: Apparent Address Space as an Abstraction over the Virtual Address Space.

, where m is the sequence granularity and f is the hashing function that uses the key, key. The

algorithm of f is publicly known, but key is secret at the user level. It is, however, known to the

compilation framework and runtime back-end including the hardware.

Imposing such a stipulation over the program conservatively limits the capabilities of any entity

operating within it, malicious or benign. Furthermore, keeping f a secret also has the following

side-effects.

1 Given the location of one or more memory objects, the location of another is not deriv-

able by statistical or empirical correlation (inference property). f essentially “randomizes” the

address space at the granularity of m. Hence, this scheme subsumes the benefits of fine-grained

randomization for both code and data. Assuming f is irreversible, this property prevents attackers

from directly inferring addresses of memory objects adjacent or semantically unrelated to the ones

directly under control. Note that this does not affect a (well-structured) program however, since

legitimate code explicitly encodes the data flow so that it has address of the memory object when

necessary.

92

2 Attempts at accessing a location blindly are forbidden and/or caught (whitelisting prop-

erty). The VAS (at least for 64-bit addres spaces) is quite sparse, so that most locations actually map

to unallocated pages. Assuming f uniformly hashes all addresses, most AAs should, hence, cor-

respond to invalid addresses. Furthermore, if m is small enough this property essentially prohibits

blind address-enumeration. This is significant since given that the attacker lacks the capability of

deriving locations of objects without leaking them directly, this property prevents the alternative,

which is to employ some guided probing mechanism to reach other possible locations. Thus prob-

abilistic attacks techniques like memory scanning and buffer overflows are ineffective. Again and

for the same reason as before, the actual program should be unaffected by this property.

5.4.1 Security Implications

As a corollary, the two properties outlined above in turn enforce the following property on the

program.

Exact address of a memory object must be known to access it.

Incidentally, this also outlines the goal of spatial memory safety, which essentially treats every

pointer as a unique key which can open the lock to and access only the data structure it points to.

In other words, a pointer to a memory object may only dereference to the memory region within

object. The AAS functionally achieves the same because of the whitelisting property. It addition-

ally goes beyond memory safety with the inference property, wherein an ideal AAS also makes

it impossible to create new pointers to valid memory unless the exact memory location is known.

Traditionaly memory safety definitions do not regulate pointer creation (although capability based

architectures do).

While the effect of the above property on data is clear, applying them to code has an interest-

ing consequence. Specifically, if a code address is disclosed (by leaking a function pointer, for

instance), addresses of subsequent (or previous) instructions cannot be enumerated, thus obviating

code scanning and attacks that rely on it [106].

93

5.4.2 Challenges

There are two major lines of challenges that a practical implementation of AAS would have to

face.

• Hardware Based Challenges. The hardware-software system hierarchy has seen decades worth

of optimization aimed at streamlining VAS functionality. As such, a system design from scratch

to support the AAS is untenable. Hence, the first challenge is to maintain the current architecture

as much as possible and implement the AAS on top. Our decision to implement AAS as another

abstraction level on top of the VAS would largely take care of this concern. All this would entail,

then, is to perform the AA-VA translation at the appropriate interface, thus mostly obviating design

changes in the software and hardware infrastructure behind. We discuss particulars in the next

section.

• Programming Construct Based Challenges. A critical aspect of programs that we have avoided

discussing so far are sequential data structures (henceforth referred to as arrays, for simplicity). The

main challenge of AAS is the following: how do we represent arrays, which are semantically se-

quential, with a single representational alias (or name) in the fundamentally non-sequential AAS?

Arrays are an unavoidable construct of programming languages and a fast representation for them

is critical. As the traditional addition-based offsets no longer apply in the AAS, an alternative is

essential for practical feasibility. Simultaneously, we have to make sure that this alternative cannot

be abused by an attacker to access illegitimate locations in the program. In other words, we have

to ensure that any concessions or mechanism granted by the AAS does not give attackers a means

to bypassing its protections and thus, violating its core properties.

One obvious way of enforcing the inference property is by employing layout randomization

comprehensively on every aspect of the program (code and data), at as low a granularity as possible.

Owing to the multitude of randomization techniques available, this would require usage of multiple

schemes. Even so, due to the flat nature of the address space and the fact that memory objects are

packed together, this solution would be vulnerable to memory scanning, allowing cross-over from

one object to another. The key reason for this is that there is no detection mechanism built into

94

such a system.

Techniques that satisfy the whitelisting property could be the solution to this problem. Insert-

ing large redzones or invalid pages between memory objects could solve this, but this has a high

memory overhead. But they can just be jumped over if an attacker has prior knowledge of their

presence. Additionally, some syscalls allow the program to probe whether an address lies on an

invalid page without crashing the program (see [77]). Alternatively, a bounds-checking scheme

could also prohibit cross-overs. However, such schemes do not seek to uphold the inference prop-

erty by hiding pointer values. Furthermore, the hardware does not validate the bounds aggresively

by authenticating whether they actually correspond to the object being pointed to, thus compound-

ing the problem. So, once an address is leaked, the attacker could infer the location of other objects

and subsequently control/create pointers to access them. In other words, pointer forging and ma-

nipulation are theoretically possible, which would violate the whitelisting property. Hence, we see

that while there already exists ways of partially achieving the AAS properties, none satisfy both

entirely, leaving fundamental loopholes in the design.

5.5 Implementation

In this section, we will outline a few design options for implementing AAS with different trade-

offs. Notably, our designs will be based on already existing technologies, so integration costs can

be minimized.

5.5.1 Hardware Design

The first design point addresses how we enforce the sequence functions (Eqn. 5.2) and the hashing

function, f . Since address translation is a very common phenomenon during execution, ideally f

should be able to complete within a single cycle so that the timing requirements of some pipeline

stages are not stressed. For our purpose, we choose f to be a combination of the XOR and/or bit

scrambling. Notably, ARM’s pointer authentication already allows pointer encryption with some

95

low-overhead encryption schemes [97], which we could utilize2. Every binary would have a key

associated with it, that will be used to encrypt/decrypt addresses as specified by Eqn. 5.2. For

simplicity, the encryption granularity, m, can be equal to the native data width.

