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ABSTRACT

Overcoming the Intuition Wall

John Demme

These are exciting times for computer architecture research. Today there is significant

demand to improve the performance and energy-efficiency of emerging, transformative ap-

plications which are being hammered out by the hundreds for new compute platforms and

usage models. This booming growth of applications and the variety of programming lan-

guages used to create them is challenging our ability as architects to rapidly and rigorously

characterize these applications. Concurrently, hardware has become more complex with

the emergence of accelerators, multicore systems, and heterogeneity caused by further di-

vergence between processor market segments. No one architect can now understand all the

complexities of many systems and reason about the full impact of changes or new applica-

tions.

Instead, computer architects must often rely on approximations of software behavior

and hardware operation. By using their intuition when necessary and quantitative meth-

ods when possible and feasible, architects can actually function. Historically, however,

advancement has been achieved most rapidly through deep quantitative understanding and

evaluation of ideas and systems. Indeed, computer architecture has a long history as a

quantitative field and has benefited greatly from the use of quantitative methods. Despite

a large amount of literature in the area many questions remain unanswered, motivating

further research.

To that end, this dissertation presents four case studies in quantitative methods. Each

case study attacks a different application and proposes a new measurement or analytical

technique. In each case study we find at least one surprising or unintuitive result which

would likely not have been found without the application of our method.

In our first study, we present a new technique for using performance counters which



reduces the overhead of counter reads by 23x. This reduced overhead allows us to measure

the detailed behavior of several important web applications. The data we present led to a

series of recommendations for future systems, many of which were surprising. For instance,

modern web applications differ from popular benchmarks in at least several ways, motivating

a new set of benchmarks. Although many case studies of application behavior already exist

in the literature, our new technique allowed us to examine detailed behavior of production

applications with unscaled inputs.

The second case study examines an emerging problem in security called side-channels.

In short, the sharing of resources like caches create a channel by which attackers can gain

small but crucial pieces of information about other applications; in the most famous cases,

attackers can deduce bits in secret encryption keys. One of our case studies attempts

to quantify side-channel information leakage, allowing us to compare different systems’

security and begin to understand the reasons for this leakage. Our technique can be applied

at or before design time, allowing leaks to be caught and repaired before the product

goes to market. We have also found a series of surprising results, indicating that intuitive

understanding of existing attacks are somewhat superficial. We conclude that quantitative

methods like ours are necessary for the study of side-channel information leaks.

In order to deal with the large and ever changing landscape of applications, it is helpful

to have methods to examine, understand, and present interesting code patterns to us. Our

third case study presents a technique for mining large amounts of code to find common

patterns. We present a novel method of approximate graph clustering, which enables the

mining of program graphs from large code bases. It also gives us an unbiased way to find

similar code across many code bases, beginning to answer questions about how to design

accelerators. Short of that goal, it helps architects inform their intuitive understanding of

software.

Our final case study investigates the near-universal problem of malware. Despite decades

of research and a multitude of commercial products, viruses and their brethren exist and

indeed multiply each year. Instead of further traditional detection techniques, we ask if

hardware can learn to detect malware based on its behavior. By applying machine learning

techniques to data on architectural behavior, we are able to build robust, secure malware



detectors. Our approach avoids large amounts of manual work which can lead to buggy

code. It also led to very simple detectors which could be built into secure hardware.

The case studies presented here demonstrate the utility of quantitative methods. They

further our understanding of systems; allow the rapid, detailed study of new applications;

help create systems which are more robust; and guide designers in the creation of hardware.

In short, quantitative methods help scale the intuition wall.
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Chapter 1

Introduction

The landscape of computing has changed radically over the last several decades. While

traditional applications of high performance computing and business intelligence still exist,

computing has become far more pervasive. It now alters social interactions; acts as a

constant aide in our pockets; provides new venues for criminal activity; deeply embeds

itself to provide reams of data about nearly everything; learns and teaches us new things

about both ourselves and our world. The list of new applications and the raw variety of

computational tasks could stretch from here to infinity. In response, computing systems

have increased in complexity, especially in the mobile segment where systems on chip can be

highly heterogeneous. Even without processor heterogeneity, multi-cores and virtualization

in data centers create highly heterogeneous workloads, leading to complex interactions at

the hardware level.

As a result of the plethora of applications and matching complexity in hardware, it

is no longer possible for a single software engineer to reason about an entire system with

any level of detail. One struggles to understand the operation and hardware interaction

of a single program, let alone develop intuition about the operation of many. Similarly,

hardware engineers cannot possibly understand and deduce the detailed operation of an

entire hardware system – they simply have too many components. For most, however, this

inability to internalize the operation of the entire computing universe is not important. A

software engineer need worry only about the correct and efficient operation of his software.

A hardware engineer typically need only design her component, working to its specification.
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On the other hand, for computer architects heterogeneity in applications and complexity

in hardware poses a major challenge. How can one design an efficient, performant computer

without thoroughly understanding all of the applications it might run? How does one un-

derstand and predict the detailed operation of entire computing system without knowing

the detailed operation of all its parts? Of course, one simply cannot and does not thor-

oughly understand all aspects of a system. Instead, one operates using approximations of

application and system behavior. We postulate that a result of this approximation is the

intuition wall – that the quality of our systems’ designs are in part limited by the amount

of detail about applications and hardware which we can intuitively understand. The more

accurate our intuitive approximations and the more we understand about the software and

hardware systems, the better our systems will be.

Thesis & Contributions To scale the intuition wall, we suggest that the architecture

community must further our quantitative understanding of systems with more and better

techniques for measuring and analyzing systems. This is not a new idea. For decades, com-

puter architecture has been a deeply quantitative area. There is a vast quantity of research

in program analysis and microarchitectural performance evaluation. While continuing to

innovate on measurement and analysis for traditional architecture problems, we must also

extend our work into the new domains which architecture is beginning to examine. To this

end, this dissertation presents work on techniques for measurement and analysis in both a

traditional domain (program analysis) and a new one, hardware-based system security.

1.1 Does the intuition wall exist?

Clearly, no intuition about what software does or how hardware works is perfect or all-

encompassing. But does lack of intuition or inaccurate intuition hinder innovation in com-

puter architecture? Would superior characterization methodologies lead to faster devel-

opment and faster chips? Would replacing manual design and/or design evaluation with

automated techniques help? Almost certainly, yes. The more interesting question is to

what degree? We argue that many important issues in computer architecture rest on the

accuracy and breadth of information about hardware and program behavior.
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Benchmarks Instead of laboriously examining huge numbers of applications, architects

typically rely on benchmark application sets like SPEC [67] or PARSEC [18]. While this

makes architects’ jobs feasible, it requires us to assume the benchmarks to be representative

of all other or a class of applications. Clearly, this assumption is wrong for some values

of “representative”, but may be reasonably close to true for others. For example at an

extreme: designing highly specialized, fixed function units for benchmarks would not benefit

real-world applications. Benchmarks are reasonably representative, however, in that adding

general purpose features like branch prediction may result in roughly similar speedups for

both benchmarks and real applications. As a result of these extremes, the representativeness

of benchmarks is often treated skeptically [136]. In fact, it has been quantitatively shown

that the popular SPEC benchmark suite is redundant [129] and indeed neither SPEC nor

PARSEC are representative of some important workloads [55]. In the latter case, more

efficient architectures were designed based on those applications’ differences from standard

benchmarks [106]. One could conclude that reliance on benchmarks – approximations of

real-world program behavior – limits the utility of innovations.

