
Hybrid Analog-Digital Co-Processing for Scientific Computation

Yipeng Huang

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

© 2018
Yipeng Huang

All rights reserved

ABSTRACT

Hybrid Analog-Digital Co-Processing for Scientific Computation

Yipeng Huang

In the past 10 years computer architecture research has moved to more heterogeneity and less

adherence to conventional abstractions. Scientists and engineers hold an unshakable belief that

computing holds keys to unlocking humanity’s Grand Challenges. Acting on that belief they have

looked deeper into computer architecture to find specialized support for their applications. Likewise,

computer architects have looked deeper into circuits and devices in search of untapped performance

and efficiency. The lines between computer architecture layers—applications, algorithms, architec-

tures, microarchitectures, circuits and devices—have blurred. Against this backdrop, a menagerie

of computer architectures are on the horizon, ones that forgo basic assumptions about computer

hardware, and require new thinking of how such hardware supports problems and algorithms.

This thesis is about revisiting hybrid analog-digital computing in support of diverse modern

workloads. Hybrid computing had extensive applications in early computing history, and has

been revisited for small-scale applications in embedded systems. But architectural support for

using hybrid computing in modern workloads, at scale and with high accuracy solutions, has been

lacking.

I demonstrate solving a variety of scientific computing problems, including stochastic ODEs,

partial differential equations, linear algebra, and nonlinear systems of equations, as case studies

in hybrid computing. I solve these problems on a system of multiple prototype analog accelerator

chips built by a team at Columbia University. On that team I made contributions toward program-

ming the chips, building the digital interface, and validating the chips’ functionality. The analog

accelerator chip is intended for use in conjunction with a conventional digital host computer.

The appeal and motivation for using an analog accelerator is efficiency and performance, but

it comes with limitations in accuracy and problem sizes that we have to work around.

The first problem is how to do problems in this unconventional computation model. Scientific

computing phrases problems as differential equations and algebraic equations. Differential equa-

tions are a continuous view of the world, while algebraic equations are a discrete one. Prior work

in analog computing mostly focused on differential equations; algebraic equations played a minor

role in prior work in analog computing. The secret to using the analog accelerator to support

modern workloads on conventional computers is that these two viewpoints are interchangeable.

The algebraic equations that underlie most workloads can be solved as differential equations, and

differential equations are naturally solvable in the analog accelerator chip. A hybrid analog-digital

computer architecture can focus on solving linear and nonlinear algebra problems to support many

workloads.

The second problem is how to get accurate solutions using hybrid analog-digital computing. The

reason that the analog computation model gives less accurate solutions is it gives up representing

numbers as digital binary numbers, and instead uses the full range of analog voltage and current

to represent real numbers. Prior work has established that encoding data in analog signals gives

an energy efficiency advantage as long as the analog data precision is limited. While the analog

accelerator alone may be useful for energy-constrained applications where inputs and outputs are

imprecise, we are more interested in using analog in conjunction with digital for precise solutions.

This thesis gives novel insight that the trick to do so is to solve nonlinear problems where low-

precision guesses are useful for conventional digital algorithms.

The third problem is how to solve large problems using hybrid analog-digital computing. The

reason the analog computation model can’t handle large problems is it gives up step-by-step

discrete-time operation, instead allowing variables to evolve smoothly in continuous time. To

make that happen the analog accelerator works by chaining hardware for mathematical operations

end-to-end. During computation analog data flows through the hardware with no overheads in

control logic and memory accesses. The downside is then the needed hardware size grows alongside

problem sizes. While scientific computing researchers have for a long time split large problems into

smaller subproblems to fit in digital computer constraints, this thesis is a first attempt to consider

these divide-and-conquer algorithms as an essential tool in using the analog model of computation.

As we enter the post-Moore’s law era of computing, unconventional architectures will offer

specialized models of computation that uniquely support specific problem types. Two prominent

examples are deep neural networks and quantum computers. Recent trends in computer science

research show these unconventional architectures will soon have broad adoption. In this thesis I

show another specialized, unconventional architecture is to use analog accelerators to solve problems

in scientific computing. Computer architecture researchers will discover other important models

of computation in the future. This thesis is an example of the discovery process, implementation,

and evaluation of how an unconventional architecture supports specialized workloads.

Table of Contents

List of Figures vii

List of Tables x

Acknowledgements xi

I Introduction 1

1 Digital and Analog Accelerators 2

1.1 Specialization in application- and domain-specific digital and analog accelerators . . 3

1.2 Data-level parallelism in digital and analog accelerators 4

1.3 In-memory computation in digital and analog accelerators 5

1.4 Approximate computing in digital and analog accelerators 6

2 Hybrid Analog-Digital Co-Processing: Definition & Motivation 7

2.1 Continuous-time asynchronous signaling . 9

Accelerating long iterations with explicit data-graph execution 9

Implementing continuous algorithms with continuous-time operation 9

2.2 Continuous analog value encoding . 11

Dense analog data encoding and simple analog operations 11

Digital precision doubles by increasing bits while analog precisions doubles by dou-

bling signal-to-noise ratio . 12

Digital has error correction but continuous-time analog does not 13

i

3 Hybrid Analog-Digital Co-Processing: Challenges & Mitigations 16

3.1 Expanding workload breadth and depth: analog problems and algorithms in Berkeley

Dwarfs . 16

Analog accelerator applications in continuous mathematics 17

Sparse matrix . 18

Dense matrix . 18

MapReduce & Monte Carlo . 18

Structured grid . 19

Unstructured grid . 19

Spectral methods . 19

N-body . 19

Analog accelerator applications in mixed continuous-discrete mathematics 20

Dynamic programming . 20

Graphical methods . 20

Backtrack and branch-and-bound . 20

Analog accelerator applications in discrete mathematics 21

Graph traversal . 21

3.2 Refining solution accuracy and precision: analog approximations as digital seeds . . 21

Conventional wisdom: analog architectures for real-world inputs and outputs 21

My viewpoint: digital refinement of approximate analog solutions 22

3.3 Growing problem sizes: digital problem decomposition and analog emerging devices 22

Conventional wisdom: analog devices for parallel matrix-vector multiplication 23

My viewpoint: digital divide-and-conquer for analog subproblems 23

4 History of and Related Work in Analog Co-Processing 25

4.1 History of analog co-processing . 25

4.2 Recent related work in analog co-processing . 26

Choice of value storage and communication . 26

Choice of multiplier implementation . 27

Choice of network topology and target applications 28

ii

Choice of granularity of accelerator design . 29

II Columbia University Prototype Analog Accelerator Architecture 30

5 Analog Accelerator Programming & Architecture 32

5.1 Analog accelerator numerical primitives programming 32

Programming analog accelerators for ordinary differential equations 33

Programming analog accelerators for algebraic equations 36

5.2 Analog accelerator instruction set architecture . 37

Calibration . 37

Configuration . 38

Computation . 39

Exceptions . 39

Observability . 39

6 Analog Accelerator Microarchitecture & Characterization 41

6.1 Analog accelerator physical prototype microarchitecture 41

6.2 Analog accelerator analog subcomponent characterization 43

IIIAnalog-Digital Co-Processing for Solving Differential Equations 48

7 Partial Differential Equations 49

7.1 Taxonomy of PDEs . 49

Taxonomy: PDE dimensionality & order . 50

Taxonomy: second-order PDE classification . 51

Taxonomy: semilinear, quasilinear, and fully-nonlinear 52

Semilinear PDEs . 53

Quasilinear PDEs . 54

Fully nonlinear PDEs . 55

Navier-Stokes equations . 55

7.2 Solution steps for PDEs . 56

iii

Solution steps: space discretization . 56

Solution steps: time stepping . 57

7.3 Analog-digital co-processing for PDEs . 58

8 Analog Co-Processing for Stochastic Differential Equations 61

8.1 The Black-Scholes stochastic differential equation . 62

8.2 Analog Black-Scholes bringup: Gaussian white noise 63

Analog noise . 64

Analog noise: Gaussian distribution . 64

Analog noise: constant power spectral density 66

Filtered analog noise . 67

Digital noise . 69

8.3 Analog Black-Scholes bringup: standard Wiener process / Brownian motion 69

8.4 Analog Black-Scholes bringup: exponential growth process 71

8.5 Convergence & time for analog and digital Black-Scholes 74

IVAnalog-Digital Co-Processing for Solving Algebraic Equations 79

9 Analog-Digital Co-Processing for Solving Algebraic Equations 80

9.1 Algebraic equations dominate software profiles of equations, solvers, libraries 80

Importance of algebraic equations: physical model 81

Importance of algebraic equations: numerical algorithm 82

Importance of algebraic equations: hardware support 83

9.2 Solving algebraic equations as the interface between analog accelerator and digital

host . 83

9.3 Complementary strengths of hybrid analog-digital solvers for algebraic equations . . 84

10 Analog-Digital Co-Processing for Linear Algebra 85

10.1 Importance of linear algebra . 86

10.2 Digital iterative numerical methods for linear algebra 86

10.3 Analog continuous steepest descent for linear algebra 88

iv

10.4 Mitigation of analog linear algebra disadvantages . 89

Improve sampling precision by focusing on analog steady state 89

Tackle larger problems by accelerating sparse linear algebra subproblems 91

Handle indefinite matrices by multiplying by the matrix transpose 93

10.5 Design space exploration of high-bandwidth analog accelerators for linear algebra . . 93

Power and area model . 93

Analog bandwidth model . 94

10.6 Sparse linear algebra case study . 95

Analog and digital linear algebra performance comparison 96

Analog and digital linear algebra energy comparison 96

10.7 Challenges and pitfalls of analog linear algebra . 97

Effect of variable dynamic range on analog performance and efficiency 97

Effect of problem dimensionality on analog performance and efficiency 99

10.8 Summary . 100

11 Analog-Digital Co-Processing for Solving Nonlinear Systems of Equations 102

11.1 Importance and difficulty of solving nonlinear systems of equations 104

11.2 Tutorial: scalar nonlinear root-finding . 106

Digital classical and damped Newton’s . 106

Analog continuous Newton’s method . 107

Analog implementation . 108

Analog accelerator result . 109

11.3 Motivation: nonlinear systems of equations . 110

Nonlinear systems: digital challenges . 110

Finding the Jacobian and its inverse . 110

Uncertainty in the number of solutions and the effect of initial conditions . . 112

Nonlinear systems: analog homotopy . 113

Approximate analog & precise digital . 115

11.4 Nonlinear PDEs & discretization . 116

The viscous Burgers’ equation . 116

v

Space discretization . 117

Time stepping . 118

Viscous Burgers’ PDE discretization . 119

11.5 Analog accelerator solution of nonlinear PDEs . 119

Programming and data interface . 119

Board and chip hardware mapping . 123

Dynamic range of values and scaling . 124

Analog accelerator accuracy results . 124

11.6 Design space exploration of scaled-up analog accelerators for nonlinear systems of

equations . 125

Performance vs. accelerator size . 125

Analog approximation as digital initial guess . 128

Scaling to larger problems on GPUs . 129

11.7 Extensions for other PDEs . 131

11.8 Summary . 133

Nonlinear is analog killer app . 133

How to do more problems types in analog accelerators 133

How to do more work in an analog accelerator . 135

V Conclusion 136

12 Conclusion & Research Directions 137

12.1 Conclusion . 137

12.2 Future research directions . 139

Analog accelerator applications in differential algebraic equations 139

Analog accelerator applications in Berkeley Dwarfs 140

12.3 Broader view . 140

vi

Bibliography 142

Bibliography 142

vii

List of Figures

5.1 Analog accelerator block diagram for the ODE d2x
dt2

= −0.5dx
dt + 2 sin(x) (voltage mode). 33

5.2 Analog accelerator block diagram for the ODE d2x
dt2

= −0.5dx
dt + 2 sin(x) (current mode). 34

5.3 Programming the analog accelerator crossbar network and subcomponents to realize an

ODE solver. 34

5.4 System diagram for user program, analog accelerator library, microcontroller, and analog

accelerator chip. 37

6.1 Microphotograph and architecture diagram for the Columbia University prototype ana-

log accelerator. 42

6.2 Analog accelerator subcomponents. 42

6.3 Analog component amplitude frequency response (function generator input, oscilloscope

output). 44

6.4 Analog component amplitude frequency response (DAC generated input, ADC acquired

output). 45

6.5 Analog component amplitude frequency response (zoomed in view). 46

6.6 Analog component phase shift frequency response. 47

7.1 Relationship between simplifications of the Navier-Stokes momentum equations. 55

7.2 Taxonomy of some scientific computation problem classes. 57

8.1 Gaussian white noise source. 63

8.2 Analog accelerator input noise normal distribution. 64

8.3 Control of input noise mean µ and variance σ2. 65

viii

8.4 Calibration of independent noise sources. 65

8.5 Analog accelerator input noise autocorrelation. 66

8.6 Analog noise DC drift. 67

8.7 Analog frequency response for on-chip high-pass filter. 68

8.8 Standard Wiener process / Brownian motion. 69

8.9 Standard Wiener process paths from integrating white noise. 70

8.10 Stochastic diffusion (Wiener process with drift). 70

8.11 Exponential growth process. 71

8.12 Analog accelerator solutions for the exponential growth curve in Black-Scholes stochastic

ODE. 72

8.13 Black-Scholes stochastic ordinary differential equation. 74

8.14 Example analog and digital solutions for Black-Scholes SDE. 75

8.15 The distribution of digital and analog final solutions for Black-Scholes SDE. 75

8.16 Weak convergence of analog and digital solutions as ensemble size grows. 76

8.17 Time cost of random number generation, the digital solution, the calibration routine,

and the analog solution. 77

8.18 Pie chart of where computation time is spent. 77

10.1 Comparison of iterative numerical linear algebra algorithms for solving a Poisson equation. 86

10.2 How feedback in an analog computer circuit can implement scalar division and solving

a linear algebra problem. 88

10.3 Schematic of an analog accelerator for linear algebra. 88

10.4 An example elliptic PDE. 90

10.5 Power versus analog accelerator size for various bandwidth choices. 94

10.6 Area versus analog accelerator size for various bandwidth choices. 95

10.7 Comparison of time taken to converge to equivalent precision, for high-bandwidth analog

accelerators and a digital CPU. 96

10.8 Comparison of energy used to converge to equivalent precision, for high-bandwidth

analog accelerators and a digital CPU. 97

11.1 Analog circuit for continuous Newton’s method. 108

ix

11.2 The results of continuous Newton’s method running on an analog accelerator prototype

chip solving Equation 11.1. 109

11.3 Solving a nonlinear system of equations without and using homotopy continuation. . . . 114

11.4 Space discretization of a 2d viscous Burgers’ nonlinear PDE. 118

11.5 The nonlinear system of equations and Jacobian matrix of a 2d 2-by-2 grid point viscous

Burgers’ nonlinear PDE. 120

11.6 Analog accelerator object-oriented C++ code sample. 121

11.7 Distribution of analog solution error for 400 randomly generated problems. 124

11.8 Time to convergence for digital and analog solvers. 126

11.9 Time to convergence for digital and seeded digital solvers to double-precision floating

point epsilon precision. 128

11.10Time and energy for solution for digital and seeded digital solvers running on a GPU. . 130

x

List of Tables

2.1 Comparison of analog and digital computing stacks. 14

5.1 Analog accelerator instruction set architecture. 40

6.1 Analog component noise measurement. 45

7.1 Comparison of finite difference time stepping methods. 58

7.2 Summary of recent work in physically prototyped analog accelerators for differential

equations. 59

8.1 Rationale why low-frequency and high-frequency components of noise are both unattain-

able and unneeded for solving SDEs. In our experiments using band-limited noise is

sufficient. 67

9.1 Function profile of some PDE solvers. 81

10.1 Summary of analog accelerator chip components. 93

10.2 Time, area, and energy trends for analog acceleration and conjugate gradients. 99

11.1 Effect of Reynolds number on Burgers’ and Navier-Stokes equations. 116

11.2 Summary of analog accelerator chip components. 123

11.3 Area and power model for scaled-up analog accelerators. 126

xi

Acknowledgements

I would like to thank my thesis advisor Prof. Simha Sethumadhavan for shaping my research

personality from my undergrad senior year. When I asked him for a recommendation letter for

grad school, he said he teaches his PhD students one area of knowledge and expects his students to

teach him one in return. I appreciate the freedom and trust he has granted me to take my research

in new directions, and for being patient even as I rushed to meet deadlines. By now I’m not sure

what that one thing he taught me was, but if I had to boil it down to one it is how to be ever

curious and ambitious. During my time with Simha I went from being a narrowly-focused student

for whom things were either done or not, to being who I am today who embraces open-minded

curiosity and setting challenging goals that are just out of reach. These are formative lessons I will

appreciate going forward.

I thank chief among my collaborators Dr. Ning Guo whose indomitable ethic and careful work

on the prototype chips laid a solid foundation for my research. This thesis would not have been

possible without him.

I thank Prof. Margaret Martonosi of Princeton University for her time to serve on my thesis

committee. I thank my collaborators Prof. Yannis Tsividis, Prof. Mingoo Seok, and Prof. Kyle

Mandli, for the time and energy they vested in my research work. I have learned from them to be

rigorous in my research, and that there are always new tricks to try in new areas of engineering

and mathematics.

I thank my professors and teachers over the many years of school, especially Prof. Martha

Kim, for the many times she has coached me to tell the real story and meaning of research, not

just the facts, by flipping the whole paper or presentation upside down. I would also like to thank

Prof. Luca Carloni, Prof. Steven Nowick, Prof. Steven Edwards, Prof. Peter Allen, Prof. Janet

xii

Kayfetz, and Prof. Dan Rubenstein for their collaboration, supervision, and for their teaching that

has inspired me to pursue my PhD studies. I must also thank my teachers from before Columbia

University, including Mr. Rice, Mr. Peck, Mr. James, Ms. Chen, and Ms. Lin for their dedication

to their students.

I am most grateful for and indebted to my family. First to my parents, who have supported

me through my education, always nurturing my scholarship since before I was aware, and for

encouraging me to pursue my interests as long as I did so with conviction. And to my siblings Eric

and Charlotte, who as older siblings have always been my role models. And finally to my fiancée

Catherine, who has shared the best and worst moments of this whole journey, and for getting me

to wear collared shirts instead of T-shirts I get for free, and generally making me a more highly

functioning human being.

xiii

To my parents.

xiv

Part I

Introduction

1

Chapter 1

Digital and Analog Accelerators

Improvements in computer architecture performance and efficiency have thus far been driven by

three broad principles: scaling, parallelism, and specialization. Around 2005, the first of those

principles faltered with the end of Dennard scaling, leading to the forecast then that increased core-

level parallelism could make up for shortfalls in frequency scaling. Except difficulties in parallel

programming and power-wall constraints have foreshortened the reign of the multicore era as well:

instead of 1000s of cores in consumer CPUs, we have around a dozen. Hardware specialization using

digital accelerators has been an alternative to scaling and parallelism for driving performance and

efficiency. Specialization using digital accelerators offers several advantages over general-purpose

CPUs, but it also suffers from limitations that I will discuss in the rest of this introduction. Because

of these limitations, computer architecture researchers must consider extensions or alternatives to

digital accelerators.

This thesis is about my team’s experience and findings from building and using analog acceler-

ators in a hybrid analog-digital architecture. We can think of analog accelerators as extensions to

digital accelerators: both types of accelerators use specialization to provide greater performance

and efficiency relative to the general-purpose alternative. At the same time, analog accelerators

use a fundamentally different model of computation, so we should consider them outside of the

conventional computer architecture principles of scaling, parallelism and specialization. In this

introduction chapter I will first discuss analog accelerators as extensions to digital accelerators;

later, I will discuss analog accelerators as an alternative model of computation.

Digital accelerators provide higher performance and efficiency through several mechanisms, in-

2

cluding reducing overheads in control logic by specializing on a small set of algorithms, extracting

greater parallelism from the workload, exploiting a memory hierarchy design tailored to the prob-

lem, and customizing the representation of data to the inputs. Analog accelerators carry forward

many of these ideas.

1.1 Specialization in application- and domain-specific digital and

analog accelerators

Specialization using accelerators has been a commercially successful idea. But many digital accel-

erators thus far have been application-specific accelerators, which have limited applications outside

of a few obvious intensive applications. A more sustainable approach to building accelerators is

to build domain-specific accelerators, which are specialized hardware that target a whole class of

problems. Designing domain-specific accelerators needs more clever insight into workloads in or-

der to map them into hardware, so relatively few domain-specific accelerators have been proven

to work. As I show in this thesis, analog accelerators are an important type of domain-specific

accelerator, suited for scientific computation workloads.

The first idea in digital accelerators is to specialize the control logic so the accelerator hardware

supports a limited set of operations or algorithms. Doing so reduces the overhead costs of fetching

and decoding instructions, ensuring that the hardware spends a greater proportion of time and

energy in doing logical operations that actually carry out the algorithm [70, 140].

Many commercially realized accelerators belong to application-specific accelerators. Application-

specific accelerators replace a well-defined innermost software loop or function call, and offer rela-

tively little flexibility to accommodate different algorithms, so they serve only to accelerate some

extremely intensive workload kernels such as AES encryption, multimedia codecs, or cryptocur-

rency hashing. Relatively speaking, application-specific accelerators are easier to build and use,

and so they have been commercially successful for those well-defined kernels [97]. But eventually

computer architecture researchers will run out of obvious target kernels for hardware acceleration,

and each additional accelerator costs silicon area that could be used for general-purpose cores or

other accelerators.

A more sustainable approach to architecture specialization is to build domain-specific acceler-

3

ators. In domain-specific accelerators, the digital accelerator serves to tackle a whole well-defined

class of problems in lieu of software. Domain-specific digital accelerators have the flexibility to

reconfigure pipelines to implement different algorithms to support more problems. For example,

database query accelerators can handle different query plans [182, 113], and neural network accel-

erators likewise can handle different neural network topologies [55, 31].

Prior work in analog computing, along with the work presented in this thesis, show that ana-

log accelerators are an important domain-specific accelerator design. For example, the prototype

analog accelerator developed at Columbia University comprises a few types of hardware units for

multiplication, addition, and integration. By reconfiguring how these operations are pipelined, the

analog accelerator can solve many types of problems in scientific computing, including differential

equations and algebraic equations.

The case for domain-specific accelerators may be stronger than application-specific ones, as

they can tackle a whole class of important problems; however, capturing a broader workload using

domain-specific accelerators comes with overhead costs in area, performance, and efficiency, and

striking a good balance between workload breadth and associated costs is difficult. So unless

computer architecture researchers keep finding clever domain-specific accelerators for more classes

of workloads, the accelerator specialization era of computer architecture may be limited, just like

the multicore and frequency scaling eras before it.

1.2 Data-level parallelism in digital and analog accelerators

Another reason specialized hardware accelerators offer higher performance and efficiency relative

to general-purpose approaches is greater parallelism. Specialized accelerators can make stronger

assumptions about the structure and regularity of the workloads they support. As a result, ac-

celerators can have wider single-instruction multiple-data operations (SIMD) compared to general-

purpose designs. Prominent examples include GPGPUs, along with wide matrix-vector multipli-

cation operations common in multimedia and neural network accelerators.

The amount of data-level parallelism that a digital accelerator can achieve is limited compared

to analog accelerators. We can understand this point at two conceptual levels: one in terms of

digital vs. analog matrix-vector multiplications, and the other in terms of what the data-level

4

parallel operations are actually doing in the context of the overall algorithm.

Analog accelerators are able to realize much wider matrix-vector multiplication than digital

accelerators. For example, an analog accelerator design can use 1,024 transistors and memristors

to multiply a 1,024 element matrix against an input vector [79, 159]. While on the other hand

a digital accelerator may need three times as many transistors just to multiply two 8-bit binary

numbers [147]. As I will discuss in later in this introduction in Section 3.3, floating gate transistor

amplifiers and emerging devices such as memristors have been useful for building wide matrix-

vector multipliers. While those analog accelerator designs are not the focus of this thesis, those

analog accelerator designs have been successful at accelerating neural network classifiers.

The other aspect of comparing data-level parallelism in digital and analog accelerators concerns

what the parallel operations actually do, in the context of the overall algorithm. In the scientific

computing case studies that are the focus of this thesis, SIMD operations in digital architectures

take place in the innermost loop of numerical methods, which are multiple levels of iterations below

the iteration that actually advances the physical model of interest. In some analog accelerator

approaches for scientific computation, the parallel operations take place right at the level of the

entire physical model, simultaneously advancing multiple spatial cells of the physical model in time.

So in effect the parallel operations in an analog accelerator in those use cases span a deeper cross

section of the workload.

1.3 In-memory computation in digital and analog accelerators

Some digital accelerator designs focus on specializing the memory hierarchy for a workload, by

either providing specialized cache designs, by increasing the volume of memory available to the

accelerator, or by bringing computation into the memory itself. In all these designs intermediate

computational results for algorithms still have to be explicitly taken from or stored into memory,

whether that memory is as far as DRAM main memory or as local as pipeline registers.

In the analog accelerator alternative, intermediate computational results are not stored into

registers in the conventional sense altogether. Rather, as I will discuss in Section 2.1, intermediate

computational results in an analog accelerator are merely analog circuit transient signals, dispersed

throughout the analog accelerator circuit.

5

1.4 Approximate computing in digital and analog accelerators

Finally, an important trick in digital accelerators is to customize the representation of data to

best match the workload. For example, a digital accelerator can make stronger assumptions on the

precision needed for a given workload, and increase the amount of exploitable data-level parallelism

by decreasing the precision of data and operations. Analog accelerators offer a logical extension to

this approach by encoding data as analog variables, which I discuss in detail in Section 2.2.

Digital accelerators draw on the above four mechanisms—specialization, parallelization, in-

creasing memory bandwidth, and approximation—to deliver higher performance and efficiency for

specific workloads than general-purpose approaches. Nonetheless, the fundamental model of com-

putation remains the same in CPUs, GPUs, and even field-programmable gate array (FPGA) and

application-specific integrated circuit (ASIC) accelerators. That is, these digital architectures all

operate step-by-step on binary digital numbers.

The potential in analog accelerators and hybrid analog-digital is not just that they extend

ideas in digital accelerators; rather, their potential is in they offer different abstractions, which I

make clear next in these introductory chapters. With those different abstractions, hybrid analog-

digital computing may go beyond scaling, parallelism, and specialization in driving architecture

improvements.

6

Chapter 2

Hybrid Analog-Digital Co-Processing:

Definition & Motivation

As we approach the limits of silicon scaling, it behooves us to reexamine fundamental assumptions

of modern computing, even well-served ones, to see if they are hindering performance and efficiency.

I discuss in this thesis our research group’s experience in using and building analog accelerators that

break two such fundamental assumptions in modern computing: First, analog accelerators encode

numbers as analog variables, which take the full range of circuit voltage and current, in contrast to

digital binary variables, which is how data is encoded in all conventional digital computers. Second,

analog accelerators update their values continuously, in continuous time, in contrast to operating

step by step in discrete time as is done in all conventional digital computers.

Moving to a continuous time analog model of computation puts analog acceleration closer to

the way biological brains work. Even though digital computers have made orders magnitudes of

improvement in performance and energy efficiency in roughly the past half century, the biological

brain is still the epitome of an energy efficient computer. According to Sarpeshkar, the human

brain delivers a computational performance of 3.6× 1015 to 1.0× 1016 approximate floating point

operations per second, on a power budget of 12 to 15 Watts, for an energy efficiency of 3 × 1014

FLOPS/W [147]. On the other hand, a Intel Westmere CPU from around 2011 has an energy

efficiency of 5.88× 108 FLOPS/W [95]. The best commercial digital processors are at best around

1/1,000,000 as energy efficient in terms of FLOPS/W compared to the biological brain. Writing

7

in 1990, Mead predicted this six orders of magnitude difference between best digital designs and

biological brains [124]: according to his estimates, 100× of the shortfall in digital processors can be

covered by improving computation locality, by switching to designs that exploit data and thread

level parallelism such as SIMD and GPUs, and by switching to specialized accelerators implemented

in FPGAs and ASICs. The remaining 10, 000× shortfall, according to Mead, is due to costs in doing

operations with digital numbers instead of analog signals as in the brain. The energy efficiency

benefits of continuous time analog computation is highly problem-dependent: low estimates are

around 1, 000× [73] while high estimates are around 100, 000× [149].

Therefore, the motivation for investigating analog computation is to extract the benefit of

using analog variables and continuous time operation. Researchers have written extensively about

the energy efficiency of using analog variables for approximate computing. Comparatively little

has been said about the benefits of continuous time operation. Below, I discuss in Section 2.1

the benefits we observed of using a continuous-time analog accelerator in the context of solving

scientific computing problems. Then, in Section 2.2 I summarize prior work discussing the energy

efficiency of analog encodings and analog operators.

Despite the potential benefits of analog continuous time computation, computer architecture

researchers have held mixed opinions about analog architectures, due to several reasons:

1. Continuous time computation supports only one type of operation—solving ordinary differ-

ential equations (ODEs)—and therefore appear to have limited applications.

2. Analog variables are more efficient than digital variables only for low bit precision, and

therefore analog solutions are inaccurate and imprecise.

3. Analog continuous time accelerators have high hardware costs in storing analog variables and

analog / digital conversion, and therefore support only limited problem sizes.

These are significant criticisms against analog acceleration, and we have endeavored to find prob-

lems, solutions methods, and analog architecture designs that mitigate these downsides. Sec-

tions 3.1, 3.2, and 3.3 discuss insights in problem types, algorithms, architecture, and circuit

devices that address the above downsides of analog acceleration.

8

2.1 Continuous-time asynchronous signaling

The performance and efficiency benefit of using an analog accelerator relative to a conventional

digital computer comes from two distinct levels: explicit data-graph execution and continuous-time

operation. The first advantage is common between analog and digital accelerators (as I discussed

in Section 1.1), while the second advantage is unique to analog accelerators.

Accelerating long iterations with explicit data-graph execution

In both analog and digital accelerators, explicit data-graph execution (EDGE) reduces the overhead

costs of general-purpose computation by setting up hardware circuits for predefined tasks prior to

computation. An EDGE architecture chains hardware functional units end-to-end so when data

arrives, signals representing intermediate results flow from one unit to the next, with no overheads

in fetching and decoding instructions, and furthermore no fetching and writing back data between

iterations.

In digital architectures, application-specific EDGE architectures provide roughly 100× to 1, 000×

improvement relative to general purpose CPUs in speed or energy consumption, depending on which

is more important [70, 140, 171]. In analog accelerators however the advantage of EDGE architec-

tures is less clear-cut, because an analog accelerator cannot compete directly with a conventional

digital computer in terms of problem size and solution accuracy and precision.

Implementing continuous algorithms with continuous-time operation

While analog and digital accelerators both use explicit data-graph execution to deliver higher per-

formance and efficiency relative to general purpose CPUs, analog accelerators do so in continuous

time giving it a distinct advantage relative to conventional hardware. The continuous-time opera-

tion of analog accelerators eliminates overheads caused by step-by-step operation in conventional

digital computers. Furthermore, we can realize in analog accelerators a class of continuous algo-

rithms useful in scientific computation which have no equivalent in discrete-time digital computers.

Step-by-step operation is an important abstraction that has allowed us to design scalable digital

hardware. In a conventional digital computer, variables are transferred between digital registers

synchronously, coordinated by a clock signal. Digital data is only valid on clock edges in digital

9

hardware, thus avoiding timing concerns about signal phase shift and propagation time, making it

easier to coordinate movement of data in digital hardware. These assumptions are even more impor-

tant because they hide the internal timing behavior of hardware submodules, and enable techniques

such as Moore machines and latency insensitive design [26] for easily composing hardware.

The clock signal now has itself become a limitation in terms of efficiency and performance for

digital designs. In terms of efficiency, the clock signal is often the most power-hungry signal in chip

designs. In terms of performance, the clock frequency ultimately limits how fast algorithms return

solutions.

Because computers have for a long time operated step-by-step in a discrete-time synchronous

model of computation, researchers have had to phrase algorithms also as step-by-step operations,

where variables change by definite increments at discrete time points. If we can break free of that

fundamental abstraction then we can consider continuous algorithms, where variables change by

infinitesimal amounts continuously.

Doing continuous algorithms phrased as ODEs in continuous-time analog accelerators has ad-

vantages, particularly in areas of scientific computation I discuss in this thesis:

1. In Chapter 8 we follow in the footsteps of prior work, and solve stochastic ordinary differen-

tial equations using a continuous time analog accelerator. The analog accelerator naturally

solves ODEs, giving solutions 3× faster than an equivalent digital solver giving approximate

solutions. Furthermore the analog accelerator uses continuous time analog noise, instead of

having to generate and process pseudorandom numbers as in a digital computer, resulting in

the analog solver being overall 32× faster than the purely digital approach, for equal accuracy.

2. In Chapter 10 we solve linear algebra problems in an analog accelerator by doing steepest

gradient descent, a version of an iterative numerical linear algebra method turned into an

ODE. In a typical iterative numerical linear algebra method such as conjugate gradients, half

of the multiplications in each step are just for finding the right step size. On the other hand

an analog accelerator does not need to find step sizes as the solution evolves continuously

toward the solution point.

3. In Chapter 11 we solve nonlinear systems of equations in an analog accelerator by carrying

out the continuous Newton method, also an iterative numerical method turned into an ODE.

10

The classical digital algorithm for solving nonlinear systems of equations has a difficult time

finding correct step sizes, to the extent most of the initial algorithm steps may not move

guesses toward the correct solution at all. An analog accelerator uses the more reliable

continuous-time versions of the algorithm to come up with good approximate guesses, which

the digital computer then refines. For larger, more nonlinear problems, the hybrid analog-

digital solver has a performance improvement of 5.7× and energy savings of 11.6×, relative

to a GPU without the help of an analog accelerator.

The continuous-time model of computation allows us to expand the definition of algorithms

beyond step-by-step sequences that give a solution, to include dynamical systems which evolve from

some initial state to a final state that represent a solution. In terms of hardware microarchitecture

and architectures, the continuous time model eliminates clocked operation and the von Neumann

architecture organization of hardware.

2.2 Continuous analog value encoding

The most commonly cited advantage of continuous time analog computation is the energy efficiency

of using analog variables, albeit for low-precision solutions only. The reason using analog encodings

is efficient is because an analog encoding packs more data on a single wire, and because many analog

operations are cheaper compared to digital. While that case for analog is intuitive and appealing,

a quantitative comparison between analog and digital encodings show analog is more efficient

than digital only for low-precision data. Furthermore no practical error-correction is possible on

continuous time analog variables, making purely analog encodings less appealing for large scale

systems.

Dense analog data encoding and simple analog operations

Analog encodings are relatively more efficient than digital encodings in terms of how to represent

data, how to represent changes in data, and how to do simple operations on data.

In terms of representing data, a single wire in an analog accelerator can represent the full range

of values at any moment, unlike a digital representation that would need a parallel multi-wire bus.

In terms of representing a change in data, sweeping an analog value from one extreme value to the

11

other extreme value simply means changing the voltage or current that encodes the value; on the

other hand, sweeping a digitally represented 8-bit unsigned integer from 0 to 255 needs 502 binary

inversions, while a more economical Gray encoding still needs 255 inversions.