The design thus far establishes AAS as an abstraction over the VAS, so that the actual memory

layout of the program, the supporting software and hardware infrastructure do not have to change

much beyond the address decryption around the execute stage of pipeline. As we discuss later,

some additional architectural modifications also have to be made regarding pointer operations.

Hence, in order to support arrays, we change the way addition based offset calculation to include

decryption and encryption before and after.

However, this still does not solve the problem of overflows. Any mechanism used to calculate

offsets within an array can also be used to calculate addresses outside, enabling overflow situations.

This, therefore, essentially allows the program a glimpse of the VAS and the layout within, thus

violating the whitelisting property at the least, and also the inference property, depending on the

context.

To solve this issue, we utilize a tagging mechanism, similar to ones recently announced by

SPARC [48] and ARM [3]. Consequently, we require that arrays or any objects bigger than the

native data size be tagged with a “color”, and all pointers to those objects carry the color in them.

A pointer dereference is only valid if it is to a memory region of the same color (as shown in

Figure 5.2). Colorless pointers are used for native data types and should not be operated on beyond

the native width. As far as hardware overhead is concerned, the above techniques only support

64-bit architectures and embed the pointer tag into the higher order address bits of the pointer

value. Furthermore, memory is also logically extended to associate tags with each location, with

which the pointer tags are matched. So far, these are common features among comparable tagging

mechanisms.

One corner case that presents a slight complication in our design is that of pointer comparison.

2However, their encryption requires an additional context key, which we may not require. Instead, we could use a

similar equivalent such as Prince [15].

96

���

����

����

������ ��	

Figure 5.2: Tagging scheme employed for coloring memory objects in AAS.

In a linear VAS, this operation made logical sense, while in the AAS, it does not. Semantically

speaking, pointer comparison only makes sense if its operands belong to the same higher memory

object. In keeping with this line of reasoning, we allow pointer comparisons only if the two pointers

have the same color.

Limitations. The VAS fundamentally does not support the entire C memory model due to its

non-linearity. This includes addition-based pointer arithmetic and pointer comparisons as noted

above. By the C pointer model, pointers are also allowed to be modified as long as they point

back to the right area at dereference. Our design does not accommodate this for native pointers.

Additionally, this design does not support dynamic linking in its current form.

Architectural Interface. The above modifications mandate a few changes in the architectural

interface exposed to the program. Firstly, as with the base tagging architectures, tag creation and

manipulation instructions have to be introduced. Secondly, new pointer arithmetic instructions also

have to be supported with the properties stated above since traditional integer add, subtract, and

logical compare operations would no longer be valid. Thirdly, all architectural addresses injected

into program (through the stack pointer register, return addresses, etc.) have to be encrypted with

97

the program’s address-encryption key.

5.5.2 Software Support

To support the AAS, we need the following changes in the supporting software infrastructure.

Compiler and Linker. The compiler has to convert all variable accesses to pointer accesses

and assign colors to them according to type, and change pointer arithmetic to use the special

instructions described above. The stack epilogues and prologues also have to be modified to reflect

this. Furthermore, all direct addresses, if any, have to be encrypted by the linker with the AAS key.

Operating System. The OS has to maintain the key as part of the process information and

convert all incoming and outgoing addresses (via syscalls and interrupts) accordingly.

Note that the modifications outlined above implement a naive support. We did not seek to make

any optimizations in this flow. For instance, it is possible to identify variables that are safe from

being corrupted, and allow direct accesses to them instead of through a pointer to it. Exploring

similar optimizations could yield significant performance improvements to the design.

5.5.3 Security Evaluation

• Tag Width. In an ideal implementation, there would be an infinite number of colors that can be

associated with data structures, so that reuse of colors is never an issue. Practically, however, tag

width limits how many colors can be assigned leading to color reuse. Color reuse is a risk since

they can be exploited to mount temporal attacks.

• Reversing f . Depending on the robustness of the encryption function, f , it is possible to reverse

it, especially if weak encryption schemes like XOR and bit scrambling are used. This could be

easily achieved if one or more pointers to an array object can be obtained and enough addresses

within it can be harvested. Hence, the exact scheme to use for f becomes a performance vs.

security trade-off for the architect.

• Pointer Hopping. To have a pointer to an array object is to have complete access over it. So, a

98

situation could arise where one obtains a pointer to an object, containing other pointers, which are

then successively followed to reveal enough information about the program state. Our design of

the AAS is ineffective against such an attack.

5.5.4 Feasibility

To understand the value of this technique, we have to ask ourselves what does this abstraction

give us over current memory safety techniques? Specifically, for the sake of this discussion, if we

assume we are leveraging the mechanisms provided by a tagging scheme like SPARC ADI, we

have to determine how much of an additional security is added by AAS compared to a system that

has ADI? From a practicality standpoint, this is important because performance-wise our scheme

would be slower.

Memory safety in a program is a very strong defensive guarantee. Although the tagging

schemes do not provide ideal memory safety, they are practically very secure, nonetheless. Added

to this the fact that they have negligible slowdown, we unfortunately could not determine the prac-

tical security benefits for an AAS. This is despite the fact that purely in terms of hardware overhead

and complexity, we would be comparable to present tagging architectures.

5.6 Conclusion

Addresses are a fundamental tenet of program execution, its usage guided by certain rules imposed

by the virtual address space. Just like the processes themselves, software attacks follow the same

rules at runtime to enumerate addresses according to the address generation interface. As such,

securing this interface should seemingly go a long way in system security.

In this chapter, we argued for tightening of the guidelines governing address generation within

the virtual address space in order to secure the program. To this end, we proposed an alternate view

of the address space, called the apparent address space, whose properties automatically impose spa-

tial memory safety on the program. Furthermore, we highlighted the challenges in achieving it and

99

put forward an exemplary implementation it which utilizes established prior work and more impor-

tantly, does not require scrapping decades worth of optimizations aimed towards virtual addressing.

However, the performance and implementation overhead introduced due to this abstraction was not

deemed justifiable, especially compared to state-of-the-art in commercial memory safety hardware

measures. It is possible, however, that novel attacks may be developed in the future that might

necessitate such an approach. This is therefore an idea for the posterity.

100

CHAPTER 6

Concluding Remarks

The state of system security has reached an inflexion point wherein the traditional methods of

defenses are unable to keep up with the conflicting usage requirements of providing protection

against an ever expanding arsenal of threats, while managing to keep a low profile themselves.