Quickly Understanding New Applications There also exist many questions for which

answers can be found, but require large amounts of manual effort. For instance, under-

standing what code does and how it operates is extremely laborious. In forensic analysis

of malware, for example, well trained people must dissect binaries and examine their exe-

cution. Another example: architects often must run very slow simulators to gain detailed

information about the performance characteristics of programs. In both cases, tools to as-

sist or speed up the tasks would drastically decrease the effort in understanding important

phenomena and thus increase the rate of innovation and/or the breadth of applications

which can be studied.

Evaluation of Results Most of computer architecture is deeply quantitative; we evaluate

designs and ideas with objective metrics like wall clock time and energy consumption. In

new areas, however, metrics have yet to be defined because sometimes it is unclear how

to evaluate an idea. One area in particular – security – often cannot be quantitatively

evaluated. Indeed, how does one measure the security of a system? No obvious, objective
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metrics exist. Instead, many security proposals are judged by two measures: (1) do they

defeat existing attacks and (2) is there intuitive reason to believe they would defeat future

attacks? In many cases, it is trivial to defeat existing attacks while not necessarily increasing

security, requiring us to judge security techniques based on intuition alone. As a result, many

proposed solutions to security problems are broken within months of publication. Without

objective metrics by which to judge proposals it is difficult to make true progress.

Accelerators One growing field of research is hardware accelerators. Two of the most

critical and interesting questions in accelerators are what should be accelerated and how

programmable should the resulting device be? When one accelerates only a very specific

algorithm due to overwhelming use (like a video decoder), these questions are relatively

easy to answer. Should one wish to target a class of algorithms or applications with a

single accelerator, the problem becomes much harder. What range applications can be sped

up by common hardware? How common are those applications? Do there exist common

patterns in applications that can be targeted? None of these questions have been sufficiently

answered – intuitively or quantitatively. However, determining these answers is clearly a

roadblock to determining the range and importance of acceleration.

1.2 Motivations

How important is the intuition wall? Computing is a thriving industry, built using the

quantitative methods and intuition already in place; why need we develop either further?

We argue that two new trends – specialization and worsening silicon economics – make

the intuition wall, and computer architecture in general, more important today than in the

past.

1.2.1 Specialization

Traditionally, microarchitectural speedups have benefited nearly all applications; however,

new proposals and directions in computer architecture have smaller ranges of applicability.

Caches, for instance, have some benefit even for applications which exhibit only very little

locality. Likewise, one is hard pressed to find a program which is not sped up by branch
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prediction. Today, however, adding general purpose microarchitectural resources to speed

up serial execution – Pollack’s rule scaling – doesn’t always make much sense in an era with

significantly constrained power budgets [50, 69, 159], so other approaches (like multicores

and accelerators) have been adopted. Unlike many previous innovations, new hardware de-

signs don’t float all boats; some applications benefit, while others can experience significant

slowdown.

Multicore parallelism, for instance, can only be applied to certain algorithms. Further,

when adding more cores to a die while maintaining constant area and power, serial per-

formance drops, slowing down applications which are not or cannot be parallelized. Even

how to best apply parallelism varies wildly from application to application and so compiler,

library, and architecture performance vary greatly with application needs.

There may not exist a small set of applications which truly represent most others. In-

deed, even benchmark sets are specialized: SPEC [67] for serial applications, Parsec [18]

for recognition mining synthesis (RMS) parallel applications, CloudSuite [55] for modern

server workloads, et cetera. Instead of treating a small suite of applications as representa-

tive, we must often become domain experts in only one or a few types of algorithms. In

a time when architectural choices can have such a drastically application-dependent effect

on performance, it seems important to be able to accurately understand the operation of a

large breadth of applications.

1.2.2 Economics

Modern architects deal with a variety of problems arising from poor technology scaling –

the memory wall, the power wall, slowing clock rates, and the potential end of Moore’s law.

Few of these problems are truly new, however. BJT technology gave way to PMOS logic

due to superior power and scaling properties. PMOS eventually lost to NMOS and NMOS

to CMOS for similar reasons. CMOS in particular became popular (and has remained so)

due largely to its far lower power consumption. Aside from power and scaling, computer

engineers have always grappled with order-of-magnitude differences in access time differ-

ences between different levels in the memory hierarchy. Actually, were memory size held

constant, memory latency has held essentially constant over the decades – an L1 cache of



CHAPTER 1. INTRODUCTION 6

several kilobytes can be accessed in several cycles, just as a similarly sized main memory

from the 1980s. Are there any truly new pressures on computer architecture?

One area of chip design which is often overlooked, drives virtually all industry, and is

trending in negative directions is economics. Semiconductor manufacturers are famously

secretive about pricing, so quantitatively evaluating semiconductor economics is virtually

impossible. However, it is well known that the amount of money required to develop each

new technology process tends to increase. Further, according to NVidia, future process

technologies will not decrease the price per transistor as they usually do [74]. Further,

the design costs and complexity associated with each chip design increase with technology

scaling: design rules tend to get more complicated, more transistors must be laid out, clock

trees get larger, power budgets more difficult to manage, et cetera. In current technolo-

gies, anecdotal estimates of design costs start at 10’s of millions of dollars, and increase

dramatically from there. The cost of a single set of masks – the key physical device which

defines a design – could alone cost as several million dollars, though accurate figures are not

publicly known. As a result, the cost of merely attempting to innovate is extremely high,

so companies must be absolutely convinced of an innovation’s benefit before building it.

Concurrent to worsening economics, Moore’s law continues creating exponentially more

transistors and allowing exponentially greater design complexity. While it is desirable to

create relatively homogeneous chips – simply stamping out a large array of simple designs

– efficiency doesn’t allow for this. Instead, designers are now creating accelerators, highly

specialized hardware structures which provide extreme power, area, and time efficiency for a

small range of algorithms. To motivate research in accelerators, some claim that a result of

the power wall combined with Moore’s law is “dark” silicon – area which is considered to be

free, allowing designers to build a range of specialized units. The news in silicon economics,

however, call this logic into question; the transistors are indeed not free – they are getting

more expensive. However, accelerators provide radically higher performance at relatively

low area. For example, a video decoder accelerator can provide nearly 3x the performance

of a software implementation in more than 15x less area, leading to a 45x improvement

in performance per area [65]. This in turn provides more value to the customer at lower

cost to the producer, assuming the accelerator speeds up an application about which most
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customers care.

What the recent trend in accelerators may tell us is that chip companies are operating

in a new regime: instead of profiting primarily through technology scaling, they may be

looking to increase profits by extracting more value from each transistor. The goal of

getting better performance from each transistor through accelerators, however, is at direct

odds with increasing design cost. The more specialized a hardware design, the smaller the

consumer market for the hardware, allowing less amortization of the design costs. The key,

therefore, is to find accelerators which are either broadly useful or remain programmable

enough to be broadly useful while still consuming little chip area. Rather than merely being

a useful trait, the flexibility of accelerators will directly impact companies’ bottom lines.