Furthermore, in terms of doing simple operations on analog and digital data, many mathemat-

ical operations for analog data are more efficient than their digital counterparts. For example,

a single wire can add two analog numbers together using Kirchhoff’s current law, but about 240

transistors are needed to add two 8-bit digital integers [147]. The contrast is even more stark for

multiplication: 4 to 8 transistors can multiply two analog numbers together in a Gilbert cell, but

as many 3000 transistors are needed to multiply two 8-bit digital integers (for a maximum speed

logic design) [147].

Digital precision doubles by increasing bits while analog precisions doubles by

doubling signal-to-noise ratio

The actual relative costs of analog and digital data representation and operations depends on the

data precision.

While an analog multiplier may seem cheaper and more efficient than an 8-bit digital multi-

plier in terms of transistor count, comparing the area and power consumption of the two is not

so straightforward. The few transistors in the analog multiplier have to be large enough in size,

such that when their sizes vary due to imperfections during manufacturing, the analog multipli-

cation is still correct to 8-bit precision. The transistors in the digital multiplier in contrast can

be all minimally sized; even when their sizes vary due to manufacturing imperfection, we can still

unambiguously interpret the multiplier output bits as 0 or 1.

The case for analog becomes much less favorable for more precise computation. Suppose we now

want to compute on 16-bit digital numbers, in effort to either increase dynamic range or precision.

In digital, 16-bit addition becomes 2× as expensive as 8-bit addition [150], while multiplication

is 4× as expensive. Each additional digital bit doubles the equivalent analog signal-to-noise ratio

(SNR): the way to understand this is adding a single bit of digital range entails doubling the analog

signal, and adding a single bit of digital precision entails halving the analog noise [148]. Doubling

the SNR in an optimal, well-designed analog circuit entails doubling area and doubling power

12

(to control thermal noise) [147]. In all, 16-bit analog addition alone becomes 256× as expensive

compared to 8-bit in terms of area and power [150]!

The crossover point in bit precision after which analog is less efficient compared to digital

representation is 8-bit, according to Sarpeshkar [147], or 12-bit according to Hasler provided efficient

means to calibrate away process variations [73].

Digital has error correction but continuous-time analog does not

Digital computers have ways to detect and correct errors in binary numbers when noise causes

error in the data. Digital error correction works by transmitting more bits than the actual data

conveyed. The receiver can detect errors and infer the most likely intended correct data. This

works because the correct data are attractive states that pull small errors back to the correct data.

In contrast, in analog circuits any variation in analog variables becomes an error in the data, and

unfortunately there is no easy way to do error detection or correction on analog variables.

One approach to get error correction in analog signals is to interleave analog and digital encoding

of data [147, 150]. In those systems, analog data is frequently quantized by ADCs and regenerated

using DACs. This ensures analog data is frequently pulled back to a finite number of valid, digital

data. This controls for imprecision but is costly.

Another approach offers analog error correction but only for discrete-time data [112, 80]. In

those approaches, the set of valid analog data are made to be a small subset of all the analog

data that may be transmitted over a channel. Some highly nonlinear transformations make small

changes in the intended data become big changes in the transmitted data, so the receiver can

detect errors and find the intended data. Encoding and decoding takes time, so this only works for

discrete-time, sampled analog data.

We are interested in computing on analog data, in continuous time, so neither analog error

correction approaches I discussed above can cheaply eliminate noise.

Because the analog style of computation breaks the two foundational assumptions in digital

computing, the rest of the design of the computer changes as well. I summarize in Table 2.1 the

major ways in which analog and digital computers are different. Table 2.1 serves as a definition of

the analog style of computing, relative to the dominant, conventional, digital style. From the kinds

13

ANALOG DIGITAL
Numerical
method
primitives

Ordinary differential equations: Ana-
log computer techniques for physics simu-
lations, developed in the 1950s and 1960s,
rephrase the original problem as systems
of ODEs. ODEs can readily be mapped
on analog computing hardware.

Linear algebra: Modern digital com-
puter techniques for physics simulations,
on the other hand, rephrase the prob-
lem as linear algebra [36, 169]. Linear
algebra algorithms are optimized to run
well on modern hardware, and serve as
a high-performance and efficient platform
for complex simulations.

Algorithms Iterative, approximate: Analog solvers
are similar to iterative numerical methods
for linear algebra, such as conjugate gradi-
ents and successive over-relaxation. These
numerical methods take an initial guess
at the correct solution vector, and let it
evolve into a better approximation of the
correct solution. The intermediate results
of iterative numerical methods are approx-
imations of the solution vector.

Direct, exact: The step-by-step oper-
ation of digital computers allows use of
direct numerical linear algebra methods,
such as Cholesky decomposition and QR
decomposition. These numerical methods
factor the linear algebra equation, and ob-
tain solutions for components of the solu-
tion vector one component at a time. The
intermediate results of direct methods are
incomplete: some components of the so-
lution vector are unsolved until the algo-
rithm ends.

Programming
model

Declarative programming: program-
ming is done by defining connectivity be-
tween hardware components and by set-
ting constraints on variables. This pro-
gramming model has the advantages of
being a better analogy for modeling dy-
namical systems. E.g., SystemVerilog,
Simulink.

Imperative programming: program-
ming is done by step-by-step instruc-
tions for algorithms. This programming
model matches mainstream digital hard-
ware, where operations happen step-by-
step on data stored in registers, cache, and
memory. E.g., C++.

Interconnect Circuit switched: connectivity between
hardware is set before computation in ana-
log hardware, and remain fixed during the
continuous-time evolution of any one vari-
able. Circuit switched interconnects elimi-
nate the overhead of decoding instructions
and setting datapaths during execution.

Packet switched: Connectivity between
hardware can vary when a program runs.
The step-by-step operation allows pieces of
data to be routed on a changing datap-
ath. Packet switched interconnects incur
an overhead in dynamically routing data,
but allows time-multiplexing on wires to
carry more variables.

Signaling Continuous time, asynchronous: the
signals evolve in timesteps that are in-
finitesimally small.

Discrete time, synchronous: the sig-
nals evolve in finite timesteps, which need
synchronization with a clock to have cor-
rect semantics.

Data repre-
sentation

Continuous valued: analog voltage, cur-
rent, or spike probability.

Discrete valued: binary integers for in-
tegers, IEEE floating point for real num-
bers.

Physical
devices

Transistors as amplifiers: computation
takes place, even without a full swing in
the signal between positive and negative
supply voltage values. Many physical pro-
cesses outside of MOS transistors can be
used.

Transistors as switches: is becoming
less favorable, and binary operations cost
a fixed size charge per inversion.

Table 2.1: Comparison of analog and digital computing stacks.

14

of problems the two styles of computing can do, down to how the hardware encodes and moves

data, analog and digital computers are profoundly different.

15

Chapter 3

Hybrid Analog-Digital Co-Processing:

Challenges & Mitigations

Even though analog value representation is tangibly more efficient than digital for low-precision

computation, giving up the basic abstraction of using binary numbers limits analog acceleration

to give only low accuracy solutions. Likewise, even though continuous-time operation potentially

offers high performance due to new types of continuous algorithms, the fact that analog accelerators

are an EDGE architecture means hardware costs grow in conjunction with problem sizes. Moreover,

there is the question whether analog acceleration is useful for any modern workloads. The next

three sections discuss how my research work and related work in analog accelerators address the

above limitations in the analog model of computation.

3.1 Expanding workload breadth and depth: analog problems

and algorithms in Berkeley Dwarfs

Because analog accelerators operate in continuous time on analog variables, we model their behavior

as differential equations. That was useful when early computer researchers set out to model physical

phenomena using computers, as they could map mathematical descriptions for the natural world

as differential equations in early analog computers. We revisit this style of mapping problems

to analog accelerator hardware in Part III. Modern algorithms and computers however tackle a

16

much broader variety of problems, and only a fraction of those workloads have anything to do with

differential equations.

At first glance analog accelerators would seem useless for modern problems phrased in the

language of discrete variables and operations. For example, a vast majority of modern problems

ultimately are linear algebra problems. The most familiar way to solve linear algebra problems

for most students is Gaussian elimination, which belongs to an important class of direct numerical

linear algebra algorithms that solve the linear algebra problems row-by-row, element-by-element.

An analog accelerator has no hope in solving linear algebra problems in such a style as the operations

happen in discrete steps.

The breakthrough is analog accelerators can tackle problems, such as linear algebra, using

continuous iterative numerical algorithms. In iterative numerical linear algebra algorithms, we

start at an initial guess for the whole solution vector, and incrementally take better guesses for the

whole solution, until each step changes sufficiently little indicating we’ve found the solution [161,

169, 96, 134]. In general iterative algorithms are becoming more important than direct ones because

researchers are interested in getting approximate solutions by taking fewer steps [48]. Analog

acceleration can step in and do iterative numerical algorithms in continuous time as ODEs, an idea

we explore in Part IV.

My own research work, in addition to recent work by other researchers, has significantly ex-

panded the breadth and depth of workloads that analog accelerators can handle. Following the

outline laid out in prior work [158] we use the Berkeley Dwarfs [6] as a taxonomy of problems and

algorithms analog accelerators can tackle. While the Dwarfs taxonomy is by now over a decade old,

it remains a useful map for problems and algorithms. I further categorize the Berkeley Dwarfs as

continuous math or discrete math, depending on whether the algorithms operate on real numbers.

Analog accelerator applications in continuous mathematics

Problems and algorithms in this category operate on real numbers, which naturally match the

analog value encoding in analog accelerators. We can map these problems to analog accelerators if

we can map the relationship between variables into connectivity inside analog hardware.

17

Sparse matrix

Sparse matrix linear algebra problems often come from physics simulations phrased as partial

differential equations (PDEs). The sparsity of the matrix reflects the fact that state variables in

any given space depend only on state variables in nearby space.

I discuss solving several types of sparse matrix problems in this thesis, including ordinary

differential equations in Chapter 8; I also discuss solving parabolic and elliptic PDEs, by solving

linear algebra problems in Chapter 10, and by solving nonlinear systems of equations in Chapter 11.

Most of the prior work in analog computing has been in solving sparse matrix problems. For

example, prior work by Cowan et al. in solving some types of partial differential equations belong

to this class of applications [40, 41]. In other work researchers have built analog accelerators where

the PDE spatial domain is continuous, in addition to having continuous time and continuous value

representation [128, 129, 127].

Dense matrix

Dense matrix linear algebra problems often come from optimization problems. In optimization

problems variables can be arbitrarily interrelated, unlike sparse matrix PDE problems. Dense

matrix problems also are kernels for physics problems converted in some ways that lead to all-to-all

variable connectivity, such as in N-body problems (where variables interact over long range), or as

a result of spectral domain methods (which convert large sparse problems to small dense ones).

In related work other researchers have explored solving in analog accelerators optimization

problems including linear programming [58, 23] and quadratic programming [35, 172].

MapReduce & Monte Carlo

Monte Carlo problems use random variables to model properties not fully described by deterministic

models. The computation result comes from solving a large ensemble of solutions, each with a

different sample of a random distribution.

I discuss solving stochastic differential equations (SDEs) in Chapter 8, exploring how to generate

analog noise, and practical details of using analog noise as a random input for SDEs. In related

18

work other researchers have used other physical processes for generating and shaping random

distributions for Markov problems [176, 177]

Structured grid

Structured grid problems again come from physics simulations phrased as PDEs. Structured grid

solvers split the space and time variables in PDEs into orderly grids and intervals. A notable

example is the multigrid method for solving elliptic PDEs, which split PDEs into a hierarchy of

coarse and fine grids. In the multigrid method the PDE is solved approximately at every level of

discretization resolution, and the coarse solutions serve as initial guesses for fine solutions.

I explore in Chapter 10 using analog accelerators for structured grid problems, by approximately

solving linear algebra problems to aid a multigrid solver.

Unstructured grid

Unstructured grid problems also come from physics simulations phrased as PDEs. But unlike

structured grid solvers, unstructured grid solvers arbitrarily change the size and shape of space

cells to suit the problem geometry. Examples include finite volume and finite element discretiza-

tion schemes. Because the variables are much less ordered, unstructured grid solvers use memory

pointers for bookkeeping where state variables are stored in memory. In these methods resolv-

ing memory locations consumes more computation time, making analog accelerator support for

unstructured grids difficult.

Spectral methods

Spectral methods are an important transformation in physics simulations. They convert sparsely

interrelated variables into a smaller but equivalent problem with all-to-all connectivity. In related

work other researchers have devised analog accelerators for spectral methods such as discrete Fourier

transforms [78].

N-body

N-body problems are physics problems where variables interrelate over long distances, such as

force field simulations for astronomy and molecular dynamics [64, 10]. These problems have many

19

discrete operations to deal with spatial geometry, and have dense matrices which are costly to solve

in analog.

Analog accelerator applications in mixed continuous-discrete mathematics

The next category of problems and algorithms primarily operate on discrete math structures such

as graphs and trees, though sometimes these algorithms have inner loops operating on real values.

Analog computing may help with the inner loops.

Dynamic programming

Dynamic programming is broadly a memoization technique that breaks down problems into optimal

subproblems. The algorithms need random access to memory to jump to whichever subproblem is

currently the most optimal, so in general these algorithms are difficult to map to analog accelerators.

In related work other researchers have built continuous-time asynchronous circuits for solving

a prototypical dynamic programming problem, sequence alignment and matching [116, 117, 118,

115, 119].

Graphical methods

In related work other researchers have proposed accelerators for Bayesian networks [106, 107]. It

remains an open research question whether analog accelerators can tackle more advanced dynamic

programming / graphical method problems, such as the Viterbi algorithm, hidden Markov models,

and Hamilton-Jacobi-Bellman equations for optimal control.

Backtrack and branch-and-bound

Backtrack and branch-and-bound problems include mixed continuous-discrete mathematics prob-

lems such as mixed-integer linear programming problems and linear complementarity problems.

They can also be purely discrete, as in the case of Boolean satisfiability problems. Notably, in

related work other researchers have explored solving Boolean satisfiability—an NP-complete prob-

lem whose all known solution algorithms have worst case exponential complexity—using Boltzmann

machines [15, 17, 16], stochastic [37] or continuous-time analog [53, 130] models of computation.

20

Analog accelerator applications in discrete mathematics

The final category of problems and algorithms operate on discrete math structures. They can be

state-full, such as graph traversal and finite state machines, or stateless, such as combinational

logic. In general these have no loops operating on real values, so an analog solution may be elusive.

Graph traversal

In related work other researchers have shown analog accelerators can sort a set of real numbers,

albeit at at higher complexity cost compared to digital techniques. Specifically an analog accelerator

sorts numbers as a side effect of doing the QR algorithm, an eigenanalysis algorithm [23, 1, 14,

142, 74].

3.2 Refining solution accuracy and precision: analog

approximations as digital seeds

As established in Section 2.2, analog accelerators are only comparatively efficient for low bit-

precision solutions. Indeed, such a constraint rules out broad classes of analog applications I just

described in Section 3.1: in many problems the proposed analog algorithms only “work” under

specific assumptions about the needed analog solution accuracy. Any tightening of specifications

for accuracy quickly break the analog approach as the analog method has no way to give higher

accuracy solutions.

With such accuracy constraints in mind, analog acceleration must only be useful in two types of

architecture designs: the first is an analog-only approach to using analog accelerators, and the other

is to use a hybrid analog-digital architecture where digital refines approximate analog solutions.

Conventional wisdom: analog architectures for real-world inputs and outputs

We can imagine using a purely analog architecture in some cyber-physical systems settings, where

accuracy requirements are low throughout the system. Such devices take real-world low-precision

sensor inputs and give low-precision actuator outputs that have effect on their physical surround-

ings. In such settings the high precision granted by digital computers is unnecessary, as the data

21

that the algorithms operate on are imprecise and approximate. Moreover such deeply embedded

devices have extremely constrained power and energy budgets. For these types of data input and

workloads, energy-efficient analog computing is useful for giving approximate results, within tight

power and energy constraints.

My viewpoint: digital refinement of approximate analog solutions

In this thesis I advocate for using analog acceleration in problems where approximations are ex-

tremely useful. Such an approach has also been advocated by Sarpeshkar, who writes that analog

acceleration must be used in conjunction with a conventional digital system in order control for

noise and get high precision [148, 147]. Cowan et al. has also demonstrated using analog approxi-

mate solutions for an ODE help speed up a digital ODE solver [40, 41].

In this thesis we demonstrate a more general framework for using analog approximations in

precise digital solvers. Specifically Part IV explores using analog acceleration as an approximate

solver for algebraic equations. In Chapter 10 I solve in an analog accelerator linear algebra problems,

which are useful in PDE solvers (such as the multigrid method) that need only approximate linear

algebra solutions. In Chapter 11 I solve in an analog accelerator nonlinear systems of equations,

which are useful in conventional digital solvers that benefit from a good albeit imprecise initial

solution seed.

3.3 Growing problem sizes: digital problem decomposition and

analog emerging devices

As established in Section 2.1, analog accelerators directly map problem variables into circuit signals

and hardware operators, and therefore can only handle portions of the overall problem at once.

Again, area and problem size constraints rule out broad classes of analog applications. Many

proposed analog problems and workloads make assumptions about the maximum problem size,

and the analog method has no way to scale to larger problems.

Two approaches offer a path to scalable analog accelerator applications. One is to use emerging

dense analog circuit devices and limit ourselves to problems that can use those devices. The other

22

approach is to use a hybrid analog-digital architecture where digital breaks down large problems

for acceleration in analog.

Conventional wisdom: analog devices for parallel matrix-vector multiplication

A prominent recent direction is in using emerging analog devices as wide single-instruction multiple-

data (SIMD) operators, for parallel matrix-vector multiplication. While such an approach limits

the applications to workloads where matrix-vector multiplication is the dominant kernel, such

workloads include many types of Berkeley Dwarfs including dense matrix, structured grid, spectral

methods, and N-body methods. Furthermore such approaches surpass existing SIMD CPU and

GPU operations [178, 18, 105] because new analog circuit devices give highly parallel multiply

accumulate operations.

The competing analog devices for matrix-vector multiplication include floating gate analog

amplifiers and memristors. Both devices provide low-precision approximate coefficient-variable

multiplication, and in both cases the analog accelerator calibrates coefficients just prior to compu-

tation.

Hasler estimates the computational energy efficiency of floating gate analog amplifier arrays at

1× 1010 FLOPS/W. The case for floating gate analog amplifier arrays is that they can be realized

in existing CMOS process technology; they use transistors as amplifiers and not as switches. The

floating gates act as miniature capacitors that hold charge indefinitely and set the gain for the

amplifiers. The floating gates give area-efficient calibration, raising the effective output precision

of analog accelerators up to 12-bits [155, 63, 72, 73].

Shafiee demonstrated a memristor architecture for matrix-vector multiplication with a compu-

tational energy efficiency of 3.8 × 1011 FLOPS/W [79, 159]. Unlike transistors, memristors are

fabricated alongside metal layers and are less mature.

These analog circuit devices are not mutually exclusive; both are viable approaches in the urgent

search for new devices, for addressing the end of Dennard’s scaling [46] and Moore’s scaling in its

present sense [137, 44, 54, 165, 38].

23

My viewpoint: digital divide-and-conquer for analog subproblems

In this thesis I advocate for using analog acceleration in problems where a conventional digital

computer and existing algorithms can divide-and-conquer large problems. Traditionally divide-

and-conquer algorithms are useful in digital computers to increase task-level and thread-level par-

allelism, but here they are useful for getting subproblems that fit in an analog accelerator. Specifi-

cally Chapter 8 explores how Monte-Carlo methods map problems into an ensemble of independent

experiments, each of which we can do separately in analog accelerators. Chapter 10 explores using

a multigrid method to divide-and-conquer PDEs into subproblems that fit in analog accelerators.

Chapter 11 likewise explores using red-black Gauss-Seidel to divide-and-conquer nonlinear PDEs.

In general this approach works where domain decomposition methods break PDEs into multiple

domains, so subproblems on each can be solved independently [22, 100, 167, 61].

24

Chapter 4

History of and Related Work in

Analog Co-Processing

4.1 History of analog co-processing

This section gives pointers to the immense amount of prior work in analog electronic computing.

Analog electronic computers were used in the 1950s and 1960s for scientific simulations, in-

cluding problems in optimization, ODEs, and PDEs [91, 92, 85, 57, 58, 180, 25]. Starting in 1962

attention shifted to hybrid analog-digital computers, which combined analog and digital comput-

ers to provide capacious memory and ability to do discrete-time algorithms [103, 93, 11, 173, 30,

94, 102, 144, 120, 49]. In the years since, digital computers, which provided the convenience and

noise margin of binary variable encoding, capacious memory, and versatile numerical algorithms,

eliminated analog computing from general use.

The development of analog and hybrid computers ran in parallel with the development of digital

differential analyzers, a digital version of analog computers. DDAs were built and connected like

analog computers, but they replaced analog integrators with digital counters. These digital counters

were wired to have some simple behavior to realize differential equation solving methods. While

DDAs shared with analog computers the types of problems they solve, the algorithms they run, and

programming methods, DDAs differed from analog computers in that DDA variables were encoded

in binary and evolved in discrete time [60, 170]. These designs faced difficulties in number dynamic

25

range and scaling, which led to the development of extended resolution and floating-point variants

of DDAs [123, 52, 136]. These area-intensive function units were used in a time-multiplexed fashion,

previewing the development of modern floating-point pipelines [71].

4.2 Recent related work in analog co-processing

Computing using analog signals is resurgent in architecture research, due to challenges in IC scaling

that limit the power dissipated by digital circuits [54, 165]. The vast majority of recent computer

architecture research in analog computing and analog accelerators has been in neuromorphic com-

puting. Nonetheless, there has been some recent related work in analog accelerators for scientific

computation, which is the focus of this thesis.

The differences among the work done by various research groups have been in the design choices

for the proposed analog accelerators. These design choices are:

1. How values are stored (how to build the soma)

2. How values are communicated (how to build the axon)

3. How multiplication is done (how to build the dendrite)

4. Topology of neuron connections

5. The target application

6. How the envisioned accelerator is integrated with a conventional host computer

Here I review recent related work along these dimensions.

Choice of value storage and communication

Researchers have been exploring encoding data as analog current and voltage for computation. The

analog value representation is useful in neural network accelerators [98, 147, 101, 154, 163, 159, 110],

and also in analog computers intended for differential equations [40, 41]. A notable example of

using analog values to represent variables involves using electric fields to represent a whole vector

of variables at once [128, 129, 127]. While using analog variables is the most novel approach and

offers the most promise, it is also true that designing and building fully analog electronic circuits

is challenging.

26

Because analog circuit design is difficult with existing design tools, various projects have ex-

plored ways to mimic analog signal encodings using easier-to-design conventional digital hardware.

One alternative to a fully analog value representation is to use digital pulses or signal spikes to

imitate analog values. Such a signal encoding is similar to how biological neurons communicate,

and is used in neuromoprhic computing research [157, 125]. Another approach to mimic analog

value encoding is to use pulse-width modulation to imitate analog current while using digital hard-

ware [162, 121]. Yet another approach is to use continuous-time asynchronous digital hardware for

computation [153].

Choice of multiplier implementation

A key difference among the various related work in analog computing is how the proposed hardware

realizes analog multiplication. The main difference is in whether the hardware can multiply two

time-dependent variables in the course of computation; or, in contrast, if the hardware can only

multiply variables with a constant coefficient. The former, variable-variable multiplication, is a

useful operation but has high hardware area costs. The latter, constant coefficient multiplication,

is area efficient but restricts the types of problems the hardware can solve.

Variable-variable multiplication was a requirement for prior work in analog and hybrid

computing from the mid-20th century. The requirement is due to the need for multiplying two

time-dependent variables when solving nonlinear differential equations. Modern integrated circuits

can multiply two variables using Gilbert cells, which allow us to tackle a broader class of problems,

but are unfortunately more costly compared to constant coefficient multipliers I discuss in the next

paragraph. The recent prototypes at Columbia University all use Gilbert cells for multiplication [40,

41, 66, 67].

Constant coefficient multiplication is all that is needed for many neural network problems,

where the dominant math operation is matrix-vector multiplication. In that setting, the neural

network synapse weights are already determined from training the network. Those synapse weights

are matrix coefficients for the analog hardware multipliers. The hardware would configure and

calibrate the coefficients before running the neural network, then multiply the matrix with incoming

vectors during computation.

Recent work explores two ways to realize constant coefficient multiplication: using floating

27

gate transistors [155, 63], and using programmable resistors [32] or memristors [79, 159]. The key

difference between these two coefficient multiplication devices is in how chip fabricators make the

devices. Floating gate transistors are made alongside other transistors in front-end-of-line processes,

while memristors are made alongside metal layers in back-end-of-line processes [181]. These two

approaches are area-efficient and have different tradeoffs in terms of the accuracy of the coefficients

and how quickly they can be reprogrammed.

Choice of network topology and target applications

In neuromorphic computing, neural networks serve as pattern recognizers and classifiers for prob-

lem areas such as image processing and computer vision [98, 56, 55, 50, 110], natural language

processing [155, 63, 55], and machine learning [101, 29, 31, 111, 159]. In all these settings, the dom-

inant mathematical operation is matrix-vector multiplication. The applications of software and

hardware neural networks are not limited to computer vision; neural networks have found use as

general-purpose function approximations for floating-point workloads [28, 163]. A comprehensive

survey of neuromorphic computing is compiled in [156].

I draw distinction between how this thesis envisions analog acceleration and analog neuromor-

phic computing. Most important, I do not use training to get a network topology and weights that

solve a given problem. No prior knowledge of the solution or training set of solutions is required.

The analog acceleration technique presented in this thesis is a procedural approach to solving prob-

lems: there is a predefined way to convert a scientific computation problem under study into an

analog accelerator configuration.

The analog computation presented in this work thrives on the possibility of connecting outputs

of integrators to their inputs. This is in contrast to most neuromorphic computing approaches,

which use cellular neural networks, autoencoders, and multilayer perceptrons, which are purely

feedforward networks. In thesis and in the Columbia University prototype analog accelerator

analog components are connected via a crossbar, allowing any topology, including loops, between

components. In neural network terminology such topologies are recurrent neural networks [145]

and Hopfield networks, and represent the most powerful class of networks.

28

Choice of granularity of accelerator design

Analog neural network accelerators support digital host computers at various granularities. Fine-

grained accelerators propose to integrate analog neural network accelerators at the pipeline level.

At this fine-grained level of integration, the analog accelerator acts as analog arithmetic operators.

Examples of tightly integrated analog accelerators include Neuflow [56] and NPUs [163]. Coarser

grained accelerators such as the dot-product engine [79] perform arithmetic operations (matrix-

vector multiplication) on whole vectors.

Large scale neural network accelerators such as IBM’s TrueNorth [55] and DaDianNao [31]

accelerate the computation for whole neural networks, only interfacing with the digital host through

main memory. Finally, analog neural network designs such as RedEye [110] work between analog

sensors and the digital host computer. In that setting, the RedEye accelerator acts as a image

feature detector and serves to reduce the amount of data going from sensors to the digital host.

29

Part II

Columbia University Prototype

Analog Accelerator Architecture

30

I worked on two versions of prototype analog accelerator chips as part of a team at Columbia

University. Thorough documentation of how to use the prototypes is in the latest version of

the Columbia Hybrid Computer User’s Guide [65]. See also the design documentation for the

programming model, instruction set architecture, and microarchitecture organization [84]. Circuit

design details of the prototypes are in recent papers by Ning Guo et al. [66, 67]. The prototypes

are successors to an earlier design built by Glenn Cowan et al. [40, 41].

This part discusses how a conventional digital host computer interfaces with and uses the analog

accelerator chips. I will discuss the programming, architecture interface, and microarchitectural

organization of the prototype analog accelerator chips. This part then concludes with measurements

of the analog operational characteristics of the analog chip components.

The architectural design and the analog operational characteristics will allow us to map differen-

tial equations onto the chip. The remaining parts of this thesis explores how the analog accelerator

chip solves differential equations and algebraic equations.

31

Chapter 5

Analog Accelerator Programming &

Architecture

Programming the analog accelerator involves work at several levels: 1. The user of the analog

accelerator system has to decompose the problem down to a numerical primitive, such as a differ-

ential or an algebraic equation. 2. The conventional digital host computer then has to configure

the analog accelerator to solve the numerical primitive. 3. The system has to handle operational

concerns such as calibrating the analog units, starting and stopping the solution, gathering and

returning data, and reporting if any errors happened. In this chapter I discuss these concerns while

discussing the programming model and architecture design of the analog accelerator.

5.1 Analog accelerator numerical primitives programming

As I discussed in Section 7.2, scientists and engineers state many problems in simulating physical

systems, optimization, and control theory as partial differential equations. Computational numer-

ical methods solve these differential equations in various ways. Eventually the problems become

one of two types: solving systems of ordinary differential equations, or solving systems of algebraic

equations. Now, whether a particular PDE solving algorithm is ultimately solving the PDE by one

way or the other depends on the granularity at which we’re inspecting the algorithm. I will make

clear in Part III and Part IV that we can solve ODEs by solving algebraic equations, and even vice

versa. For now, I talk about how we program the analog accelerator, depending on whether we are

32

∫ ∫ Sine

x
..

xx
.

2

-.5

Figure 5.1: Analog accelerator block diagram for the ODE d2x
dt2

= −0.5dx
dt +2 sin(x) (voltage mode).

solving differential equations or algebraic equations.

Programming analog accelerators for ordinary differential equations

In work I did with graduate students Matthew Maycock and Kenneth Harvey, we developed a

compiler that converts ODE syntax to analog accelerator API code for solving that ODE. The

process involves a front-end lexer and parser that converts ODE syntax into a graph that represents

connections between multipliers and integrators. For example an ODE such as

d2x

dt2
= −0.5dx

dt
+ 2 sin(x)

becomes the graph in Figure 5.1. The idealized graph at this stage, consisting of multipliers and

integrators, has variables that evolve according to the given ODE. Using this graph we would like

to generate analog accelerator API code for setting up and running the analog accelerator as an

ODE solver.

To do so the compiler needs to take into account the hardware constraints of the analog ac-

celerator. These constraints include the number of hardware resources such as integrators and

multipliers, gain limits on multipliers, and dynamic range limits on the integrators. The graph also

has to handle whether the analog accelerator uses voltage signals or current signals: if the ana-

log circuit uses voltage signals (as in Figure 5.1), the circuit can easily copy values onto different

branches, but needs an adder circuit to sum values. If the analog circuit uses current signals (as in

Figure 5.2), the circuit needs a fanout block to copy values onto different branches, but can easily

33

∫ DACADC∫ Sine

x
..

xx
.

2

-.5

Figure 5.2: Analog accelerator block diagram for the ODE d2x
dt2

= −0.5dx
dt +2 sin(x) (current mode).

∫

∫

DAC ADC

A
n
a
lo
g

In
p
u
t

Analog

Output

LUT

Figure 5.3: Programming the analog accelerator crossbar network and subcomponents to realize
an ODE solver.

join wires to sum values.

Once the compiler has modified the graph of multipliers and integrators into a form that the

analog accelerator can realize, the compiler generates analog accelerator API code to create the

connections between blocks and to program parameters into the blocks (Figure 5.3). Additional

connections feed analog values into analog-to-digital converters for measurement.

Challenges: While we had success with this compiler for converting simple ODEs into an

analog accelerator, we faced numerous challenges that prevented this compiler from being useful:

34

1. Many different graphs can realize the same ODE. For example, we can symbolically refactor

the ODE by hand, which in turn means multiplying by coefficients earlier or later in the

circuit. The compiler should have an ability to pick among several graphs the best one for

an ODE.

2. While different graphs ideally realize the same ODE, in analog hardware they may not result

in the same solutions as some graphs have values that go out of bounds in some branches.

3. Practical issues in using the analog accelerator such as calibration and starting and stopping

the analog accelerator are not well handled in the compiler framework.

4. When the ODE is large with many variables, the ability to split the ODE and solve the large

problems as subproblems becomes important, and this compiler framework does not easily

handle such issues.

Related work: Recent work by Achour et al. demonstrated a compiler for converting ODEs

to analog computer connectivity graphs [2]. Their compiler focuses on differential equations in

biological and chemical dynamical systems. At its core, it is a symbolic logic solver that converts

between equivalent differential equation descriptions. It allows the user to get from an equation

purely describing differential equations, to an equation describing hardware connectivity. While the

compiler work by Achour et al. tackles the first two challenges listed above, the last two challenges

remain.

Work by Pyle and Thangavel partially tackle the first three programming issues discussed

above by using a genetic algorithm learning framework to try several different analog accelerator

configurations [139, 166], in a narrower area of analog function generation.

Open problems: A high level language for analog computation must have functionality for

measurement, calibration, and specifying testing and bring-up procedures. To get an analog solver

to work, we have to connect some parts together, test and calibrate those subcomponents, and then

connect more parts together. The connectivity between analog components and parameters of the

components is just one part of the overall program. Languages for specifying ODEs and compilers

that generate connectivity graphs for hardware components (such as our own and Achour’s ODE

compilers) may help with setting up the blocks, but doesn’t help with the rest of the process for

calibrating and getting them to work.

35

A high level language for analog computation must also express repetition and hierarchy, both

necessary for large systems. In dynamical systems such as solving PDEs, the large system of

ODEs is highly regular. The language needs some kind of support for telling the compiler that

such structure exists, otherwise the compiler will take too much time to search and stumble into a

configuration that works.

Programming analog accelerators for algebraic equations

I advocate for using analog accelerators as algebraic equation solvers. In this type of programming,

the digital host computer calls the analog accelerator through a well-defined function call. The

function call has the same signature as a software solver for linear or nonlinear system of equations.

Doing so has a number of benefits compared to solving whole ODEs in an analog accelerator:

1. Programming the analog accelerator becomes a narrower, better defined task of programming

mathematical expressions into hardware. For example, programming a linear algebra problem

only involves programming the matrix coefficients and constants in the equation right hand

side. Likewise, programming a nonlinear system of equations only involves programming the

nonlinear polynomial expression for the nonlinear function, along with the Jacobian matrix.

Both cases are simpler compared to programming a whole ODE graph.

2. The steps for bringing up, calibrating, configuring, running, and getting data from an analog

accelerator become more clearly defined.

3. The computation results from the analog accelerator are reduced to a single vector of the

variable values that satisfies the algebraic equation.

To set up an analog accelerator for algebraic equations, I program the accelerator using object-

oriented C++, a style of programming that improves code reuse and minimizes errors when pro-

gramming the analog accelerator. In our programming model, C++ classes represent mathematical

expressions such as one nonlinear equation or one row of a Jacobian matrix. Each class exposes

only the analog interfaces that need to be connected with other submodules. The classes also offer

functions that change parameters such as initial conditions, coefficients, and constants. When a

class object is instantiated, the instantiating program gives the object an allocation of analog hard-

ware to physically implement the needed analog datapath. Then, the object constructor writes

36

Figure 5.4: System diagram for user program, analog accelerator library, microcontroller, and
analog accelerator chip.

a stream of bits to the analog accelerator setting up the object. Destroying the object likewise

frees the analog resources to participate in other calculations. A concrete example will be given in

Section 11.5.