This is a great opportunity for hardware engineers to contribute in this domain, to which they

have largely remained oblivious and insulated in the past. Both in research and industry, there is

a realization that addition of appropriate hardware features could potentially make a significant

difference from a security perspective. As welcome as this realization is, practical concerns dictate

which techniques can be ultimately translated to commercial deployment.

To that end, in this dissertation, I assert that hardware support for system security, that have

been traditionally implemented in software, need not be complex in order to be effective. In fact,

I even argue that simplicity should be one of the primary design goals while engineering any

defensive measure in hardware. In this dissertation, I have outlined three case studies to support

this position. In the first case study, we secure code by designing simple hardware support for a

classic technique called instruction set randomization to prevent state-of-the-art code reuse attacks,

101

against which it was traditionally considered impotent. In the second case study, we propose a low-

overhead, low-complexity hardware primitive, and use it to secure data against common types of

memory safety violations. And finally, in the third study, we discuss a proposal to modify the

address space to present a non-linear sequence of addresses to the program, but determine that the

implementation overhead for such a design would unfavorably outweigh the cost of its security

benefits, and thus violate the thesis outlined above.

6.1 Lessons Learned

Besides the points of simplicity and cost effectiveness made throughout this dissertation, I conclude

with a few lessons realized during my studies that hardware engineers should consider and software

engineers should be cognizant of while proposing and designing hardware defenses in the future.

Flexibility Aids Longevity. As emphasized repeatedly in the dissertation, the domain of se-

curity is constantly in flux, with ever newer threats and novel vectors for exploiting classic ones

emerging at a break-neck pace compared to the rate at which hardware features evolve. Thus it is

a considerable challenge for hardware security engineers to predict the state of security years into

the future while proposing a defense that will be relevant for that period. In the worse case, a tech-

nique could be rendered useless either due to the availability of a better or comparable alternative

software defense or just by the fact that the state-of-the-art for that threat has moved beyond the

feature the defensive measure targets. One of the best ways to mitigate this problem and making

the technique somewhat future-proof is to introduce a high degree of flexibility in it. Flexibility

in the solution implies it is capable of being used in scenarios that have not been foreseen by its

developers at the time of proposal or design, thus allowing it to adapt to new forms of the same

or similar threats in the future. Two approaches to achieving this is to either make the defense

inherently programmable or allow software to define and set its usage policies. Instances of the

former are the general purpose taint tracking accelerators proposed recently [37].

With REST, we take the latter approach wherein our entire defense depends on a hardware

102

primitive, which by itself is not necessarily security-oriented. The where, when, and how of us-

ing this primitive is entirely managed by software, thus granting the technique a high degree of

flexibility over time. For instance, if the software decides to implement a policy of enforcing

more security, this can be easily achieved by planting more tokens and/or by adding an element

of randomness as to where tokens are planted. The drawback to this approach, however, is that of

privilege, i.e., any attacker operating at the same level as the managing software can potentially

manipulate how the tokens are distributed. Hence, we observe again that there is no silver bullet—

the effectiveness of any solution can only be measured in terms of contextual and operational

trade-offs.

Multipurpose Solutions are Desirable. Defense in depth is an age-old adage in security. It

is an acknowledgement of the fact that no single security technique can stop all threats; so system

defense is just a question of stacking techniques one over another in orde to raise the bar high

enough that exploiting the system presents an unfavorable cost-vs-benefit ratio for the attacker.

So, naturally, the more angles of defense a technique presents, the better its defensive value. This

is not typical for most previously proposed solutions which are targeted towards one and only

one problem. This is a hard quality to impart a solution because often different types of threats

do not contain any common feature (although in order to chain the entire attack, one might be a

prerequisite for another). So, it is better to do one job well and (reasonably) succeed than attempt

many and fail at all. However, when possible, such an avenue could be worth exploring, if it makes

practical and economic sense.

With this in mind, we have designed Polyglot to have multiple defensive angles. Preventing

runtime code reuse does not require the asymmetric encryption of keys (used to symmetrically

encrypt code) in the binary with the device’s own unique key. In fact, had that been the only

goal, having this feature negatively impacts all aspects of the design’s evaluation. However, we

considered the addition of that design point reasonable because we considered the consequent

cost-benefit trade-off practical. Specifically, we consider the tying of code to a particular hardware

instance beneficial despite the small performance, area, and power overhead it incurred. The two

103

points of preventing code reuse and drive-by download style attacks are mutually exclusive and

have traditionally required different solutions. However in our case, we could achieve both by

introducing a small incremental unit in our design.

Make it Lucrative for All Parties. This point emphasizes the overarching narrative of hard-

ware design in general and reiterates all the points made earlier on a broader scale. It is ultimately

the needs of the market that decides the worth of a feature. Hardware and software developers have

to work in tandem to deliver features that are demanded by the users to the extent that it makes eco-

nomic sense. As such, the ecosystem involves multiple players, and it is the job of the designer to

come up with a feature that satisfies and balances all their needs. This means that the feature should

satisfy the following parties thus. One, the user demands performance and energy-efficiency from

the technique. To make matters challenging still, since security is not yet a primary concern among

a significant portion of the consumer base, these bounds can be tighter for defensive features than

say, usability or purely performance optimizations. Secondly, the software developer demands

convenience of feature integration. This is primarily due to the prevalence of legacy code and the

high inertia of changing established work flows. This can be achieved in many ways from adding

it automatically with compiler passes or making it available through small stand-alone code mod-

ules. And lastly, the hardware vendor demands ease and security of deployment. As we discuss

at the outset, this means that the technique should satisfy the concerns of effectiveness, longevity,

and complexity of implementation. Admittedly, listed as such, balancing all these diverse con-

cerns may seem like a daunting task. My belief, however, is that if we follow the thesis of this

dissertation, we will be able to design solutions that meet all of these criteria satisfactorily, thus

significantly and positively impacting the user in practice, which is our ultimate goal as computer

engineers at the end.

104

Bibliography

[1] AddressSanitizer Algorithm. https://github.com/google/sanitizers/wik

i/AddressSanitizerAlgorithm.

[2] AddressSanitizer in Hardware. https://github.com/google/sanitizers/wi

ki/AddressSanitizerInHardware.