We hypothesize this goal can only be achieved through strong quantitative understanding

and analysis of applications and systems.

1.3 Overcoming the intuition wall

Both new and tradition pressures to create better, stronger, faster architectures motivate

the use of quantitative methods to help understand applications and hardware systems.

Informing intuition with quantitative understanding, however, is often not easy – sometimes

due to the pains of collecting data, sometimes due to difficulties in attempting to analyze

and understand these data. Ideally, when collecting data we measure values as semantically

close to the desired values as possible. This often creates needs for new measurement

tools. When the amount of data we can collect becomes too large for humans to manually

analyze, machines can do a better job. This is especially true when data is high dimensional

or otherwise complex. In these cases, manually inspecting data can be mis-informative. To

overcome the intuition wall, we must further both measurement and analysis techniques.

This dissertation presents four projects – two measurement techniques and two analysis

techniques – which target both the traditional architecture application of program analysis

and also a relatively new application area, security. Table 1.1 shows the breakdown of these

projects.
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Measurement Analysis

Program Analysis LiMiT

(Ch. 3)

Centrifuge

(Ch. 5)

Security SVF

(Ch. 4)

Malware Detection

(Ch. 6)

Table 1.1: The four new techniques and projects discussed in this dissertation

1.3.1 Measurement

LiMiT advances measurement using hardware performance counters [38]. Virtually all

modern processors come equipped with counters than can monitor various architectural

and microarchitectural events (like cache misses or branch mispredictions). These counters

are most often used to find “hot” regions of code or regions that interact poorly with the

microarchitecture for some reason. However, it is sometimes also useful to precisely study

very small regions of code which may or may not run often. These regions may be interest-

ing because they occasionally exhibit anomalous behavior or do not behave as one would

expect. Existing tools, unfortunately, make precise, detailed measurement difficult as their

overheads compromise accuracy. Instead, architects must often use very slow simulators

(which may or may not accurately represent the microarchitecture) to take measurements.

Forcing the use of simulators can add days, weeks, or sometimes even months to investiga-

tion of a problem. Often it is infeasible to run production workloads under simulation. With

LiMiT we introduced a new method to conduct detailed study of programs using hardware

performance counters. We also conducted several case studies of detailed program behavior

revealing several unintuitive results about system behavior. Details on LiMiT can be found

in Chapter 3.

SVF judges the security of a system with respect to information leakage using a new

framework for creating metrics which we propose [40]. Side-channel information leakage oc-

curs in systems where resources are shared – for instance in processors shared between mul-

tiple users. Software-level security mechanisms typically ensure that users cannot directly

view each other’s data, however side-channels can sometimes compromise these privacy
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guarantees. For instance, one very common side-channel attack is able to get informa-

tion about bits in encryption keys used by OpenSSL by monitoring a shared cache. One

particularly disturbing problem in side-channel defensive research is that there is no way

to experimentally quantify leakage. Instead, designers must often intuit whether or not

microarchictural changes increase or decrease leakage. For instance, does statically parti-

tioning a cache always successfully eliminate information leakage? Intuitively, yes. Based

on simple models of the processor and leakage, also yes. Based on experimentation and

measurement with SVF, no. With SVF, we show reasoning about large, complex systems

to be very difficult. In this area, a metric with which to quantitatively evaluate proposals

and inform intuition is necessary. Further details on SVF can be found in Chapter 4.

1.3.2 Analysis

Centrifuge makes manual code analysis easier by scouring large code bases, searching for

common patterns using a novel approximate graph clustering technique [39]. Its intent is

find common patterns in large amounts of code which can guide designers. For instance, if

architects are attempting to accelerate a particular set of applications, they could simply lo-

cate the most frequently run functions in those applications and design accelerators for each

of those functions. This hardware, however, is extremely application specific and therefore

area wasteful. Instead, the architect would like to design hardware that can accelerate mul-

tiple functions. However, not all functions are similar enough that an accelerator can handle

them all. As such, it would be helpful to have a tool that finds pieces of code which may be

similar enough to design a common accelerator for all of them. In Centrifuge, we devel-

oped and demonstrated algorithms to cluster functions using graph-based representations.

Details on Centrifuge can be found in Chapter 5.

Performance Counter-based Malware Detection demonstrates the usage of rela-

tively simple, lightly-guided machine learning algorithms in the detection of new mal-

ware [41]. Existing antivirus (AV) systems are very large, complex software systems which

scan downloads and other new files, searching for matches in a database of known threats.

Although there is much work in assisting the building of threat databases, the actual detec-
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tion software is written manually and much manual forensic analysis of potential threats is

still necessary. Unfortunately, the large amount of manually written code can be leveraged

by malware authors to circumvent the antivirus system. For instance, all AV contain numer-

ous parsers for many different file types – one for ZIP files, one for PDF, one for DOC, etc.

Often times, these parsers contain bugs which cause them to interpret files differently than

the software for which they are intended. Attackers can use these bugs to hide their mali-

cious code from the AV system while it remains effective against the target application [80].

Instead of relying on humans to use their intuition in forensic analysis and skills in building

large software systems, it may be preferable to have machines learn about malware threats

themselves. In Chapter 6, we describe a system that uses supervised machine learning to

let the machine build intuition about malware based on their microarchitectural behavior.

Surprisingly, the machine is able to get relatively good accuracy using only simple learning

methods.

None of these projects are end-all, be-all solutions to for quantitative methods. However,

each one advances state of the art in a particular area of measurement or analysis: LiMiT

allowed for higher accuracy, precise meaurement; SVF is the first holistic measurement

methodology for side-channel information leaks; Centrifuge introduced a novel method

for mining databases of program graphs for interesting patterns; our malware detectors

demonstrated the feasibility of automated malware protection and represents a possible new

direction for a struggling field. Taken together, they argue for the utility of quantitative

methods; they show that quantitative methods make research faster, less biased, and more

insightful.
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Chapter 2

Quantitative Methods in

Computer Architecture

Computer architecture has long been a quantitative field: ideas are quantitatively evaluated,

we use a variety of metrics to break down the operation of systems, and we use program

analysis techniques to understand workloads [48, 66]. In fact, a huge variety of method-

ologies for measuring and analyzing hardware/software systems have been developed for a

variety of different applications. In this chapter, we review some of this work, separated

into applications and methods, as shown in Table 2.1.

Applications and the particular methods used by those applications are often conflated,

intertwined as a result of their mutual development. Methods are developed for a particular

application, they further that application and the resulting developments in that application

space motivate improvements to the method. However, as evidenced by the use of phase

analysis (a technique most often used for workload reduction) for security in Chapter 4, this

need not always be the case. This chapter attempts to separate the two concepts whenever

possible.