5.2 Analog accelerator instruction set architecture

This section discusses how a digital host computer configures the prototype analog accelerator to

solve differential or algebraic equations. The instruction set architecture interface for the analog

accelerator handles operational concerns such as calibrating the analog units, starting and stop-

ping the solution, gathering and returning data, and reporting if any errors happened. Table 5.1

summarizes the essential system calls and corresponding instructions for the analog accelerator; we

walk through how to use the instructions in the steps below.

Calibration

Before we use the analog accelerator we first have to calibrate the analog circuitry. That is because

analog circuits provide limited accuracy compared to binary ones, in which values are unambigu-

ously interpreted as 0 or 1. Analog hardware on the other hand uses the full range of values.

37

Subtle variations in analog hardware due to process and temperature variation lead to undesirable

variations in the computation result.

We identify three main sources of inaccuracy in analog hardware: gain error, offset error, and

nonlinearity.

1. Offset bias: a constant additive shift in values,

2. Gain error: errors in either constant coefficient-variable or variable-variable multiplication,

3. Nonlinearity: the possibility that the DC transfer characteristic has a non-constant slope.

The amount of these non-ideal behaviors varies between function units due to process variations.

We use small DACs in each block to compensate for the first two sources of error by shifting

signals and adjusting gains. These DACs are controlled by registers, whose contents are set during

calibration by the digital host. The settings vary across different copies of the analog accelerator

chip, but remain constant during accelerator operation and between solving different problems.

When an analog unit is calibrated, its inputs and outputs are connected to DACs and ADCs; then,

the digital processor uses binary search to find the settings that give the most ideal behavior.

The third source of error, nonlinearity, occurs when changes in inputs result in disproportionate

changes in outputs. Typically this happens when analog values exceed the range in which the

circuit’s behavior is mostly linear, resulting in clipping of the output, akin to overflow of digital

number representations. This type of error is kept under control via overflow exception detection,

which we discuss later.

Configuration

Following calibration, the digital host computer software maps out the connections between analog

units, along with settings of the units, and sends the configuration to the analog accelerator using

the configuration instructions. This configuration bitstream is written to digital registers on the

analog accelerator. These digital registers contain only static configuration, akin to the program,

and no dynamic computational data.

38

Computation

The architecture interface has instructions which control the start and stop of integration, which

signify the beginning and end of analog computation.

Exceptions

A key improvement in our analog accelerator compared to prior analog computing designs is its

ability to report exceptions. After computation is done, the chip can report if any exceptions

occurred during analog computation. All analog hardware designs have a range of inputs where

the output is linearly related to the input. Exceeding this range leads to clipping of the output,

similar to overflow of digital number representations. The integrators and ADCs detect when their

inputs exceed the linear input range, and these exceptions are reported to the digital host. At the

same time, the host also observes if the dynamic range is not fully used, which may result in low

precision. When such exceptions occur the original problem is scaled to fit in the dynamic range

of the analog accelerator and computation is reattempted.

Observability

A few important node voltages, such as those setting the bias point for amplifiers, on the chip can

be exposed to the chip pins. These can be checked from software to ensure these nodes are within

tolerance, and certify the chip and configuration is free of major defects.

39

Instruction
type Instruction Parameters Description

Control allZero Reset all datapaths and shut off all func-
tion units

Control init Find calibration codes for all function
units

Config setConn source analog interface, desti-
nation analog interface Create an analog current connection be-

tween the analog interfaces of two units

Config brkConn source analog interface, desti-
nation analog interface Break the analog current connection be-

tween the analog interfaces of two units

Config setIntInitial pointer to integrator, initial
condition Set integrator to have ODE initial con-

dition value represented by the float
value

Config setMulGain pointer to multiplier, gain Set multiplier to have gain represented
by the float value

Config setFunction pointer to lookup table,
pointer to nonlinear function Set lookup table to have nonlinear func-

tion represented by function pointer
Config setDacConstant pointer to DAC, constant bias Set DAC to generate constant additive

bias value represented by the float value

Config setDacSource fuStruct * dac, bool external,
bool lut0, bool lut1 Set DAC to respond to digital input

from digital chip interface, or from
lookup tables

Config setTimeout timeout clock cycles Set timer so analog computation,
once started, stops after predetermined
amount of time

Config cfgCommit Finish configuration and write any new
configuration changes to chip registers

Control execStart Start analog computation by letting in-
tegrators deviate from their initial con-
dition value

Control execStop Stop analog computation by holding in-
tegrators at their present value

Data input setAnaInputEn pointer to analog input Open up chip’s analog input channel, so
outside stimulus can alter computation
results

Data input writeParallel unsigned char data Write to chip’s digital input a value,
which can be used by DAC or lookup
table

Data output readSerial character array Read the outputs of ADCs from chip to
a memory location

Data output analogAvg pointer to ADC, number of
samples Record the digital output value of an

ADC from multiple samples
Exception readExp character array Read from chip to character pointer the

exception vector indicating which ana-
log units exceeded their operating range

Table 5.1: Analog accelerator instruction set architecture.

40

Chapter 6

Analog Accelerator Microarchitecture

& Characterization

In this chapter I briefly describe the Columbia University prototype analog accelerator chips, cov-

ering the necessary information to discuss its applications in the rest of this thesis. The second

part of this chapter is a characterization of the analog subcomponents of the analog accelerator.

6.1 Analog accelerator physical prototype microarchitecture

In this section I describe the microarchitecture organization of our analog accelerator.

Our research group recently prototyped multiple versions of analog accelerator chips in 65nm

CMOS technology [66, 67], shown in Figure 6.1. The physical prototypes validate the analog cir-

cuits’ functionality and allows physical measurement of component area and energy. Additionally,

the chips allow rapid prototyping of accelerator algorithms.

Microarchitecture hierarchical organization: The analog accelerator comprises four iden-

tical tiles connected with a global crossbar. Each tile contains analog functional units connected

with a local crossbar. Each tile is then subdivided into four identical slices. At each slice’s dis-

posal are an analog input from off-chip, two multipliers, one integrator, two current-copying fanout

blocks, and one analog output to off-chip (Figure 6.2). Two slices share use of an 8-bit ADC, an

8-bit DAC, and a nonlinear function lookup table (256-deep, 8-bit continuous-time SRAM [153]).

Storing and integrating variables: At the heart of analog computers are integrator function

41

16

16

16

16

Analog

4
4

4
4

4 4

4 4

Analog INs Analog INs

16

16

16

16

Analog INs Analog INs

SPIs4 SPIs4

SPIs4 SPIs4
A

nalog A
na

lo
g

Analog

8 8 8 8

8 8 8 8
SPI CONTROLLER

SRAM SRAM

∫

∫

∫

∫

C
T

A
D

C

C
T

D
A

C

8 8

Digital
Output

D
igital

Input

4
SPI

C
T

A
D

C

C
T

D
A

C

8 8

C
T

D
A

C

C
T

D
A

C

8 analog
current copiers

4 analog
integrators

8 analog multipliers/
gain blocks

16

16

Analog
inputs

A
nalog

O
utputs

Figure 6.1: Left: Microphotograph of a Columbia University prototype analog accelerator chip,
measuring 3.7mm×3.9mm, fabricated in a TSMC 65nm process. Center: Architecture diagram of
an analog accelerator designed to test scalable multi-chip integration and calibration of large analog
accelerators. The chip contains four tiles, each an instance of the microarchitecture presented
in [66, 67]. Connectivity between tiles and between chips is tree-like with sparse connectivity,
matching the neighbor-to-neighbor connection pattern for PDEs. The orientation of the analog
inputs and outputs is designed for multiple-chip board-level integration. Right: Diagram of an
analog accelerator tile containing 4 integrators. Other components include multipliers, current
mirrors, ADCs, and DACs. A programmable crossbar enables all-to-all connectivity within each
tile, matching the connection patterns needed to realize a variety of differential and algebraic
equations.

Figure 6.2: Analog accelerator subcomponents.

units: physically they are capacitors that output a continuous range of values. A collection of

integrators can represent a vector of variables, u⃗. The input to integrators represent the time

derivative of the variables, du⃗
dt . These variables can be multiplied and summed, the results of which

can be taken as output, or fed back to the inputs of integrators, resulting in the ordinary differential

equation (ODE) du⃗
dt = f(u⃗), where f is a polynomial function of u⃗.

Summing, copying, multiplying variables: In our analog accelerator, electrical currents

represent problem variables, which may be added, multiplied, integrated, and subjected to arbi-

trary nonlinear functions. Fanout current mirrors allow the analog circuit to copy variables by

replicating values onto different branches. To sum variables, currents are added together by join-

ing branches. Gilbert cell multipliers allow variable-variable and constant-variable multiplication.

42

While constant-variable multiplication is enough for many linear ODEs and linear algebra problems,

variable-variable multiplication is a requirement for nonlinear ODEs.

Nonlinear functions: The analog variables in the chip can be transformed by arbitrary

non-linear functions, such as sine, cosine, and signum, with the help of continuous-time digital

circuitry [153]. The circuit transfers the analog variable to a binary representation using a clockless

ADC, so the variable can index into a clockless lookup table implementing the nonlinear function;

the function output is restored to analog representation with a clockless digital-to-analog converter

(DAC). The clock-free nature of this structure avoids aliasing problems associated with discrete

time sampling of the data; moreover it minimizes the power needed to create arbitrary nonlinear

functions.

Overflow detection on variables: Overflow detection is done using analog voltage compara-

tors to detect values exceeding the safe range. We compare a reference value (usually the maximum

or minimum allowed values) to the signal carrying the variable. When a value exceeds the safe

range an exception bit is set in a latch whose value can be read out during exception checking.

Digital interface: The chip also includes an interface to receive commands from a conventional

digital host processor. In the prototype these commands are received over an interface implementing

an SPI protocol.

6.2 Analog accelerator analog subcomponent characterization

This section is a characterization of the analog components of the prototype analog accelerator

chip. The goal is to certify that the chip can operate with input signals with frequency up to

20KHz, as designed. The components include the global crossbar, tile crossbar, the integrators,

the fanout blocks, and the multipliers.

This work was done with supervision from colleagues at Sendyne Corp., during my internship

there. I attained these measurements using two ways to generate inputs to the chip and measure

outputs from the chip. The first way is to use DACs on the Arduino microcontroller for function

generation and the microcontroller ADCs for measurement. Since the function generation and

measurement must work at high frequency with precise timing, I used microcontroller timing in-

terrupts and direct access to microcontroller registers to get these results. The second way is using

43

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

1 10 100 1000

O
ut

pu
t a

m
pl

itu
de

 re
sp

on
se

 (b
as

el
in

e
po

w
er

 @
 2

kH
z)

Input frequency (logarithmic, kHz)

Amplitude response vs. frequency

Minus 3dB
Global crossbar
Tile crossbar
Fanout @ 1×
Fanout @ 10×
Multiplier @ +1×
Multiplier @ -1×
Multiplier @ -0.1×
Integrator

Figure 6.3: Analog component amplitude frequency response (function generator input, oscillo-
scope output).

a function generator to generate chip inputs and an oscilloscope to measure outputs. The results

using the two measurement methods match well.

The first measurement is to find how much the analog components attenuate input signals.

Figures 6.3 and 6.4 shows the output amplitude is within 85% accurate when the input is as high

as 20KHz. Figure 6.5 is a zoomed in view of the same measurement.

The second measurement shown in Figure 6.6 is to find how much signal propagation time

impacts accuracy, in the form of phase shift.

The third measurement in Table 6.1 measures how much noise is in each component’s output

signal. Section 8.2 will exploit this noise for solving stochastic differential equations. Altogether,

the attenuation of the analog signals, phase shift, and noise all contribute to the error of the analog

accelerator output.

44

Figure 6.4: Analog component amplitude frequency response (DAC generated input, ADC ac-
quired output). The error bars show the variance in multiplier gain, even after calibration and
configuration. Measurements for integrators only available in Figure 6.3.

component noise RMS (mV)
chip output only 0.857
global crossbar 3.179
tile crossbar 3.079
fanout 1X 3.022
fanout 10X 3.615
multiplier 1X 3.006
multiplier 0.5X 2.001
multiplier 10X 9.104

Table 6.1: Analog component noise measurement. These RMS noise figures are measured using a
microcontroller DAC to generate a DC signal, then a microcontroller ADC measures the variation
about the mean output voltage.

45

Figure 6.5: Analog component amplitude frequency response (zoomed in view). Measurements for
integrators only available in Figure 6.3.

46

Figure 6.6: Analog component phase shift frequency response (DAC generated input, ADC ac-
quired output). Phase shift estimated from timing of first zero crossing.

47

Part III

Analog-Digital Co-Processing for

Solving Differential Equations

48

Chapter 7

Partial Differential Equations

This thesis focuses the application of analog-digital co-processing for applications in scientific com-

puting. An important class of problems in this application domain is solving partial differential

equations (PDEs) and ordinary differential equations (ODEs) [39, 6].

Solving PDEs is an increasingly important workload as they give natural and accurate models

for the physical world. Researchers use PDEs to model water waves, combustion, and plasma

physics, all of which belong to the area of computational fluid dynamics (CFD) and its extensions.

Researchers also use nonlinear PDEs in solid mechanics for modeling structures as nonlinear springs

in finite element models. Currently, these problems are tackled by computers ranging in size from

supercomputer systems to mobile devices, usually on networked CPUs and GPUs [18, 178].

Though solving PDEs was once considered a supercomputing workload, they are now needed

in autonomous mobile robots where energy budgets are limited. For example in optimal control

theory, the optimal control path is the solution of Euler Lagrange PDEs. A mobile robot capable

of solving these types of equations would be able to make more informed and optimal decisions

navigating the physical world [141, 12, 99].

7.1 Taxonomy of PDEs

PDEs are classified according to their dimensionality, order, discriminant, nonlinearity, and the type

of nonlinearity [122, 164]. The classification of a PDE according to these dimensions is important

for finding the right way to solve the PDE.

49

Taxonomy: PDE dimensionality & order

The dimension of a PDE says how many time and space dimensions are involved. For example,

the material derivative equation:

Dρ

Dt
≡ ∂ρ

∂t
+ u⃗ · ∇ρ = 0 (7.1)

may be used in one-dimensional space, giving the following equation:

∂ρ

∂t
+ u

∂ρ

∂x
= 0

or it may be used in two-dimensional space, giving the following equation:

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
= 0 (7.2)

These equations state that the density, ρ, at a point in space changes in time if and only if there

is an opposite total change of density in its spatial neighbors.

The order of a PDE refers to the highest partial derivative in the equation. There are no second-

or higher derivatives in the above examples, so they are first order equations. We will look at PDEs

of first, second, and third orders. Some first-order PDEs include:

• Gradient on scalar variable

∇ρ = 0

∂ρ

∂x
i⃗+

∂ρ

∂y
j⃗ = 0

• Divergence on vector variable

divu⃗ = 0

∇ · u⃗ = 0

∂u

∂x
+

∂v

∂y
= 0

50

• The material derivative equation

Dρ

Dt
= 0

∂ρ

∂t
+ u⃗ · ∇ρ = 0

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
= 0

• The Navier-Stokes continuity equation (assuming incompressible fluid), also known

as the advection equation, which describes conservation of mass

∂ρ

∂t
+ div(ρu⃗) = 0

∂ρ

∂t
+∇ · (ρu⃗) = 0

∂ρ

∂t
+

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0

∂ρ

∂t
+ (ρ

∂u

∂x
+ u

∂ρ

∂x
) + (ρ

∂v

∂y
+ v

∂ρ

∂y
) = 0

∂ρ

∂t
+ (u

∂ρ

∂x
+ v

∂ρ

∂y
) + (ρ

∂u

∂x
+ ρ

∂v

∂y
) = 0

∂ρ

∂t
+ u⃗ · ∇ρ+ ρ∇ · u⃗ = 0

Dρ

Dt
+ ρ∇ · u⃗ = 0

Taxonomy: second-order PDE classification

PDEs of second order and higher can be classified as elliptic, parabolic, and hyperbolic according to

their discriminant. The prototypical parabolic PDE is the heat equation, which describes a system

that has diffusion. A two-dimensional heat equation PDE is expanded out in equivalent notations

as follows:

∂u

∂t
−∆u = 0 (7.3)

∂u

∂t
−∇2u = 0 (7.4)

∂u

∂t
− (

∂2u

∂x2
+

∂2u

∂y2
) = 0 (7.5)

51

The second-order partial derivative makes this a second-order PDE, while the choice of signs on

the terms makes it parabolic. Roughly speaking, parabolic PDEs have time-dependent behavior

and evolve toward a steady state.

1. Elliptic Helmholtz equation

∆ρ+ k2ρ = f

∇2ρ+ k2ρ = f

∂2ρ

∂x2
+

∂2ρ

∂y2
+ k2ρ = f(x, y)

2. Parabolic heat (diffusion) equation

∂ρ

∂t
− c∆ρ = 0

∂ρ

∂t
− c∇2ρ = 0

∂ρ

∂t
− c(

∂2ρ

∂x2
+

∂2ρ

∂y2
) = 0

3. Hyperbolic wave equation

∂2ρ

∂t2
− c2∆ρ = 0

∂2ρ

∂t2
− c2∇2ρ = 0

∂2ρ

∂t2
− c2(

∂2ρ

∂x2
+

∂2ρ

∂y2
) = 0

Taxonomy: semilinear, quasilinear, and fully-nonlinear

The example PDEs so far have been linear. For nonlinear PDEs, the analysis on the order of the

equation and the analysis on its discriminant is the same as in the linear cases. Nonlinear PDEs

are classified by how nonlinear they are. This is determined by whether and how the nonlinear

terms appear in the highest-order partial derivatives.

52

Semilinear PDEs

Semilinear PDEs are the least nonlinear among nonlinear PDEs and most well-behaved. A PDE

is semilinear if it is still linear in the highest order partial differential operator. In other words,

the PDEs’ coefficients on the highest order partial derivatives are independent of the main variable

(e.g., u) and its partial derivatives. The nonlinear functions appear only in lower-order partial

derivative terms. Examples of semilinear PDEs include:

• Liouville equation: a semilinear elliptic equation with a transcendental nonlinear term.

∆ρ+ eρ = 0

∇2ρ+ eρ = 0

∂2ρ

∂x2
+

∂2ρ

∂y2
+ eρ = 0

• Elliptic sine-Gordon equation: a semilinear elliptic equation with a transcendental non-

linear term.

∆ρ− sin(ρ) = 0

∇2ρ− sin(ρ) = 0

∂2ρ

∂x2
+

∂2ρ

∂y2
− sin(ρ) = 0

• Reaction-diffusion equation: adds a nonlinear term to the second-order diffusion equation.

53

ρ is the concentration of different species.

∂ρ

∂t
−∆ρ− ρ(1− ρ) = 0

∂ρ

∂t
−∇2ρ− ρ(1− ρ) = 0

∂ρ

∂t
− ∂2ρ

∂x2
− ρ(1− ρ) = 0

∂ρ

∂t
− ∂2ρ

∂x2
− ∂2ρ

∂y2
− ρ(1− ρ) = 0

• Korteweg-de Vries equation: this classic third-order equation exhibits soliton behavior.

∂ρ

∂t
+

∂3ρ

∂x3
+ ρ

∂ρ

∂x
= 0

Quasilinear PDEs

Quasilinear PDEs are more nonlinear than semilinear ones. A PDE is quasilinear if its coefficients

on the highest order partial derivatives are linearly dependent on the main variable (e.g., u) and its

partial derivatives. The nonlinear functions on u and its partial derivatives appear in lower-order

partial derivative terms.

Quasilinear PDEs appear in fluid dynamics equations: they form the core of the Navier-Stokes

momentum equations. An example of a quasilinear PDE is the inviscid Burgers’ equation:

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = RHS (7.6)

∂u
∂t + u∂u

∂x + v ∂u
∂y = RHS

∂v
∂t + u ∂v

∂x + v ∂v
∂y = RHS

(7.7)

This equation is similar to Equation 7.2, the material derivative equation, except here the problem

variable is the velocity field vector u⃗, instead of the density scalar variable ρ.

54

Figure 7.1: Relationship between simplifications of the Navier-Stokes momentum equations.

Fully nonlinear PDEs

A PDE is fully nonlinear if its coefficients on the highest order partial derivatives are nonlinearly

dependent on u and its partial derivatives. An example is the Eikonal equation from optics:

(∂u
∂x

)2
+
(∂u
∂y

)2
= c2

Navier-Stokes equations

After our short primer on nonlinear PDEs, we now see that these simple PDE variants lead to

PDEs used in physical models. An important example of nonlinear PDEs are the Navier-Stokes

equations in fluid dynamics, which we introduce here to motivate the nonlinear PDEs we explore

in detail in the rest of this thesis. The full set of equations results in a large nonlinear set of

equations which need to be solved simultaneously. Navier-Stokes equations have been solved using

GPUs [178] and with cellular neural networks [104].

In practice the equations can be simplified depending on assumptions about the flow. When heat

transfer is not included in the model, the conservation of energy equations are ignored, and we only

55

need to solve for the conservation of mass and momentum across a flow field. The conservation

of mass is described by the continuity equation:

∂ρ

∂t
+∇ · (ρu⃗) = 0

So long as the dynamic range of speeds in the system is not large (low Mach number), the fluid is

assumed incompressible. The incompressibility of the fluid is represented mathematically by saying

the divergence of u⃗ is zero:

∇ · u⃗ = 0

Substituting the above equation into the continuity equation gives us another way to state incom-

pressibility in terms of Equation 7.1, the material derivative equation:

Dρ

Dt
≡ ∂ρ

∂t
+ u⃗ · ∇ρ = 0

When incompressibility is assumed the conservation of momentum equation has a relatively

simple form:
∂u⃗

∂t
+ (u⃗ · ∇)u⃗− 1

Re∇
2u⃗ = −∇P

With these assumptions, the equation consists of a nonlinear advection/convection component, a

linear diffusion component, and a nonlinear scalar pressure component.

7.2 Solution steps for PDEs

Solution steps: space discretization

Typically PDEs describe state variables as continuous functions of both time and space, while

ODEs state variables as functions of time or space. As shown in Figure 7.2, PDEs are classified as

time-independent or time-dependent equations.

In both conventional digital algorithms, and in the analog acceleration techniques we explore,

state variables are discretized in space into a set of discrete variables that are functions of time.

Major space discretization methods include:

56

Time independent
PDE

Time dependent
PDE

Partial differential
equation (PDE)

Parabolic PDE
(e.g., heat equation)

Hyperbolic PDE
(e.g., wave equation)

Elliptic PDE
(e.g., Poisson eq.)

Spatial discretization Spatial discretization

System of ordinary
differential equations (ODE)

Explicit time stepping
(e.g., RK4, analog)

Implicit time stepping
(e.g., backward Euler)

Sparse system of
linear equations (SLE)

Direct solvers (e.g.,
Cholesky, QR, SVD)

Iterative solvers
(e.g., CG, analog)

Dense linear eqs.
(e.g., optimization)

Nonlinear system
of equations

Nonlinear solvers
(e.g., Newton’s)

Figure 7.2: Taxonomy of some classes of problems in scientific computation. Physical phenomena
are described as partial differential equations. PDEs are solved by applying appropriate space
and time discretizations, converting the continuous problem format into discrete node variables,
interrelated by systems of algebraic equations. The dark boxes show steps to convert or solve
problems. Analog accelerators assists these problems from several directions.

1. Finite difference

2. Finite volume

3. Finite element

4. Spectral method1

Here we limit discussion to finite difference and finite volume methods.

In most finite difference and finite volume approaches, time-dependent PDEs become systems

of ODEs after spatial discretization; for example, the canonical parabolic heat equation becomes

a convergent system of ODEs, and the canonical hyperbolic wave equation becomes an oscillating

one. We can focus on studying solving ODEs after we have discretized PDEs in space.

Solution steps: time stepping

ODE solvers are split between explicit and implicit time-stepping methods; both methods have

mappings onto analog accelerators. Different time stepping methods are summarized in Table 7.1.

1Recent work in optical analog computing focuses on performing the Fourier transform.

57

Explicit / implicit Timestepping order Target problems Possible methods

Explicit methods

First-order methods
ODEs Forward Euler
parabolic PDEs FTCS (forward time central space)
hyperbolic PDEs Lax-Friedrichs, Upwind

Second-order methods ODEs Heun’s method, Leapfrog
hyperbolic Lax-Wendroff, MacCormack

Higher-order methods ODEs Explicit RK, Adams-Bashforth

Implicit methods

First-order methods ODEs Backward Euler
parabolic PDEs BTCS (backward time central space)

Second-order methods ODEs Trapezoidal rule
parabolic PDEs Crank-Nicolson, ADI

Higher-order methods ODEs Implicit RK, Adams-Moulton

Table 7.1: Comparison of finite difference time stepping methods.

Explicit time stepping approximates the time derivative of u using the present and past

guesses of u and increments u one step at a time. Explicit methods are suitable for some hyperbolic

PDEs. All practical discretized PDEs result in systems of ODEs that are stiff, meaning that they

force explicit solvers to take many small time steps to solve and therefore are computationally

inefficient. Furthermore, explicit methods, whether discrete time or continuous time, lack a notion

of error checking: small errors accumulate and the solution drifts away from the true solution. In

order to increase the time stepping step size, implicit methods are often used.

Implicit time stepping, on the other hand, solves a system of linear equations to determine

the next state u, enforcing the next state is in agreement with the system’s partial derivatives with

respect to time. Since the next u is unknown, we need to solve a system of algebraic equations.

Implicit solvers effectively solve stiff systems; furthermore, the existence of efficient linear algebra

solvers have led many PDEs and ODEs to be solved using implicit solvers.

7.3 Analog-digital co-processing for PDEs

In this section I talk about various design options for how PDEs are solved on either digital or

analog hardware.

The fully continuous mathematical description of PDEs go through various types of discretiza-

tion. In a fully digital, conventional approach, space, time, and variables are all discrete. On

the other hand, fully analog approaches could include physical models such as wind tunnels,

or continuous-space extended analog computers, where space, time, and variables are continu-

ous [128, 129, 127]. Between the two extremes is a continuum of techniques.

58

DE types Problem
abstraction

Programming
model

Analog-
digital in-
teraction

Relevant mi-
croarchitectural
features

[81] Nonlinear
parabolic PDEs

Supports
Newton solver
and homotopy
continuation
inside digital
solvers

User configures
nonlinear
function and
Jacobian for
Newton solver

Digital de-
composition
using red-black
Gauss-Seidel;
analog solution
seeds digital
Newton

Multi-chip
integration;
enhanced
calibration for all
analog blocks

[82,
83]

Linear elliptic
PDEs

Supports sparse
linear algebra
inside digital
solvers

User provides
linear equation
coefficients and
constants

Digital de-
composition
using multigrid;
analog solves
recursively on
linear equation
residual

Automatic
calibration for all
analog blocks;
continuous-time
ADC, lookup table,
DACs;
implementation in
65nm CMOS[66,

67]
Nonlinear
system of ODEs

Direct mapping
of ODE to
analog hardware

User configures
analog datapath
for ODE

Digital provides
continuous-
time lookup
for nonlinear
functions

[40,
41]

Nonlinear
ODEs, linear
parabolic,
stochastic PDEs

Direct mapping
of ODE or PDE
to analog
hardware

User configures
analog datapath
for ODE or PDE

Analog solution
seeds digital
Newton

Calibration only
for integrators;
implementation in
250nm CMOS

Table 7.2: Summary of recent work in physically prototyped analog accelerators for differential
equations.

Analog computers of the mid-20th century usually discretize space while keeping time and

variables continuous. The analog computers of that era acted as explicit integrators for ODEs,

which then supported PDE solving techniques such as method of lines and shooting methods [91,

93, 173]. Recent work in analog computing using integrated circuits has also explored this approach

to solve linear parabolic PDEs [40, 41] and nonlinear ODEs [66, 67].

Following this logic, it is tempting to move toward a fully analog model of computation for

modern workloads. But such a model faces two important challenges. First, analog accelerator

hardware has high silicon area costs. Second, analog acceleration provides only limited accuracy.

Because of these two important limiting factors, we must apply analog acceleration in a broader

digital, discrete-time framework, using the digital computer for its high-precision operations and

dense memory.

In this work, the solving methods have the PDEs discretized in space and time by the digital

host. Part III uses the analog accelerator in the same way as prior work, for ODE solving techniques

59

such as method of lines and shooting methods.

However, modern scientific computation is founded on algebraic equations, not ODEs. In

effort to adapt analog acceleration to conventional digital architectures, we explored using analog

acceleration for linear algebra [82, 83] and nonlinear algebra [81]. Starting in Part IV, we use

the continuous time feature of our analog accelerator in a seemingly limited sense, to do steepest

descent or the continuous Newton’s method for algebraic equations. As I will show, even limited

applications of continuous-time computation are fruitful, allowing us to replace temperamental

discrete-time algorithms with effective algorithms otherwise impossible in discrete-time hardware.

60

Chapter 8

Analog Co-Processing for Stochastic

Differential Equations

In this chapter I explore using our analog accelerator for solving stochastic differential equations

(SDEs)1. SDEs are a combination of a deterministic model in the form of a differential equation,

and a stochastic noise component in the model. Typically scientists find the deterministic part

analytically while the stochastic part is an attempt to capture effects not accounted for in the

model.

The motivation for using an analog accelerator for this class of problem is twofold:

1. The analog accelerator excels at integrating differential equations, the task that

dominates the solving time for SDEs. Numerical methods for SDEs use Monte Carlo

techniques, which entails running many parallel and independent solutions of the differential

equation, each subject to a different stochastic noise input [77, 174, 151, 51]. Because the

solver needs to solve a statistically significant ensemble of solutions, having a more efficient

method for solving differential equations would be advantageous.

2. In an analog solution to an SDE, the analog circuit can use analog noise from

natural sources for the stochastic input to the equation. On the other hand a

numerical method running on a conventional digital computer needs to dedicate some time

1 I did the work in this chapter during my time at Sendyne Corp.; they have permitted me to include this writeup
in this dissertation.

61

to create pseudorandom numbers, and then reshape the distribution of those numbers to fit

the distribution needed by the SDE.

8.1 The Black-Scholes stochastic differential equation

The famous Black-Scholes equation refers to two different stochastic differential equations: the

first and simpler equation is the Black-Scholes stochastic ordinary differential equation for modeling

stock prices, and the second more complex equation is the Black-Scholes-Merton partial differential

equation for finding prices for options.

This chapter focuses on solving the Black-Scholes stochastic ODE, the solutions for which are

needed in the PDE model for pricing options.

The Black-Scholes stochastic ODE has the form:

dX(t) = λX(t)dt+ σX(t)dW (t)

X(0) = X0

(8.1)

where X(t) is the price of a stock as a function of time, X0 is the initial price, λ is a parameter

called drift, σ is a parameter called volatility, and W (t) is the standard Wiener process, which I

will define in Section 8.3.

Intuitively, the Black-Scholes stochastic ODE captures known effects and unknown effects on

the price of a stock. In the long run, we can deterministically model the price of a stock as an

exponential growth or decay process. In the short run, the fluctuations in the price of a stock are

unpredictable, but are proportional to the current price of the stock.

The Black-Scholes stochastic PDE is useful for setting the price of a financial derivative or

option, optimized so that it minimizes the risk due to the fact we cannot predict stock prices. The

type of deriviative or option we are interested in pricing decides how we would define and solve the

Black-Scholes stochastic PDE. Financial regulations in different markets permit different types of

options.

Some types of options, such as barrier, American, and Asian options, are path-dependent, mean-

ing the price of the option depends on the price of its underlying stock as a function of time. Barrier

options for example must have a positive stock price at all times, otherwise the option expires. When

62

FanoutN(μ,σ2) Output× +

×λ

∫
X(t)dX/dt

Figure 8.1: Analog accelerator setup for solving the Black-Scholes equation, with the Gaussian
white noise source highlighted.

we set the price of these types of options we must use Monte-Carlo simulation to generate many

price trajectories for the underlying stock. The work in this chapter envisions using the analog

accelerator to assist in this type of calculation.

On the other hand more basic types of options such as European options are path-independent,

meaning the option prices do not depend on actual stock price trajectories. In pricing these options

we can use the closed form solution for the Black-Scholes stochastic ODE for stocks, which takes

the form of the lognormal distribution:

X(t) = X0e
(λ−σ2

2
)t+σW (t) (8.2)

We will be using this closed form solution to check the accuracy of the analog accelerator solution.

8.2 Analog Black-Scholes bringup: Gaussian white noise

The type of noise plays a major role in solving SDEs. The Black-Scholes stochastic ODE uses

Gaussian white noise as its stochastic input. An analog accelerator solving the Black-Scholes

stochastic ODE can obtain this noise from several sources (Figure 8.1): One option is to use

Johnson-Nyquist thermal noise from resistors as a source of white noise [148, 114]. The analog

noise may need some additional processing such as amplification and bandpass filtering to be

useful in an analog SDE solver. Another option is to revert to using pseudorandom digital codes

to generate analog noise. In this chapter I discuss the method and merits of using each of these

noise sources.

63

0

0.05

0.1

0.15

0.2

0.25

1756 1758 1760 1762 1764 1766 1768 1770 1772 1774

P
ro

b
a

b
il

it
y

ADC readout

measured probability

normal fit probabilty (mean
1766, stdev 2)

Figure 8.2: The noise I feed to the analog accelerator is normally distributed. I use microcon-
troller ADCs to measure the number of observations above and below the mean voltage, µ, due to
noise, over 50K data points. Some ADC readouts have excessive or deficient counts due to ADC
nonlinearity; no reason to believe this is a property of the noise itself.

Analog noise

Generating high-amplitude, high-power analog noise is actually a bit tricky. Dedicated pro-

grammable analog noise generators are available for industrial uses2. At the same time, our pro-

totype analog accelerator also naturally generates analog noise as a side effect of rescaling signals

using resistor ladders (see Table 6.1). Here I discuss practical considerations using the analog

accelerator’s noise sources as random input for solving SDEs.

The analog noise needs to satisfy two properties for it to be suitable in solving SDEs. From

a time-domain perspective, the noise must be Gaussian normally distributed. From a frequency-

domain perspective, the noise must have constant power spectral density. I consider these two

properties below.

Analog noise: Gaussian distribution

Figures 8.2 and 8.3 show the analog accelerator noise is Gaussian normally distributed around

a mean, µ. The setup for generating this noise has the microcontroller DACs generating some

constant DC signal, which passes through a board-level scaling circuit (consisting of a resistor

2NoiseCom, noisecom.com

64

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

9
8
3

10
19

10
55
10
9
1

11
2
8

11
6
4

12
0
1

12
3
7

12
73

13
0
9

13
4
5

13
8
2

14
18

14
55
14
9
1

15
2
7

15
6
3

15
9
9

16
3
6

16
72

17
0
9

17
4
5

17
8
1

18
17

18
53

18
9
0

19
2
6

19
6
3

19
9
9

2
0
3
6

2
0
72

2
10
8

2
14
5

2
18
1

2
2
18

2
2
54

2
2
9
0

2
3
2
6

2
3
6
2

2
3
9
8

2
4
3
5

2
4
72

2
50
8

2
54
4

2
58
0

2
6
16

2
6
52

2
6
8
9

2
72
6

P
ro

b
a

b
il

it
y

ADC readout

Figure 8.3: Microcontroller DACs can control the mean, µ, of the input Gaussian noise while the
analog accelerator multiplier controls variance, σ2. In this plot I swept the microcontroller DAC
codes over its output range to change noise mean. I use the chip multipliers to amplify the noise to
increase the noise variance. Each Gaussian distribution is plotted separately. ADC nonlinearities
result in excess of counts at some values, but the peaks are consistent across different runs.