[3] ARM A64 Instruction Set Architecture for ARMv8-A architecture profile. "https://

static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_s

et_architecture.pdf". 2018.

[4] ARM Cortex A-15 Technical Reference Manual. http://infocenter.arm.com/h

elp/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.

pdf.

[5] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürnberger,

and Jannik Pewny. “You Can Run but You Can’T Read: Preventing Disclosure Exploits in

Executable Code”. Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security (CCS). 2014.

[6] Michael Backes and Stefan Nürnberger. “Oxymoron: Making Fine-Grained Memory Ran-

domization Practical by Allowing Code Sharing”. 23rd USENIX Security Symposium (SEC).

2014.

[7] Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko Stefanovic, and Dino

Dai Zovi. “Randomized instruction set emulation to disrupt binary code injection attacks”.

Proceedings of the 10th ACM conference on Computer and communications security (CCS).

2003.

[8] Brian Belleville, Hyungon Moon, Jangseop Shin, Dongil Hwang, Joseph M. Nash, Seon-

hwa Jung, Yeoul Na, Stijn Volckaert, Per Larsen, Yunheung Paek, and Michael Franz.

“Hardware Assisted Randomization of Data”. Proceedings of 21st International Sympo-

sium of Recent Advances in Intrusion Detection. RAID. 2018.

105

https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerInHardware
https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf
https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/DDI0438C_cortex_a15_r2p0_trm.pdf

[9] Emery D. Berger and Benjamin G. Zorn. “DieHard: Probabilistic Memory Safety for Un-

safe Languages”. Proceedings of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). 2006.

[10] Sandeep Bhatkar and R. Sekar. “Data Space Randomization”. Proceedings of the 5th In-

ternational Conference on Detection of Intrusions and Malware, and Vulnerability Assess-

ment (DIMVA). 2008.

[11] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. “Efficient Techniques for Com-

prehensive Protection from Memory Error Exploits”. Proceedings of USENIX Security

(SSYM). 2005.

[12] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed Okhravi.

“Timely Rerandomization for Mitigating Memory Disclosures”. Proceedings of the 22Nd

ACM SIGSAC Conference on Computer and Communications Security (CCS). 2015.

[13] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava

Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen,

Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. “The

Gem5 simulator”. SIGARCH Computer Architecture News (2011).

[14] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh. “Hacking

Blind”. Proceedings of the 2014 IEEE Symposium on Security and Privacy (SP). 2014.

[15] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars

R Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, et al.

“Prince–a low-latency block cipher for pervasive computing applications” (2012).

[16] Stephen W. Boyd, Gaurav S. Kc, Michael E. Locasto, Angelos D. Keromytis, and Vassilis

Prevelakis. “On the General Applicability of Instruction-Set Randomization”. IEEE Trans.

Dependable Secur. Comput. ().

[17] Kjell Braden, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christopher Liebchen,

and Ahmad-Reza Sadeghi. “Leakage-Resilient Layout Randomization for Mobile Devices”.

23rd Annual Network & Distributed System Security Symposium (NDSS). 2016.

[18] Ping Chen, Jun Xu, Zhiqiang Lin, Dongyan Xu, Bing Mao, and Peng Liu. “A Practical

Approach for Adaptive Data Structure Layout Randomization”. European Symposium on

Research in Computer Security (ESORICS). 2015.

[19] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. “Non-

control-data Attacks Are Realistic Threats”. Proceedings of the 14th conference on USENIX

Security Symposium (SSYM). 2005.

[20] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida. “StackAr-

mor: Comprehensive Protection From Stack-based Memory Error Vulnerabilities for Bi-

naries.” Proceedings of the Network and Distributed System Security Symposium (NDSS).

2015.

[21] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Huijie Robert Deng. “Ropecker:

A generic and practical approach for defending against rop attacks”. In Symposium on Net-

work and Distributed System Security (NDSS). 2014.

106

[22] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou, Jonathan

Woodruff, A. Theodore Markettos, J. Edward Maste, Robert Norton, Stacey Son, Michael

Roe, Simon W. Moore, Peter G. Neumann, Ben Laurie, and Robert N.M. Watson. “CHERI

JNI: Sinking the Java Security Model into the C”. Proceedings of the Twenty-Second Inter-

national Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). 2017.

[23] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj Vadera,

Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann. “Beyond the PDP-

11: Architectural Support for a Memory-Safe C Abstract Machine”. Proceedings of the

Twentieth International Conference on Architectural Support for Programming Languages

and Operating Systems. ASPLOS ’15. 2015.

[24] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj Vadera,

Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann. “Beyond the PDP-

11: Architectural Support for a Memory-Safe C Abstract Machine”. Proceedings of the

Twentieth International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). 2015.

[25] Chromium Project: AddressSanitizer. https://www.chromium.org/developer

s/testing/addresssanitizer.

[26] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco Negro, Christo-

pher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. “Losing Control: On the

Effectiveness of Control-Flow Integrity Under Stack Attacks”. Proceedings of the 22Nd

ACM SIGSAC Conference on Computer and Communications Security (CCS). 2015.

[27] Control-flow Enforcement Preview. https://software.intel.com/sites/def

ault/files/managed/4d/2a/control-flow-enforcement-technolog

y-preview.pdf. 2017.

[28] Jonathan Corbet. An updated guide to debugfs. http : //lwn.net/Articles/

334546/. May 2009.

[29] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and

M. Franz. “Readactor: Practical Code Randomization Resilient to Memory Disclosure”.

IEEE Symposium on Security and Privacy (SP). 2015.

[30] Stephen J Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen, Lucas

Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael Franz. “It’s a

TRaP: Table Randomization and Protection against Function-Reuse Attacks”. Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS).

2015.

[31] CVE-2014-0160. https://cve.mitre.org/cgi-bin/cvename.cgi?name=C

VE-2014-0160. 2014.

[32] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and Vikram Adve.

“Nested Kernel: An Operating System Architecture for Intra-Kernel Privilege Separation”.

Proceedings of the Twentieth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS). 2015.

107

https://www.chromium.org/developers/testing/addresssanitizer
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://lwn.net/Articles/334546/
http://lwn.net/Articles/334546/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

[33] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and Fabian

Monrose. “Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented

Programming”. 22nd Annual Network and Distributed System Security Symposium (NDSS).