2.1 Applications

Nearly all ideas and designs in computer architecture are quantitatively evaluated and many

are motivated by quantitative understanding of some software or hardware phenomena [48].
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Applications Methods
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Table 2.1: Select quantitative methods and some of their traditional applications

As a classic example, Chrysos and Emer [33] quantitatively showed the importance of mem-

ory dependence prediction, proposed a technique, and quantitatively evaluated it. In fact,

this formula is extremely common in computer architecture papers: authors typically quan-

titively motivate a problem and provide some quantified intuition about the problem, intro-

duce their solution and intuitively describe explain its potential, then quantitatively evalute

their approach. Quantitative methods are involved in nearly all stages – comprehension of

the problem to evaluation of the solution – to at least a small extent.

2.1.1 Evaluation

Performance, Power, Reliability Does a new technique or structure improve perfor-

mance? Does it increase throughput? Reduce or increase latency? Increase energy efficiency

and/or decrease power? How often will silicon fail, producing incorrect results? All of these

are important questions for architects as they go about optimizing for performance, power,

and reliability. Fortunately, these questions are quantitative and there exist metrics by

which one can gauge these questions, allowing comparison between multiple approaches.

Metrics like clocks per instruction (CPI) judge microarchitectural performance; operations

per second judge system throughput; and energy per operation for energy-efficiency [48, 86].

Even reliability – an area with intuitively difficult to evaluate metrics like mean time to

failure (MTTF) and mean time between failures (MTBF) [138] – is being characterized

through works like Architectural Vulnerability Factor (AVF) [116].
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Security Modern computing systems are constantly under attack from nefarious entities.

As a result, it is increasingly important that computer systems to be resilient to attack.

They must be capable of keeping private or secret information and use those data without

leaks. Designers also need to ensure that systems cannot be controlled or disabled by

unauthorized users.

Unfortunately, many sub-specialties within security research do not seem to have a

history of being quantitatively evaluated. This is likely because security is a very difficult

property define, let along evaluate quantitatively. Indeed, the likely best metric – “how

difficult is it to break this system?” – seems inherently qualitative. As a result, security

metrics often focus on detectable, countable events [28]: number of viruses are caught;

number of break-ins occurred; the total cost of breaches; the level of compliance with

security recommendations. However, many of these these metrics are not proactive and

cannot be used to predict attacks or judge the improvement in security given by a new

system. As a result, many new proposals must be judged intuitively and – likely as a result

– are often broken quickly.

We surmise that the basic difference between judging security and other system proper-

ties is that security is adversarial. For example, when quantifying the reliability of a system

with respect to soft errors caused by particle strikes, it is reasonable to assume a uniform

probability distribution (or some other derived distribution) of strikes across the surface of

the chip. After all, much as it may feel like it, the universe is not actively trying to make

processors fail. However, in an adversarial situation this distribution cannot be assumed.

Were an attacker attempting to subvert a processor’s stability, he would purposely aim for

the areas most vulnerable to attack. Thus, in order to soundly judge vulnerability one

must provably find all the vulnerabilities – a difficult proposition as evidenced by decades

of security research.

Despite this difficulty, there is a good deal of interest in finding ways to better quantify

security [28, 81, 141]. Proposals are broadly broken down into two categories: experimental

and formal. Experimental methods are able to judge the security of an actual system in

situations as realistic as possible. As a result, however, it seems unlikely that experimental

methods can be entirely robust – they could overlook aspects or untried attack vectors – so
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they may underestimate vulnerability. In contrast, formal metrics can provide mathemati-

cally sound upper bounds on vulnerability. However, they rely on being able to accurately

model a system while retaining the ability to reason about it. As a result, formal methods

are only valid with respect to a particular set of assumptions which are typically wrong

in practice. For instance, cryptographic algorithms can be formally verified [88, 111], but

can be subverted by attacks which violate their assumptions, like side-channel attacks [89–

91, 156, 157].

2.1.2 Program & Hardware Comprehension

What does software do? What is hardware doing? How are the two interacting? These

are the key questions in understanding the operation of hardware/software systems. Un-

fortunately, they are qualitative rather than quantitative in nature. As such, a host of

characteristics which can be objectively discerned have been created to give quantitative

answers.

Program Comprehension Often called program analysis (though not here, to avoid

overloading the term with analysis methods), the ability to quantitatively study the op-

eration of programs assists in optimization of programs and design of hardware for them.

One of the most simple pieces of information is hot code (or hot spots) – what functions or

lines of code are taking the most time on a CPU. These represent regions which are most

important for optimization. However, despite being perhaps the most used application of

program comprehension, hot spots are only a small portion of program comprehension. For

instance: control and data flow graphs (e.g., program dependence graphs [56]) have been

some of the most important pieces of information about software since they directly govern

instruction level parallelism. Additionally, high main memory latency makes the study of

locality in programs (e.g., via reuse distance [42] or Timekeeping [75]) important. Archi-

tects also examine the operation of programs at a coarser granularity through the study

of program phases [134], allowing us to select smaller dynamic regions for study. Lastly,

beyond understanding a single application, it is useful to compare different programs (typ-

ically running on the same microarchitecture) against each other; for instance, to select
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representative benchmark applications from a full set [129].

Hardware Comprehension Computers are large, complex, non-linear dynamical sys-

tems and the performance of software running on them is chaotic [16, 117]. As a result,

minor changes to one component can have ripple effects throughout a system. Reasoning

about and correctly predicting those effects can be impossible. As a result, quantitative

methods are also necessary to fully understand the operation of hardware. The simplest are

metrics for individual components: branch misprediction rate, cache miss rate, TLB miss

rate, et cetera. With this set of metrics, one can often diagnose system bottlenecks ripe

for optimization. There is also interest in the quantitative study of how microarchitectural

structures operate rather than just how well. In security, there is work on formal modeling

of cache systems for the purpose of measuring security [43]. The operation of two-level

branch predictors has also been studied [52], and a reasonably accurate yet simple model

for processor pipeline behavior is known [54] based on mechanical modeling.

2.2 Methods

To advance the goals outlined in the above applications section, computer architecture has

created a large number of quantitative methods. Here we broadly break them down into

measurement and analysis.

2.2.1 Measurement

It is often necessary to measure the dynamic characteristics of hardware/software systems.

However, systems can be very difficult to measure accurately as a result of the uncertainty

principle: systems are often disturbed by the act of measuring them, reducing the accuracy

of the measurement. For instance, when making observations about the microarchitectural

behavior of an application, one typically runs measurement software on the same system,

which changes both the architectural and microarchitectural state, affecting the measure-

ments. The result is that in computer architecture, measurement methodologies often face

a trade-off between accuracy and precision (the difference between which is illustrated in
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Figure 2.1). That is, in order to reduce the perturbation caused by measurements (and thus

maintain high accuracy), architects must often use less precise methods like sampling.

Simulation One of the most popular tools in architecture are simulators. Beyond their

usefulness in evaluating hardware without having to build it, simulators allow for mea-

surements with infinite precision and the ability to measure any aspect of the system [48].

Simulation has two big problems, however. First, it is very slow – many orders of magnitude

slower than the actual systems which they model. Second, simulators may or may not be

accurate. Although they are designed to behave like the systems they are simulating, not

all details of the system are captured. Some simulators (like Sniper [25]) explicitly eschew

many system details in favor of lower simulation time. Other, cycle accurate simulators

(like GEM5 [20]) attempt high accuracy, but the sheer complexity of modern systems (and

proprietary nature of popular ones) limit their accuracy. Eeckhout [48] discusses the trade-

offs in simulators between accuracy, simulator speed, development time, and coverage in

depth.