Figure 8.4: We can calibrate multiple copies of noise to have identical distributions, even as the
noise sources are mutually independent. The analog accelerator can calibrate the noise standard
deviation, σ to within 5%.

ladder), that then flows into an analog input channel of the analog accelerator chip. The current

flowing through resistors generates Johnson-Nyquist thermal noise. The DAC codes control the

mean of the Gaussian white noise, while multipliers inside the analog accelerator chip control the

variance, σ2. With control over these two variables, we can calibrate several independent noise

sources to have the same distribution, as shown in Figure 8.4.

65

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

A
u

to
co

rr
el

at
io

n

(a
b

so
lu

te
, n

o
t

n
o

rm
al

iz
ed

)

Time delay (seconds)

Autocorrelation (1× zoom)

-2

0

2

4

6

0 2 4 6 8 10

A
u

to
co

rr
el

at
io

n

(a
b

so
lu

te
, n

o
t

n
o

rm
al

iz
ed

)

Time delay (milliseconds)

Autocorrelation (100× zoom)

-2

0

2

4

6

0 20 40 60 80 100

A
u

to
co

rr
el

at
io

n

(a
b

so
lu

te
, n

o
t

n
o

rm
al

iz
ed

)

Time delay (microseconds)

Autocorrelation (10000× zoom)

Figure 8.5: Analog accelerator input noise autocorrelation. The autocorrelation period of the
analog input noise is less than 10 microseconds, equivalent to white noise up to 100 KHz (beyond
the analog accelerator’s design frequency). These measurements were done with microcontroller
ADCs, operating at 200 kS/s, over 3200 samples, and matches a FFT measurement done with an
oscilloscope.

Analog noise: constant power spectral density

The second property the analog noise needs for use in solving SDEs is the noise should be white

noise. White noise refers to noise with constant power spectral density. We can check the frequency-

domain plot using an oscilloscope’s spectrum analyzer to see if an analog noise source is white noise.

We can also check if an analog noise is white noise by checking if its autocorrelation plot is

a Dirac delta function, as shown in Figure 8.5. A Dirac delta autocorrelation plot indicates that

a signal is not at all correlated with delayed versions of itself, no matter how much the signal

is delayed. Plainly speaking, it means knowing the value of a signal at any moment gives us no

66

Figure 8.6: Analog noise DC drift. The mean of the noise drifts significantly over the time scale
of seconds to minutes, even after calibration.

Low frequency limitations High frequency limitations
Black-Scholes
stochastic ODE model
limitations

Market prevailing interest rate
measurable and modeled deter-
ministically

Trading day or market clock
ticket is minimum meaningful
time interval

Digital numerical
method limitations

Long-run model parameters are
deterministic

Numerical integration and mod-
els have non-zero time step size

Analog electronic
circuit limitations

Environmental variables, such as
temperature and RF interference,
introduce DC drift

Analog components, such as in-
tegrators and ADCs, have finite
bandwidth due to parasitic ca-
pacitance

White noise limitations At lowest frequencies flicker (1/f,
pink) noise dominates

At highest frequencies shot noise
(Poisson process) dominates

Table 8.1: Rationale why low-frequency and high-frequency components of noise are both unattain-
able and unneeded for solving SDEs. In our experiments using band-limited noise is sufficient.

information about the value of the noise at any other point in time. The equivalence between

constant power spectral density and Dirac delta autocorrelation is a result of the Wiener-Khinchin

theorem [138].

Filtered analog noise

I faced a significant challenge in using the analog accelerator noise source for solving SDEs in the

form of DC drift. Here I explore using a bandpass filter to limit the spectrum of the analog white

noise, in order to use the simple noise source for solving SDEs.

While the calibrated analog accelerator noise source appeared close to ideal on first glance,

Figure 8.6 shows the mean of the noise drifts significantly over the course of minutes. While white

noise does have low-frequency components that cause the mean to drift, this drift was coming from

67

Figure 8.7: Analog frequency response for on-chip high-pass filter. Ideally we want to shift the low
frequency pole as low as possible because the DC offset drift is on the scale of seconds to minutes.
Attenuating the high-pass filter feedback loop shifts the low frequency pole lower, subject to the
limit that the feedback signal cannot be weaker than the noise floor.

environmental effects such as temperature. Such a large, low frequency, and uncontrollable noise

component overwhelms the white noise signal at low frequencies and cannot be used for solving

SDEs.

A few techniques can eliminate DC mean drift. These include:

1. Subtract two independent noise sources both subject to the same DC drift. This

is in fact the approach Intel takes for generating true random numbers in their microarchi-

tectures [89]. In our case however some of the DC drift was itself independent for different

channels, so subtracting noise sources did not cancel the DC drift.

2. Calibrate frequently to eliminate the DC drift. While this works, calibration takes

too much time for this to be practical.

3. Use a high-pass filter to eliminate DC components. This is the technique I explored

most extensively, though limitations on this technique eventually motivated using a digital

pseudorandom number source instead.

While SDEs such as the Black-Scholes stochastic ODE specify the noise source should be white

noise, in practice both the mathematical model and the numerical methods for solving SDEs do

not need to use perfect white noise. Likewise, our analog circuit approach and the noise sources the

analog accelerator has access to do not support perfect white noise either. I summarize in Table 8.1

the rationale for why band-limited noise is sufficient for solving SDEs.

68

FanoutN(μ,σ2) Output×1 +

×λ

∫
X(t)dX/dt

Figure 8.8: Standard Wiener process / Brownian motion.

Figure 8.7 shows the amplitude response of a high-pass filter we can build in the analog ac-

celerator to filter out the DC drift in the analog noise source. The resulting filtered noise is still

Gaussian normally distributed as required. From a frequency domain perspective, its autocorrela-

tion function is a Dirac delta around the origin, implying that it is white noise at high frequencies.

At the low frequency end, the DC components are cut out, so there is no longer any drift in the

noise mean.

Digital noise

For the purposes of the experiments in this chapter, I used noise generated digitally by feeding a

DAC with a pseudorandom number sequence. I do this by drawing digital uniformly distributed

pseudorandom numbers in the digital host computer. The Box-Muller transform allows us to

convert the uniformly distributed number sequence to a Gaussian normally distributed one [138,

151, 174].

Using digitally generated noise avoids downsides of using purely analog noise such as low am-

plitude and DC drift due to environmental variables, but comes at a cost of more work in the

conventional digital host computer. An ideal analog accelerator for stochastic differential equa-

tions should have analog circuits to create high amplitude, low-drift analog noise.

69

Figure 8.9: Sixteen different trajectories using each analog accelerator integrator integrating white
noise. I plot voltage against time, out to 200ms, equivalent to over 20K autocorrelation periods.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

-3
.2
41

52
9

-2
.8
33

91
2

-2
.4

2
6

2
9

6

-2
.0
18

67
9

-1
.6
11

06
3

-1
.2
03

44
7

-0
.7
95

83

-0
.3
88

21
4

0
.0

19
4

0
3

0
.4

2
70

19

0
.8

3
4

6
3

6

1.
2

4
2

2
52

1.
6

4
9

8
6

8

2
.0

57
4

8
5

2
.4

6
51

0
1

2
.8

72
71

8

P
ro

b
a

b
il

it
y

ADC readout (volts)

0 - Sum of count

0 - Sum of normal

0.004 - Sum of count

0.004 - Sum of normal

0.008 - Sum of count

0.008 - Sum of normal

0.012 - Sum of count

0.012 - Sum of normal

Figure 8.10: Probability density functions of 65K Brownian motion paths at intervals of 4 mil-
liseconds. The circuit setup is that shown in Figure 8.8. I plot the number of measured values
(probability) at four time points against voltage. The rightward drift of mean of the histograms
is due to integrator input offsets caused by environmental effects. The plot is what we expect
for stochastic diffusion: the drift is linearly proportional to time t, the standard deviation σ is
proportional to

√
t, and the variance σ2 is proportional to t.

70

FanoutN(μ,σ2) Output× +

×λ

∫
X(t)dX/dt

Figure 8.11: Exponential growth process.

8.3 Analog Black-Scholes bringup: standard Wiener process /

Brownian motion

The standard Wiener processes, also known as Brownian motion, is the time integral of white

noise [114, 174, 151, 146]:

W (t) =

∫ t

0

dW (τ)

dτ
dτ

Figure 8.8 shows an analog accelerator configuration that integrates the white noise source, de-

scribed in the previous section, to create signal trajectories belonging to the standard Wiener

process, shown in Figure 8.9.

It is important to establish correct analog accelerator solutions for the standard Wiener pro-

cess because the solutions are a component of the Black-Scholes stochastic ODE. For example,

Figure 8.10 shows the effect of one of the sources of error tackled in the previous section. Environ-

mental effects such as temperature changes disturb the mean value of the white noise source, which

in turn cause histograms for the standard Wiener process to drift. Because of these environmental

sources of error, I had to use filtered analog noise or digital noise to get correct standard Wiener

process solutions.

8.4 Analog Black-Scholes bringup: exponential growth process

After taking care of the stochastic parts of the Black-Scholes stochastic ODE, this section focuses

on solving in the analog accelerator the deterministic part of the equation, an exponential growth

process. Solving this deterministic part of the SDE has its own set of challenges, specifically in the

calibration of the analog components and in scaling the SDE parameters for solution in analog.

Accurate calibration and intelligent scaling is important for getting correct solutions to the Black-

71

Figure 8.12: Analog accelerator solutions for the exponential growth curve in Black-Scholes
stochastic ODE. The two rows are a comparison showing the impact of using integrator input
attenuation for controlling noise. In top row the feedback attenuation is done using the multiplier.
In bottom row the feedback attenuation is done using both the multiplier and the integrator input.
In both cases the feedback gain is λ = 1

80 , but the exponential growth trajectories are much more
accurate in the bottom row. The right column plots the exponential growth curves on log-linear
axes so the time constant can be calculated from the slope. This time constant is 8.3 microseconds,
corresponding to 120 KHz. The integrators are set to an initial condition of X0 = 0.25.

Scholes stochastic ODE using an analog accelerator.

The circuit setup for this test shown in Figure 8.11 is simple. We connect the integrator

output to a fanout. One branch of the fanout goes through a multiplier, set to a small positive

gain λ (e.g., + 1
80). That small positive feedback is connected back to the input of the integrator.

The integrator is set to some small positive initial condition X0 (e.g., 1
16). The positive feedback

gain and the initial condition are both set to small values in order to get a long integration time

for useful computation. We observe the expected exponential using a second branch of the fanout,

72

connected to the integrator output.

Precise calibration and control of the analog accelerator is important for getting accurate

solutions to this part of the Black-Scholes stochastic ODE. Four types of errors contribute to

inaccurate solutions for the exponential trajectories. I discuss the relative importance of these

sources of errors and mitigation techniques below:

1. Variation in the multiplier gain: We would like to calibrate the multiplier to realize a

minuscule gain factor λ, in order to elongate the useful time duration for solving the Black-

Scholes stochastic ODE. That is because a low gain factor decreases the growth rate of the

exponential growth process and delays the time when the integrators become saturated. But

in practice accurate calibration of the multipliers for tiny gain factors (e.g., λ = 1
160) is

difficult. A gain factor of λ = 1
80 balances the need for a small factor and precise calibration

for that factor. The bottom right subplot of Figure 8.12 plots an ensemble of exponential

growth trajectories on a log-linear chart; the slope of the trajectories indicate the multiplier

gain factor. The plot shows little variation in the realized multiplier gains for λ = 1
80 .

2. Variation in the integrator initial condition: We would also like to calibrate the inte-

grators to start off with a minuscule initial condition X0, also in order to elongate the useful

time duration for solving the Black-Scholes stochastic ODE. While precise calibration of the

integrator initial condition is easier than that for multiplier gains, we should avoid too small

of an initial condition because of noise, which is another source of error I discuss below.

The bottom subplots of Figure 8.12 show little variation in the calibrated integrator initial

conditions.

3. Jitter in the integrator start time: Very little variation here; the integrator start times

are consistent to within 1 microsecond.

4. Noise at the integrator input and multiplier output: Once the above sources of error

are minimized, stochastic noise becomes the biggest contributor of error in the deterministic

exponential growth curve. Specifically, the noise at the input of the integrator is most prob-

lematic at the beginning of the exponential growth curve, when its amplitude is comparable

to the actual signal at the beginning of the integration. In other words at the beginning of

integration the integrator is mostly integrating noise, before the exponential signal catches

73

up and becomes dominant. Worse, we cannot rearrange the definition of the Black-Scholes

stochastic ODE to make use of noise at the integrator inputs, as the Black-Scholes stochastic

ODE needs the noise amplitude to be proportional to the present value of x.

The trick to reducing the integrator’s sensitivity to noise is to turn on the attenuation feature

of the integrator inputs. The attenuation setting of the integrator input makes the integrator

expect a -20uA to +20uA signal instead of the usual -2uA to 2uA signal. With attenuation

on, the integrator effectively implements a ×0.1 signal gain internally. Then, because the

integrator is also participating in elongating the exponential curve time constant, we can use

a slightly bigger (less attenuated) gain in the feedback amplifier. So now the positive feedback

signal is not as feeble compared to the background noise. The better signal to noise ratio at

the integrator input leads to more consistent exponential curves.

Figure 8.12 shows the impact of using integrator input attenuation for controlling noise. In the

“before” setup (top row), the feedback attenuation is done using the multiplier (gain=1/80).

In the “after” setup (bottom row), the feedback attenuation is done using both the multiplier

(gain=1/8) and the integrator input (gain=1/10). In both cases the feedback gain is 1/80,

but the exponential growth trajectories are much more accurate in the bottom row.

Scaling problem variables in the Black-Scholes stochastic ODE to match analog

accelerator variables. An important challenge for us is how to logically scale problem variables

for this type of problem. In the overall end-to-end analog accelerator solution for the Black-Scholes

stochastic ODE, we need to scale the problem variables so the integration time period matches the

time period granted by the exponential growth process discussed above. We would set the positive

feedback gain and the initial condition as small as possible in order to delay integrator saturation,

in order to get a long integration time that fits more autocorrelation periods and ADC samples.

Usually, we can rescale problems variables to analog variables when problems are linear. In

the Black-Scholes stochastic ODE, the deterministic part is just an exponential growth process,

which is a linear system. We can easily rescale the deterministic part. The stochastic part of the

Black-Scholes stochastic ODE on the other hand is nonlinear, so scaling is more difficult.

74

FanoutN(μ,σ2) Output× +

×λ

∫
X(t)dX/dt

Figure 8.13: Black-Scholes stochastic ordinary differential equation.

Figure 8.14: Example analog and digital solutions for Black-Scholes SDE. Both solutions use the
same random number sequence.

8.5 Convergence & time for analog and digital Black-Scholes

In this section I use the analog accelerator to solve the full Black-Scholes stochastic ODE, and

compare the accuracy and performance against a digital solver. Figure 8.13 shows the analog

accelerator configuration for solving the Black-Scholes ODE, with all subcomponents I’ve covered

in prior sections enabled.

A conventional digital computer can use several techniques for solving the Black-Scholes ODE.

One option is to use the closed form solution Equation 8.2, which gives the solution for X at any

time, given a predetermined input for the standard Wiener process. Here we are more interested in

Monte-Carlo numerical methods that will give us the full trajectory of X(t), since pricing models

for many types of options need this trajectory. The basic Monte-Carlo method for SDEs include

the stochastic Euler-Maruyama and higher order Milstein methods [174, 151, 146]. Figure 8.14

shows one example solution for the Black-Scholes SDE using a random number sequence for both

75

Figure 8.15: The distribution of digital and analog final solutions match well. Here, the histogram
is generated from an ensemble size of 16K. This plot uses the following parameters, which I have
established in previous experiments to be the optimal settings to get the analog solver to work well:
initial condition X0 = 0.25, exponential positive feedback gain λ = 0.0125, standard deviation of
noise σ = 0.039563.

the digital and analog solvers.

In evaluating the accuracy of Monte-Carlo method solutions there is a difference between strong

convergence and weak convergence. As we invest more computation steps and time in the Monte-

Carlo method, the solutions improve in two ways: strong convergence is the improvement of each

trajectory given by the Monte-Carlo method, measured as the decrease in the mean of the errors

for each solutions; on the other hand weak convergence is the improvement of average of all the

trajectories as an ensemble, measured as the decrease in the error of the mean for all the solutions.

Figure 8.14 for instance shows the effect of strong convergence of the digital solver in comparison

to an analog solution. If the digital solver takes fewer time steps with wider interval between the

steps, the digital solver would track the analog solution less accurately. The mean of error for

digital ODE solutions improves as the step sizes decrease, at the cost of taking more computation

time.

Figures 8.15 and 8.16 shows the effect of weak convergence of the digital and analog solvers.

The mean of the distribution converges to the expected mean, as the ensemble size grows. If we

keep increasing the solvers’ ensemble size, the error of the mean solutions will keep decreasing; the

trend is bounded by a linear frontier on a log-log plot.

Figures 8.17 and 8.18 compare the time cost of random number generation, the digital solution,

76

Figure 8.16: The accuracy of analog and digital solutions, in terms of the weak convergence
of the solution as ensemble size grows. As expected, the digital solver steadily converges to the
solution. For the analog solver, the precision of the calibration seems to ultimately set a limit on
how accurate the solution can be. Here, we are calibrating every 1000 runs, so for the 16K final
ensemble size we had recalibrated 16 times. The recalibration has two purposes: one is to account
for any drift in the analog system; the other is to remove any systematic positive or negative bias
in the solution.

the calibration routine, and the analog solution. Random number generation takes a lot of time

because the basic method of converting from a uniform random number to a normally distributed

random number is costly. A high quality analog noise source would provide Gaussian noise at zero

time cost, making the analog solution much faster than the digital approach.

77

Figure 8.17: The time cost of random number generation, the digital solution, the calibration
routine, and the analog solution; all of these grow as the ensemble size grows. Notably, the
calibration cost grows only when we recalibrate the analog solver, so it is a step function.

Figure 8.18: Pie chart of where computation time is spent in random number generation, digital
solution, analog calibration, analog solution. The analog solution time includes the time to convert
data between the analog chip and the microcontroller. The calibration time for the analog solver
grows or shrinks depending on how often calibration is done.

78

Part IV

Analog-Digital Co-Processing for

Solving Algebraic Equations

79

Chapter 9

Analog-Digital Co-Processing for

Solving Algebraic Equations

In this part we explore using analog accelerators to assist scientific computation workloads by solv-

ing algebraic equations. The motivation for doing so is that modern scientific computation is built

upon on solving linear and nonlinear algebraic equations. Workload profiles of scientific computa-

tion benchmarks show that solving applications go through various steps to transform differential

equations problems into systems of algebraic equations. Solving these systems of equations becomes

the dominant kernel and takes the most computing time.

Using analog accelerators to solve algebraic equations has several advantages, compared to

using them to solve differential equations. One advantage is it decreases the engineering effort of

converting existing problems, algorithms, and source code to use analog accelerators. The second

advantage is that it draws on the complementary strengths of analog and digital architectures.

9.1 Algebraic equations dominate software profiles of equations,

solvers, libraries

A survey of scientific computation literature shows that solving linear and nonlinear algebraic

equations is the most important numerical primitive [36, 6, 62, 48]. A workload characterization of

some engineering PDE solvers reveals that they spend a large fraction of their runtime in solving

80

Discipline Problem
description

Representative
solver

Solving approach Dominant kernel Dominant
kernel
time

Fluid
dynamics

3D transonic
transient
laminar
viscous flow

SPEC CPU2006
410.bwaves
(test)

finite difference discretiza-
tion with implicit time
stepping on the com-
pressible, viscous Navier-
Stokes equations

Bi-CGstab 76.7 +
11.7%

Magneto-
hydrodynamics

2D
Hartmann
problem

OpenFOAM finite difference discretiza-
tion on incompressible,
viscous Navier-Stokes
equation, coupled with
Maxwell’s equations

preconditioned
conjugate gradients

45.8%

Fluid
dynamics

lid-driven
cavity flow

OpenFOAM finite volume discretiza-
tion on incompressible,
viscous Navier-Stokes
equations

preconditioned
conjugate gradients

13.1%

Engineering
mechanics

Cook’s
membrane

deal.II [9] finite element discretiza-
tion with nonlinear spring
forces

Solving Helmholtz
PDE with
preconditioned SOR
and CG

15.3%

Table 9.1: Function profile of PDE solvers which would be the envisioned targets for analog accel-
eration. Linear and nonlinear algebra is the dominant kernel in all solvers. The equation solving
proportion is higher for structured grids such as finite difference. Finite volume and finite ele-
ments are less structured, and the resulting less regular memory accesses shift computation time
away from solving systems of equations. We profiled these applications at runtime using Valgrind
KCachegrind, gperftools, OProfile, and GNU gprof to identify the subroutines relevant to hybrid
analog-digital co-processing.

systems of algebraic equations (Table 9.1).

The reason solving algebraic equations is so important in differential equations problems for

scientific simulations is due to three major reasons, spanning three conceptual levels: the physical

model, the numerical algorithm, and hardware support for solvers.

Importance of algebraic equations: physical model

Scientific computation workloads solve algebraic equations as a way to capture large dynamic range

in a physical model. The dynamic range can come from wide ranges of scales in variable values,

and in space and time dimensions.

A concrete example shows up in the classical way of solving incompressible Navier-Stokes prob-

lems [59, 160]. There, Navier-Stokes solvers have to solve a system of linear equations (for a Poisson

elliptic equation) describing the fluid’s pressure field. The algebraic equations are keeping track

of the pressure field, the evolution of which happens much quicker than the other variables in

the model—while the fluid velocity field ripples slowly through the modeled space according to a

hyperbolic wave equation, the incompressibility assumption on the fluid means pressure changes

81

propagate through the modeled space in a figurative blink of an eye. So, the pressure field is steady

within each time step. The standard way to solve steady elliptic PDEs is to use multigrid and

iterative numerical linear algebra solvers. Because the pressure field needs updating every timestep

of the velocity field, solving for the pressure field ends up taking the most time to compute.

The reason iterative numerical linear algebra solvers dominate scientific computation software

profiles becomes clearer, when we also consider the physical meaning of the pseudo-time steps in

the iterative solvers. An incompressible Navier-Stokes solver has to correctly solve for the quickly-

evolving pressure field, in addition to the slowly-evolving velocity field. Therefore, the real rate at

which the simulation can advance is the rate at which the solver figures out the solutions to the

pressure field. As a result, the algebraic solvers for the pressure field end up consuming most of

the computation time.

Importance of algebraic equations: numerical algorithm

Scientific computation workloads solve algebraic equations also as a way to decompose large prob-

lems to improve available parallelism and subproblem locality. Domain decomposition methods

rephrase differential equation problems as solving algebraic equations, in order to break apart

large problems into several subproblems, while at the same time getting the correct result for the

overall problem [100, 167, 61].

The alternating directions implicit (ADI) operator splitting method for solving the 3D Navier-

Stokes equations gives us an example of the approach. A 3D differential equation stencil (x,y,z

dimensions) causes additional problems compared to a 2D stencil (x,y dimensions) for conventional

digital architectures. The variables for neighboring cells in the z dimension have the least locality

when problem variables are stored in multi-dimensional arrays. As a result of the 3D stencil, the

cache access stride length for the workload becomes longer, potentially impacting performance if

the working set exceeds the cache size. A common way work around this problem when tackling

3D Navier-Stokes equations is to split the problem into 1-dimensional slices at a time, to increase

the problem variable locality. As a result, we get the added benefit of an increased number of

parallel subproblems in software, which can exploit hardware thread-level parallelism. The domain

decomposition method that ensures the overall solution is correct has overhead iterations and costs

in decomposing the problem, but those costs are overcome by the performance benefit of increased

82

parallelism.

Importance of algebraic equations: hardware support

Finally, good support for solving linear algebra problems from digital hardware architectures is

another reason scientific computation workloads focus on solving algebraic equations. Differen-

tial equations solvers are tuned to extract performance from the thread-level, data-level, and

instruction-level parallelism modern digital architectures offer. Domain decomposition methods

allow extracting thread-level parallelism, while numerical linear algebra methods extract data- and

instruction-level parallelism. Numerical linear algebra libraries for GPUs provide even higher per-

formance support for linear algebra. As a result of the strong support for linear algebra from

hardware, scientific computation research has gravitated toward rephrasing problems as algebraic

equations.

9.2 Solving algebraic equations as the interface between analog

accelerator and digital host

Due to the above reasons, solving algebraic equations is the most important kernel in scientific

computation. Solving algebraic equations in a hybrid analog-digital solver system would support

many PDE solvers, while needing little rework of existing digital solvers. The problem kernel of

solving algebraic equations serves as an analog-digital program partitioning where existing software

for scientific computation ends, and where our new hardware model of computation steps in.

The approach in this part contrast with the approach in Part III. In Part III, we directly mapped

differential equations problems onto the dynamics of analog and digital accelerators, also phrased

as differential equations. Unfortunately, directly mapping differential equations to hardware limits

us to solving problem sizes that can fit in the hardware, and provides solutions with accuracy

limited by the hardware’s accuracy. Making matters more difficult, the analog computational

model provides limited choices on how to break down the PDE and map equation variables to

hardware. That’s rather restricting compared to the variety of discretization methods used for

PDE solvers from several disciplines (Table 9.1).

83

The methods in Part III potentially offer high performance and efficiency rewards, but at the

same time they run the risk of abandoning or reinventing PDE solving algorithms discovered in the

digital era. The methods in this part on the other hand keep existing differential equations solver

intact, foregoing some performance and efficiency benefits of a completely new approach, with the

goal of making analog accelerator immediately useful in more situations.

9.3 Complementary strengths of hybrid analog-digital solvers for

algebraic equations

Only using the analog accelerator is not without problems. While the strengths of the analog

accelerator are its speed, its efficiency, and its ability to naturally support nonlinearity, it gives

only approximate results and does not scale to large problem sizes. On the other hand, digital

offload accelerators such as GPUs require lots of tuning on numerical parameters such as step sizes

and initial guesses, but can give high precision results and handle large problem sizes. In this part

of this thesis we combine the strengths of both approaches without complicating programming.

We propose a program partitioning where the traditional, digital methods are used to break the

PDE problems into subproblems that can be solved on an analog accelerator approximately. These

analog approximate solutions are then seeded into the digital algorithm to obtain an accurate

solution.

In the remaining chapters of this part I discuss our findings in using our analog accelerators to

tackle linear and nonlinear algebraic equations.

84

Chapter 10

Analog-Digital Co-Processing for

Linear Algebra

This chapter uses the programmable analog accelerator for solving systems of linear equations.

In work published in [82, 83], our team compared the analog solver’s performance and energy

consumption against an efficient digital algorithm running on a general-purpose processor. The

analog approach may have 10× better performance than digital methods, while spending 1
3 less

energy, for certain designs of the analog accelerator and certain problem sizes.

We found analog co-processors for linear algebra must offer high analog bandwidth in order

to speed up convergence of the circuit. Providing this analog bandwidth in the circuit consumes

silicon area and increases power consumption. These limitations ultimately limit the performance

and efficiency benefits of analog co-processing for linear problems.

The potential benefit of analog co-processing for linear systems is further limited in comparison

to the best digital solvers. Digital algorithms such as conjugate gradients are optimal, and are

difficult to beat using analog co-processors, no matter the intrinsic speed and efficiency of analog

hardware. Finally, we conclude that problem classes outside of systems of linear equations could

hold more promise for analog acceleration.

Nonetheless, the ability to solve linear algebra problems in analog becomes a useful “inner loop”

for other problems we solve in analog co-processors, such as the nonlinear systems of equations in

Chapter 11.

85

1.00E-17
1.00E-15
1.00E-13
1.00E-11
1.00E-09
1.00E-07
1.00E-05
1.00E-03
1.00E-01
1.00E+01
1.00E+03

0 5 10 15 20 25 30 35

L2
_n

or
m

 e
rr

or

iterations

cg steepest sor gs jacobi

Figure 10.1: Comparison of iterative numerical linear algebra algorithms for solving a Poisson
equation. The problem is discretized using finite differences with 16 points over three dimensions,
for a total of 4096 grid points. Boundary condition u(x, y, z) = 1.0 for the plane x = 0, u(x, y, z) =
0.0 otherwise.
The L2-norm of the error is plotted against the number of numerical iterations. The numerical
algorithms are conjugate gradients, steepest descent, successive over-relaxation, Gauss-Seidel, and
Jacobi iterations. We see CG converges to a solution limited by the precision of double precision
floating point numbers the quickest.

10.1 Importance of linear algebra

Solving systems of linear equations is the single most important numerical primitive in continuous

mathematics [36, 6, 48]. Many modern scientific computing and big data problems are converted to

linear algebra problems. Just to give a few examples, these problems include optimization problems

(such as linearly constrained quadratic programming) [90, 133, 20], finite difference elliptic PDEs

(such as the Poisson equation) [18, 22], and support vector machines. Linear algebra algorithms

that solve these problems include sparse matrix, dense matrix, structured, and unstructured grid

algorithms, and are the bulk of the Berkeley Dwarfs taxonomy [6]. Analog acceleration would be

extremely useful if it can tackle linear algebra and serve as a foundation for problems in many

domains.

10.2 Digital iterative numerical methods for linear algebra

As a quick review of linear algebra, the problem entails finding a value for x⃗ that satisfies the

equation Ax⃗ = b⃗, where A is a known matrix of coefficients and b⃗ on the right-hand side is a known

vector of constants or biases. No closed form solution exists if the size of matrix A is 4 × 4 or

greater, so digital computers resort to numerical linear algebra methods.

86

Linear algebra algorithms are categorized as direct and iterative solvers [169, 138]. Direct solvers

focus on factoring the matrix, resulting in algorithms that assign correct values to the solution one

element at a time. Notable direct solvers include Cholesky decomposition and Gaussian elimination.

On the other hand, iterative solvers start at an initial guess ⃗uinit; then, the entire solution

evolves step-by-step toward the correct answer according to an algorithm until the solution stops

changing and is accurate at ⃗ufinal. Even if an iterative solver is stopped short of full convergence, the

intermediate solution still approximately satisfies the original system of linear equations. Classical

iterative numerical linear algebra methods include Jacobi, Gauss-Seidel, successive over-relaxation,

and conjugate gradient methods [161]. Figure 10.1 establishes that conjugate gradients (CG) has

the best convergence rate among classical iterative methods. Efficient iterative methods such as

the conjugate gradient method are increasingly important because intermediate guess vectors are

a good approximation of the correct solution [48].

An important property of linear algebra problems is conditioning, which controls the difficulty of

solving the linear algebra problem. Intuitively, ill-conditioning arises when there is a large dynamic

range in the values of variables (technically, the eigenvalues of the system). When a numerical

linear algebra method tackles an ill-conditioned problem, it becomes more likely that in the course

of solving the problem, a divide-by-zero error occurs.

Ill-conditioning is a symptom of imperfect modeling of problems or physical systems. For

example, a scientist or a mathematician may write down a model equation without a clear idea of

which aspects of the model are dominant. In such situations it is difficult for numerical integrators

to operate, because no choice of a time step size permits both accurate calculation of the gradient

and rapid simulation of the system. Ill-conditioning is a problem in machine learning as well.

Overfitting in regression is the result of directly using the stiff solution. The model has been forced

to treat relatively irrelevant control variables as significant, resulting in a poor regression result.

When ML researchers do regularization, they are actually conditioning their matrix.

Iterative linear algebra algorithms introduce a concept called step size in order to handle ill-

conditioned problems. The step size controls how much the solution vector changes in each algo-

rithm step. The step size affects the algorithm’s efficiency and requires many processor cycles to

calculate. In the conjugate gradient method, for example, the step size is calculated from previous

step sizes and the gradient magnitude, and this calculation takes up half of the multiplication

87

Figure 10.2: How feedback in an analog computer circuit can be used to implement scalar division
(left) and solving for the solution vector of a linear algebra problem (right).

−𝑎10

−𝑎00

∫
d𝑥1
d𝑡 𝑥1(𝑡)

⍦

ADCDAC

∫
d𝑥0
d𝑡 𝑥0(𝑡)

⍦
ADCDAC

−𝑎11

−𝑎01

𝑏1

𝑏0

Figure 10.3: Schematic of an analog accelerator for solving Ax⃗ = b⃗, a linear system of two
equations with two unknown variables. Matrix A is a known matrix of coefficients realized using
multipliers; x is an unknown vector contained in integrators; b is a known vector of biases generated
by digital-to-analog converters (DACs). Signals are encoded as analog current and are copied using
current mirror fan-out blocks. The solver converges if matrix A is positive definite, usually true for
the problems we discuss.

operations in each conjugate gradient step [161].

10.3 Analog continuous steepest descent for linear algebra

We can also use iterative algorithms in an analog accelerator to solve systems of linear equations.

The critical idea is to use the transient behavior of an analog resistor-capacitor circuit, and use

that circuit to compute the intermediate results of an iterative numerical method. Essentially, we

draw an equivalence between iterative numerical methods in applied math, algorithms in computer

science, and transient circuit dynamics in electrical engineering.

The key difference in doing iterative algorithms in analog hardware is the that guess vector is

88

updated using infinitesimally small steps, over infinitely many iterations. This continuous trajectory

from the original guess vector to the correct solution is an ordinary differential equation (ODE),

which states the change in a set of variables is a function of the variables’ present value. We would

then apply the methods discussed in Section 5.1 and Part III to solve the ODE.

Let’s walk through an example of an analog accelerator configuration for solving an ODE that

in turn solves a system of linear equations. At the analog accelerator’s heart are integrators,

which contain the present guess of the solution vector represented as an analog signal evolving as

a function of time (see Figures 10.2, 10.3). The accelerator performs operations on this solution

vector by feeding the vector through a linear network of multiplier and summation units. Digital-

to-analog converters (DACs) provide constant coefficients and biases. Using these function units,

the hardware creates a linear function of the solution vector, which is fed back to the inputs of the

integrators. In this fully formed circuit, the solution vector’s time derivative is a linear function of

the solution vector itself.

The analog accelerator charges the integrators to initial condition values representing the it-

erative method’s initial guess. The accelerator starts computation by releasing the integrators,

allowing its output to deviate from its initial value. Then, the variables contained in the integra-

tors converge on the correct solution vector that satisfies the system of linear equations. When

the analog variables are steady, the accelerator samples them using analog-to-digital converters

(ADCs).

These techniques were used in early analog computers [30, 94, 102] and have recently been

explored in small-scale experiments with analog computation [120, 49, 183, 184].