2015.

[34] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha

Sethumadhavan, and Salvatore Stolfo. “On the Feasibility of Online Malware Detection

with Performance Counters”. ISCA ’13 (2013).

[35] Solar Designer. Getting around non-executable stack (and fix). http://seclists.

org/bugtraq/1997/Aug/63. Aug. 1997.

[36] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. “Hardbound: Ar-

chitectural Support for Spatial Safety of the C Programming Language”. Proceedings of

the 13th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). 2008.

[37] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu, Jonathan

M. Smith, Thomas F. Knight Jr., Benjamin C. Pierce, and Andre DeHon. “Architectural

Support for Software-Defined Metadata Processing”. Proceedings of the Twentieth Inter-

national Conference on Architectural Support for Programming Languages and Operating

Systems. ASPLOS ’15. 2015.

[38] Gregory J. Duck and Roland H. C. Yap. “Heap Bounds Protection with Low Fat Pointers”.

Proceedings of the 25th International Conference on Compiler Construction (CC). 2016.

[39] Gregory J Duck, Roland HC Yap, and Lorenzo Cavallaro. “Stack Bounds Protection with

Low Fat Pointers”. Proceedings of the Network and Distributed System Security Sympo-

sium (NDSS). 2017.

[40] Morris Dworkin. Recommendations for Block Cipher Modes of Operation: Methods and

Techniques. http://csrc.nist.gov/publications/nistpubs/800-38a/

sp800-38a.pdf. 2001.

[41] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev, Nael Abu Ghazaleh,

and Ryan Riley. “Iso-X: A Flexible Architecture for Hardware-Managed Isolated Execu-

tion”. Proceedings of the 47th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO). 2014.

[42] Exploit Database. EBD-31574. Feb. 2014.

[43] Firefox and Address Sanitizer. https://developer.mozilla.org/en-US/doc

s/Mozilla/Testing/Firefox_and_Address_Sanitizer.

[44] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. “Silicon Physical

Random Functions”. Proceedings of the 9th ACM Conference on Computer and Commu-

nications Security. CCS ’02. 2002.

[45] Saugata Ghose, Latoya Gilgeous, Polina Dudnik, Aneesh Aggarwal, and Corey Waxman.

“Architectural support for low overhead detection of memory violations”. 2009 Design,

Automation Test in Europe Conference Exhibition. 2009.

108

http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
https://developer.mozilla.org/en-US/docs/Mozilla/Testing/Firefox_and_Address_Sanitizer

[46] Jason Gionta, William Enck, and Peng Ning. “HideM: Protecting the Contents of Userspace

Memory in the Face of Disclosure Vulnerabilities”. Proceedings of the 5th ACM Confer-

ence on Data and Application Security and Privacy (CODASPY). 2015.

[47] Joseph L. Greathouse, Hongyi Xin, Yixin Luo, and Todd Austin. “A Case for Unlimited

Watchpoints”. Proceedings of the Seventeenth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS). 2012.

[48] Hardware-Assisted Checking Using Silicon Secured Memory (SSM). https://docs.

oracle.com/cd/E37069_01/html/E37085/gphwb.html. 2015.

[49] John L. Henning. “SPEC CPU2006 Benchmark Descriptions”. SIGARCH Comput. Archit.

News 34.4 (Sept. 2006), pp. 1–17.

[50] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. “Data-Oriented Pro-

gramming: On the Expressiveness of Non-control Data Attacks”. 2016 IEEE Symposium

on Security and Privacy (SP). May 2016, pp. 969–986. DOI: 10.1109/SP.2016.62.

[51] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans, John

C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. “Secure and Practical Defense

Against Code-injection Attacks Using Software Dynamic Translation”. Proceedings of the

2Nd International Conference on Virtual Execution Environments (VEE). 2006.

[52] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual. May

2011.

[53] Intel Corporation. Intel Architecture Instruction Set Extensions Programming Reference.

[54] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yan-

ling Wang. “Cyclone: A Safe Dialect of C”. Proceedings of the General Track of the Annual

Conference on USENIX Annual Technical Conference (Usenix ATC). 2002.

[55] Mehmet Kayaalp, Timothy Schmitt, Junaid Nomani, Dmitry Ponomarev, and Nael Abu-

Ghazaleh. “SCRAP: Architecture for Signature-based Protection from Code Reuse At-

tacks”. Proceedings of the 2013 IEEE 19th International Symposium on High Performance

Computer Architecture (HPCA). HPCA ’13. 2013.

[56] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. “Countering code-injection

attacks with instruction-set randomization”. ACM Conference on Computer and Commu-

nications Security (CCS). 2003.

[57] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. “kGuard: Lightweight

Kernel Protection against Return-to-user Attacks”. Proceedings of the 21st USENIX Secu-

rity Symposium (USENIX Sec). 2012.

[58] Chongkyung Kil, Jinsuk Jim, C. Bookholt, J. Xu, and Peng Ning. “Address Space Lay-

out Permutation (ASLP): Towards Fine-Grained Randomization of Commodity Software”.

Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC).

2006.

[59] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris

Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping Bits in Memory Without Accessing

Them: An Experimental Study of DRAM Disturbance Errors”. Proceeding of the 41st

Annual International Symposium on Computer Architecuture. ISCA ’14. 2014.

109

https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
http://dx.doi.org/10.1109/SP.2016.62

[60] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,

Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. “Spectre attacks:

exploiting speculative execution”. arXiv.org (Jan. 2018).

[61] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios Kemerlis, and Michalis Polychronakis.

“Compiler-assisted Code Randomization”. 2018 IEEE Symposium on Security and Privacy

(SP). 2018.

[62] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight Jr., and Andre De-

Hon. “Low-fat Pointers: Compact Encoding and Efficient Gate-level Implementation of

Fat Pointers for Spatial Safety and Capability-based Security”. Proceedings of the 2013

ACM SIGSAC Conference on Computer & Communications Security (CCS). 2013.

[63] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. “SoK: Automated

Software Diversity”. Proceedings of the 2014 IEEE Symposium on Security and Privacy

(SP). 2014.

[64] Kevin P. Lawton. “Bochs: A Portable PC Emulator for Unix/X”. Linux Journal 1996.29es

(1996), p. 7.