Program Instrumentation For the study of software, an alternative to simulation is

adding instrumentation code to applications. There are two standard methods: First,

one can simply add code to the original application and recompile it. Second, there exist

binary instrumentation tools [23, 101, 107] which allow one to insert code into the original

Value

Pr
ob

ab
ilit

y 
of

ob
se

rv
at

io
n

True value

Accuracy

Precision

Figure 2.1: Although colloquially used interchangeably, accuracy and precision are different

concepts. Accuracy refers to the difference between measured values and the true, hidden

value which one is attempting to measure. Precision, however, refers to the potential

variability in the measurement.
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binary (either dynamically or statically), avoiding perturbation of the compilation process.

Unfortunately, all of these methods significantly perturb the microarchitectural operation of

software, so they can only be used to study software. Further, they slow down the program,

so software which is affected by time cannot be studied without potential accuracy problems.

Regardless of these issues, program instrumentation is useful for studying many dynamic

behaviors: collection of control/data graphs; computing dynamic instruction mix; memory

locality metrics like Reuse Distance [42] can even be collected.

Hardware Instrumentation It is sometime necessary to measure characteristics of hard-

ware by physically instrumenting it. For instance, to measure the power dissipation of CPUs,

a current sensor can be applied to its power inputs [51, 123]. More complex monitoring is

also possible: the HMTT project inserts an FPGA between the processor and its memory,

allowing high-speed configurable logic to monitor and record memory accesses [30]. Nei-

ther of these forms of instrumentation has an impact on the execution of software (though

HMTT adds software instrumentation as well) so they have very high accuracy. The mono-

lithic nature of modern integrated circuits, however, means that most hardware can only

be instrumented at its periphery, limiting the usefulness of after-market hardware instru-

mentation.

Performance Counting Technically a form of hardware instrumentation, performance

counters allow users to monitor a variety of architectural and microarchitectural events. All

modern processor vendors have various performance counters; for instance, Intel provides

counters for each core, for their “uncore”, and for their integrated GPU. Since performance

counters are able to monitor without perturbation, they have proven to be very useful.

However, because the software to read their contents perturbs the system, they too have an

accuracy-precision trade-off. We discuss performance counters further in Chapter 3.

2.2.2 Analysis

In order to deal with large amounts of data and inform ourselves better than by merely

staring at data, there has been a huge amount of work in quantitative analysis for computer
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architecture. Since most quantitative analysis methods are designed for a specific applica-

tion (of which there are many) we will discuss only select topics which are relevant to the

projects in this dissertation with further details given in subsequent chapters.

Phase Analysis As mentioned in the applications section, programs tend to operate in

phases: they do task A, then task B, then back to task A. The effects of these phases

can be readily observed through architectural signatures (like basic block vectors) and

microarchitectural behaviors. In short, specific phases tend to behave similarly each time

they execute, making them interesting for study [70, 134]. There may be any number of

ways to identify phases, though probably the most common is that of self-similarity matrices.

One calculates these matrices from an input vector (often a time series) and compares each

element to every other element with a distance function. These comparisons result in a

matrix which highlights elements of the vector which are similar to others, revealing phases

in the vector.

Machine Learning Computers can sometimes do a far better job learning from data

than humans. As a result, there is interest using using machine learning to design microar-

chitectural structures. For instance, artificial neural networks have been used as branch

predictors [82] and to manage resources [21]. Reinforcement learning [145] has been used

to create better memory controller schedulers [77]. Since each microarchitectural struc-

tures is generally responsible for a well-defined set of actions given well-defined inputs and

can often be optimized entirely based on a particular metric, it seems likely that many

microarchitectural policies could be optimized by machine learning.

Compiler & Code Analysis Compilers have a large set of code analysis methods in

order to support optimization; pointer analysis [71], for instance, is probably one of the most

difficult and well known. More pertinently, however, there is also work which uses program

graphs to automatically create small hardware accelerators: Clark et al. [34, 35, 72] use

program mining to create custom instructions instruction set customization. Additionally,

“Quasi-Specific cores” (QsCores) can be created to accelerate multiple regions of code by

merging common parts of the code [153].
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2.3 Conclusion

Computer architecture has benefited greatly over the years by using strongly quantitative

methods, only a small number of which have been covered in this chapter. Despite the

amount of work in this area, there is still much we do not understand and much further

work in quantitative methods. For instance:

• Despite the rise of accelerator systems, quantitative methods regarding their design

have yet to be fully discovered. Works like Clark et al. ’s ISA customization [34, 35, 72]

or QsCores [153] begin to answer the question, but only work for small, very specific

accelerators, not the large, somewhat general purpose ones we would like to build.

Chapter 5 speaks to this goal, providing another means of analyzing applications. In

it, we introduce Centrifuge, a program comprehension technique to help inform

qualitative (intuitive) understanding of large amounts of code.

• There is very little work which examines hardware using black-box methods. Work

like this would allow us to examine hardware and the (often complex) interactions

between hardware components without bias. SVF in Chapter 4 takes this black box

approach, introducing a framework for defining experimental security metrics.

• Measuring dynamic characteristics of systems is hindered by accuracy-precision trade-

offs. Hardware like performance counters help alleviate the situation, but currently

their usefulness is limited. Chapters 3 and 7.2 examine dynamic measurement further,

discussing and advancing the use of hardware infrastructure to make precise and

accurate measurements.

• Security – difficult as it is to quantify – begs for better methods by which to obtain

unbiased evaluation and comprehension. We suspect that security defense as a field

will advance little relative to the attackers without better quantitative methods. Two

of the chapters in this dissertation (Chapters 4 and 6) examine aspects of security,

the latter providing ways to measure security and the former analysis methods for

malware detection.
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Chapter 3

Precise, Detailed, Real-Time

Performance Measurement

On-chip performance counters play a vital role in computer architecture research due to

their ability to quickly provide insights into application behaviors that are time consuming

to characterize with traditional methods. The usefulness of modern performance counters,

however, is limited by inefficient techniques used today to access them. Current access

techniques rely on imprecise sampling or heavyweight kernel interaction forcing users to

choose between precision or speed and thus restricting the use of performance counters

hardware. This chapter redresses this key issue, introducing a new, fast method of accessing

performance counters for precise measurement.

The contributations of this chapter are: (1) We describe new methods that enable

precise, lightweight interfacing to on-chip performance counters. These low- overhead tech-

niques allow precise reading of virtualized counters in low tens of nanoseconds, which is one

to two orders of magnitude faster than current access techniques. (2) We use our new tool to

provide several fresh insights on the behavior of modern parallel programs such as MySQL

and Firefox, which were previously obscured (or impossible to obtain) by existing methods

for characterization. (3) Based on several case studies with our new access methods, we

discuss seven implications for computer architects in the cloud era and three methods for

enhancing hardware counters further.
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Figure 3.1: Number of countable conditions using Intel’s performance monitoring framework

through several generations.