10.4 Mitigation of analog linear algebra disadvantages

This linear algebra use case for analog accelerators encounters several drawbacks of analog comput-

ing, including limited accuracy, precision, and scalability. We demonstrated mitigations for each

of these problems in the context of solving linear algebra, although the techniques we discuss apply

to other styles of analog computer architecture.

89

Data: A, b⃗
Result: uprecise with high precision

⃗uprecise ← 0⃗;
⃗residual← b⃗;

while || ⃗residual|| > tolerance do
analog accelerator solves A ⃗ufinal = ⃗residual;

⃗uprecise ← ⃗uprecise + ⃗ufinal;
⃗residual← b⃗−A ⃗uprecise;

end
Algorithm 1: Building precision in analog result

Improve sampling precision by focusing on analog steady state

High-frequency and high-precision analog-to-digital conversion is costly. So, instead of trying to

capture the time-dependent analog waveform, we use the analog accelerator as a linear algebra

solver by solving a convergent ODE. In contrast to solving time-varying ODEs, here the analog

accelerator’s ADCs only have to sample the value of the stable output ⃗ufinal, which means that

sampling frequency is not a concern. When the analog accelerator outputs are steady, ADCs can

sample the solutions with higher-precision.

Even then, high-precision ADCs still fall short of the precision in floating-point numbers. The

digital host gets higher-precision results by running the analog accelerator multiple times. The

digital host computer finds the residual error in the solution, and then sets up the analog accelerator

to solve a new problem, focusing on the residual. Each problem has smaller-magnitude variables

than previous runs, which lets the software scale up the variables to fit the dynamic range of the

analog hardware. Iterating between analog and digital hardware a few times results in a more

precise result than using the analog hardware alone. This procedure is shown in Algorithm 1.

Tackle larger problems by accelerating sparse linear algebra subproblems

Modern workloads routinely need thousands of variables, corresponding to as many analog integra-

tors in the accelerator, exceeding the area constraints of realistic analog accelerators. Furthermore,

the analog datapath is fixed during continuous time operation, so there is no way to dynamically

load variables from and store variables to main memory.

Analog accelerators can solve large-scale sparse linear algebra problems by accelerating the solv-

90

Figure 10.4: An example of the solution to an elliptic PDE. The continuously varying field has
been discretized into node variables which are solved using linear algebra.

ing of smaller subproblems. This lets analog accelerators solve problems containing more variables

than the number of integrators in the analog accelerator.

In such a scheme, the analog accelerator finds the correct solution for a subproblem. To get

overall convergence across the entire problem, the set of subproblems would be solved several times,

using an outer loop iterating across the subproblems.

As a specific example, we walk through the process of splitting a 2D Poisson elliptic PDE, defined

on the unit square (Ω = [0, 1]2). A 2D Poisson elliptic PDE has the form ∂2u
∂x2 + ∂2u

∂y2
= b(x, y). The

continuous spatial partial derivatives indicate that u(x, y) varies continuously over 2D space. Its

solution, with appropriate discretization, may look like the example in Figure 10.4. The problem is

discretized into L×L grid points, converting the continuous field into node variables. For example,

using a 3× 3 grid on the unit square:

u0 u1 u2

u3 u4 u5

u6 u7 u8

would result in nine node variables in the vector u⃗ which are interrelated according to the system

of linear equations:
Au⃗ = b⃗

91

A =
1
1
32



4 −1 −1

−1 4 −1 −1

−1 4 −1

−1 4 −1 −1

−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1

−1 −1 4 −1

−1 −1 4


u⃗ = [u0, u1, . . . , u8]

⊤, b⃗ = [b0, b1, . . . , b8]
⊤

The coefficients in the matrix are a result of using a second-order central finite difference stencil.

The coefficient value of 9 in front of A emerges because we discretized the 2D unit square into

thirds on each side. Notice A is sparse, meaning that most coefficients are zero, a result from the

fact that cells are only related to themselves, and to their four neighbors.

In practice, physics simulations using PDEs have millions of grid points in the vector u⃗, far larger

than the problem sizes that can fit in an analog accelerator. Both digital and analog techniques

would subdivide the large grid size problem into smaller linear problems. For example, the 3 × 3

2D problem can be solved as a set of three independent 1D subproblems:

Asu⃗s = b⃗s

As =
1
1
h2


4 −1 0

−1 4 −1

0 −1 4

 , u⃗s =


us0

us1

us2

 , b⃗s =


bs0

bs1

bs2

 ,

This decomposition temporarily ignores the coefficients that connect the 1D problems into a 2D

problem. The subproblems can be solved separately on multiple accelerators, or multiple runs of

the same accelerator.

Solving the system of equations as block matrices only ensures that the solution vector u⃗s is

correct for the subproblem. To get overall convergence across the entire problem, the set of sub-

problems would be solved several times, using a larger iteration across the subproblems. Typically,

the larger iteration is an iterative method operating on vectors, and do not have as strong con-

92

Unit type Power Core power fraction Area Core area fraction
integrator 28 µW 80% 0.040 mm2 40%

fanout 37 µW 80% 0.015 mm2 33%
multiplier 49 µW 80% 0.050 mm2 47%

ADC 54 µW 50% 0.054 mm2 83%
DAC 4.6 µW 100% 0.022 mm2 61%

Table 10.1: Summary of analog chip components taken from [66, 67].

vergence properties as iterative methods on individual numbers. Therefore, it is still desirable to

ensure the block matrices captured in the analog accelerator are large, so that more of the problem

is solved using the efficient lower-level solver [62, 22].

Handle indefinite matrices by multiplying by the matrix transpose

A problem that both discrete and continuous gradient descent methods face is if A is an indefinite

matrix. Indefinite matrices do not have global maxima or minima in the solution set: the solution

set is convex in some dimensions but concave in others. We observed that if the input matrix is

indefinite, the output does not converge and the integrators saturate. To counter this, we substitute

A with (AT)A. This can be fixed by multiplying the input matrix by its transpose. In practice

this is what discrete gradient descent solvers do on digital computers. We can also do this in the

CPU or with analog multipliers.

10.5 Design space exploration of high-bandwidth analog

accelerators for linear algebra

We compare the analog accelerator and digital approaches in terms of performance, hardware area,

and energy consumption, while varying the number of problem variables and the choice of analog

accelerator component bandwidth, a measure of how quickly the analog circuit responds to changes.

Power and area model

Using physical timing, power, and area measurements recorded by Ning Guo and colleagues [66, 67]

and summarized in Table 10.1, we built a model that predicts the properties of larger-scale analog

accelerators. In Table 10.1, “core power fraction” and “core area fraction” show the power and

93

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000
m

ax
im

um
 a

ct
iv

ity
 p

ow
er

 (W
)

total grid points

20 KHz

80 KHz

320 KHz

1.3 MHz

Figure 10.5: Power versus analog accelerator size for various bandwidth choices. We observe that
analog circuits operate faster when the internal node voltages representing variables change more
quickly. We hold the capacitance fixed to the capacitance of the prototype’s design, and use larger
currents that draw more power to charge and discharge the node capacitances in the signal paths
carrying variables.

area of each block that forms the analog signal path. The core area and power scale up and down

for different analog bandwidth designs. Not all area and power consumption of the blocks of the

prototype design are involved in the analog signal path. The area and power consumption of such

subcircuits do not need to scale up for higher bandwidth designs. The noncore transistors and

nets not involved in analog computation include calibration and testing circuits and registers. We

explore how different bandwidth choices influence analog accelerator performance and efficiency.

Analog bandwidth model

The prototype chip has a relatively low analog bandwidth of 20 KHz, a design that ensures that

the prototype chip accurately solves for time-dependent solutions in ODEs. The reason that high

bandwidth is not used when solving ODE dynamics is that high bandwidth designs are more

sensitive to parasitic effects, which degrade the solution’s accuracy. However, the prototype’s low

bandwidth makes it unrepresentative of an analog accelerator designed to solve time-independent

algebraic equations, in which accuracy degradation in time-dependent behavior has no impact on

the final steady state output. We scale up the model’s bandwidth, within reason, up to 1.3 MHz.

Increasing the bandwidth of the analog circuit design proportionally decreases the solution

time, but also increases area and energy consumption. As Figures 10.5 and 10.6 show, we assume

an analog accelerator with bandwidth multiplied by a factor of α has higher power and area

consumption in the core analog circuits, by a factor of α.

94

0.00E+00

2.00E+02

4.00E+02

6.00E+02

0 500 1000 1500 2000
ar

ea
 (m

m
^2

)
total grid points

20 KHz

80 KHz

320 KHz

1.3 MHz

Figure 10.6: Area versus analog accelerator size for various bandwidth choices. We observe that the
transistor aspect ratio W/L must increase to increase the current, and therefore bandwidth, of the
design. L is kept at a minimum dictated by the technology node, leaving bandwidth to be linearly
dependent on W . Thus, we estimate area increasing linearly with bandwidth. The assumption on
area scaling is conservative; higher bandwidth may be obtained for less than proportional increase
in area.

The projected analog power figures are significantly below the thermal design power of clocked

digital designs of equal area. Even in the designs that fill a 600 mm2 die size, the analog accelerator

uses about 0.7 W in the base prototype design and about 1.0 W in the design with 320 KHz of

bandwidth.

10.6 Sparse linear algebra case study

We use as our test case a sparse system of linear equations derived from a multigrid elliptic partial

differential equation (PDE) solver. In multigrid PDE solvers, the overall PDE is converted to several

linear algebra problems with varying spatial resolution. Lower-resolution subproblems are quickly

solved and fed to high-resolution subproblems, aiding the high-resolution problem to converge

faster. The linear algebra subproblems can be solved approximately. Overall accuracy of the

solution is guaranteed by iterating the multigrid algorithm [22, 18]. Because perfect convergence

is not required, less stable, inaccurate, and low-precision techniques, such as analog acceleration,

can support multigrid.

In our case, we compare the analog accelerator designs to a conjugate gradient algorithm running

on a CPU, solving to equal (relatively low) solution precision, equivalent to the precision obtained

from one run of the analog accelerator equipped with high-resolution ADCs. On the digital side,

the numerical iteration stops short of the machine precision provided by high-precision digital

95

0

50

100

150

200

0 200 400 600

co
nv

er
ge

nc
e

tim
e

(
s)

total grid points

digital CG

analog 20KHz

Linear (analog 20KHz)

Linear (analog 80KHz
projection)

Linear (analog 320KHz
projection)

Linear (analog 1.3MHz
projection)

Figure 10.7: Comparison of time taken to converge to equivalent precision, for high-bandwidth
analog accelerators and a digital CPU. The time needed to converge is plotted against the linear
algebra problem vector size. We give the projected solution time for 80-KHz, 320-KHz, and 1.3-
MHz analog accelerator designs. The high-bandwidth designs have increasing area cost. In this
plot, the 320-KHz and 1.3-MHz designs hit the size of 600 mm2, the size of the largest GPUs, so
the projections are cut short. The convergence time for digital is the software runtime on a single
CPU core.

floating-point numbers.

Analog and digital linear algebra performance comparison

As Figure 10.7 shows, we found that an optimal analog accelerator design that balances performance

and the number of integrators should have components with an analog bandwidth of approximately

320 KHz. With our bandwidth model, high-bandwidth analog computers come with high area cost,

quickly reaching the area of the largest CPU or GPU dies. On performance and energy metrics,

we find that with 400 integrators operating at 320 KHz of analog bandwidth, analog acceleration

can potentially have a 10-times faster solution time.

Analog and digital linear algebra energy comparison

We compare the solution energy of analog and digital solvers in Figure 10.8. Using our analog band-

width model for power, this design corresponds to 33 percent lower energy consumption compared

to a digital general-purpose processor.

Using an estimate of 225 pJ for every floating point multiply-add operation in GPUs [95], we

96

0

50

100

150

200

0 200 400 600 800 1000
so

lu
tio

n
en

er
gy

 (
J)

total grid points

GPU

20 KHz

80 KHz

320 KHz

1.3 MHz

Figure 10.8: The energy needed to solve 2D problems of varying number of total grid points,
for different analog accelerator designs, compared against a GPU running CG. The 80 KHz design
shows some energy savings relative to the GPU. High bandwidth analog accelerators are quickly
limited by their large chip area cost and cannot solve problems with many grid points. Furthermore,
because not all power and area is spent on the analog critical path, efficiency gains cease after
bandwidth reaches 80 KHz.

derive the amount of energy needed for GPUs to compute the solution to equivalent accuracy as that

of the analog accelerator. As bandwidth increases, a higher fraction of area and power consumption

becomes directly involved in analog computation— calibration, testing, and digital circuits become

a smaller fraction of area and power costs— resulting in a more energy-efficient design. Once almost

all the power consumption is directly involved in analog computation, increasing bandwidth results

in a proportional increase in power and decrease in computation time, so the efficiency gains do

not increase after bandwidth reaches 80 KHz. We conclude that analog accelerators need as high

bandwidth as area permits for high speed solution. Analog acceleration may offer some efficiency

gains for linear algebra, but not by a significant factor.

10.7 Challenges and pitfalls of analog linear algebra

Effect of variable dynamic range on analog performance and efficiency

Despite its efficiency, continuous-value representation in the analog accelerator has drawbacks when

used to assist digital computing. While the computation taking place inside the accelerator takes

place at high precision, ADC conversion of the results is not so favorable. Each time the analog

accelerator runs to solve an equation, the digital host only obtains as many bits of precision as the

ADC conversion. At the levels of ADC precision we consider, 8 − 12 bits, the digital algorithm

97

Scaling the dynamic range of equation variables into that of the circuit: any system of
linear equations of the form Au⃗ = b⃗, with arbitrarily large magnitude coefficients in the A matrix,
b⃗ vector, and solution u⃗, can be scaled to fit in the dynamic range of the analog computer. The
solution is found using the convergent system of ODEs du⃗

dt = b⃗−Au⃗(t), where A is positive definite,
subject to an initial condition on u⃗(0) = u⃗0. The closed form solution for u⃗(t), at some instant of
time t, is:

u⃗(t) = A−1⃗b+ c⃗e−At

c⃗ = u⃗0 −A−1⃗b

Where eAt is the matrix exponential. When we use the analog accelerator as a linear algebra solver,
the system is solved when:

e−At = 0⃗

Now, suppose A has some element with value sg that exceeds the maximum gain g that the
multipliers can give as coefficients. We can scale down the magnitude of A and instead program
into the analog accelerator the matrix As =

A
s that has gains that are in the acceptable range. For

the closed form equations to hold:

u⃗(t) = A−1
s

b⃗

s
+ c⃗e−Asst

c⃗ = u⃗0 −A−1
s

b⃗

s

We see that the result u⃗(t) remains unchanged so long as we also scale down b⃗ by s, and scale
up time t by a factor s. That is, given limited bandwidth in the system, we have restricted the
dynamic range in A by extending the time it takes for the ODE to simulate. This is referred in
the literature as value and time scaling; correct selection of scaling parameters can be challenging
when using analog computers [13, 69, 27].

takes only a few iterations to reach the same level of precision. On the other hand, while operation

on floating points is costly, the digital algorithm can continue operating on the same set of data

until precision is limited by the precision of floating point numbers.

Furthermore, floating point numbers are more able to represent variables with high dynamic

range. In contrast, the problem’s coefficients and constants must fit in the range of gain provided

by multipliers and the output range of DACs. In order to multiply and add large numbers, the

analog accelerator must use a procedure that scales down multiplication coefficients and added

constants, but extends the amount of the time it takes to solve a problem (see inset on page 98).

For example, when the two dimensional Poisson equation, defined on the unit square, is dis-

cretized with L increments to a side into system of linear equations, the absolute value of the

elements inside the coefficients matrix increases in proportion to L2. In order to map these ma-

98

Analog Conjugate gradients
Grid
points

HW cost Conv.
time

Energy
= HW ×
time

Conv.
steps

Time per
step

Time and
energy

1D N = L N = L in-
tegrators

N = L N2 = L2 N = L N = L N2 = L2

2D N = L2 N = L2

integra-
tors

N = L2 N2 = L4 N0.5 = L N = L2 N1.5 = L3

3D N = L3 N = L3

integra-
tors

N = L3 N2 = L6 weak de-
pendence

N = L3 N = L3

Dense N N2 multi-
pliers

? ? N N2 N3

Table 10.2: Time, area, and energy trends for analog acceleration and conjugate gradients, for
different types of connectivity between variables, which affects the A matrix. N denotes the
number of variables. L denotes the number of increments per dimension.

trices with larger magnitude coefficients into the dynamic range of the multipliers, we must scale

down the elements of the matrix by L2. In exchange, the analog computer requires more time,

proportional to L2, in order to solve the equation.

This ability for analog computers to trade dynamic range in variables by extending the com-

putation time is a useful trick. But in comparison to computing on floating point numbers which

have much higher dynamic range, this need to scale variables is a burdensome trade off. In the case

of this comparison between analog and digital solvers, the analog accelerator’s need to do value

and time scaling is a performance penalty.

Effect of problem dimensionality on analog performance and efficiency

In the 2D Poisson elliptic equation example, we solved systems of linear equations with coefficient

matrices that result from discretization of two-dimensional space. These matrices have a sparse

pentadiagonal form, meaning coefficients are non-zero along only five diagonals of the matrix. We

now explore the scaling trends for 1D, 2D, 3D sparse matrices, as shown in Table 10.2.

In the 2D example, analog acceleration follows a favorable scaling trend compared to CG, but

the energy scaling favors CG. The overall effect there is a range of number of variables being solved

where analog possibly wins in both speed and energy consumption.

99

In 3D problems, analog acceleration is not feasible, due to comparable scaling of solution speed

and unfavorable scaling of energy consumption. Changing the dimensionality of the problem from

2D to 3D poses no significant challenges to a software algorithm. For each node value, the stencil

will request node values in neighbors in all three dimensions. The node values for neighbors in the

highest order dimension will be least recently used, and will have the least data locality. Compared

to 2D problems, 3D problems have a larger data cache footprint, and an increase in the cache

access stride length. Analog computing, on the other hand, faces greater challenges in creating a

hardware mapping for 3D problems on a 2D chip, due to difficulty in laying out the integrators in

a way that balances and minimizes the analog interconnects.

10.8 Summary

The performance increases and energy savings for linear algebra are not as drastic as one expects

when using a domain-specific accelerator built on a fundamentally different computing model than

digital, synchronous computing. The reason for this shortfall is twofold.

First, the high area cost of high-bandwidth analog components limits the problem sizes that

can fit in the accelerator, and therefore limits the analog performance advantage.

Second, the extreme importance of linear algebra problems has also led to intense research

in optimal algorithms and hardware support. Although discrete-time operation has drawbacks,

it permits algorithms to intelligently select a step size, which has advantages in solving systems

of linear equations. Both the analog and digital solvers perform iterative numerical algorithms,

but the digital program runs the conjugate gradient method, the most efficient and sophisticated

of the classical iterative algorithms. In the conjugate gradient method, each step size is chosen,

considering the gradient magnitude of the present point, along with the history of step sizes.

With these additional calculations, the conjugate gradient method avoids taking redundant steps,

accelerating toward the answer when the error is large and slowing when close to convergence. Note

in Figure 10.1, the CG method has the steepest slope on a log-linear chart, more efficient than any

other method presented.

In contrast, the analog accelerator has fewer iterative algorithms it can carry out. In using

the analog accelerator for linear algebra, the design’s bandwidth limits the convergence rate, so

100

the convergence rate within a time interval cannot be arbitrarily large. Therefore, the numerical

iteration in the analog accelerator is akin to relaxation or steepest descent at a constant rate.

Although we can consider the analog accelerator as doing continuous-time steepest descent, taking

many infinitesimal steps in continuous time, doing many iterations of a poor algorithm is in this

case no match for a better algorithm.

Efficient discrete-time algorithms such as conjugate gradient and multigrid have been known

to researchers since the 1950s. Analog computers remained in use in the 1960s to solve steepest

descent due to their better immediate performance relative to early digital computers.

Changing the basic abstractions in computer architecture could change what types of problems

are solvable. Interesting physical phenomena are usually continuous-time, analog, nonlinear, and

often stochastic, so the computer architectures and mathematical abstractions for simulating these

processes should also be continuous-time and analog. Although analog acceleration has limited

benefits for solving linear algebra, I show in the next that section analog acceleration holds promise

in problem classes such as nonlinear systems, in which digital algorithms and hardware architectures

have been less successful.

101

Chapter 11

Analog-Digital Co-Processing for

Solving Nonlinear Systems of

Equations

This chapter explores architectural ideas that allow us to successfully use a analog accelerator, here

in the context of solving nonlinear systems of equations [81]. We use the approximate solution from

an analog accelerator to help a precise digital nonlinear equation solver running on a GPU. For

larger, more nonlinear problems, the hybrid analog-digital solver has a performance improvement

of 5.7× and energy savings of 11.6×, relative to a GPU without the help of an analog accelerator.

The favorable findings contrast with the last chapter which found analog accelerators would

have limited benefits in solving linear problems, due to prohibitively high analog silicon area costs

and due to stiff competition from efficient digital computer algorithms for linear algebra [82, 83].

Here, analog acceleration redeems itself in nonlinear problems, which pose no special challenge in

analog but are tricky in digital because the prototypical digital algorithms for nonlinear equations

are unreliable.

The difference in how digital linear solvers vs. digital nonlinear solvers spend computation time

is a key factor why analog acceleration had limited impact in helping with linear equations, while

significantly helping with nonlinear problems. Digital linear solvers give the most significant digits

of the solution quickly but take time to give the least significant digits, and unfortunately analog

102

acceleration cannot help to give precise solutions. On the other hand, digital nonlinear solvers have

a hard time getting a rough-guess solution but polishing a good guess to high precision is cheap. A

hybrid analog-digital system combines the analog solver for cheap approximate solutions and the

digital solver to obtain high precision.

An analog accelerator has a unique advantage in solving nonlinear equations because it works

in continuous time, without steps. In an analog accelerator, nonlinear circuit blocks such as multi-

pliers and adders can evaluate the products and sums for Taylor polynomials, which are useful for

finding nonlinear functions and derivatives. As a result, analog accelerators always have up-to-date

estimates of nonlinear functions and derivatives. That contrasts with digital, discrete-time systems

which must pretend the problem is linear at each step.

Hybrid analog-digital system

Once we set up a way to give approximate solutions to nonlinear systems of equations using an

analog accelerator, we had to evaluate its usefulness in workloads that a conventional digital com-

puter would handle. The requirements for a hybrid analog-digital approach include high accuracy

and precision in the solution and the ability to handle large problem sizes.

To get high accuracy solutions, we use the analog accelerator in an analog-digital solver system

where approximate and low-precision analog solutions are good initial seeds for a digital solver.

This scheme is fruitful because a naïve Newton method solver with a poor initial guess spends most

of its iterations trying to find the general area of the correct solution. The results in this chapter

confirm a digital solver incurs higher time costs as a problem becomes more nonlinear due to this

initial search phase. On the other hand, an analog approximate solution allows the hybrid system

to fast forward through this phase. Once the hybrid system is in the general area of the solution,

the digital solver quickly refines the solution to high precision. The result is the hybrid system

solves increasingly nonlinear problems with no significant increase in solution time.

To handle large problem sizes, the digital solver divides nonlinear PDE problems into nonlinear

systems of equations problems that can fit in the analog accelerator. Since the analog accelerator

focuses only on solving nonlinear systems of equations, the existing PDE space and time dis-

cretization techniques stay the same, reducing the amount of reprogramming needed to use analog

103

acceleration. If the nonlinear systems of equations are still too big to fit in the analog accelerator,

we use red-black nonlinear Gauss-Seidel to further split the problems.

In this chapter, we make projections on the performance, power, and area of a tiled-out analog

accelerator, up to the point where the analog accelerator size matches that of the largest commercial

digital chips. Our comparisons and results assume that as the largest possible analog accelerator.

We speculate that given the low power consumption and signal fault tolerance of analog chips, it is

possible to build larger analog chips and stack them in ways that are impossible with digital chips.

Physical prototype implementation

We tested our ideas on a two-chip system of our physically prototyped analog accelerators. The

connectivity for analog signals between chips and between tiles is sparse to match the sparse

connectivity of PDEs. Within each tile, the connectivity between analog components is all-to-all to

create a variety of nonlinear polynomial functions and their derivatives, giving support for different

nonlinear PDEs.

The two-chip system allowed us to test 2D Burgers’ equations on a 2×2 grid. We then ex-

trapolated the solution times for analog chips capable of solving larger problems. When an analog

accelerator chip capable of solving 16×16 2D Burgers’ equations generates approximate solutions

to help a GPU running the Newton method, the solution time of the GPU decreases by 5.7× and

the energy consumption decreases by 11.6×. These savings are significant since they reduce the

costs of the innermost and most intensive kernels of nonlinear PDE solvers.

11.1 Importance and difficulty of solving nonlinear systems of

equations

Scientific computing workloads increasingly rely on nonlinear equations to accurately model the real

world. A recent informal survey of applied math literature1 found Newton methods for nonlinear

equations to be the most mentioned algorithm, surprisingly topping other numerical stalwarts like

1https://nickhigham.wordpress.com/2016/03/29/the-top-10-algorithms-in-applied-mathematics/

104

matrix factorization, eigenanalysis, Monte-Carlo methods, and FFT. For comparison, an earlier

ranking of algorithms from the turn of the century did not mention nonlinear problems at all [36].

The importance of Newton methods may surprise computer architects, since scientific comput-

ing workload profiles show sparse linear algebra is by far the most important kernel. Accordingly,

we tune architectures such as GPUs for linear algebra [18, 105]. The reality is scientific computing

workloads oftentimes call linear algebra subroutines from nonlinear equation solvers. Therefore,

improvements for nonlinear solvers would reduce the number of calls to linear algebra solvers alto-

gether. Unfortunately, the software behavior of nonlinear solvers is less regular, making it difficult

to devise conventional accelerators for nonlinear problems.

Compared to linear equations, nonlinear systems of equations are challenging for two reasons:

first, to be able to find a solution, nonlinear numerical solvers need a good initial guess [96, 134, 47].

This is more critical than in linear solvers not only to avoid redundant work but to even achieve

convergence. As a rough analogy, if solving linear equations is like navigating an orderly city grid,

solving nonlinear equations is like hiking in the mountains. In the latter case there is a higher chance

of getting lost, and thus starting close to the solution spot is critical. Second, numerical solvers

for nonlinear equations rely on a careful choice of the step sizes they take toward the solution. To

further our analogy, this is as if nonlinear solvers need to frequently check the map, never traveling

too far in any one direction, while linear solvers can speed to their solutions in just a few algorithm

iterations (turns on the city grid in my analogy). These difficulties entail more work in solving

nonlinear systems of equations.

Our proposed analog accelerator for solving nonlinear systems of equations has three major

benefits: first, the analog units in the accelerator naturally implement nonlinear functions (using

analog multipliers, adders, and lookup tables), reducing the amount of work compared to a digital

accelerator. Second, the accelerator uses a different algorithm for solution finding, one that operates

continuously in time with no notion of step-by-step operation as required by digital hardware. In

our analogy, such an algorithm working in continuous time allows the nonlinear solver to always

know which direction to proceed, without pausing to check the map. Third, we use a method of

initial solution guessing uniquely suited for the analog accelerator called homotopy continuation,

which in effect maps an orderly city grid to the (nonlinear) wilderness, making it easier to find

initial guesses.

105

11.2 Tutorial: scalar nonlinear root-finding

To solve nonlinear equations in the analog accelerator, we studied how modern digital computers

solve nonlinear equations using algorithms. The prototypical digital numerical method for nonlinear

equations is the Newton method, which is an iterative method that makes successive guesses at the

solution vector with decreasing error until it converges [96, 134, 47].

In practice, the Newton method in a digital computer does not always give a correct result, and

needs fine tuning of the algorithm in two aspects. First, the choice of the iterative method’s step

size for updating the guess is important, as the algorithm needs to often reevaluate the nonlinear

function and its derivative. Second, the initial guess to the algorithm needs to be close to the

correct solution or else the algorithm does not converge.

This section is a review of digital methods for solving nonlinear equations and a tutorial on

doing the same using an analog accelerator. We highlight pitfalls of the digital method which are

avoided in the analog computational model.

Digital classical and damped Newton’s

Digital algorithms for nonlinear equations must have a good initial guess to the solution, or else

they must spend a lot of time to find the right solutions. In order to understand this tradeoff, let’s

first review the problem statement.

Solving nonlinear equations entails finding a floating-point value u that satisfies the nonlinear

function f(u) = 0. The solution u is called a root of f . For example, the equation

f(u) = u3 − 1 = 0 (11.1)

has one real-valued root u = 1 and two complex-valued roots.

To get these roots numerically, the Newton method starts with an initial guess u0 and iterates

through multiple guesses up according to the recurrence relation:

up+1 = up −
f(up)

f ′(up)
= up −

u3p − 1

3u2p

A downside of Newton’s method is it is sensitive to the initial guess of what the roots should

106

be. When we plot on the complex plane the root to which Newton’s method converges against the

choice of the initial guesses, the resulting picture is fractal: the regions of the plot are intertwined

in complex patterns, indicating a small change in the initial guess for Newton’s method can lead to

different conclusions. This is because Newton’s method updates its guess of the solution in discrete

steps [152, 175, 86].

One way to reduce the classical Newton method’s sensitivity to initial guesses is to use relaxed

or damped steps, where the full step size is diminished to a fraction h between 0 and 1, at the cost

of increasing the computation time.

up+1 = up − h
f(up)

f ′(up)

By reducing the step size the guesses are more likely to stay in the same convergence basin.

The pictures plotting the final solutions against initial conditions become less complex as the

convergence basins grow in size and become contiguous [152, 175, 86]. In effect, the damped

Newton method decreases the algorithm’s sensitivity to initial conditions, at the cost of having to

run the algorithm for more iterations. In practice it is difficult to choose the correct step size.

Analog continuous Newton’s method

Now, we show how a continuous-time analog accelerator offers a more natural and reliable way to

solve f(u) = 0 by avoiding the problem of finding a correct step size. We test the scheme on our

prototype analog accelerator chip.

We take damped Newton’s methods to the logical extreme and shrink the step size h to in-

finitesimally small, and take infinitely many steps of the resulting continuous Newton’s method,

which should be minimally sensitive to the choice of the initial conditions [152, 76, 86, 132, 126].

In fact, the continuous Newton method could be considered the natural way of solving nonlinear

equations. The continuous Newton method is stated concisely as an ordinary differential equation

(ODE).

Digital computers cannot directly solve ODEs and instead approximate them using numerical

integration for solving ODEs. For example, the damped Newton method is an Euler’s method

approximation of the continuous Newton method ODE, and classical Newton’s method is an Euler

107

∫∫
+F(u)

-JF(u)

∫∫
u

δ≈JF
-1(u)F(u)

-

Figure 11.1: Analog circuit for continuous Newton’s method. Clockwise from the center left, the
major analog function units: integrators for holding the present guess of u, a block for evaluating the
Jacobian (the derivative f ′(u) in the scalar case), a block (shaded) for finding the Jacobian inverse
(the quotient f(u)/f ′(u) in the scalar case) using gradient descent, and a block for evaluating the
nonlinear function. Numbers are represented as analog current and voltage. Physically, integrators
are capacitors. Digital-to-analog converters (DACs) generate constant values. Joining wires sums
numbers by summing currents. The circuit values change continuously in time, with no clock cycles
or steps.

approximation with step size of 1. More sophisticated Newton’s method solvers use better numer-

ical integration (such as Runge-Kutta or backward differentiation formulas), but those improved

algorithms quickly become complex and costly.

Analog accelerators on the other hand directly solve the continuous Newton method’s ODE

description. Let’s walk through how this is done as it underpins the techniques used in the rest of

this chapter.

Analog implementation

Figure 11.1 shows an analog circuit that operates in continuous time, implementing the continuous

Newton method. We use the integrators at the left side of the circuit to store the analog value of

the real and imaginary parts of u(t) as functions of time. The integrators take as their input the

value du
dt , the rate of change of u at any moment in time. u(t) is then fed to analog hardware that

multiplies and sums values to create the derivative f ′(u) and the function f(u). Complex number

multiplication is done by cross multiplying the real and imaginary parts appropriately.

Next, we must find the quotient between these values, f(u)
f ′(u) . The quotient is calculated in

analog hardware using negative feedback, using continuous gradient descent, a technique explored

108

Real

Imaginary

+1-1

+i

-i

Figure 11.2: The results of continuous Newton’s method running on an analog accelerator proto-
type chip solving Equation 11.1. The colors encode which of the three cubic roots the chip returns,
plotted on the complex plane indicating the initial conditions. Each of the 256× 256 pixels is one
run of the chip. The convergence basins are more contiguous compared to those in classical or
damped Newton methods.

in detail in the previous chapter [82, 83].

The quotient is negated and fed to the inputs of the u(t) integrators as du
dt , the rate of change

of u. The values change continuously, with no notion of clock cycles or time steps, so the whole

system is described as an ODE—the ODE for continuous Newton’s:

du
dt = − f(u)

f ′(u)

When the continuous Newton method converges, the inputs to the integrators tend toward zero,

so the output of the integrators are steady, and at that point we can measure the output using

analog-to-digital converters.

Analog accelerator result

Figure 11.2 shows the chip is able to return all of the three roots. Which root it converges to

depends on the choice of the initial condition. The picture is simple and the convergence basins

are contiguous compared to the pictures generated by classical and damped Newton’s method [86],

109

implying small changes in the initial condition are less likely to cause changes in the final solution.

Using the analog accelerator it becomes easier to explore the effect of the initial guess.

Doing the Newton method in continuous-time on an analog accelerator has unique advantages.

First, the algorithm always has an up-to-date evaluation of the nonlinear function and its derivative,

and since the algorithm runs in continuous time, we do not run into problems having to select a

step size. Second, we show in the next section an improvement to the basic Newton’s method called

homotopy continuation which allows the analog accelerator to select initial guesses more easily.

11.3 Motivation: nonlinear systems of equations

In this section I discuss how analog and digital models of computing can work together, drawing

on strengths and avoiding weaknesses of both. These ideas are important in understanding why

hybrid analog-digital computing is useful for solving nonlinear PDEs.

Nonlinear systems: digital challenges

A weakness of the digital discrete-time model of computation becomes clear when we use the

damped Newton method for solving nonlinear systems of equations. These problems have multiple

unknown variables, unlike the previous section’s root finding example which had one unknown. As

a result the algorithm must find correct initial guesses for all of the unknowns, and solve a matrix

equation in each step of the algorithm. These tasks are are inefficient when we are limited to using

step-by-step digital computation.

Finding the Jacobian and its inverse

The Newton method requires finding the Jacobian matrix and solving a linear algebra problem

involving the Jacobian. These tasks take the most time in nonlinear PDE solvers, as confirmed in

the software profiles in Table 9.1.