[65] Ruby B. Lee, Peter C. S. Kwan, John P. McGregor, Jeffrey Dwoskin, and Zhenghong

Wang. “Architecture for Protecting Critical Secrets in Microprocessors”. Proceedings of

the 32nd annual international symposium on Computer Architecture (SP). 2005.

[66] Leon3 Processor. http://www.gaisler.com/index.php/products/proces

sors/leon3.

[67] Zhiqiang Lin, Ryan D. Riley, and Dongyan Xu. “Polymorphing Software by Randomizing

Data Structure Layout”. Proceedings of the 6th International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment. DIMVA ’09. 2009.

[68] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan

Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. “Meltdown”.

arXiv.org (Jan. 2018).

[69] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. “UniSan: Proactive Kernel

Memory Initialization to Eliminate Data Leakages”. Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security (CCS). 2016.

[70] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim, and Wenke

Lee. “ASLR-Guard: Stopping Address Space Leakage for Code Reuse Attacks”. Proceed-

ings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security

(CCS). 2015.

[71] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,

Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin: Building Customized Pro-

gram Analysis Tools with Dynamic Instrumentation”. Proceedings of the 26th ACM SIG-

PLAN Conference on Programming Language Design and Implementation (PLDI). 2005.

[72] V. Gayoso Martinez, F. Hernandez Alvarez, L. Hernandez Encinas, and C. Sanchez Avila.

“A comparison of the standardized versions of ECIES”. Information Assurance and Secu-

rity (IAS), 2010 Sixth International Conference on. 2010.

110

http://www.gaisler.com/index.php/products/processors/leon3

[73] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor,

and Adrian Perrig. “TrustVisor: Efficient TCB Reduction and Attestation”. Proceedings of

the 2010 IEEE Symposium on Security and Privacy (SP). 2010.

[74] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi

Isozaki. “Flicker: An Execution Infrastructure for Tcb Minimization”. Proceedings of the

3rd ACM SIGOPS/EuroSys European Conference on Computer Systems (EuroSys). 2008.

[75] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Ved-

vyas Shanbhogue, and Uday R. Savagaonkar. “Innovative Instructions and Software Model

for Isolated Execution”. Proceedings of the 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy (HASP). 2013.

[76] Larry McVoy and Carl Staelin. “Lmbench: Portable Tools for Performance Analysis”.

Proceedings of the 1996 Annual Conference on USENIX Annual Technical Conference

(ATEC). 1996.

[77] Matt Miller. Safely Searching Process Virtual Address Space. http://www.nologin.

com/Downloads/Papers/egghunt-shellcode.pdf. Sept. 2004.

[78] MKLINUXIMG-2.6.36. http://www.gaisler.com/index.php/downloads/l

inux.

[79] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. “Watchdog: Hardware for

safe and secure manual memory management and full memory safety”. 39th International

Symposium on Computer Architecture (ISCA). 2012.

[80] Santosh Nagarakatte, Milo Martin, and Steve Zdancewic. “WatchdogLite: Hardware-Accelerated

Compiler-Based Pointer Checking”. Proceedings of Annual IEEE/ACM International Sym-

posium on Code Generation and Optimization (CGO). 2014.

[81] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. “Soft-

Bound: Highly Compatible and Complete Spatial Memory Safety for C”. Proceedings of

the 30th ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion (PLDI). 2009.

[82] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer.

“CCured: Type-safe Retrofitting of Legacy Software”. ACM Transactions Programming

Language Systems (2005).

[83] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavyweight Dy-

namic Binary Instrumentation”. Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). 2007.

[84] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin. “TrustZone Explained: Ar-

chitectural Features and Use Cases”. 2016 IEEE 2nd International Conference on Collab-

oration and Internet Computing (CIC). 2016.

[85] Gene Novark and Emery D. Berger. “DieHarder: Securing the Heap”. Proceedings of the

17th ACM Conference on Computer and Communications Security (CCS). 2010.

[86] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof Fetzer.

“Intel MPX Explained: An Empirical Study of Intel MPX and Software-based Bounds

Checking Approaches”. CoRR (2017).

111

http://www.nologin.com/Downloads/Papers/egghunt-shellcode.pdf
http://www.nologin.com/Downloads/Papers/egghunt-shellcode.pdf
http://www.gaisler.com/index.php/downloads/linux

[87] Meltem Ozsoy, Caleb Donovick, Iakov Gorelik, Nael B. Abu-Ghazaleh, and Dmitry V.

Ponomarev. “Malware-aware processors: A framework for efficient online malware detec-

tion”. 21st IEEE International Symposium on High Performance Computer Architecture,

HPCA 2015, Burlingame, CA, USA, February 7-11, 2015. 2015, pp. 651–661.

[88] Antonis Papadogiannakis, Laertis Loutsis, Vassilis Papaefstathiou, and Sotiris Ioannidis.

“ASIST: Architectural Support for Instruction Set Randomization”. Proceedings of the

2013 ACM SIGSAC Conference on Computer & Communications Security (CCS). 2013.

[89] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. “Smashing the Gad-

gets: Hindering Return-Oriented Programming Using In-place Code Randomization”. Pro-

ceedings of the 2012 IEEE Symposium on Security and Privacy. 2012.

[90] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. “Transparent ROP Ex-

ploit Mitigation Using Indirect Branch Tracing”. Proceedings of the 22Nd USENIX Con-

ference on Security (SEC). 2013.

[91] PaX Team. PaX address space layout randomization. 2010.

[92] Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon 5500 processors.

https://software.intel.com/sites/products/collateral/hpc/vtu

ne/performance_analysis_guide.pdf.

[93] Theofilos Petsios, Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis.

“DynaGuard: Armoring Canary-based Protections Against Brute-force Attacks”. Proceed-

ings of the 31st Annual Computer Security Applications Conference (ACSAC). 2015.

[94] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. “Analysis of Redundancy and Appli-

cation Balance in the SPEC CPU2006 Benchmark Suite”. Proceedings of the 34th Annual

International Symposium on Computer Architecture (ISCA). 2007.

[95] Georgios Portokalidis and Angelos D. Keromytis. “Fast and practical instruction-set ran-

domization for commodity systems”. Proceedings of the 26th Annual Computer Security

Applications Conference (ACSAC). 2010.