3.1 Introduction

On-chip performance counters offer a convenient way to guide computer architecture re-

searchers through the challenging, evolving application landscape. Performance counters

measure microarchitectural events at native execution speed and can be used to identify

bottlenecks in any real-world application. These bottlenecks can then be captured in mi-

crobenchmarks and used for detailed microarchitectural exploration through simulation.

Recently, some hardware vendors have increased coverage, accuracy and documentation

of performance counters making them more useful than before. For instance, as shown

in Figure 3.1, about 400 events can be monitored on a modern Intel chip, representing a

three-fold increase in a little over a decade. Despite these improvements, it is still difficult

to realize the full potential of hardware counters because the costly methods used to access

these counters perturb program execution or trade overhead for loss in precision. We redress

this key issue in this chapter with cheaper new access methods and illustrate how these

methods enable observation of a range of new phenomena.
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Popular tools used for accessing performance counters today such as PAPI [115], OPro-

file [120] or vTune [154] attempt to read performance counters via hardware interrupts or

heavyweight kernel calls. An inherent downside of kernel calls is that they interrupt nor-

mal program execution and slow down the program thereby affecting the quantity being

measured. To minimize these perturbations, most profilers resort to occasionally reading

these counters and extrapolating full program statistics from the sampled measurements.

While this extrapolation is necessarily imprecise, the error introduced by the process has

been acceptable when profiling hotspots in serial programs.

Traditional sampling, however, has fundamental incompatibilities for parallel programs

which have become commonplace with the availability of multicores. Traditional sampling

methods are likely to miss small critical sections because they do not constitute the hottest

regions of the code. Amdahl’s law, however, teaches us that optimizing critical sections

is necessary to ensure scalability, even if the time spent in critical sections is relatively

low [53]. Moreover, as we will discuss in Sec 3.3.2, irrespective of the size, it is not easy to

correctly monitor critical sections. Performance characterization of parallel programs with

performance counters calls for simple, lightweight access methods that can enable precise

performance measurement for both hot and cold code regions.

In this chapter, we describe novel lightweight techniques for accessing performance coun-

ters and report new application behaviors which are difficult to capture with existing ac-

cess methods. Our precise access method, embodied in an x86-Linux tool called LiMiT

(Lightweight Microarchitectural Toolkit), requires less than 12 ns per access (via 5 instruc-

tions) and is over 90x faster than PAPI-C [115] and 23x faster than Linux’s perf event, tools

that provides similar functionality. LiMiT is the first tool to reduce precise counter reads

to their minimal number of instructions while still ensuring correctness and virtualizing the

counters across threads.

Based on three case studies with LiMiT using unscaled, production workloads we put

forth several recommendations for architecture researchers.

In our first case study, we measure synchronization regions in production applications

(Apache, MySQL and Firefox) as well as the PARSEC benchmark suite. Our measurements

show that Firefox and MySQL spend nearly a third of the execution time in synchroniza-
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tion which is 10x more than the synchronization time in PARSEC benchmarks. These

results indicate that synchronization is used differently in production system applications

than traditionally-studied scientific/numerical applications and architects must be aware of

these differences. Performing similar measurements with PAPI-C show inflated synchro-

nization times due to high measurement overheads, drastically changed cycle count ratios

and increased instrumentation overheads from 42% to over 745%. Some workloads such as

Firefox could not even run properly with PAPI-C because of the high overheads.

Our next case study examines the interaction of programs with the Linux kernel via pop-

ular library calls. This interaction has not received much attention because of the difficulty

in running modern, unscaled web workloads on full-system simulators. Our investigation

reveals that production applications spend a significant fraction of execution cycles in dy-

namically linked libraries and operating system calls. Further, we find that routines in these

two segments show distinctly different microarchitectural performance characteristics than

userspace behavior.

The third and final case study demonstrates LiMiT’s breadth of utility by conducting

longitudinal studies of modern software evolution. By examining the evolution of locking

behaviors over several versions of MySQL, we investigate if there has been a return on

investment in parallelizing the software for multicores. This study illustrates how the utility

of precise counting goes beyond traditional applications in architecture, compilers and OS,

and that well-architected performance counting systems can have wide and deep impact on

several computer science disciplines.

3.2 Performance Counters Review

Performance counter based studies have proved exceedingly valuable in the past, and many

influential research studies have been based on performance counter measurements of pro-

duction systems. Emer and Clark shaped quantitative computer architecture with their

seminal work on characterization of the VAX system using hardware counters [49]. Ander-

son et al. described results from system wide profiling on Alpha machines [6]. Ailamaki et

al. describe results of profiling DBMS applications [2]. Keeton et al. characterized OLTP
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workloads on the Pentium Pro Machine [87]. Like these papers, we use novel performance

measurement methods to study contemporary applications.

Performance counters started appearing in commercial machines in the ’90s. The perfor-

mance counter access facilities in these machines were intentionally minimalist to reduce chip

area overheads. For instance, initial designs of the Alpha 21064, one of the first machines

to include performance counters, did not even have read/write access to the performance

counters. To keep area overhead low, the counters interrupted processor execution when a

counter overflowed, allowing only basic sampling support based on interrupts [135]. As the

usefulness of the counters became clear and transistors became cheaper, later Alpha chips

and other vendors’ chips enhanced their performance counter infrastructure. By the late

’90s, all of the major processor lines, including Pentium, PPC, UltraSparc, PA-RISC and

MIPS processors included performance counters and simple access methods.

A common feature of many of the counter designs in early processors – and a source of

major frustration to date – is that all of these counters were accessible only in the privileged

mode, thus requiring a high overhead kernel call for access. This problem was mitigated to

an extent in the MIPS R10000 [161] (1995), which included support for both user-/kernel-

level access to the performance counters. Later x86 machines from Intel and AMD have

included similar configurable support. However, the software used to access the counters

(kernel and libraries) often do not enable user space counter reads by default, likely to allow

them to mask the complexity of counter virtualization behind the kernel interface. A recent

proposal from AMD [5] published in 2007, discusses lightweight, configurable user space

access. The proposed scheme appears promising but hardware implementations are not yet

available.

Hand in hand with the hardware improvements, many software tools have been devel-

oped over the years to obtain information from performance counters. These tools can

either pull data from the performance counters on demand (precise methods) at predeter-

mined points in the program or operate upon data pushed by the performance counter

(imprecise methods) during externally triggered sampling interrupts. Intel’s vTune [154]

and DCPI/ProfileMe [37] are some commercial examples of tools that support only im-

precise access methods. An open source example is the Performance API (PAPI) which
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was created in 1999 to provide a standard interface to performance counters on different

machines [115]. OProfile [120] is another Linux profiling tool that provides interrupt-based

sampling support. With these tools, users can extrapolate measurements obtained from

samples collected either at predetermined points in the program or during sampling inter-

rupts triggered by user specified conditions, e.g., N cache misses. A general drawback to

these sampling methods is that it introduces error inversely proportional to the sampling

frequency. As a result, short or cold regions of interest are difficult to measure precisely.

Examples of tools that provide precise performance monitoring access methods for Linux

are perfmon2 [127], perf event [58] and Rabbit [130]. Perfmon2 is an older Linux kernel in-

terface which provides both sampling support and precise counter reads, though the precise

read support requires system calls. The newly introduced perf event interface is intended to

replace perfmon2 but still uses system calls (the read syscall, specifically) for precise access

to performance counters. Rabbit is an older access method written to avoid system calls,

but provides none of the virtualization features of LiMiT, perfmon2 or perf event.