First, let’s discuss why the Jacobian matrix appears. Solving multidimensional nonlinear sys-

tems of equations entails finding u⃗, a d-dimensional vector satisfying F (u⃗) = 0⃗. Just like in the

scalar case, we need F ′(u⃗p), the derivative of F with respect to u⃗ at the present guess u⃗p. But

unlike the scalar case, in multi-variable calculus this derivative is the Jacobian matrix JF (u⃗), which

110

is defined as:

F ′(u⃗) = JF (u⃗) =

∂F0
∂u0

(u) ∂F0
∂u1

(u) . . . ∂F0
∂ud−1

(u)

∂F1
∂u0

(u) ∂F1
∂u1

(u) . . . ∂F1
∂ud−1

(u)

...
...

∂Fd−1

∂u0
(u)

∂Fd−1

∂u1
(u) . . .

∂Fd−1

∂ud−1
(u)


Each row of the Jacobian corresponds to each element of F (u⃗), while each column differentiates

F (u⃗) against each component of u⃗.

As was the case with just one variable, Newton’s method may fail to converge to the correct

solution, and requires a damping parameter h to ensure convergence. The damping parameter h

smooths out the convergence basins, so that the initial conditions have less of a chaotic effect on

the final solution. The approach succeeds so long as the Jacobian is always non-singular, meaning

that the determinant of the Jacobian never falls to zero [126].

Next, let’s discuss why linear algebra is involved. In the scalar example, we could simply find

the quotient between the function and the derivative by doing scalar division. Now, the derivative

is a matrix, and matrix division is not defined; so instead of doing division we multiply by the

Jacobian matrix’s inverse. The Newton method is then:

⃗up+1 = u⃗p − δ⃗p

where,δ⃗p = J−1
F (u⃗p)F (u⃗p)

In practice we find the unknown δ⃗p from the known JF (u⃗p) and F (u⃗p) by solving the linear system

of equations

JF (u⃗p)δ⃗p = F (u⃗p)

So in each step of Newton’s method we have to solve a linear algebra problem, and these subrou-

tines becomes costly as problem sizes grow. Accelerating these subroutines with approximation

techniques or dedicated hardware would be one way to speed up the overall algorithm. In fact,

later in this chapter we will be comparing the analog approach against a digital solver where a

111

GPU solves th internal linear algebra problem.

In addition to the work solving for δ⃗p, another part of the difficulty in solving nonlinear systems

of equations is finding the nonlinear function and the Jacobian matrix on each iteration. In par-

ticular, in large size problems the Jacobian is a large sparse matrix, and it becomes prohibitively

costly to store the entire Jacobian in memory just to pass it to a linear algebra subroutine. In

practice, the elements Jacobian is evaluated just-in-time by passing the linear algebra subroutine

a function object that returns Jacobian elements as needed.

Uncertainty in the number of solutions and the effect of initial conditions

Another challenge in solving nonlinear systems of equations in digital computers is it’s difficult to

know if any solutions, or how many solutions, there should be. Incorrect guesses at the beginning

of the algorithm may prevent us from finding the right solutions.

It’s difficult to visualize where the roots are located for nonlinear systems of equations. The

problem asks us to find intersections of nonlinear surfaces that could have arbitrary shapes. This

is in contrast to the simpler problem of finding the root of a scalar nonlinear function, which we

can easily visualize in a 2D plane, showing the relationship between the nonlinear function and the

function’s unknown parameter. With that picture it was straightforward to locate the solutions for

scalar problems.

As a concrete example, let’s solve a coupled system of equations:


ρ20 + ρ0 + ρ1 = RHS0

ρ21 + ρ1 − ρ0 = RHS1
(11.2)

This type of coupled system of equations may arise from solving a one-dimensional semilinear

PDE problem on two grid points. The nonlinear term where the variables are squared indicate for

example a reaction process.

We can visualize this coupled system of equations in 3D space shown in the leftmost panel of

Figure 11.3, which shows that depending on the constant RHS coefficients, there may be 0, 1, 2, 4,

or infinitely many solutions. Whether the Newton method converges to one of these solutions, and

which one it ends up at, depends on the initial conditions to the algorithm. Wrong choices would

112

Various quasi-Newton methods simplify the Newton method by avoiding finding the Jacobian matrix
and/or its inverse. These techniques are not applicable to arbitrary nonlinear systems of equations such
as the ones encountered in nonlinear PDEs. Instead, the following techniques are used in nonlinear least
squares and nonlinear optimization problems, where one wants to find the maximum or minimum values of
a scalar-valued function g(u⃗). The set of u⃗ which maximize or minimize g(u⃗) are roots of the gradient, in
which case

F (u⃗) = ∇g(u⃗)

Only when we can make these assumptions about F (u⃗), can the following quasi-Newton methods be used [96,
134, 47, 138]. For solving nonlinear systems of equations descending from nonlinear PDEs, Newton’s method
remains the main algorithm.
I list these quasi-Newton methods as background:

• Gauss-Newton: Newton’s method on the normal equations, useful when there are more unknowns
or equations than the other.

• Levenberg-Marquardt: Gauss-Newton but with damping on the diagonal elements of the Hessian.
Avoids causing the system of equations to become singular, which may result in overfitting.

• Broyden’s: extension of secant method to multidimensional equations.
• BFGS: a way of updating the Hessian inverse without calculating the inverse.

make the algorithm incorrect or inefficient.

Nonlinear systems: analog homotopy

A strength of the analog continuous-time model of computation is we can naturally evaluate the

nonlinear function and the Jacobian matrix by multiplying and summing analog signals. Then we

can solve the Jacobian matrix equation and do the Newton method faster and more efficiently than

in digital. We do so using continuous gradient descent and continuous Newton’s method, which

are algorithms that work in continuous time, and have no counterpart in digital computing.

To further illustrate the advantages of the analog computational model, here we try another

continuous algorithm, homotopy continuation, which makes it easier to pick initial conditions for

solving nonlinear systems of equations [131, 4, 143].

In homotopy methods, we smoothly connect a simple problem with obvious initial conditions

to the hard one we would like to solve. We would devise a simple root-finding problem S(ρ⃗) = 0,

representing a trivial system of equations:

S(ρ⃗) =


ρ20 − 1 = 0

ρ21 − 1 = 0

(11.3)

113

ρ1 initial
condition

ρ0 initial
condition

1

1

ρ1 initial
condition

ρ0 initial
condition

1

1

ρ1 initial
condition

ρ0 initial
condition

1

1

Solution points

System of nonlinear equations Solution without homotopy At homotopy beginning Solution at homotopy end

Figure 11.3: Far left: Visualization of Equation 11.2. The two equations are surfaces (blue mesh
and red checkerboard) formed by parabolas swept along straight lines. The root finding problem
entails finding where two surfaces intersect at the z = 0 (solid green) plane. The RHS constants
in the equations shift the surfaces up and down, so there can zero or several such solutions. In the
next three panels we solve without and using homotopy continuation. Center left: Continuous
Newton’s without homotopy. Colors indicate the roots found by the chip, plotted against the initial
conditions. Two solutions (green and yellow) are roots of Equation 11.2. The pink region is a set
of initial conditions where Newton’s method returns a wrong result. Clearly, the initial conditions
strongly impacts the Newton method result. Center right: The initial state for a homotopy
process. The chip settles on the four roots (ρ0, ρ1) = (±1,±1) of Equation 11.3. The chip then
solves an ODE to smoothly guide this initial state to the final state. Far right: Final result of the
homotopy method. The chip returns two roots for Equation 11.2. Compared to naive Newton’s
method, all choices of initial conditions in the homotopy method lead to one correct solution or
another. The convergence basins are more contiguous, indicating less sensitivity to the initial guess.

We know that this system’s four roots are (ρ0, ρ1) = (±1,±1). Then, we denote a harder nonlinear

system, such as Equation 11.2, as H(ρ⃗) = 0. The example hard nonlinear system has as many as

four non-degenerate roots, but we do not know what initial conditions to set to get those solutions.

With the hard system and simple system in hand, we construct a joint system characterized by

a homotopy parameter λ that controls the system’s degree of nonlinearity and solution difficulty:

(1− λ)S(ρ⃗) + λH(ρ⃗) = 0

We would start Newton’s method with λ = 0 and ρ⃗ set to be one of the known roots, satisfying

the simple system S(ρ⃗) = 0. Then, we smoothly guide the simple system to the hard system by

incrementing λ until λ = 1. At each moment while incrementing λ, we perform a Newton method

inner loop so ρ⃗ remains the correct root for the combined system.

The end result is we have smoothly mapped each of the unknown roots of the hard system to

the known roots of the simple system. By exploring the roots of the simple system we explore the

114

roots of the difficult problem. Homotopy methods are an appealing extension of Newton’s methods,

except for the fact the homotopy continuation is again an ODE in disguise [33, 34, 126, 143], and

therefore costly to approximate in a digital computer.

We can instead solve this ODE on our analog accelerator prototype chip. The results are

shown in Figure 11.3. The results show that analog accelerators can perform more advanced

global Newton methods, in addition to the continuous Newton method, adding to our repertoire of

continuous algorithms for analog accelerators.

Approximate analog & precise digital

An ideal solving system should use analog methods where digital ones are weak, while keeping

all the convenient aspects of digital computing. The digital methods allow use of binary floating

point numbers, which have higher precision and accuracy, but encounter problems in selecting

a Newton step size and an initial condition. The analog methods have more reliability, but the

computational results have low accuracy and precision. In prior work researchers have tried various

ways to combine analog and digital computing. We review some ways below. This work extends,

and is distinct from, those techniques.

Analog approximate solutions can be used to seed high-precision Newton solvers, by providing

a good initial guess from which the Newton method immediately enters the region of quadratic

convergence. For example, in prior work where analog computers served as direct physical mod-

els, Cowan et al. used an analog co-processor to solve a periodic nonlinear ODE directly, and

the sampled low-precision analog trajectory assists a high-precision digital solver, helping it con-

verge [40, 41]. This work achieves a similar effect, with an important distinction our analog acceler-

ator performs an abstracted continuous algorithm instead of solving a physical model directly. Our

approach more readily supports existing solvers that invoke solving nonlinear systems of equations

as an underlying kernel.

In digital approximation approaches, numerical methods can first use single-precision floating

point numbers with cheaper operations, allowing longer vectors to reside in local caches, before

finishing off with double precision [24, 108, 8, 5]. The analog acceleration techniques in this pa-

per can extend those methods due to its fundamental energy efficiency in the low bit precision

regime [147, 43].

115

Reynolds
number

Mach
number

Viscosity Effect of
diffusion

Dominant PDE
character

Nonlinearity

Large High Low Small First-order, advective
(hyperbolic PDE)

Quasilinear

Small Low High Large Second-order, diffusive
(parabolic PDE)

Semilinear

Table 11.1: Effect of Reynolds number on Burgers’ and Navier-Stokes equations. Larger Reynolds
numbers result in more nonlinear and difficult problems. When the Reynolds number is large (a
high Mach, inviscid system), the effect of diffusion is low, and the PDEs are dominated by first-
order advection effects, and the system is quasilinear. When the Reynolds number is small (a
low Mach, viscous system), the effect of diffusion is large, and the PDEs are more second-order
parabolic in character, and the system is semilinear.

This chapter so far considers analog accelerator support for nonlinear algebra. The continuous-

time analog model of computation supports the uniquely more reliable continuous Newton’s and

homotopy methods, which are less sensitive to choices of step size and initial conditions. Such

an approach has not been attempted in prior analog work, and is incompatible with conventional

discrete-time digital accelerators.

In the next section we combine the strengths of analog and digital computing another way. We

discuss how a digital computer can break down large problems to make use of an analog accelerator,

which is fast and efficient for limited problem sizes. We will return to using analog approximations

to help high-precision digital in Section 11.6.

11.4 Nonlinear PDEs & discretization

PDEs describe the relationship of variables in terms of their derivatives, and are thus an important

model for the natural world, which is also described using real numbers in continuous space. In

this section we convert PDEs into the systems of nonlinear equations that have been the focus of

this chapter thus far.

The viscous Burgers’ equation

In our effort to benchmark our analog accelerator as a nonlinear systems of equations solver, we

must first choose an illustrative source of a nonlinear equation. Specifically the rest of this chapter

focuses on the viscous Burgers’ equation, a nonlinear PDE. The Burgers’ equation is the subset of

116

the Navier-Stokes equations for modeling fluids asserting that momentum is conserved [59, 160, 179]

. It is the core nonlinear heart of the Navier-Stokes equations.

The viscous Burgers’ equation has the form:

∂u⃗

∂t
+ (u⃗ · ∇)u⃗− 1

Re∇
2u⃗ = RHS (11.4)

∂u
∂t + u∂u

∂x + v ∂u
∂y −

1
Re(

∂2u
∂x2 + ∂2u

∂y2
) = RHS0

∂v
∂t + u ∂v

∂x + v ∂v
∂y −

1
Re(

∂2v
∂x2 + ∂2v

∂y2
) = RHS1

(11.5)

The center of attention is on the pair of vector-valued variables u⃗ = (u, v), where u represents

the x-velocity field and v represents the y-velocity field of a fluid in 2-dimensional space. The

PDE is nonlinear because the partial derivatives of u and v have coefficients depending on u and v

themselves. This equation has the characteristics of Equation 7.6, but with an additional second-

order viscosity term, making the equation parabolic and similar to Equation 7.3.

We are interested in this example problem in part because only one parameter needs to be se-

lected; examples with more parameters may obscure the evaluation. Furthermore, different choices

of that parameter causes the viscous Burgers’ equation to behave similarly to a variety of PDEs,

allowing us to generalize our techniques in this chapter to other classes of PDEs, which I discuss

in Section 11.7. That parameter is the Reynolds number, Re, a dimensionless coefficient which

controls the behavior of the the Burgers’ equation and the incompressible Navier-Stokes equations,

as shown in Table 11.1. Higher Reynolds numbers result in more nonlinear systems of equations,

and increases the difficulty of solving this PDE.

Space discretization

With an example nonlinear PDE in hand, in the next two subsections I summarize how nonlinear

PDEs are converted to nonlinear systems of equations. We advocate for doing these discretization

steps in digital, where there are a wide variety of advanced techniques. The analog accelerator

supports the variety of techniques by focusing on the inner kernel of solving the system of equations.

First we have to handle the fact that the PDEs describe continuous fields in space. We do

space discretization to convert the continuous fields into a grid of node variables. This is necessary

because digital machines and our analog accelerator represent variables as scalars, which capture a

117

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
−

1

Re
(
∂2u

∂x2
+

∂2u

∂y2
) = RHS

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
−

1

Re
(
∂2v

∂x2
+

∂2v

∂y2
) = RHS

∂ui,j

∂t
+ ui,j

ui+1,j − ui−1,j

2∆x
+ vi,j

ui,j+1 − ui,j−1

2∆y
−

1

Re

(ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2

)
= 0

∂vi,j

∂t
+ ui,j

vi+1,j − vi−1,j

2∆x
+ vi,j

vi,j+1 − vi,j−1

2∆y
−

1

Re

(vi+1,j − 2vi,j + vi−1,j

∆x2
+

vi,j+1 − 2vi,j + vi,j−1

∆y2

)
= 0

∂ui,j

∂t
= −ui,j

ui+1,j − ui−1,j

2∆x
− vi,j

ui,j+1 − ui,j−1

2∆y
+

1

Re

(ui+1,j − 2ui,j + ui−1,j

∆x2
+

ui,j+1 − 2ui,j + ui,j−1

∆y2

)
∂vi,j

∂t
= −ui,j

vi+1,j − vi−1,j

2∆x
− vi,j

vi,j+1 − vi,j−1

2∆y
+

1

Re

(vi+1,j − 2vi,j + vi−1,j

∆x2
+

vi,j+1 − 2vi,j + vi,j−1

∆y2

)

Figure 11.4: Space discretization of a 2d viscous Burgers’ nonlinear PDE.

value at one place in space as a function of time. In this chapter we use a central finite difference

method for simplicity. Analog accelerators can nonetheless help solve the nonlinear systems of

equations generated by some other space discretization schemes, which I discuss in Section 11.7.

Applying space discretization to a PDE results in a system of ODEs, which is discrete in space

but continuous in time. Figure 11.4 shows an example of doing so for the Burgers’ equation. We

handle the equations’ time evolution next.

Time stepping

With the PDE spatially discretized into a system of ODEs, we can tackle the time derivative in

several ways.

The first approach is to solve the ODEs directly in an analog computer, which then becomes

the “method of lines” approach used in earlier hybrid computers [91, 92, 85, 57, 173, 11, 180].

Applying those techniques to support existing modern PDE solvers would require some way to

generate and measure analog waveforms at both high precision and frequency, which are difficult

to have simultaneously in DACs and ADCs.

So instead of solving the ODEs directly using the analog accelerator (as was typical in previous

hybrid computing work), we will let the digital host do time stepping as well as space discretization.

This approach allows the analog accelerator to work inside modern PDE solvers where these types

of discretization are standard practice.

In this chapter we use Crank-Nicolson, an implicit method which offers second-order accuracy,

118

to decompose the 2D Burgers’ equation into a nonlinear system of equations [42]. Section 11.7

discusses how our approach generalizes to other time stepping schemes.

Viscous Burgers’ PDE discretization

Using the techniques in the past two sections, we take Equation 11.4, the 2D viscous Burgers’

equation, and apply second-order central finite difference and second-order Crank-Nicolson time

stepping [42]. Then, we make isotropic assumptions about the relative size of the space and time

grid points to simplify the problem. We choose values for ∆t, ∆x, and ∆y so these coefficients are

eliminated, for the sake of clarity.

The resulting stencil consists of a nonlinear system of equations and its Jacobian, which is shown

in Figure 11.5. The stencil for the general case can be found in the literature [59, pg.172]. These

two sets of mathematical expressions are what we need to program into the analog accelerator

circuit shown in Figure 11.1. Different types of PDEs and discretization schemes will result in

different nonlinear systems of equations and their Jacobians, which similarly can be set up inside

the analog accelerator.

11.5 Analog accelerator solution of nonlinear PDEs

So far, we’ve shown how an analog accelerator can solve nonlinear systems of equations, using the

continuous Newton method. We have also shown how solving nonlinear PDEs is converted into

solving nonlinear systems of equations.

Now, we bring these ideas together: we discuss how the 2D viscous Burgers’ equation is solved

in a prototype analog accelerator. We will show the programming model and architecture interface

of a reconfigurable analog accelerator. We test the approach using a physically prototyped analog

accelerator chip, for a small 2× 2 grid size due to prototype size constraints, and present measured

accuracy results.

Programming and data interface

The analog accelerator has a digital interface for configuration, transmitting data, and program-

ming.

119

Be
lo
w
,t

he
no

nl
in
ea
r
sy
st
em

s
of

eq
ua

tio
ns

of
a
vi
sc
ou

s
Bu

rg
er
s’

no
nl
in
ea
r
PD

E.
T
he

un
kn

ow
n
va
ria

bl
es

ar
e
gr
ou

pe
d
le
ft

of
th
e
eq
ua

ls
sig

n
w
hi
le

al
lc

on
st
an

tb
ou

nd
ar
y
co
nd

iti
on

s
ar
e
gr
ou

pe
d
on

th
e
rig

ht
.
T
he

va
ria

bl
es

u⃗
=
{u

,v
}
ar
e
th
e
x
an

d
y
ve
lo
ci
ty

co
m
po

ne
nt
s
of

a
2-
di
m
en

sio
na

l,
2
×
2
gr
id
.
In

th
es
e
eq
ua

tio
ns
,s

up
er
sc
rip

ts
ar
e
tim

e
st
ep

s,
an

d
su
bs
cr
ip
ts

ar
e
sp
at
ia
lg

rid
po

in
ts
.
In

to
ta
lt

he
pr
ob

le
m

is
a
sy
st
em

of
ei
gh

t
no

nl
in
ea
r
eq
ua

tio
ns

an
d
ei
gh

t
un

kn
ow

ns
.

F
(u⃗

)
=

                          +
u
n
+

1
0
,0

(u
n
+

1
1
,0

+
1
+

4 R
e
−

u
n
+

1
−

1
,0
)
+

v
n
+

1
0
,0

(u
n
+

1
0
,1

−
u
n
+

1
0
,−

1
)
−

1 R
e
(u

n
+

1
1
,0

+
u
n
+

1
−

1
,0

+
u
n
+

1
0
,1

+
u
n
+

1
0
,−

1
)
=

−
u
n 0
,0
(u

n 1
,0

−
1
+

4 R
e
−

u
n −

1
,0
)
−

v
n 0
,0
(u

n 0
,1

−
u
n 0
,−

1
)
+

1 R
e
(u

n 1
,0

+
u
n −

1
,0

+
u
n 0
,1

+
u
n 0
,−

1
)

+
v
n
+

1
0
,0

(v
n
+

1
0
,1

+
1
+

4 R
e
−

v
n
+

1
0
,−

1
)
+

u
n
+

1
0
,0

(v
n
+

1
1
,0

−
v
n
+

1
−

1
,0
)
−

1 R
e
(v

n
+

1
1
,0

+
v
n
+

1
−

1
,0

+
v
n
+

1
0
,1

+
v
n
+

1
0
,−

1
)
=

−
v
n 0
,0
(v

n 0
,1

−
1
+

4 R
e
−

v
n 0
,−

1
)
−

u
n 0
,0
(v

n 1
,0

−
v
n −

1
,0
)
+

1 R
e
(v

n 1
,0

+
v
n −

1
,0

+
v
n 0
,1

+
v
n 0
,−

1
)

+
u
n
+

1
1
,0

(u
n
+

1
2
,0

+
1
+

4 R
e
−

u
n
+

1
0
,0

)
+

v
n
+

1
1
,0

(u
n
+

1
1
,1

−
u
n
+

1
1
,−

1
)
−

1 R
e
(u

n
+

1
2
,0

+
u
n
+

1
0
,0

+
u
n
+

1
1
,1

+
u
n
+

1
1
,−

1
)
=

−
u
n 1
,0
(u

n 2
,0

−
1
+

4 R
e
−

u
n 0
,0
)
−

v
n 1
,0
(u

n 1
,1

−
u
n 1
,−

1
)
+

1 R
e
(u

n 2
,0

+
u
n 0
,0

+
u
n 1
,1

+
u
n 1
,−

1
)

+
v
n
+

1
1
,0

(v
n
+

1
1
,1

+
1
+

4 R
e
−

v
n
+

1
1
,−

1
)
+

u
n
+

1
1
,0

(v
n
+

1
2
,0

−
v
n
+

1
0
,0

)
−

1 R
e
(v

n
+

1
2
,0

+
v
n
+

1
0
,0

+
v
n
+

1
1
,1

+
v
n
+

1
1
,−

1
)
=

−
v
n 1
,0
(v

n 1
,1

−
1
+

4 R
e
−

v
n 1
,−

1
)
−

u
n 1
,0
(v

n 2
,0

−
v
n 0
,0
)
+

1 R
e
(v

n 2
,0

+
v
n 0
,0

+
v
n 1
,1

+
v
n 1
,−

1
)

+
u
n
+

1
0
,1

(u
n
+

1
1
,1

+
1
+

4 R
e
−

u
n
+

1
−

1
,1
)
+

v
n
+

1
0
,1

(u
n
+

1
0
,2

−
u
n
+

1
0
,0

)
−

1 R
e
(u

n
+

1
1
,1

+
u
n
+

1
−

1
,1

+
u
n
+

1
0
,2

+
u
n
+

1
0
,0

)
=

−
u
n 0
,1
(u

n 1
,1

−
1
+

4 R
e
−

u
n −

1
,1
)
−

v
n 0
,1
(u

n 0
,2

−
u
n 0
,0
)
+

1 R
e
(u

n 1
,1

+
u
n −

1
,1

+
u
n 0
,2

+
u
n 0
,0
)

+
v
n
+

1
0
,1

(v
n
+

1
0
,2

+
1
+

4 R
e
−

v
n
+

1
0
,0

)
+

u
n
+

1
0
,1

(v
n
+

1
1
,1

−
v
n
+

1
−

1
,1
)
−

1 R
e
(v

n
+

1
1
,1

+
v
n
+

1
−

1
,1

+
v
n
+

1
0
,2

+
v
n
+

1
0
,0

)
=

−
v
n 0
,1
(v

n 0
,2

−
1
+

4 R
e
−

v
n 0
,0
)
−

u
n 0
,1
(v

n 1
,1

−
v
n −

1
,1
)
+

1 R
e
(v

n 1
,1

+
v
n −

1
,1

+
v
n 0
,2

+
v
n 0
,0
)

+
u
n
+

1
1
,1

(u
n
+

1
2
,1

+
1
+

4 R
e
−

u
n
+

1
0
,1

)
+

v
n
+

1
1
,1

(u
n
+

1
1
,2

−
u
n
+

1
1
,0

)
−

1 R
e
(u

n
+

1
2
,1

+
u
n
+

1
0
,1

+
u
n
+

1
1
,2

+
u
n
+

1
1
,0

)
=

−
u
n 1
,1
(u

n 2
,1

−
1
+

4 R
e
−

u
n 0
,1
)
−

v
n 1
,1
(u

n 1
,2

−
u
n 1
,0
)
+

1 R
e
(u

n 2
,1

+
u
n 0
,1

+
u
n 1
,2

+
u
n 1
,0
)

+
v
n
+

1
1
,1

(v
n
+

1
1
,2

+
1
+

4 R
e
−

v
n
+

1
1
,0

)
+

u
n
+

1
1
,1

(v
n
+

1
2
,1

−
v
n
+

1
0
,1

)
−

1 R
e
(v

n
+

1
2
,1

+
v
n
+

1
0
,1

+
v
n
+

1
1
,2

+
v
n
+

1
1
,0

)
=

−
v
n 1
,1
(v

n 1
,2

−
1
+

4 R
e
−

v
n 1
,0
)
−

u
n 1
,1
(v

n 2
,1

−
v
n 0
,1
)
+

1 R
e
(v

n 2
,1

+
v
n 0
,1

+
v
n 1
,2

+
v
n 1
,0
)

Be
lo
w
,t

he
Ja

co
bi
an

m
at
rix

of
th
e
2D

2x
2
vi
sc
ou

s
Bu

rg
er
s’

no
nl
in
ea
r
PD

E.
Ea

ch
ro
w

of
th
e
Ja

co
bi
an

co
rr
es
po

nd
s
to

th
e
x-
ve
lo
ci
ty

or
y-
ve
lo
ci
ty

at
ea
ch

gr
id

po
in
t.

J
F
(u⃗

)
=

          u
1
,0

+
1
+

4 R
e
−

u
−

1
,0

u
0
,0

−
1 R
e

v
0
,0

−
1 R
e

0
u
0
,1

−
u
0
,−

1
0

0
0

−
u
1
,0

−
1 R
e

u
2
,0

+
1
+

4 R
e
−

u
0
,0

0
v
1
,0

−
1 R
e

0
u
1
,1

−
u
1
,−

1
0

0
−
v
0
,1

−
1 R
e

0
u
1
,1

+
1
+

4 R
e
−

u
−

1
,1

u
0
,1

−
1 R
e

0
0

u
0
,2

−
u
0
,0

0
0

−
v
1
,1

−
1 R
e

−
u
1
,1

−
1 R
e

u
2
,1

+
1
+

4 R
e
−

u
0
,1

0
0

0
u
1
,2

−
u
1
,0

v
1
,0

−
v
−

1
,0

0
0

0
v
0
,1

+
1
+

4 R
e
−

v
0
,−

1
u
0
,0

−
1 R
e

v
0
,0

−
1 R
e

0
0

v
2
,0

−
v
0
,0

0
0

−
u
1
,0

−
1 R
e

v
1
,1

+
1
+

4 R
e
−

v
1
,−

1
0

v
1
,0

−
1 R
e

0
0

v
1
,1

−
v
−

1
,1

0
−
v
0
,1

−
1 R
e

0
v
0
,2

+
1
+

4 R
e
−

v
0
,0

u
0
,1

−
1 R
e

0
0

0
v
2
,1

−
v
0
,1

0
−
v
1
,1

−
1 R
e

−
u
1
,1

−
1 R
e

v
1
,2

+
1
+

4 R
e
−

v
1
,0

          

Fi
gu

re
11

.5
:
T
he

no
nl
in
ea
r
sy
st
em

of
eq
ua

tio
ns

an
d
Ja

co
bi
an

m
at
rix

of
a
2d

2-
by

-2
gr
id

po
in
t
vi
sc
ou

s
Bu

rg
er
s’

no
nl
in
ea
r
PD

E.

120

/*initialize and calibrate analog accelerator fabric*/
Fabric * fabric = new Fabric();
fabric->calibrate();

/*create top-level data structure representing 2D Burgers' equation analog node variables*/
/*upon instantiation, node variables get allocation of analog hardware to implement the needed

analog datapath*/
cells = new NewtonTile[8] {

/*cell variables take as parameters an initial condition, various Burgers' equation
coefficients & settings*/
NewtonTile (fabric->chips[0].tiles[0], 1.0, 128, 128, 5.0, 0.0, 0.0, true, true, true),
...

};

/*connect exposed analog interfaces together to form continuous Newton method circuit for 2D
Burgers' equation*/

parallelConnect (&cells[0], &cells[1]);
...

/*additional connections export variables between analog accelerator chips, off chip, and into
ADCs*/

Fabric::Chip::Connection (cells[0].u_out_chip, fabric->chips[0].tiles[0].slices[0].chipOutput->
in0).setConn();

...

/*change analog parameters such as initial conditions, coefficients, and constants for different
problems*/

for (unsigned char cellIndx = 0; cellIndx < 8; cellIndx++) {
cells[cellIndx].setUCoeffParallel (coeff_parallel[cellIndx]);
cells[cellIndx].setRHS (rhs[cellIndx]);
cells[cellIndx].setDynamicRange (dynamic_range);

}

/*underlying above high-level calls, analog accelerator is changing the analog parameters of
subcomponents:*/

slice.muls[0].setGain (1.0 / dynamic_range); // coefficients realized by multipliers
slice.dac->setConstant(jaco_coeff); // constant biases provided by digital-to-analog

converters
slice.integrator->setInitial(initial); // integrator initial conditions for Newton

initial guesses

/*commit the analog accelerator config and parameters; release the integrators to start
continuous Newton's*/

fabric->cfgCommit();
fabric->execStart();

/*measure final analog value using ADCs, restore integrators and prepare for next set of
parameters*/

newton_u[0][0] = fabric->chips[0].tiles[3].slices[3].chipOutput->analogAvg(REPS);
...
fabric->execStop();

/*destroying objects representing analog variables frees the analog hardware for other
calculations*/

delete[] cells;

Figure 11.6: Analog accelerator object-oriented C++ code sample.

A digital host processor prepares the analog accelerator for equation solving by configuring

the chip so the analog signals in the chip represent the nonlinear system of equations F (u⃗) and

121

the Jacobian matrix JF (u⃗). Then, these mathematical expressions are connected according to

Figure 11.1 so the signals evolve according to the continuous Newton method. This way of setting up

the analog accelerator is distinct from prior work in analog computing where differential equations

had to be directly mapped and programmed to analog computers.

The data transmission costs for the analog accelerator would be the same as a digital accelerator

device such as a GPU or a node-attached FPGA. This is because the configuration of the analog

accelerator remains the same when solving for different instances of the same kind of PDE. Once

the connectivity between analog components is set, the digital host sends digital codes for equation

constants and coefficients to be set by DACs. The analog accelerator solves the equation, and the

digital host retrieves values measured by the ADCs. Only new problem parameters and results

need to be transmitted between analog accelerator runs.

We program the accelerator using object-oriented C++, a style of programming that improves

code reuse and minimizes errors when programming the analog accelerator. A code sample is

given in Figure 11.6. Each analog subcomponent can be instantiated on the analog accelerator and

tested individually. The programming scheme allows us to apply software and digital hardware

engineering techniques to analog components, including unit testing, randomized validation, and

incremental bringup of larger systems.

In our programming model, C++ classes represent components such as one nonlinear equation

or one row of the Jacobian matrix. Each class exposes only the analog interfaces that need to be

connected with other submodules. The classes also offer functions that change parameters such as

initial conditions, coefficients, and constants. When a class object is instantiated, the instantiating

program gives the object an allocation of analog hardware to physically implement the needed

analog datapath. Then, the object constructor writes a stream of bits to the analog accelerator

setting up the object. Destroying the object likewise frees the analog resources to participate in

other calculations.

The object-oriented style of programming goes beyond writing a single nonlinear equation or

one row of the Jacobian matrix. We create higher-level classes that represent one node variable.

Yet higher-level classes that represent all of the x-velocity and all of the y-velocity variables u⃗ and

v⃗. Finally, we connect the nonlinear system of equations, the Jacobian matrix, and the integra-

tors storing the variables together to form a circuit for continuous Newton’s method. Additional

122

Component Nonlinear
function

Jacobian ma-
trix

Quotient feed-
back loop

Newton
method feed-
back loop

integrator 0 0 1 1
fanout 2 0 3 3

multiplier 4 3 1 0
DAC 3 1 0 0

tile input 4 4 0 0
tile output 4 0 4 3

total area (mm2) .30 .17 .14 .09
total power (µW) 284 152 188 139

Table 11.2: Summary of analog chip component use for each PDE variable with area and power
model from [66, 67, 82, 83].

connections between blocks can be made to export variables between analog accelerator chips, off

chip, and into analog-to-digital converters.

Board and chip hardware mapping

We use a circuit board with two analog accelerator chips (each with 16 integrators) to solve the

2D Burgers’ equation. One analog accelerator chip stores and computes on u⃗, the x-velocity field,

and the other does the same for v⃗, the y-velocity field. The interaction between these two fields

is sparse, so they can be connected via circuit board-level connections. The characteristic analog

bandwidth of the accelerator chips is kept low enough so the propagation time for data and control

signals across board-level connections does not matter.

As shown in Figure 6.1, each analog accelerator chip contains four identical tiles. In this

example each tile is in charge of one scalar element in u⃗ or v⃗. Within each tile, the analog

function units are connected together to form the nonlinear equations and the Jacobian matrix.

In the Burgers’ equation the expressions are polynomials, which can be built using multipliers and

summers. Table 11.2 shows the hardware needed to implement each mathematical component.

This case study highlights the advantage of the Gilbert-cell implementation of multipliers com-

pared to memristor multipliers. Re-programing memristors to realize different coefficients is time

consuming as the coefficients need to be calibrated. Re-programing Gilbert-cell multipliers, on the

other hand, has identical time cost as writing to a memory-mapped device, so our design choice

of using Gilbert-cell multipliers permits solving different problems with new parameters without

123

Figure 11.7: Distribution of analog solution error for 400 randomly generated problems.

taking time to recalibrate the multipliers.

Dynamic range of values and scaling

The full dynamic range of the PDE problem variables must scale down to fit in the dynamic range of

the analog hardware. The details of how to scale depend on the nonlinear PDE’s type of nonlinear

function. In the Burgers’ equation, the nonlinear function is a quadratic polynomial. So, if the

variables u⃗ and v⃗ are scaled by 1
s , the system of equations should be scaled by 1

s2
. To make sure

the terms in the nonlinear polynomial stay in correct proportion, any coefficients on linear terms

of u⃗ and v⃗ should also be scaled by 1
s . Scaling can be applied to nonlinear PDEs with polynomial

nonlinearities, which excludes some PDEs with transcendental nonlinearities of theoretical interest,

but fortunately includes many physically meaningful PDEs.