[96] Feng Qin, Shan Lu, and Yuanyuan Zhou. “SafeMem: Exploiting ECC-Memory for De-

tecting Memory Leaks and Memory Corruption During Production Runs”. Proceedings of

the 11th International Symposium on High-Performance Computer Architecture (HPCA).

2005.

[97] Qualcomm Technologies Inc. Pointer Authentication on ARMv8.3. https://www.qua

lcomm.com/media/documents/files/whitepaper-pointer-authentic

ation-on-armv8-3.pdf. 2017.

[98] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. “Counterfeit

Object-oriented Programming: On the Difficulty of Preventing Code Reuse Attacks in C++

Applications”. IEEE Symposium on Security and Privacy (SP). 2015.

[99] Jeff Seibert, Hamed Okhravi, and Eric Söderström. “Information Leaks Without Memory

Disclosures: Remote Side Channel Attacks on Diversified Code”. Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security (CCS). 2014.

112

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

[100] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. “Ad-

dressSanitizer: A Fast Address Sanity Checker”. Proceedings of the 2012 USENIX Con-

ference on Annual Technical Conference (Usenix ATC). 2012.

[101] Hovav Shacham. “The geometry of innocent flesh on the bone: return-into-libc without

function calls (on the x86)”. Proceedings of the 14th ACM conference on Computer and

communications security (CCS). 2007.

[102] Timothy Sherwood, Suleyman Sair, and Brad Calder. “Phase Tracking and Prediction”.

Proceedings of the 30th Annual International Symposium on Computer Architecture. ISCA

’03. 2003.

[103] Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, Chenghuai Lu, and Alexandra Boldyreva.

“High Efficiency Counter Mode Security Architecture via Prediction and Precomputa-

tion”. Proceedings of the 32nd annual international symposium on Computer Architecture

(ISCA). 2005.

[104] Kanad Sinha, Vasileios P. Kemerlis, and Simha Sethumadhavan. “Reviving instruction set

randomization”. IEEE International Symposium on Hardware Oriented Security and Trust

(HOST). HOST ’17. 2017.

[105] Kanad Sinha and Simha Sethumadhavan. “Practical Memory Safety with REST”. Pro-

ceedings of the 45th Annual International Symposium on Computer Architecture. ISCA

’18. 2018.

[106] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen,

and Ahmad-Reza Sadeghi. “Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained

Address Space Layout Randomization”. Proceedings of the 2013 IEEE Symposium on Se-

curity and Privacy (SP). 2013.

[107] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek. “HDFI:

Hardware-Assisted Data-Flow Isolation”. 2016 IEEE Symposium on Security and Privacy

(SP). 2016.

[108] Alexander Sotirov. “Heap Feng Shui in JavaScript”. Black Hat Europe. 2007.

[109] Ana Nora Sovarel, David Evans, and Nathanael Paul. “Where’s the FEEB? The effective-

ness of instruction set randomization”. Proceedings of the 14th conference on USENIX

Security Symposium (SEC). 2005.

[110] National Institute of Standards and Technology. FIBS 197, Advanced Encryption Standard

(AES). Tech. rep. Nov. 2001.

[111] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas.

“Efficient Memory Integrity Verification and Encryption for Secure Processors”. Proceed-

ings of the 36th annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO). 2003.

[112] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas.

“AEGIS: architecture for tamper-evident and tamper-resistant processing”. Proceedings of

the 17th annual international conference on Supercomputing. 2003.

113

[113] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. “Secure Program Ex-

ecution via Dynamic Information Flow Tracking”. Proceedings of the 11th International

Conference on Architectural Support for Programming Languages and Operating Systems.

ASPLOS XI. 2004.

[114] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK: Eternal War in Mem-

ory”. Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP). 2013.

[115] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “Heisenbyte: Thwarting Mem-

ory Disclosure Attacks Using Destructive Code Reads”. Proceedings of the 22Nd ACM

SIGSAC Conference on Computer and Communications Security (CCS). 2015.

[116] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John

Mitchell, and Mark Horowitz. “Architectural Support for Copy and Tamper Resistant Soft-

ware”. Architectural Support for Programming Languages and Operating Systems (ASP-

LOS). 2000.

[117] Trusted Computing Group. http://www.trustedcomputinggroup.org. 2003.

[118] uClibc-0.9.33.2. http://www.uclibc.org.

[119] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. “MemTracker: Efficient and

Programmable Support for Memory Access Monitoring and Debugging”. 2007 IEEE 13th

International Symposium on High Performance Computer Architecture (HPCA). 2007.

[120] Lluïs Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and Mateo Valero. “CODOMs:

Protecting Software with Code-centric Memory Domains”. Proceeding of the 41st Annual

International Symposium on Computer Architecuture (ISCA). 2014.

[121] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder. “High System-

Code Security with Low Overhead”. Proceedings of the 2015 IEEE Symposium on Security

and Privacy (SP). 2015.

[122] Xiaoguang Wang, Yue Chen, Zhi Wang, Yong Qi, and Yajin Zhou. “SecPod: a Framework

for Virtualization-based Security Systems”. 2015 USENIX Annual Technical Conference

(USENIX ATC 15). 2015.

[123] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan

Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J.

Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj Vadera. “CHERI: A Hy-

brid Capability-System Architecture for Scalable Software Compartmentalization”. Pro-

ceedings of the 2015 IEEE Symposium on Security and Privacy. SP ’15. 2015.

[124] Yoav Weiss and Elena Gabriela Barrantes. “Known/Chosen Key Attacks against Software

Instruction Set Randomization”. Proceedings of the 22nd Annual Computer Security Ap-

plications Conference (ACSAC). 2006.

[125] David Weston and Matt Miller. “Windows 10 Mitigation Improvements”. Black Hat USA.

2016.

[126] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore, Jonathan An-

derson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton, and Michael Roe.

“The CHERI Capability Model: Revisiting RISC in an Age of Risk”. Proceeding of the

41st Annual International Symposium on Computer Architecuture (ISCA). 2014.

114

http://www.trustedcomputinggroup.org
http://www.uclibc.org

[127] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin. “Improv-

ing Cost, Performance, and Security of Memory Encryption and Authentication”. Proceed-

ings of the 33rd annual international symposium on Computer Architecture (ISCA). 2006.