With the exception of Rabbit, all these tools require that performance counters be read

by the kernel, requiring heavyweight system calls to obtain precise measurements. Unlike

the above tools, our access techniques provide both precise and low overhead measure-

ments by allowing userspace counter access. We compare our measurements to PAPI-C and

perf event, showing that by enabling userspace access, LiMiT introduces less perturbation

than PAPI, and decreased overheads enable accurate, precise profiling of long running or

interactive production applications.

3.3 Enabling Low-overhead Performance Counter Access

In this section, we describe the techniques used to reduce counter polling overheads and

compare the overheads of our technique to existing alternatives. To summarize, our tech-

nique moves counter reading from kernel space to user space, creating issues which can

occasionally cause invalid counter reads. We these issues correctness violation detection

and elision which only have to run during process context swaps, so virtually no overhead

is added. The result of our techniques is 23x speedup over existing functionally equivalent
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Figure 3.2: LHS figure shows LiMiT’s five instruction counter read sequence (dotted box)

embedded as part of regular program execution. As shown, program execution can be

interrupted when the program is executing uninstrumented code or when executing user

space code for reading counters. Interrupts received during counter reads require special

handling to avoid double counting bugs. RHS figure shows special modifications (highlighted

boxes) that provide detection of interrupted counter reads and fixes for double counting

bugs.

software while maintaining important features like process isolation.

3.3.1 Enabling Low-overhead User Space Access

Enabling user space access is a three step process:

• 1: Stock Linux kernels do not allow direct user space access to performance counters. As

a simple first step, we set the configuration bit (an MSR in x86) to allow user access.

• 2: Performance counters cannot be directly configured to monitor events of interest (e.g.,

instructions retired) from user space. We add a system call to the Linux kernel to configure

the counters. Since most applications are likely to set up these counters once or few times

per program we do not take any special measures to optimize this step.

• 3: A more involved third step is to enable process isolation by virtualizing the operation

of the performance counter hardware, allowing multiple programs to use one hardware

instance of the performance counters. Without this support, programs would read events

which occurred while other programs were executing, resulting in incorrect results and also
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opening up side-channels that can be used to infer information about program execution.

In theory, virtualization support should be as simple saving and restoring the perfor-

mance counters during context swaps just like any other register. However, we need to

deal with the possibility of performance counters overflowing. Intel’s 48 bit counters can

overflow every 26 hours, so overflows are likely for long running applications. Additionally,

Intel chips prior to Sandy Bridge allowed only 32 bit writes to the counters so after only

1.4 seconds the kernel can find itself unable to correctly restore the counter when a process

is swapped back in.

We work around overflows by detecting overflow conditions and accumulating the over-

flowed values in user memory. When a process wants to read a performance counter it must

get the current value via rdpmc then fetch and add the contents of the overflow value in

memory. However, this set of instructions must be executed atomically; if an interrupt and

overflow occurs during their processing (before the memory fetch but after the rdpmc) then

the value read will be off by the previous value of the counter as the kernel has zeroed the

already read counter register and incremented the as-yet-unread overflow variable.

Two obvious solutions to ensure atomic execution, turning off interrupts or protecting

the critical section with a lock, cannot work in this context. If interrupts are disabled,

the executing process would never be swapped out and could starve other applications;

allowing a user process to disable external interruption is dangerous. Locking is even more

problematic. Our algorithm requires the kernel to update the user space memory location

that keeps track of the performance counter values. To do this the kernel must obtain a

lock when the process is being swapped back in. However, if the process holds the lock,

then the kernel cannot continue and the process will never resume to release the lock. In

this situation deadlock is guaranteed.

Linux kernel interfaces such as Perfmon2 and perf event deal with this problem by

placing all sensitive code in the kernel where techniques like disabling interrupts can operate

normally. By doing so, however, they add significant overhead to counter reads in the form

of system calls to access counters.

To solve this problem, we use an approach similar to Bershad et al. [17] (Figure 3.2). We

speculatively assume that there will be no atomicity violation, but build detection and error
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handling into the kernel code for cases where such events happen. With this approach, there

is no additional overhead added to counter reading code in user space and overhead is only

incurred on relatively infrequent counter overflows. To detect whether or not an application

is in the middle of a counter read during a counter overflow we simply check the pattern

of instructions before the process was interrupted (pointed to by the process’ instruction

pointer). If a counter read is detected, the kernel zeros the process’ registers (%rax and %rdx

in the x86 example) to match the new (overflowed) contents of the performance counter.

Once resumed, the program will behave as if the interrupt, context switch and overflow had

occurred immediately prior to the read of the performance counter. The primary difference

from the approach in Bershad et al. [17] is that they rewind execution to the beginning of

the critical section instead of fixing up the correct counter values as we do.

3.3.2 Comparison to Sampling

Sampling is typically used in two ways: interrupt based or by polling. In interrupt based

sampling, interrupts are triggered when a pre-determined event such as number of com-

mitted instructions reaches a pre-determined count. These interrupts are received by the

OS and passed on to the application. In polling based sampling, the counters are precisely

read out once out of every N times a code region is executed to reduce overhead. While

both approaches can have low overheads, there are a number of situations in which neither

approach works well.

For example, Figure 3.3 contains a critical section from MySQL which accounts for 30%

of MySQL’s overall critical section time. Let us say that we are interested in measuring

time spent in critical sections using interrupt based sampling. If K of the N samples were in

critical section we would extrapolate that K/N of the total time was spent in critical sections.

However, there are several complications with this approach. In the above example, a

sampling interrupt routine which fires during the critical section, would have difficultly

determining whether or not a lock is held because the locks are executed based on the if

conditional preceding the lock.

An alternative to interrupt sampling is to use precise access methods intermittently.

In this case, explicit performance counter reads would have be used every time a lock is
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if (info->s->concurrent_insert)
  rw_rdlock(&info->s->
              key_root_lock[inx]);

changed=_mi_test_if_changed(info);
if (!flag) {
  switch(info->s->
         keyinfo[inx].key_alg) {
  /* 37 lines omitted */
}
if (info->s->concurrent_insert) {
  if (!error) {
    while (...) {
       /* 10 lines omitted */
    }
  }
  rw_unlock(&info->s->
            key_root_lock[inx]);
}

40
41

42
43
44

82
84
85
86

97
98
99

100

Conditional Locks

Figure 3.3: Code excerpt from MySQL 5.0.89, mi rnext.c. The critical section shown here

accounts for 30% of all the time spent in critical sections.

acquired or released. To reduce overhead, performance counter reads could execute only

once out of every N times the region is entered, and the total time could be extrapolated

from this measurement. While this method is effective in reducing overall overhead, the

overheads for each precise read remain high. As a result, large perturbation is introduced

immediately before and after the region of interest when measurement is actually occurring.

We would therefore expect measurements for small regions to be inflated. We observe this

effect during our Case Study A in Figure 3.5b.