Analog accelerator accuracy results

We use the analog accelerator to solve 400 sets of nonlinear equations that would be generated from

a 2D Burgers’ equation stencil. The constants in the nonlinear system of equations are randomly

chosen between a dynamic range of -3.0 and 3.0. The constants and the solution vector are then

scaled to fit in the analog accelerator’s dynamic range.

We define the error between the analog solution and the digital solution as:

√∑
N (ua − ud)2

N
(11.6)

124

Where N is the number of elements in the analog and digital solutions. Figure 11.7 shows the

distribution of the errors for the 400 trials. The total RMS error for the 400 trials is 5.38%.

The limited accuracy of the analog accelerator is due to several reasons. One is limited ADC

resolution. Another is process variation and transistor mismatch, which we control by calibrating

all components on the analog datapath, though the calibration precision is itself limited by DAC

precision.

The analog accelerator solutions can be used where lower accuracy results are useful, or as

a seed for a digital solver. This limited accuracy is potentially a shortcoming in using analog

acceleration for solving nonlinear systems of equations. In the case of accelerating linear algebra,

a higher-precision and higher-accuracy result can be obtained by repeatedly invoking the analog

accelerator [82]. No such precision and accuracy-building scheme exists in nonlinear problems, due

to the fact that the residual cannot be scaled back up to the dynamic range of the accelerator.

11.6 Design space exploration of scaled-up analog accelerators

for nonlinear systems of equations

So far, the case studies of Sections 11.2, 11.3 and the 2 × 2 2D Burgers’ equations showcase the

unique properties of the continuous Newton method and validate its implementation on an analog

accelerator. In this section, we quantify the benefit of larger scale analog accelerators in terms

of performance and efficiency improvements. Then, we show the approximate analog solution can

provide a better initial guess to greatly speed up precise digital solvers.

Performance vs. accelerator size

As the problem size increases, a digital Newton method solver takes more iterations to converge

and give a solution. On the other hand, a scaled-up analog accelerator takes a relatively constant

amount of time to converge, as long as the scaled-up design is feasible. Area constraints on the

analog accelerator limit us to solving grid sizes as large as 16×16, corresponding to a large nonlinear

system of equations with a 512× 512 sparse Jacobian matrix.

Problem setup: We solve randomly generated 2D Burgers’ equations with grid sizes of 2× 2,

4 × 4, 8 × 8, and 16 × 16. The initial and (Dirichlet) boundary conditions for the problems are

125

2D Burgers’ solver size Chip area (mm2) Power use (mW)
1× 1 1.4 1.5
2× 2 5.5 6.1
4× 4 22.0 24.4
8× 8 88.1 97.7

16× 16 352.4 390.7

Table 11.3: Area and power model for scaled-up analog accelerators. Power consumption is peak
power; as the continuous Newton method approaches convergence the circuit activity and power
consumption decreases. While the analog chip area is large, power consumption is extremely low.

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0.001 0.01 0.1 1 10

Ti
m

e
to

 c
on

ve
rg

en
ce

 (s
ec

on
ds

)

Reynolds number

16-by-16 Grid

Digital Time Analog Time

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0.001 0.01 0.1 1 10
Ti

m
e

to
 c

on
ve

rg
en

ce
 (s

ec
on

ds
)

Reynolds number

8-by-8 Grid

Digital Time Analog Time

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0.001 0.01 0.1 1 10

Ti
m

e
to

 c
on

ve
rg

en
ce

 (s
ec

on
ds

)

Reynolds number

4-by-4 Grid

Digital Time Analog Time

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0.001 0.01 0.1 1 10

Ti
m

e
to

 c
on

ve
rg

en
ce

 (s
ec

on
ds

)

Reynolds number

2-by-2 Grid

Digital Time Analog Time

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0.001 0.01 0.1 1 10

Ti
m

e
to

 c
on

ve
rg

en
ce

 (s
ec

on
ds

)

Reynolds number

2-by-2 Grid

Digital Time Analog Time

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0.001 0.01 0.1 1 10

Ti
m

e
to

 c
on

ve
rg

en
ce

 (s
ec

on
ds

)

Reynolds number

2-by-2 Grid

Digital Time Analog Time

Figure 11.8: Time to convergence for digital and analog solvers.

again randomly chosen within the dynamic range of the analog accelerator.

First, we get the correct solution using a golden-model Newton method solver taking small steps

to generate an accurate solution. The golden-model solution is certified to satisfy the nonlinear

system of equations.

Then, we use both a baseline digital solver taking moderate step sizes and a simulated ex-

perimental analog accelerator to solve the same problem. We compare the baseline digital and

experimental analog solvers at equal, relatively low, accuracy. Both the baseline digital solver and

the simulated analog solver are stopped when their error metric defined in Equation 11.6 reaches

5.38%, the value we measured from the analog accelerator chip.

The baseline digital solver is a parallelized damped Newton solver, implemented as a vec-

torized, 16-threaded OpenMP program running on two Intel(R) Xeon(R) X5550 CPUs running at

2.67GHz. The digital solver initially uses a damping parameter of 1.0. If the solution does not

converge, it reduces the damping parameter by half until convergence is possible, at the cost of a

long time-to-convergence. We give the digital solver the advantage counting only the time spent

using the correct damping parameter, even though in practice this damping parameter is found via

trial-and-error.

126

Detailed function profiling of the digital solver shows it spends at least 95% of its time in finding

δ⃗p = J−1
F (u⃗p)F (u⃗p), using QR factorization, a numerical linear algebra algorithm. The remainder

of the time is spent evaluating the function F (u⃗p) and building the Jacobian matrix J−1
F (u⃗p).

The simulated scaled-up analog accelerator models the variables in the analog accelerator

as it solves the nonlinear problem. The model is built on the Odeint ODE solver library [3]. The

time it takes for the continuous Newton ODE to reach a stable value corresponds to the reaction

time of the analog circuit, which is in turn the solution time for the analog accelerator. The

predicted solution time of the 2×2 analog accelerator is normalized to match the measured solution

time of the physical analog accelerator (with 200KHz integrator bandwidth). With this setup we

can model analog accelerators larger than the one we physically prototyped.

The dimensions and power consumption of the analog accelerator are extrapolated for

larger problem sizes. Table 11.3 shows that an analog accelerator for 16×16 problems is roughly the

same size as CPU dies, while power density is about 400× lower. Evidently, area costs constrain

the problem sizes analog accelerators can solve directly. Fortunately, analog accelerators have

unique strengths in extremely low power density and fault-tolerance, thereby avoiding constraints

on digital die sizes such as heat and yield [154]. These unique strengths of analog accelerators may

permit die sizes and stacking techniques otherwise impossible in digital designs. For now we limit

ourselves to 16× 16 problems.

We assume the analog accelerator generates a result with the same error metric as measured in

the physical prototype chip, which would rely on the demonstrated calibration techniques to control

for process variation and mismatches. The additional noise sources in scaled-up chips would have

to be controlled at the expense of greater power dissipation.

Figure 11.8 shows the solution times for digital and analog accelerators. The axes, both in

logarithmic scale, are the solution time in seconds plotted against the choice of Reynolds number

for the problem.

Higher Reynolds number problems are more difficult to solve in both analog and digital. At

high Reynolds numbers, the PDE becomes more nonlinear and hyperbolic in character. As shown

in the definition of the Jacobian in Figure 11.5, the elements on the diagonal of the Jacobian

diminish with higher Reynolds numbers, increasing the chance the Jacobian becomes singular in

the process of solving the equation. In these situations, the baseline digital solver would then have

127

0.08 0.07 0.08 0.07 0.08
0.15

0.09 0.10

0.81

0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.08 0.05

0

0.5

1

1.5

2

0.01 0.02 0.03 0.06 0.13 0.25 0.50 1.00 2.00

Ti
m

e
to

 c
on

ve
rg

en
ce

 (s
)

Reynolds number

Solution time vs. Reynolds number
for digital and seeded digital solver

baseline digital solver analog seeded digital solver

Figure 11.9: Time to convergence for digital and seeded digital solvers to double-precision floating
point epsilon precision.

to use many smaller-sized steps to get a solution. The data points become more sparse as the

Reynolds numbers and problem sizes increase because fewer of the randomly generated problems

have a correct solution. Even higher Reynolds number problems exist and have solutions, but

would need different choices to be made during PDE discretization. We are limited by the spatial

grid size and time step size we chose in our discretization scheme.

Looking across the different problem sizes, we see that the 4 × 4 problem has the analog and

digital solving in roughly the same time. The digital solution time increases with each quadrupling

of the problem size, while the analog accelerator solution time remains the same. The data show

the 16 × 16 analog accelerator for solving nonlinear systems of equations may have 100× faster

solution time compared to a purely digital approach, and at much lower power dissipation.

Analog approximation as digital initial guess

We take the findings from the previous experiment and use the largest modeled analog accelerator

design, capable of approximately solving 16× 16 2D Burgers’ equations. We consider the benefits

using such a chip to seed a digital solver that solves large problems at high precision.

For a given problem, the analog continuous Newton solver more reliably finds a solution, as

128

discussed in Sections 11.2, 11.3, and does so in negligible time compared to the digital solver for

the same accuracy, according to Figure 11.8. The analog solution is set as the initial condition

for a seeded digital solver, which is then immediately in the quadratic convergence region for the

Newton method. The digital solver carries on and terminates when the error metric is the smallest

value representable in double-precision floating point numbers.

Figure 9 shows the solution time of a baseline digital solver compared to a seeded digital solver

which benefits from the low-precision solution of an analog accelerator. The average solution time

over 16 trials for both is plotted against various choices of Reynolds number for the problem, which

influences the nonlinearity of the problem. The error bars represent the standard deviation of the

solution times.

In relatively easier problems with low Reynolds number, the analog solver saves the digital

solver a few steps. As the Reynolds number approaches 2.0, the baseline digital solver running the

damped Newton method is forced to take smaller steps, causing the algorithm to run longer with

greater variance in the solution time. On the other hand the analog seed saves the digital solver

from having to use damped steps, greatly decreasing the digital solver’s solution time.

Scaling to larger problems on GPUs

We now consider yet larger scale problems that potentially are solved using GPUs, and estimate

how much energy is saved when an analog accelerator assists a GPU. The problem setup here is the

2D Burgers’ equation with Re = 2.0, at which point Newton’s method may have poor convergence.

A common approach for solving larger nonlinear systems of equations is to offload the linear

algebra inner loop of each Newton step to a GPU. For our baseline digital solver we offload

work to a QR factorization solver, provided in the Nvidia cuSolver GPU sparse linear algebra

library, running on an Nvidia GTX 1070 GPU. First, we certify the problem sizes are large enough

to fully exercise the parallelism offered by the GPU. For the 16 × 16 2D Burgers’ equation, the

GPU program profiler nvProf reports the top three subroutines, accounting for 80% of the GPU

runtime, use on average 90% of the GPU multiprocessors. When the problem size increases to

32 × 32, resulting in a 2048 × 2048 sparse Jacobian, the average multiprocessor activity increases

to 95%.

129

0.51

2.75

0.0001 0.0030
0.30 0.48

0

1

2

3

16x16 32x32

Ti
m

e
to

 c
on

ve
rg

en
ce

 (s
)

Problem size

Solution time vs. problem size
for digital and seeded digital solver

digital baseline solver analog seeding solver digital seeded solver

23.9

194.2

4.8E-05 1.2E-03 8.8 16.7
0

50
100
150
200
250

16x16 32x32So
lu

tio
n

en
er

gy
 (J

)

Problem size

Solution energy vs. problem size
for digital and seeded digital solver

digital baseline solver analog seeding solver digital seeded solver

Figure 11.10: Time and energy for solution for digital and seeded digital solvers running on a GPU.

The analog seeding solver needs a way to divide and conquer the larger systems of nonlinear

equations, as our analog accelerator model is limited to solving 16 × 16 problems due to area

constraints. In other words we need a way to solve a subset of a (potentially too large) nonlinear

systems of equations. We use red-black nonlinear Gauss-Seidel to split the 32×32 problems to fit. In

Gauss-Seidel iterations, we treat some unknowns as live and others as fixed. In any given iteration,

we solve only for the live unknowns. Then, we reverse the roles of the live and fixed unknowns, solve

again, and repeat until all values are unchanging. The Gauss-Seidel method is known to converge if

the (Jacobian) matrix is diagonally dominant, which is true for sparse matrices coming from PDE

problems. The Gauss-Seidel algorithm is in its most basic form an iterative algorithm for linear

algebra, but it can also be used here for nonlinear problems [62, pg.291]. Digital architectures use

the same decomposition and parallelization techniques to make subproblems fit in CPU caches or

split work among nodes [75, pg.I-9], so the penalty of decomposition is not unique to the analog

130

accelerator approach. The analog accelerator solves subproblems generated by nonlinear Gauss-

Seidel several times until the Gauss-Seidel loop converges, and that solution is fed to the GPU as

the initial condition.

Figure 11.10 shows seeding the GPU decreases the solution time for 32× 32 Burgers’ equations

by 5.7×, and the energy by 11.6×. Not accounting for transfer costs between the analog accelerator,

GPU, and CPU, the time and energy spent in the analog hardware is negligible compared to that

spent in the digital solvers. Time and energy saved in these iterations would be significant, as

Newton iterations are the innermost and dominant kernel in PDE solvers such as those in Table 9.1.

11.7 Extensions for other PDEs

Now I discuss whether our techniques can be extended to other varieties of nonlinear PDEs and

solving methods. In this evaluation we have been focusing on a canonical nonlinear PDE, the

quasilinear viscous Burgers’ equation, defined on a two-dimensional grid. We chose to use central

finite difference for space discretization and Crank-Nicolson for time stepping. The proposed way

of using analog acceleration can be extended to other problems depending on the PDE properties

and solver choices.

Nonlinear PDE class: We demonstrate solving a quasilinear PDE, which is a superset of

semilinear PDEs and is generally more difficult to solve. The cause of the difference in difficulty

is in semilinear PDEs the unknown variables appear in the Jacobian matrix only in the diagonal

terms, while in quasilinear PDEs the unknowns appear in off-diagonal terms of the Jacobian matrix,

making the Jacobian matrix more costly to generate.

Beyond quasilinear PDEs are fully-nonlinear PDEs, which permit the partial differential op-

erators themselves be part of nonlinear functions. An example of a fully-nonlinear PDEs is the

Eikonal equation in optics. Fully-nonlinear PDEs are not generally solved using space and time

discretization, so they are outside the scope of our investigation.

Type of nonlinearity: We demonstrate solving the Burgers’ equation, which has a polynomial

function as its source of nonlinearity. These polynomial functions can be calculated using multi-

pliers and summers in the analog accelerator. Occasionally, nonlinear PDEs have transcendental

nonlinear functions such as eu and sin(u). Outside of polynomials, nonlinear functions can be

131

transcendentals, which do not have a viable scaling scheme. These transcendental equations would

require analog nonlinear function generators. Transcendental nonlinear functions cause problems

for analog accelerators because there is no clear way to scale problem variables to fit in the analog

accelerator dynamic range.

Dimensionality: We demonstrate solving a two dimensional problem, which is more difficult

to solve than one-dimensional ones. But most physical models are done in at least three-dimensional

space. When multiple interacting physical laws appear in the model, the additional state variables

can be thought as adding yet more dimensions to the problem. Solving higher-dimensional problems

with analog acceleration would increase area consumption, and make the chip- and board-level

routing of analog signals complicated.

We note, however, all practical PDE solvers decouple the problem dimensions and solve the

problem in one or two dimensions at a time, permitting the use of analog acceleration. For exam-

ple, the pressure and velocity fields in the Navier-Stokes equations are solved separately, yielding

PDE subproblems with fewer dimensions. Furthermore, three-dimensional velocity field problems

in Navier-Stokes solvers are decomposed into one-dimensional problems using techniques such as

alternating directions implicit methods.

So solving two-dimensional PDEs in analog accelerators provides reasonable coverage of prac-

tical solvers.

Space discretization scheme: There are many ways to do space discretization, which vary

depending on whether the grid is regularly spaced, and on what the node variables represent. We

solve the Burgers’ equation using central finite difference, which features second-order accuracy.

Higher-order finite difference schemes are more accurate and efficient, at the cost of having larger

stencils, thereby requiring a larger accelerator. More advanced discretization schemes such as finite

volume and finite elements are important in fluid and solid mechanics solvers. Those methods use

unstructured grids, which on digital computers shift the bottleneck away from solving systems of

equations and into generating the stencil. Analog accelerators offer only fixed stencils unless they

are reconfigured frequently, so they would work poorly with unstructured grids.

Time stepping scheme: In this chapter we use Crank-Nicolson time stepping, an implicit

time stepping scheme with second-order accuracy suitable for time-dependent parabolic equations

such as the viscous Burgers’ equation. Higher-order time stepping methods allow larger step sizes

132

to be taken, at the cost of putting more unknown variables at play in the systems of equations,

thereby requiring a larger accelerator. Beyond parabolic PDEs, time-dependent PDEs also include

hyperbolic PDEs. Those are often solved using explicit time-stepping, where there is no need to

solve systems of algebraic equations and are therefore outside the scope of this chapter.

11.8 Summary

This chapter demonstrates how hybrid analog-digital computing can be used to accelerate solving

nonlinear systems of equations and partial differential equations. We tested our ideas on a multi-

chip system of our physically prototyped analog accelerators. The approximate analog solutions,

when used in a divide-and-conquer scheme to break down large problems, are shown to accelerate

the Newton method inside a precise digital nonlinear PDE solver. Using a simulated model of

an analog accelerator that fits in 350mm2, we predict such an accelerator could reduce solution

times for the innermost Newton method loops on a GPU by 5.7×, and reduce energy consump-

tion by 11.6×. The insight relayed by this chapter is we get tangible performance and efficiency

improvements by seeking out problems where digital stumbles and analog can succeed.

Nonlinear is analog killer app

This chapter shows analog acceleration has unique advantages in tackling nonlinear problems.

That is because the analog accelerator works in continuous time, so that nonlinear functions and

derivatives are continuously reevaluated. In comparison, discrete time digital computers must

pretend the problem is linear at each time step. If this linear assumption causes problems, the

digital computer must invest more iterations and computation time until the linear approximation

is good enough. Using an analog accelerator to solve the same nonlinear problem sidesteps these

problems because the nonlinear behavior of the analog circuit better matches the nonlinear problem

description.

How to do more problems types in analog accelerators

A challenge in using analog accelerator architectures is finding an interface to separate analog and

digital computing models.

133

This thesis paves the way to finding more problems for the analog accelerator. We do so by

converting iterative numerical methods that are workhorses of scientific computing into ODEs [33,

34, 1, 19], which we then solve in the analog accelerator. The critical idea is to use the transient

behavior of an analog resistor-capacitor circuit, and use that circuit to compute the intermediate

results of iterative numerical methods. Essentially, we draw an equivalence between iterative nu-

merical methods in applied math, algorithms in computer science, and transient circuit dynamics

in electrical engineering. These ODE continuous algorithms may be the missing analog-digital

program partitioning for analog accelerators.

In this chapter, I give three examples of continuous ODEs that solve numerical problems: con-

tinuous gradient descent for linear algebra, along with continuous Newton’s method and homotopy

continuation, both for nonlinear algebra. These examples give us clues on how to find more prob-

lems for analog accelerators in the future. For example, iterative numerical methods for important

problems such as eigenanalysis [45, 68] and linear programming [58, 23, 172] all have continuous

time versions.

Doing iterative numerical methods in an analog accelerator has three advantages:

1. Analog accelerators work nicely in hybrid analog-digital architectures for iterative methods

by giving cheap approximate solutions which a conventional digital computer can then refine.

That is possible because iterative numerical methods all work by giving progressively more

correct guesses for the problem solution.

2. Analog accelerators work in continuous time, without discrete steps, avoiding the choice of

step sizes, which control how fast iterative numerical methods updates solution guesses. The

choice of these step sizes is often difficult and needs fine tuning.

3. When we use analog accelerators to solve iterative numerical methods, the solution output

of the analog accelerator is the final, converged output. Because the output is steady, we can

sample the solution with high precision, making it easier to connect the analog accelerator

with a digital computer.

134

How to do more work in an analog accelerator

This chapter shows how we can make the analog accelerator do more work, so the ratio of analog

computation vs. analog / digital conversion is higher, making analog acceleration more worthwhile.

The trick is to have an analog accelerator equivalent of inner loops. For example, we invoked

an analog inner loop for linear algebra inside the analog Newton method solver (Figure 11.1).

The Newton method solver is itself an inner loop for homotopy continuation (Section 11.3). We

implement these inner loops by building subcircuits which converge faster than the overall circuit.

Using this trick, we can nest other types of iterative numerical methods, in the same way digital

algorithms compose different subroutines.

135

Part V

Conclusion

136

Chapter 12

Conclusion & Research Directions

12.1 Conclusion

This thesis revisited hybrid analog-digital computing in support of diverse modern workloads, such

as those in the Berkeley Dwarfs [6] taxonomy (Section 3.1). My team and I demonstrated solv-

ing a variety of scientific computing problems, including stochastic ordinary differential equations

(ODEs) (Chapter 8), partial differential equations (PDEs), linear algebra (Chapter 10), and non-

linear systems of equations (Chapter 11), in analog. We solved these problems on a system of

multiple prototype analog accelerator chips built by a team at Columbia University (see Part II).

On that team I made contributions toward programming the chips (Section 5.1), building the digi-

tal interface (Sections 5.2 and 6.1), and validating the chips’ functionality (Section 6.2). The analog

accelerator chip is intended for use in conjunction with a conventional digital host computer.

The appeal and motivation for using an analog accelerator is efficiency and performance, but

it comes with limitations in accuracy and problem sizes that we have to work around.

The first problem is how to do problems in this unconventional computation model (Section 3.1).

Scientific computing phrases problems as differential equations and algebraic equations. Differential

equations are a continuous view of the world (Chapter 7), while algebraic equations are a discrete

one (Chapter 9). The secret to using the analog accelerator for modern workloads is that these

two viewpoints are interchangeable. Typically, applied mathematicians turn differential equations

into algebraic ones, in part to match the dominant discrete digital model of computation. Less well

appreciated is that the reverse is also true: linear algebra and nonlinear systems of equations can

137

be solved as differential equations, such that the dynamics of the differential equations interpolates

the intermediate values of step-by-step algorithms! Iterative numerical linear algebra (Section 10.2)

and Newton’s methods (Sections 11.2 and 11.3) algorithms for algebraic equations can be viewed

as discrete approximations of ODEs. A hybrid analog-digital computer architecture can solve those

ODEs, in turn solving the underlying linear and nonlinear algebra problems for many workloads.

The second problem is how to solve large problems using hybrid analog-digital computing (Sec-

tion 3.3). The reason the analog computation model can’t handle large problems is it gives up

step-by-step discrete-time operation, instead allowing variables to evolve smoothly in continuous

time. To make that happen the analog accelerator works by chaining hardware for mathemati-

cal operations end-to-end. During computation analog data flows through the hardware with no

overheads in control logic and memory accesses (Section 2.1). The downside is then the needed

hardware size grows alongside problem sizes. The trick to overcome this limitation is to focus

on problems that have divide-and-conquer algorithms that break problems into smaller sizes. We

demonstrate this trick for three problem types: 1. For stochastic ODEs, the solution statistics

come from an ensemble of independent analog solutions, each using a different sample of analog

noise (Section 8.5). 2. For linear elliptic PDEs, we use the multigrid method to break the problem

into a hierarchy of coarse and fine grids. Then the analog accelerator approximately solves the

PDE at every level of discretization resolution. The coarse solutions serve as initial guesses for

fine solutions (Section 10.6). 3. For nonlinear parabolic PDEs, we use the red-black Gauss-Seidel

method to likewise break a nonlinear system of equations into subproblems that fit in the analog

accelerator. The digital host does a few iterations of the Gauss-Seidel outer loop to make sure the

subproblem solutions are in agreement (Section 11.6).

The third problem is how to get accurate solutions using hybrid analog-digital computing

(Section 3.2). The reason the analog computation model gives less accurate solutions is it gives up

representing numbers as digital binary numbers, and instead uses the full range of analog voltage

and current to represent real numbers. Encoding data in analog signals gives an energy efficiency

advantage as long as the analog data precision is limited (Section 2.2). While the analog accelerator

alone may be useful for energy-constrained applications where inputs and outputs are imprecise,

we are more interested in using analog in conjunction with digital for precise solutions. The trick is

to solve problems where low-precision guesses are useful for conventional digital algorithms. This

138

trick works for linear algebra, where the analog accelerator finds an approximate solution, and the

digital host finds the residual and rescales the problem for another round in analog (Section 10.4).

The trick also works for nonlinear systems of equations, where an analog approximate solution

is a good initial guess for a digital Newton’s method solver (Section 11.5). Hybrid analog-digital

computation for accurate solutions is possible for algebraic equations but not for differential ones,

a strong indication that mine is the right approach.

12.2 Future research directions

Analog accelerator solutions for differential algebraic equations (DAEs) and integral equations are

two potential applications for analog accelerators. Both are mathematical logical extensions beyond

the differential equations and algebraic equations I focused on in this thesis. Furthermore, analog

support for some problem and algorithm categories in the Berkeley Dwarfs taxonomy deserves

further research.

Analog accelerator applications in differential algebraic equations

DAEs are systems of equations defined by a mix of differential equations and algebraic equa-

tions [135, 21, 7]. We can think of them as extremely stiff differential equations—so stiff, in fact,

the Jacobian matrix interrelating derivatives and the variables is singular. As such, traditional

methods for solving either differential equations or systems of algebraic equations are alone not

enough to solve DAEs.

Several widespread engineering applications have to solve DAEs. One such example is robotic

arm and leg kinematics [87]. When robotic limbs are in a fully extended position, the kinematics

of the limb loses a degree of freedom, meaning that a change of input to one of the joints has

no influence on the final position of a hand or foot. In that situation, the ODE describing the

hand or foot position has a singular Jacobian matrix, causing the ODE to become a DAE. Trying

to solve the DAE using regular ODE solvers will cause the controller to fail, and the limb may

move incorrectly. Another domain of application for DAEs is the optimal control of induction

motors [109].

139

Analog co-processing is potentially a more reliable way to solve stiff systems of ODEs, due to

the lack of a notion of discrete time steps. Further research is needed to understand how DAEs

can be mapped into analog accelerators.

Analog accelerator applications in Berkeley Dwarfs

Some problems and algorithms in the Berkeley Dwarfs taxonomy (Section 3.1) deserve research to

see if analog accelerators are applicable.

This thesis explored analog accelerator applications in several areas of continuous mathematics,

such as sparse and dense matrix (Part IV), Monte Carlo (Chapter 8), and structured and unstruc-

tured grid methods (Part IV). Other researchers have delved into analog spectral methods [78]

while N-body seems better suited for digital accelerators.

Additional research is needed to find or rule out analog accelerator applications in important

dynamic programming and graphical methods problems such as language processing (Viterbi algo-

rithm and hidden Markov model) and optimal control. Analog accelerator applications in mostly

discrete problems, such as Boolean satisfiability problems and sorting, deserve attention too. Even

though those approaches are theoretical and outlandish (given the mismatch between discrete prob-

lems and continuous computation model), they may offer new directions for approximate solutions

for discrete problems.

12.3 Broader view

In the past 10 years computer architecture research has moved to more heterogeneity and less

adherence to conventional abstractions. Scientists and engineers hold an unshakable belief that

computing holds keys to unlocking humanity’s Grand Challenges. Acting on that belief they have

looked deeper into computer architecture to find specialized support for their applications. Likewise,

computer architects have looked deeper into circuits and devices in search of untapped performance

and efficiency. The lines between computer architecture layers—applications, algorithms, architec-

tures, microarchitectures, circuits and devices—have blurred. Against this backdrop, a menagerie

of computer architectures are on the horizon, ones that forgo basic assumptions about computer

hardware, and require new thinking of how such hardware supports problems and algorithms.

140

As we enter the post-Moore’s law era of computing, unconventional architectures will offer

specialized models of computation that uniquely support specific problem types [168, 88]. Two

prominent examples are using deep neural networks to support pattern recognition, and using

quantum computers for simulating quantum systems. In this thesis I show that another spe-

cialized, unconventional architecture is to use analog accelerators to solve problems in scientific

computing. As recent computer architecture conference programs show, these unconventional ar-

chitectures are now commercially relevant. Computer architecture researchers will discover other

important models of computation in the future. The work in this chapter is an example of the

discovery process, implementation, and evaluation of how an unconventional architecture supports

a specialized workload.

141

Bibliography

[1] Absil, P.-A. Continuous-time systems that solve computational problems. IJUC 2 (2006),
291–304.

[2] Achour, S., Sarpeshkar, R., and Rinard, M. C. Configuration synthesis for pro-
grammable analog devices with Arco. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation (New York, NY, USA, 2016), PLDI
’16, ACM, pp. 177–193.

[3] Ahnert, K., and Mulansky, M. Odeint - solving ordinary differential equations in C++.
AIP Conference Proceedings 1389, 1 (2011), 1586–1589.

[4] Allgower, E., and Georg, K. Numerical Continuation Methods: An Introduction.
Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 2012.

[5] Anzt, H., Heuveline, V., and Rocker, B. An error correction solver for linear systems:
Evaluation of mixed precision implementations. In Proceedings of the 9th International Con-
ference on High Performance Computing for Computational Science (Berlin, Heidelberg,
2011), VECPAR’10, Springer-Verlag, pp. 58–70.

[6] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer,
K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., and Yelick,
K. A. The landscape of parallel computing research: A view from Berkeley. Tech. Rep.
UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec 2006.

[7] Ascher, U. M., and Petzold, L. R. Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations, vol. 61. Siam, 1998.

[8] Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J.,
Luszczek, P., and Tomov, S. Accelerating scientific computations with mixed precision
algorithms. Computer Physics Communications 180, 12 (12 2009), 2526–2533.

[9] Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler,
M., Maier, M., Turcksin, B., and Wells, D. The deal.II library, version 8.4. Journal
of Numerical Mathematics 24 (2016).

142

[10] Beatson, R., and Greengard, L. A short course on fast multipole methods.

[11] Bekey, G., and Karplus, W. Hybrid Computation. Wiley, 1968.

[12] Betts, J. Practical Methods for Optimal Control and Estimation Using Nonlinear Program-
ming, second ed. Society for Industrial and Applied Mathematics, 2010.

[13] Bingulac, S., Milovanovic, M., Lazarevic, B., and Lolic, B. A hybrid approach to
automatic rescaling on general purpose analog computers. Mathematics and Computers in
Simulation 9, 4 (1967), 188 – 194.

[14] Bloch, A. M., and Rojo, A. G. Sorting: The Gauss Thermostat, the Toda Lattice and
Double Bracket Equations,. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 35–48.

[15] Bojnordi, M. N., and Ipek, E. Memristive Boltzmann machine: A hardware accelerator
for combinatorial optimization and deep learning. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA) (March 2016), pp. 1–13.

[16] Bojnordi, M. N., and Ipek, E. Memristive Boltzmann machine: A hardware accelerator
for combinatorial optimization and deep learning. In 2017 Fifth Berkeley Symposium on
Energy Efficient Electronic Systems Steep Transistors Workshop (E3S) (Oct 2017), pp. 1–3.

[17] Bojnordi, M. N., and Ipek, E. The memristive Boltzmann machines. IEEE Micro 37, 3
(2017), 22–29.

[18] Bolz, J., Farmer, I., Grinspun, E., and Schröoder, P. Sparse matrix solvers on the
gpu: Conjugate gradients and multigrid. ACM Trans. Graph. 22, 3 (July 2003), 917–924.

[19] Bournez, O., and Campagnolo, M. L. A Survey on Continuous Time Computations.
Springer New York, New York, NY, 2008, pp. 383–423.

[20] Boyd, S., and Vandenberghe, L. Convex Optimization. Cambridge university press,
2004.

[21] Brenan, K., Campbell, S., and Petzold, L. Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations. Society for Industrial and Applied Mathematics,
1995.

[22] Briggs, W., Henson, V., and McCormick, S. A Multigrid Tutorial, second ed. Society
for Industrial and Applied Mathematics, 2000.

[23] Brockett, R. W. Dynamical systems that sort lists, diagonalize matrices and solve linear
programming problems. In Proceedings of the 27th IEEE Conference on Decision and Control
(Dec 1988), pp. 799–803 vol.1.

143

[24] Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., and Kurzak,
J. Mixed precision iterative refinement techniques for the solution of dense linear systems.
Int. J. High Perform. Comput. Appl. 21, 4 (Nov. 2007), 457–466.

[25] Care, C. From analogy-making to modelling: the history of analog computing as a modelling
technology. PhD thesis, University of Warwick, 2008.

[26] Carloni, L. P., McMillan, K. L., and Sangiovanni-Vincentelli, A. L. Theory
of latency-insensitive design. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 20, 9 (Sep 2001), 1059–1076.

[27] Celmer, J., Rouland, M., Aeronautics, U. S. N., Administration, S., and Center,
G. S. F. Automatic Analog Computer Scaling Using Digital Optimization Techniques. NASA
technical note. 1970.

[28] Chen, T., Chen, Y., Duranton, M., Guo, Q., Hashmi, A., Lipasti, M., Nere, A.,
Qiu, S., Sebag, M., and Temam, O. BenchNN: On the broad potential application scope
of hardware neural network accelerators. In Proceedings of the 2012 IEEE International
Symposium on Workload Characterization (IISWC) (Washington, DC, USA, 2012), IISWC
’12, IEEE Computer Society, pp. 36–45.

[29] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O. DianNao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings
of the 19th International Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2014), ASPLOS ’14, ACM, pp. 269–284.

[30] Chen, W., and McNamee, L. P. Iterative solution of large-scale systems by hybrid
techniques. IEEE Transactions on Computers C-19, 10 (Oct 1970), 879–889.

[31] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z.,
Sun, N., and Temam, O. DaDianNao: A machine-learning supercomputer. In Microarchi-
tecture (MICRO), 2014 47th Annual IEEE/ACM International Symposium on (Dec 2014),
pp. 609–622.

[32] Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., and Xie, Y. PRIME:
A novel processing-in-memory architecture for neural network computation in reram-based
main memory. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA) (June 2016), pp. 27–39.

[33] Chu, M. T. On the continuous realization of iterative processes. SIAM Review 30, 3 (1988),
375–387.

[34] Chu, M. T. A list of matrix flows with applications. In in Hamiltonian and Gradients Flows,
Algorithms and Control (1994), pp. 87–97.

144

[35] Chua, L., and Lin, G.-N. Nonlinear programming without computation. IEEE Transac-
tions on Circuits and Systems 31, 2 (1984), 182–188.

[36] Cipra, B. A. The best of the 20th century: Editors name top 10 algorithms. SIAM news
33, 4, 1–2.

[37] Cockshott, P., Koltes, A., O’Donnell, J., Prosser, P., and Vanderbauwhede,
W. A hardware relaxation paradigm for solving NP-hard problems. In Proceedings of the
2008 International Conference on Visions of Computer Science: BCS International Academic
Conference (Swindon, UK, 2008), VoCS’08, BCS Learning & Development Ltd., pp. 75–86.