[128] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and J. Torrellas. “iWatcher: efficient archi-

tectural support for software debugging”. Proceedings of 31st Annual International Sym-

posium on Computer Architecture, 2004. 2004.

115

Appendix

Algorithms Used to Leak XOR and Transposition Keys

• XOR. Since 128 bits covers 4 instructions, we have to accurately guess 4 instructions to figure

out the key. Additionally, since XOR does not have a “carry” effect, we can also guess the key

piecewise. For instance, we can guess two instructions from one location, and two from another

(while adhering to the 128-bit granularity) and combine the two portions to figure out the entire

key.

Since every fourth instruction is encrypted with the same key chunk, our approach was to try

XOR’ing every combination of instructions 4 words apart, and comparing it with the corresponding

value in the plaintext in the same function. For a match, XOR’ing the plaintext and the correspond-

ing cipher yields a possible value of the key. Without randomization, it would be trivial to match

pairs. With randomization however, it is more difficult to ascertain which corresponding matching

pairs. To overcome this, we use a simple frequency heuristic wherein we choose the key chunks

encountered most often. The actual algorithm is presented in Algorithm 1.

• Bit Transposition. Transposition was harder to break using simple heuristics than it was for

XOR. It becomes especially so if we try to guess the key using wrong key match-pairs. In other

words, even if we do get two sets of instructions, encrypted and the corresponding plaintext, we

might not get the key if do not match them in the right order. Our basic algorithm is shown below

in Algorithm 2.

Although checking validity of a likely key candidate was not difficult for us since we perform

a static analysis, practically the same can be achieved by verifying that decrypted words corre-

spond to valid SPARC instructions. Additionally, we fine-tune a few parameters (num_freq, for

instance) after some amount of experimentation. Note that we did not do any extensive analysis to

find the most efficient heuristics.

116

Algorithm 1 Finding XOR Key

1: procedure FIND_XOR_KEY

2: for all randomized functions, randfunc, and corresponding function, origfunc do

3: funclen← length(origfunc)

4: origpairs← {orig1, orig2}, s.t. orig1, orig2 ∈ origfunc, and are 4 words apart

5: randpairs ← {rand1, rand2}, s.t. rand1, rand2 ∈ funclen instructions of randfunc, and are 4

words apart

6:

7: for all {orig1, orig2} ∈ origpairs and {rand1, rand2} ∈ randpairs do

8: if XOR(orig1, orig2) = XOR(rand1, rand2) then

9: key_cand← key_cand+XOR(orig1 , orig2)

10: end if

11: end for

12:

13: if check_success() then

14: key ← 4 most frequent elements in key_chunks

15: return SUCCESS

16: end if

17: end for

18: return FAIL

19: end procedure

117

Algorithm 2 Finding Transposition Key

1: keys[i]← [0, 31],∀i ∈ [0, 31]
2:

3: procedure FIND_TRANSPOSITION_KEY

4: for all randomized functions, randfunc, and corresponding function, origfunc do

5: Generate rand_f such that rand_f [val] = {inst i} ∀ i that appears val times in randfunc

6: Generate orig_f such that orig_f [val] = {inst i} ∀ i that appears val times in origfunc

7: num_cands← minimum number of candidate instructions before brute-forcing is attempted

8: min_freq← minimum frequency of instruction before it is considered for brute-forcing

9: if sum(len(rand_f [i]) ≥ num_cand, where i ≥ min_freq then

10: GUESS(orig_f[min_freq:], rand_f[min_freq:])

11: end if

12: end for

13: return FAIL

14: end procedure

15:

16: procedure GUESS(setA, setB)

17: for all x ∈ [0,len(setA)] do

18: inA← setA[x]
19: inB ← setB[x]
20: for all i ∈ [0, 31] do

21: bitA← (inA&(1≪ i))≫ i

22: for all j ∈ [0, 31] do

23: bitB ← (inB&(1≪ j))≫ j

24: if bitB 6= bitA then

25: keys[i].remove(j)
26: if len(keys) = 0 then

27: return FAIL

28: end if

29: end if

30: end for

31: end for

32: end for

33: if VALIDATE(keys) then

34: return SUCCESS

35: end if

36: if !CHECK_PARTIAL_VALIDITY(keys) then

37: return FAIL

38: end if

39: if Set elements in keys small then ⊲ Try brute-forcing

40: for all key_comb ∈ keys do

41: if VALIDATE(key_comb) then

42: return SUCCESS

43: end if

44: end for

45: end if

46: return FAIL ⊲ Try again later

47: end procedure

118

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Software Based Defenses
	Why Software?
	Can it Keep Up with Attacks?

	Hardware Based Defenses
	Why Hardware?
	But It is No Silver Bullet

	Thesis and Contributions

	Background
	Baseline Architecture
	Semantic Metadata Based Defenses
	Tagged Defenses
	Cryptographic Defenses
	Logging or Monitoring Based Defenses

	Reviving Instruction Set Randomization with Polyglot
	Introduction
	Background and Motivation
	Previous ISR Schemes
	ISR against Code-Reuse Attacks

	Adversarial Model
	System Architecture
	Software
	Hardware
	Design Choice Implications

	Implementation Details
	Software
	Hardware

	Security Analysis
	Motivating Strong Encryption
	Effectiveness
	Proof-of-Concept Exploit

	Ecosystem
	Challenges
	Distribution Models
	Key Management

	Evaluation
	Performance
	FPGA Implementation Results

	Related Work
	Conclusion

	Practical Memory Safety with REST
	Introduction
	Motivation
	Hardware Design
	ISA Modifications
	Microarchitecture

	Software Design
	Userlevel Support
	System Level Support

	Hardware/Software Security
	Threat Model
	Hardware Discussion
	Software Discussion

	Evaluation
	Performance Overheads
	FPGA Area Overheads

	Related Work
	Conclusion

	Address Space as a Primary Line of Defense
	Introduction
	Motivation
	The Address Interface
	Exploiting the AGI

	Related Work
	Apparent Address Space
	Security Implications
	Challenges

	Implementation
	Hardware Design
	Software Support
	Security Evaluation
	Feasibility

	Conclusion

	Concluding Remarks
	Lessons Learned

	Bibliography
	Appendix
	Algorithms Used to Leak XOR and Transposition Keys