[38] Conte, T. M., DeBenedictis, E. P., Gargini, P. A., and Track, E. Rebooting
computing: The road ahead. Computer 50, 1 (Jan 2017), 20–29.

[39] Council, N. R. Fueling Innovation and Discovery: The Mathematical Sciences in the 21st
Century. The National Academies Press, Washington, DC, 2012.

[40] Cowan, G., Melville, R., and Tsividis, Y. A VLSI analog computer/math co-processor
for a digital computer. In Solid-State Circuits Conference, 2005. Digest of Technical Papers.
ISSCC. 2005 IEEE International (Feb 2005), pp. 82–586 Vol. 1.

[41] Cowan, G., Melville, R., and Tsividis, Y. A VLSI analog computer/digital computer
accelerator. Solid-State Circuits, IEEE Journal of 41, 1 (Jan 2006), 42–53.

[42] Crank, J., and Nicolson, P. A practical method for numerical evaluation of solutions
of partial differential equations of the heat-conduction type. In Mathematical Proceedings of
the Cambridge Philosophical Society (1947), vol. 43, Cambridge University Press, pp. 50–67.

[43] DeBenedictis, E. P. Computational complexity and new computing approaches. Computer
49, 12 (Dec 2016), 76–79.

[44] DeBenedictis, E. P. It’s time to redefine Moore’s law again. Computer 50, 2 (Feb 2017),
72–75.

[45] Deift, P., Nanda, T., and Tomei, C. Ordinary differential equations and the symmetric
eigenvalue problem. SIAM Journal on Numerical Analysis 20, 1 (1983), 1–22.

[46] Dennard, R., Rideout, V., Bassous, E., and LeBlanc, A. Design of ion-implanted
MOSFET’s with very small physical dimensions. Solid-State Circuits, IEEE Journal of 9, 5
(Oct 1974), 256–268.

[47] Deuflhard, P. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive
Algorithms. Springer Publishing Company, Incorporated, 2011.

145

[48] Dongarra, J., Heroux, M. A., and Luszczek, P. High-performance conjugate-gradient
benchmark: A new metric for ranking high-performance computing systems. The Interna-
tional Journal of High Performance Computing Applications 30, 1 (2016), 3–10.

[49] Douglas, C. C., Mandel, J., and Miranker, W. L. Fast hybrid solution of algebraic
systems. SIAM Journal on Scientific and Statistical Computing 11, 6 (1990), 1073–1086.

[50] Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y., and
Temam, O. ShiDianNao: Shifting vision processing closer to the sensor. In Computer Ar-
chitecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on (June 2015),
pp. 92–104.

[51] Edwards, D. Numerical and analytic methods in option pricing.

[52] Elshoff, J. L., and Hulina, P. T. The binary floating point digital differential analyzer.
In Proceedings of the November 17-19, 1970, Fall Joint Computer Conference (New York,
NY, USA, 1970), AFIPS ’70 (Fall), ACM, pp. 369–376.

[53] Ercsey-Ravasz, M., and Toroczkai, Z. Optimization hardness as transient chaos in an
analog approach to constraint satisfaction. Nature Physics 7, 12 (2011), 966.

[54] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and Burger, D.
Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual International
Symposium on Computer Architecture (New York, NY, USA, 2011), ISCA ’11, ACM, pp. 365–
376.

[55] Esser, S., Andreopoulos, A., Appuswamy, R., Datta, P., Barch, D., Amir, A.,
Arthur, J., Cassidy, A., Flickner, M., Merolla, P., Chandra, S., Basilico, N.,
Carpin, S., Zimmerman, T., Zee, F., Alvarez-Icaza, R., Kusnitz, J., Wong, T.,
Risk, W., McQuinn, E., Nayak, T., Singh, R., and Modha, D. Cognitive computing
systems: Algorithms and applications for networks of neurosynaptic cores. In Neural Networks
(IJCNN), The 2013 International Joint Conference on (Aug 2013), pp. 1–10.

[56] Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., and LeCun,
Y. Neuflow: A runtime reconfigurable dataflow processor for vision. In Computer Vision
and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society Conference on
(June 2011), pp. 109–116.

[57] Fifer, S. Analogue Computation: Theory, Techniques, and Applications. No. v. 3 in Ana-
logue Computation: Theory, Techniques, and Applications. McGraw-Hill, 1961.

[58] Firth, A. W. O. Optimization problems: Solution by an analogue computer. The Computer
Journal 4, 1 (1961), 68–72.

146

[59] Fletcher, C. Computational Techniques for Fluid Dynamics 1. Computational Techniques
for Fluid Dynamics. Springer Berlin Heidelberg, 1991.

[60] Forbes, G. The simulation of partial differential equations on the digital differential an-
alyzer. In Proceedings of the ACM Annual Conference - Volume 2 (New York, NY, USA,
1972), ACM ’72, ACM, pp. 860–866.

[61] Gander, M. J. 50 years of time parallel time integration. In Multiple Shooting and Time
Domain Decomposition Methods. Springer, 2015, pp. 69–113.

[62] Gautschi, W. Numerical Analysis. SpringerLink : Bücher. Birkhäuser Boston, 2011.

[63] George, S., Kim, S., Shah, S., Hasler, J., Collins, M., Adil, F., Wunderlich, R.,
Nease, S., and Ramakrishnan, S. A programmable and configurable mixed-mode FPAA
SoC. IEEE Transactions on Very Large Scale Integration (VLSI) Systems PP, 99 (2016),
1–9.

[64] Greengard, L., and Rokhlin, V. A fast algorithm for particle simulations. Journal of
Computational Physics 73, 2 (1987), 325–348.

[65] Guo, N., Huang, Y., and Lei, K. Columbia hybrid computer user’s guide. Tech. rep.,
Columbia University, 2017.

[66] Guo, N., Huang, Y., Mai, T., Patil, S., Cao, C., Seok, M., Sethumadhavan, S.,
and Tsividis, Y. Continuous-time hybrid computation with programmable nonlinearities.
In European Solid-State Circuits Conference (ESSCIRC), ESSCIRC 2015 - 41st (Sept 2015),
pp. 279–282.

[67] Guo, N., Huang, Y., Mai, T., Patil, S., Cao, C., Seok, M., Sethumadhavan, S., and
Tsividis, Y. Energy-efficient hybrid analog/digital approximate computation in continuous
time. IEEE Journal of Solid-State Circuits 51, 7 (July 2016), 1514–1524.

[68] Guseinov, G. S. A class of complex solutions to the finite Toda lattice. Math. Comput.
Model. 57, 5 (Mar. 2013), 1190–1202.

[69] Hall, C. R., and Kahne, S. J. Automated scaling for hybrid computers. IEEE Transac-
tions on Computers C-18, 5 (May 1969), 416–423.

[70] Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B. C.,
Richardson, S., Kozyrakis, C., and Horowitz, M. Understanding sources of ineffi-
ciency in general-purpose chips. In Proceedings of the 37th Annual International Symposium
on Computer Architecture (New York, NY, USA, 2010), ISCA ’10, ACM, pp. 37–47.

147

[71] Hannington, G., and Whitehead, D. G. A floating-point multiplexed DDA system.
IEEE Transactions on Computers C-25, 11 (Nov 1976), 1074–1077.

[72] Hasler, J. Opportunities in physical computing driven by analog realization. In 2016 IEEE
International Conference on Rebooting Computing (ICRC) (Oct 2016), pp. 1–8.

[73] Hasler, J. Starting framework for analog numerical analysis for energy-efficient computing.
Journal of Low Power Electronics and Applications 7, 3 (2017).

[74] Helmke, U., Brockett, R., and Moore, J. Optimization and Dynamical Systems.
Communications and Control Engineering. Springer London, 2012.

[75] Hennessy, J. L., and Patterson, D. A. Computer Architecture, Fifth Edition: A Quan-
titative Approach, 5th ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2011.

[76] Hetzler, S. M. A continuous version of Newton’s method. The College Mathematics
Journal 28, 5 (1997), 348–351.

[77] Higham, D. J. An algorithmic introduction to numerical simulation of stochastic differential
equations. SIAM Review 43, 3 (2001), 525–546.

[78] Hu, M., and Strachan, J. P. Accelerating discrete fourier transforms with dot-product
engine. In 2016 IEEE International Conference on Rebooting Computing (ICRC) (Oct 2016),
pp. 1–5.

[79] Hu, M., Strachan, J. P., Li, Z., Grafals, E. M., Davila, N., Graves, C., Lam, S.,
Ge, N., Yang, J. J., and Williams, R. S. Dot-product engine for neuromorphic com-
puting: programming 1T1M crossbar to accelerate matrix-vector multiplication. In Design
Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE (2016), IEEE, pp. 1–6.

[80] Hu, X., Ma, L. H., Ru, L., and Zhang, S. Analog error correction codes based on
chaotic system: The 2-dimensional tent codes. In 2014 International Conference on Wireless
Communication and Sensor Network (Dec 2014), pp. 34–38.

[81] Huang, Y., Guo, N., Seok, M., Tsividis, Y., Mandli, K., and Sethumadhavan, S.
Hybrid analog-digital solution of nonlinear partial differential equations. In Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture (New York, NY,
USA, 2017), MICRO-50 ’17, ACM, pp. 665–678.

[82] Huang, Y., Guo, N., Seok, M., Tsividis, Y., and Sethumadhavan, S. Evaluation of
an analog accelerator for linear algebra. In Proceedings of the 43rd International Symposium
on Computer Architecture (Piscataway, NJ, USA, 2016), ISCA ’16, IEEE Press, pp. 570–582.

148

[83] Huang, Y., Guo, N., Seok, M., Tsividis, Y., and Sethumadhavan, S. Analog com-
puting in a modern context: A linear algebra accelerator case study. IEEE Micro 37, 3
(2017), 30–38.

[84] Huang, Y., and Sethumadhavan, S. Hybrid continuous-discrete computer: from ISA to
microarchitecture. Tech. Rep. CUCS-029-14, Computer Science, Columbia University, 2013.

[85] Jackson, A. Analog Computation. McGraw-Hill, 1960.

[86] Jacobsen, J., Lewis, O., and Tennis, B. Approximations of continuous Newton’s method:
an extension of Cayley’s problem. Electronic Journal of Differential Equations (EJDE) [elec-
tronic only] 2007 (2007), 163–173.

[87] Jalon, J. G. d., and Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems:
The Real Time Challenge. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1994.

[88] Joneckis, L., Koester, D., and Alspector, J. An initial look at alternative comput-
ing technologies for the intelligence community. Tech. rep., INSTITUTE FOR DEFENSE
ANALYSES ALEXANDRIA VA, Jan 2014.

[89] Jun, B., and Kocher, P. The Intel random number generator.

[90] Karmarkar, N. A new polynomial-time algorithm for linear programming. In Proceedings
of the sixteenth annual ACM symposium on Theory of computing (1984), ACM, pp. 302–311.

[91] Karplus, W. Analog Simulation: Solution of Field Problems. McGraw-Hill series in infor-
mation processing and computers. McGraw-Hill, 1958.

[92] Karplus, W., and Soroka, W. Analog Methods: Computation and Simulation. McGraw-
Hill series in engineering sciences. McGraw-Hill, 1959.

[93] Karplus, W. J. A hybrid computer technique for treating nonlinear partial differential
equations. IEEE Transactions on Electronic Computers, 5 (1964), 597–605.

[94] Karplus, W. J., and Russell, R. Increasing digital computer efficiency with the aid of
error-correcting analog subroutines. Computers, IEEE Transactions on C-20, 8 (Aug 1971),
831–837.

[95] Keckler, S., Dally, W., Khailany, B., Garland, M., and Glasco, D. GPUs and
the future of parallel computing. Micro, IEEE 31, 5 (Sept 2011), 7–17.

[96] Kelley, C. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied
Mathematics. Society for Industrial and Applied Mathematics, 1995.

149

[97] Khazraee, M., Gutierrez, L. V., Magaki, I., and Taylor, M. B. Specializing a
planet’s computation: ASIC clouds. IEEE Micro 37, 3 (2017), 62–69.

[98] Kinget, P., and Steyaert, M. S. J. A programmable analog cellular neural network
CMOS chip for high speed image processing. IEEE Journal of Solid-State Circuits 30, 3
(Mar 1995), 235–243.

[99] Kirk, D. Optimal Control Theory: An Introduction. Dover Books on Electrical Engineering.
Dover Publications, 2012.

[100] Knoll, D. A., and Keyes, D. E. Jacobian-free Newton–Krylov methods: a survey of
approaches and applications. Journal of Computational Physics 193, 2 (2004), 357–397.

[101] Koosh, V. F. Analog computation and learning in VLSI. PhD thesis, California Institute
of Technology, 2001.

[102] Korn, G., and Korn, T. Electronic Analog and Hybrid Computers. McGraw-Hill, 1972.

[103] Korn, G. A. The impact of hybrid analog-digital techniques on the analog-computer art.
Proceedings of the IRE 50, 5 (1962), 1077–1086.

[104] Kozek, T., and Roska, T. A double time-scale CNN for solving two-dimensional Navier-
Stokes equations. International Journal of Circuit Theory and Applications 24, 1 (1996),
49–55.

[105] Krüger, J., and Westermann, R. Linear algebra operators for GPU implementation
of numerical algorithms. In ACM SIGGRAPH 2003 Papers (New York, NY, USA, 2003),
SIGGRAPH ’03, ACM, pp. 908–916.

[106] Kulkarni, S., Bhat, S., Khasanvis, S., and Moritz, C. A. Magneto-electric approxi-
mate computational circuits for bayesian inference. In 2017 IEEE International Conference
on Rebooting Computing (ICRC) (Nov 2017), pp. 1–8.

[107] Kulkarni, S., Bhat, S., and Moritz, C. A. Structure discovery for gene expression
networks with emerging stochastic hardware. In 2017 IEEE International Conference on
Rebooting Computing (ICRC) (Nov 2017), pp. 1–4.

[108] Leyffer, S., Wild, S. M., Fagan, M., Snir, M., Palem, K., Yoshii, K., and Finkel,
H. Doing Moore with Less – Leapfrogging Moore’s Law with Inexactness for Supercomputing.
ArXiv e-prints (Oct. 2016).

[109] Li, M., Chiasson, J., Bodson, M., and Tolbert, L. M. A differential-algebraic approach
to speed estimation in an induction motor. IEEE Transactions on Automatic Control 51, 7
(July 2006), 1172–1177.

150

[110] LiKamWa, R., Hou, Y., Gao, Y., Polansky, M., and Zhong, L. RedEye: Analog
ConvNet image sensor architecture for continuous mobile vision. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA) (June 2016), pp. 255–
266.

[111] Liu, D., Chen, T., Liu, S., Zhou, J., Zhou, S., Teman, O., Feng, X., Zhou, X.,
and Chen, Y. Pudiannao: A polyvalent machine learning accelerator. SIGPLAN Not. 50,
4 (Mar. 2015), 369–381.

[112] Liu, Y., Li, J., and Xie, K. Efficient image transmission through analog error correction. In
Multimedia Signal Processing (MMSP), 2011 IEEE 13th International Workshop on (2011),
IEEE, pp. 1–6.

[113] Lottarini, A., Edwards, S. A., Ross, K. A., and Kim, M. A. Network synthesis for
database processing units. In Proceedings of the 54th Annual Design Automation Conference
2017 (New York, NY, USA, 2017), DAC ’17, ACM, pp. 90:1–90:6.

[114] MacDonald, D. Noise and Fluctuations: An Introduction. Dover books on physics. Dover
Publications, 2006.

[115] Madhavan, A. Abusing Hardware Race Conditions for High Throughput Energy Efficient
Computation. PhD thesis, 2016. Copyright - Database copyright ProQuest LLC; ProQuest
does not claim copyright in the individual underlying works; Last updated - 2017-02-27.

[116] Madhavan, A., Sherwood, T., and Strukov, D. Race logic: A hardware acceleration for
dynamic programming algorithms. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (Piscataway, NJ, USA, 2014), ISCA ’14, IEEE Press, pp. 517–528.

[117] Madhavan, A., Sherwood, T., and Strukov, D. Race logic: Abusing hardware race
conditions to perform useful computation. IEEE Micro 35, 3 (May 2015), 48–57.

[118] Madhavan, A., Sherwood, T., and Strukov, D. Energy efficient computation with
asynchronous races. In Proceedings of the 53rd Annual Design Automation Conference (New
York, NY, USA, 2016), DAC ’16, ACM, pp. 108:1–108:6.

[119] Madhavan, A., Sherwood, T., and Strukov, D. A 4-mm2 180-nm-CMOS 15-giga-cell-
updates-per-second DNA sequence alignment engine based on asynchronous race conditions.
In 2017 IEEE Custom Integrated Circuits Conference (CICC) (April 2017), pp. 1–4.

[120] Mandel, J., and Miranker, W. New techniques for fast hybrid solutions of systems of
equations. International Journal for Numerical Methods in Engineering 27, 3 (1989), 455–467.

[121] Manohar, R. Comparing stochastic and deterministic computing. Computer Architecture
Letters PP, 99 (2015), 1–1.

151

[122] McDonough, J. Lectures on computational numerical analysis of partial differential equa-
tions.

[123] McGhee, R. B., and Nilsen, R. N. The extended resolution digital differential analyzer: A
new computing structure for solving differential equations. IEEE Transactions on Computers
C-19, 1 (Jan 1970), 1–9.

[124] Mead, C. Neuromorphic electronic systems. Proceedings of the IEEE 78, 10 (1990), 1629–
1636.

[125] Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., and Modha, D. S.
A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm.
In 2011 IEEE Custom Integrated Circuits Conference (CICC) (Sept 2011), pp. 1–4.

[126] Milano, F. Continuous Newton’s method for power flow analysis. IEEE Transactions on
Power Systems 24, 1 (Feb 2009), 50–57.

[127] Mills, J. W. The nature of the Extended Analog Computer. Physica D Nonlinear Phe-
nomena 237 (July 2008), 1235–1256.

[128] Mills, J. W., Himebaugh, B., Allred, A., Bulwinkle, D., Deckard, N., Gopalakr-
ishnan, N., Miller, J., Miller, T., Nagai, K., Nakamura, J., et al. Extended analog
computers: A unifying paradigm for VLSI, plastic and colloidal computing systems.

[129] Mills, J. W., Parker, M., Himebaugh, B., Shue, C., Kopecky, B., and Weile-
mann, C. “empty space” computes: The evolution of an unconventional supercomputer. In
Proceedings of the 3rd Conference on Computing Frontiers (New York, NY, USA, 2006), CF
’06, ACM, pp. 115–126.

[130] Molnár, B., and Ercsey-Ravasz, M. Analog dynamics for solving max-SAT problems.
In 2014 14th International Workshop on Cellular Nanoscale Networks and their Applications
(CNNA) (July 2014), pp. 1–2.

[131] Morgan, A. Solving Polynomial Systems Using Continuation for Engineering and Scientific
Problems. Prentice-Hall, 1987.

[132] Neuberger, J. W. The continuous Newton’s method, inverse functions, and Nash-Moser.
The American Mathematical Monthly 114, 5 (2007), 432–437.

[133] Nocedal, J., and Wright, S. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer New York, 2000.

[134] Ortega, J., and Rheinboldt, W. Iterative Solution of Nonlinear Equations in Several
Variables. Society for Industrial and Applied Mathematics, 2000.

152

[135] Petzold, L. Differential/algebraic equations are not ODEs. SIAM Journal on Scientific
and Statistical Computing 3, 3 (1982), 367–384.

[136] Philokyprou, G., and Halatsis, C. Floating-point and multibit-increment digital-
differential-analyser structures. Electronics Letters 8 (October 1972), 531–532(1).

[137] Present, I. Cramming more components onto integrated circuits. Readings in Computer
Architecture 56 (2000).

[138] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical
Recipes 3rd Edition: The Art of Scientific Computing, 3 ed. Cambridge University Press,
New York, NY, USA, 2007.

[139] Pyle, S. D., Thangavel, V., Williams, S. M., and DeMara, R. F. Self-scaling evo-
lution of analog computation circuits with digital accuracy refinement. In 2015 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS) (June 2015), pp. 1–8.

[140] Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P., Kozyrakis, C., and
Horowitz, M. A. Convolution engine: Balancing efficiency & flexibility in specialized com-
puting. In Proceedings of the 40th Annual International Symposium on Computer Architecture
(New York, NY, USA, 2013), ISCA ’13, ACM, pp. 24–35.

[141] Rao, A. V. (preprint) aas 09-334 a survey of numerical methods for optimal control, 2009.

[142] Rojo, A. G., and Bloch, A. M. Nonholonomic double-bracket equations and the Gauss
thermostat. Phys. Rev. E 80 (Aug 2009), 025601.

[143] Rothganger, F., James, C. D., and Aimone, J. B. Computing with dynamical systems.
In 2016 IEEE International Conference on Rebooting Computing (ICRC) (Oct 2016), pp. 1–3.

[144] Rubin, A. I., and Mawson, J. B. Hybrid computation 1976 and its future. Computer 9,
7 (1976), 37–46.

[145] Rutishauser, U., and Douglas, R. J. State-dependent computation using coupled re-
current networks. Neural Comput. 21, 2 (Feb. 2009), 478–509.

[146] Sanz-Serna, J. M. Markov Chain Monte Carlo and Numerical Differential Equations.
Springer International Publishing, Cham, 2014, pp. 39–88.

[147] Sarpeshkar, R. Analog versus digital: extrapolating from electronics to neurobiology.
Neural Computation 10, 7 (1998), 1601–1638.

[148] Sarpeshkar, R., Delbruck, T., and Mead, C. A. White noise in MOS transistors and
resistors. IEEE Circuits and Devices Magazine 9, 6 (1993), 23–29.

153

[149] Sarpeshkar, R., Lyon, R. F., and Mead, C. A low-power wide-dynamic-range analog
VLSI cochlea. Analog Integrated Circuits and Signal Processing 16, 3 (Aug 1998), 245–274.

[150] Sarpeshkar, R., and O’Halloran, M. Scalable hybrid computation with spikes. Neural
Computation 14, 9 (2002), 2003–2038.

[151] Sauer, T. Numerical Solution of Stochastic Differential Equations in Finance. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 529–550.

[152] Saupe, D. Discrete Versus Continuous Newton’s Method: A Case Study. Springer Nether-
lands, Dordrecht, 1989, pp. 59–80.

[153] Schell, B., and Tsividis, Y. A clockless ADC/DSP/DAC system with activity-dependent
power dissipation and no aliasing. In Solid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. IEEE International (Feb 2008), pp. 550–635.

[154] Schemmel, J., Fieres, J., and Meier, K. Wafer-scale integration of analog neural net-
works. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence) (June 2008), pp. 431–438.

[155] Schlottmann, C. R., Shapero, S., Nease, S., and Hasler, P. A digitally enhanced
dynamically reconfigurable analog platform for low-power signal processing. IEEE Journal
of Solid-State Circuits 47, 9 (2012), 2174–2184.

[156] Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E.,
Rose, G. S., and Plank, J. S. A survey of neuromorphic computing and neural networks
in hardware. CoRR abs/1705.06963 (2017).

[157] Seo, J.-s., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Montoye, R. K.,
Rajendran, B., Tierno, J. A., Chang, L., Modha, D. S., et al. A 45nm cmos
neuromorphic chip with a scalable architecture for learning in networks of spiking neurons.
In Custom Integrated Circuits Conference (CICC), 2011 IEEE (2011), IEEE, pp. 1–4.

[158] Sethumadhavan, S., Roberts, R., and Tsividis, Y. A case for hybrid discrete-continuous
architectures. IEEE Comput. Archit. Lett. 11, 1 (Jan. 2012), 1–4.

[159] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P.,
Hu, M., Williams, R. S., and Srikumar, V. ISAAC: A convolutional neural network
accelerator with in-situ analog arithmetic in crossbars. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA) (June 2016), pp. 14–26.

[160] Shaw, C. Using Computational Fluid Dynamics. Prentice Hall, 1992.

154

[161] Shewchuk, J. R. An introduction to the conjugate gradient method without the agonizing
pain.

[162] Srinivasan, M., and Bernard, G. A proposed mechanism for multiplication of neural
signals. Biological Cybernetics 21, 4 (1976), 227–236.

[163] St. Amant, R., Yazdanbakhsh, A., Park, J., Thwaites, B., Esmaeilzadeh, H.,
Hassibi, A., Ceze, L., and Burger, D. General-purpose code acceleration with limited-
precision analog computation. SIGARCH Comput. Archit. News 42, 3 (June 2014), 505–516.

[164] Tadmor, E. A review of numerical methods for nonlinear partial differential equations.
Bulletin of the American Mathematical Society 49, 4 (2012), 507–554.

[165] Taylor, M. B. Is dark silicon useful? harnessing the four horsemen of the coming dark
silicon apocalypse. In Design Automation Conference (2012).

[166] Thangavel, V., Song, Z. X., and Demara, R. F. Intrinsic evolution of truncated
Puiseux series on a mixed-signal field-programmable soc. IEEE Access 4 (2016), 2863–2872.

[167] Toselli, A., and Widlund, O. Domain Decomposition Methods - Algorithms and Theory.
Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 2004.

[168] Traub, J. F. A continuous model of computation. arXiv Preprint Physics/0106045 (2001).

[169] Trefethen, L. N., and Bau III, D. Numerical Linear Algebra, vol. 50. SIAM, 1997.

[170] Ulmann, B. Analog Computing. Oldenbourg Wissenschaftsverlag, 2013.

[171] Venkatesh, G., Sampson, J., Goulding, N., Garcia, S., Bryksin, V., Lugo-
Martinez, J., Swanson, S., and Taylor, M. B. Conservation cores: reducing the
energy of mature computations. In ASPLOS 2010: Architectural Support for Programming
Languages and Operating Systems (2010).

[172] Vichik, S., and Borrelli, F. Solving linear and quadratic programs with an analog circuit.
Computers & Chemical Engineering 70 (2014), 160–171.

[173] Vichnevetsky, R. Analog/hybrid solution of partial differential equations in the nuclear
industry. SIMULATION 11, 6 (1968), 269–281.

[174] Vom Scheidt, J. Kloeden, p. e.; Platen, e., numerical solution of stochastic differential
equations. Berlin etc., Springer-Verlag 1992. XXXVI, 632 pp., 85 figs., dm 118,oo. isbn 3-
540-54062-8 (applications of mathematics 23). ZAMM - Journal of Applied Mathematics and
Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 74, 8 (1994), 332–332.

155

[175] Walsh, J. A. The dynamics of Newton’s method for cubic polynomials. The College
Mathematics Journal 26, 1 (1995), 22–28.

[176] Wang, S., Lebeck, A. R., and Dwyer, C. Nanoscale resonance energy transfer-based
devices for probabilistic computing. IEEE Micro 35, 5 (Sept 2015), 72–84.

[177] Wang, S., Zhang, X., Li, Y., Bashizade, R., Yang, S., Dwyer, C., and Lebeck,
A. R. Accelerating Markov random field inference using molecular optical Gibbs sampling
units. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA) (June 2016), pp. 558–569.

[178] Wang, Y., Baboulin, M., Rupp, K., Le Maître, O., and Fraigneau, Y. Solving 3D
incompressible Navier-Stokes equations on hybrid CPU/GPU systems. In Proceedings of the
High Performance Computing Symposium (San Diego, CA, USA, 2014), HPC ’14, Society
for Computer Simulation International, pp. 12:1–12:8.

[179] Whitham, G. B. Linear and Nonlinear Waves, vol. 42. John Wiley & Sons, 2011.

[180] Wilkins, B. Analogue and Iterative Methods in Computation, Simulation, and Control.
Modern electrical studies. Chapman and Hall, 1970.

[181] Wong, H.-S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., Lee, B.,
Chen, F. T., and Tsai, M.-J. Metal–oxide RRAM. Proceedings of the IEEE 100, 6 (2012),
1951–1970.

[182] Wu, L., Lottarini, A., Paine, T. K., Kim, M. A., and Ross, K. A. Q100: The
architecture and design of a database processing unit. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating Systems
(New York, NY, USA, 2014), ASPLOS ’14, ACM, pp. 255–268.

[183] Zhang, Y. Revisit the analog computer and gradient-based neural system for matrix inver-
sion. In Intelligent Control, 2005. Proceedings of the 2005 IEEE International Symposium
on, Mediterranean Conference on Control and Automation (June 2005), pp. 1411–1416.

[184] Zhang, Y., and Ge, S. S. Design and analysis of a general recurrent neural network model
for time-varying matrix inversion. Neural Networks, IEEE Transactions on 16, 6 (Nov 2005),
1477–1490.

156

	List of Figures
	List of Tables
	Acknowledgements
	I Introduction
	1 Digital and Analog Accelerators
	1.1 Specialization in application- and domain-specific digital and analog accelerators
	1.2 Data-level parallelism in digital and analog accelerators
	1.3 In-memory computation in digital and analog accelerators
	1.4 Approximate computing in digital and analog accelerators

	2 Hybrid Analog-Digital Co-Processing: Definition & Motivation
	2.1 Continuous-time asynchronous signaling
	Accelerating long iterations with explicit data-graph execution
	Implementing continuous algorithms with continuous-time operation

	2.2 Continuous analog value encoding
	Dense analog data encoding and simple analog operations
	Digital precision doubles by increasing bits while analog precisions doubles by doubling signal-to-noise ratio
	Digital has error correction but continuous-time analog does not

	3 Hybrid Analog-Digital Co-Processing: Challenges & Mitigations
	3.1 Expanding workload breadth and depth: analog problems and algorithms in Berkeley Dwarfs
	Analog accelerator applications in continuous mathematics
	Sparse matrix
	Dense matrix
	MapReduce & Monte Carlo
	Structured grid
	Unstructured grid
	Spectral methods
	N-body

	Analog accelerator applications in mixed continuous-discrete mathematics
	Dynamic programming
	Graphical methods
	Backtrack and branch-and-bound

	Analog accelerator applications in discrete mathematics
	Graph traversal

	3.2 Refining solution accuracy and precision: analog approximations as digital seeds
	Conventional wisdom: analog architectures for real-world inputs and outputs
	My viewpoint: digital refinement of approximate analog solutions

	3.3 Growing problem sizes: digital problem decomposition and analog emerging devices
	Conventional wisdom: analog devices for parallel matrix-vector multiplication
	My viewpoint: digital divide-and-conquer for analog subproblems

	4 History of and Related Work in Analog Co-Processing
	4.1 History of analog co-processing
	4.2 Recent related work in analog co-processing
	Choice of value storage and communication
	Choice of multiplier implementation
	Choice of network topology and target applications
	Choice of granularity of accelerator design

	II Columbia University Prototype Analog Accelerator Architecture
	5 Analog Accelerator Programming & Architecture
	5.1 Analog accelerator numerical primitives programming
	Programming analog accelerators for ordinary differential equations
	Programming analog accelerators for algebraic equations

	5.2 Analog accelerator instruction set architecture
	Calibration
	Configuration
	Computation
	Exceptions
	Observability

	6 Analog Accelerator Microarchitecture & Characterization
	6.1 Analog accelerator physical prototype microarchitecture
	6.2 Analog accelerator analog subcomponent characterization

	III Analog-Digital Co-Processing for Solving Differential Equations
	7 Partial Differential Equations
	7.1 Taxonomy of PDEs
	Taxonomy: PDE dimensionality & order
	Taxonomy: second-order PDE classification
	Taxonomy: semilinear, quasilinear, and fully-nonlinear
	Semilinear PDEs
	Quasilinear PDEs
	Fully nonlinear PDEs

	Navier-Stokes equations

	7.2 Solution steps for PDEs
	Solution steps: space discretization
	Solution steps: time stepping

	7.3 Analog-digital co-processing for PDEs

	8 Analog Co-Processing for Stochastic Differential Equations
	8.1 The Black-Scholes stochastic differential equation
	8.2 Analog Black-Scholes bringup: Gaussian white noise
	Analog noise
	Analog noise: Gaussian distribution
	Analog noise: constant power spectral density

	Filtered analog noise
	Digital noise

	8.3 Analog Black-Scholes bringup: standard Wiener process / Brownian motion
	8.4 Analog Black-Scholes bringup: exponential growth process
	8.5 Convergence & time for analog and digital Black-Scholes

	IV Analog-Digital Co-Processing for Solving Algebraic Equations
	9 Analog-Digital Co-Processing for Solving Algebraic Equations
	9.1 Algebraic equations dominate software profiles of equations, solvers, libraries
	Importance of algebraic equations: physical model
	Importance of algebraic equations: numerical algorithm
	Importance of algebraic equations: hardware support

	9.2 Solving algebraic equations as the interface between analog accelerator and digital host
	9.3 Complementary strengths of hybrid analog-digital solvers for algebraic equations

	10 Analog-Digital Co-Processing for Linear Algebra
	10.1 Importance of linear algebra
	10.2 Digital iterative numerical methods for linear algebra
	10.3 Analog continuous steepest descent for linear algebra
	10.4 Mitigation of analog linear algebra disadvantages
	Improve sampling precision by focusing on analog steady state
	Tackle larger problems by accelerating sparse linear algebra subproblems
	Handle indefinite matrices by multiplying by the matrix transpose

	10.5 Design space exploration of high-bandwidth analog accelerators for linear algebra
	Power and area model
	Analog bandwidth model

	10.6 Sparse linear algebra case study
	Analog and digital linear algebra performance comparison
	Analog and digital linear algebra energy comparison

	10.7 Challenges and pitfalls of analog linear algebra
	Effect of variable dynamic range on analog performance and efficiency
	Effect of problem dimensionality on analog performance and efficiency

	10.8 Summary

	11 Analog-Digital Co-Processing for Solving Nonlinear Systems of Equations
	11.1 Importance and difficulty of solving nonlinear systems of equations
	11.2 Tutorial: scalar nonlinear root-finding
	Digital classical and damped Newton's
	Analog continuous Newton's method
	Analog implementation
	Analog accelerator result

	11.3 Motivation: nonlinear systems of equations
	Nonlinear systems: digital challenges
	Finding the Jacobian and its inverse
	Uncertainty in the number of solutions and the effect of initial conditions

	Nonlinear systems: analog homotopy
	Approximate analog & precise digital

	11.4 Nonlinear PDEs & discretization
	The viscous Burgers' equation
	Space discretization
	Time stepping
	Viscous Burgers' PDE discretization

	11.5 Analog accelerator solution of nonlinear PDEs
	Programming and data interface
	Board and chip hardware mapping
	Dynamic range of values and scaling
	Analog accelerator accuracy results

	11.6 Design space exploration of scaled-up analog accelerators for nonlinear systems of equations
	Performance vs. accelerator size
	Analog approximation as digital initial guess
	Scaling to larger problems on GPUs

	11.7 Extensions for other PDEs
	11.8 Summary
	Nonlinear is analog killer app
	How to do more problems types in analog accelerators
	How to do more work in an analog accelerator

	V Conclusion
	12 Conclusion & Research Directions
	12.1 Conclusion
	12.2 Future research directions
	Analog accelerator applications in differential algebraic equations
	Analog accelerator applications in Berkeley Dwarfs

	12.3 Broader view

	Bibliography
	Bibliography