In many of these situations in which sampling or heavyweight precision present difficul-

ties, ad hoc solutions are possible. However as our case studies demonstrate, a low-overhead,

precise measurement like LiMiT is sometimes the right tool for the job.

3.3.3 Comparison to PAPI and perf event

For years, PAPI has been the standard library to write cross platform performance mon-

itoring tools. As a library, it relies on kernel interface support; traditionally it has used

perfmon2 on Linux. In contrast, perf event is the newest Linux kernel interface. It is touted

to be faster and more featureful than perfmon2 and will thus eventually replace it. However,
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Time PAPI-C perf event LiMiT Speedups

User 1.26s 0.53s 0.34s 3.7x 1.56x

Kernel 30.10 s 7.30s 0s ∞ ∞

Wall 31.44s 7.87s 0.34s 92x 23.1x

Table 3.1: Speedups of LiMiT, perf event, and PAPI (107 reads of 3 counters) plus LiMiT’s

speedup over PAPI and perf event respectively.

due to its relative youth, library support for perf event remains poor, placing burden on

the user but yielding better speeds as there is no library overhead.

Any performance counter readout call (be it PAPI or LiMiT) will cost some number of

cycles. To examine this overhead, we construct a short benchmark which reads a counter

configured to count three events (cycles, branches and branch misses) 107 times each. With

this high number of iterations, we can report the wall time for comparison of the overheads

and compute the cost of each readout call. The results are presented in Table 3.1. On our

Xeon 5550-based system, the average for LiMiT’s five instruction readout code is 37.14

cycles. Since LiMiT does not require a system call for each sample, it is substantially

faster compared to PAPI-C (by 92x) and perf event (by 23x).

In Section 3.4, we instrument MySQL to examine locking, unlocking and critical section

timing (setup described in detail in the following section). Figure 3.5b shows that using

LiMiT incurs a 42% cycle increase over uninstrumented execution. When the same in-

strumentation is performed using PAPI, a 745% user space cycle overhead is introduced

and 97% is incurred with perf event. Both PAPI’s and perf event’s actual overheads, how-

ever, are much larger since over 90% of their overheads occur in kernel space (as shown

in Table 3.1) but are not counted in figure 3.5b. As a result, we would expect both PAPI

and perf event instrumentation to perturb execution more than LiMiT making the results

virtually unusable.

Overheads also directly affect usability. We attempted to instrument and measure mod-

ern cloud workloads such as Firefox, MySQL and Apache with both LiMiT and PAPI.

Firefox was unresponsive to input with PAPI, while it operated with no discernible slow-

down when instrumented with LiMiT. We also measured that Apache served 9,246 requests
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per second with LiMiT instrumentation and 9,276 requests per second without instrumen-

tation. These minor changes in speed demonstrate LiMiT’s low overhead.

3.3.4 Comparison to RDTSC Measurements

Using rdtsc, the read time stamp counter instruction on x86 architectures, is de rigeur

in userspace lightweight measurement. The time stamp counter is a free running counter

present on all x86 machines. It simply counts bus cycles (uncore cycles for modern Intel

processors) and most operating systems allow programs direct access to it. Since rdtsc is

simple and lightweight, programmers will often use it to measure the time spent in short

or long regions of code or to judge the effect of code changes on performance. LiMiT,

however, offers capabilities that are superior to plain rdtsc: aside from offering a variety

of countable events besides bus cycles, LiMiT provides process isolation which allows each

process to shield its measurements from other processes’ direct interference. While one

could apply many of LiMiT’s techniques to rdtsc, this does not occur in practice so we

compare against rdtsc without any such additions.

To examine the effect of process isolation, we construct a simple microbenchmark which

executes non-memory operations across multiple threads on an 8-core system, allowing the

operating system to schedule them onto cores. We then compute the average amount of

time each operation takes using both rdtsc and LiMiT. We would expect the performance

of each operation to degrade as resource sharing increases. There should be little or no

performance degradation with 8 or fewer threads, mild degradation from 8 to 16 threads as

SMT is utilized then a little more performance degradation above 16 threads as threads are

swapped in and out. The data presented in Figure 3.4b confirm these expectations when

using LiMiT. rdtsc, however, incorrectly reports massive, linearly increasing performance

degradation above 16 threads as a result of its lack of process isolation.

3.4 Case Study A: Locking in Web Workloads

Usage patterns of computers have changed drastically over the past decade. Modern com-

puter users live in the cloud. These users spend most of the their time in web browsers
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#define rdtsc(X)          \
asm volatile ("rdtsc;"    \
     "shl $32, %%rdx;"    \
     "orq %%rax, %%rdx;"  \
   : "=d"(X) :  : "%rax");

int main(void) {
  uint64_t b, e;
  rdtsc(b);
  for (uint64_t i=0; 
       i<ITER; i++) {
    // ... some operation
  }
  rdtsc(e)
  printf("Time per op: %lf\n",
   ((double)e - b)/ITER);
}

(a) RDTSC Example
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Figure 3.4: Top: typical rdtsc usage example. Bottom: Process isolation in LiMiT pre-

vents other threads and processes from directly affecting event counts. RDTSC has no such

ability.
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– either on a traditional desktop or mobile device – rather than in native applications,

which moves computation to backend servers. As a result, there are two separate and ex-

tremely important workloads in the web model: the frontend, consisting of web browsers

and Javascript engines, and the backend, consisting of HTTP servers, script interpreters

and database engines. Further, the workloads of these applications have also changed. Of-

ten web pages rely far more on Javascript than ever before and database operations are no

longer well modeled by traditional transactional benchmarks, often favoring scalability and

speed over data security and transactional atomicity and durability.

We briefly characterize the synchronization behavior of several popular web technologies.

Specifically, this study aims to answer the following questions: (1) Is synchronization a

concern in web workloads and what are the locking usage patterns? (2) What future

architecture directions can optimize web workloads? For comparison purposes, we also

measure and analyze the PARSEC benchmark [18]. As a numerical workload, PARSEC is

more representative of traditional (scientific computing) notions of parallel programming

and may be different from web technologies.

Necessity of LiMiT There are three features offered by LiMiT which enable this study:

precise instrumentation, process isolation and low-overhead reads, not all of which are si-

multaneously offered by other technologies. Precision is necessary because we are capturing

very short regions of executions – lock acquires/releases and critical sections – which are

likely to be missed by sampling techniques. Process isolation (which is not offered by the

traditional rdtsc) is required since we are operating in a multi-threaded environment with

I/O, so processes are likely to be swapped in and out often. Finally, LiMiT’s low-overhead

counter readout routine is required to prevent large perturbation from skewing results. To

further examine LiMiT’s lowered overhead, we will compare results obtained with LiMiT

to results obtained with PAPI.

Experimental Setup To gain insight into modern web workloads, we examine the fol-

lowing software and input sets:

Firefox A popular, open-source web browser, we ran Mozilla Firefox version 3.6.8. We vis-
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ited and interacted with the top 15 most visited sites, as ranked by Alexa. Addition-

ally, we used two web apps from Google, Gmail and Google Reader1, two applications

which rely heavily on AJAX, asynchronous Javascript and XML.

Apache The Apache HTTP server is, according to Netcraft, the most popular HTTP sever

with 56% market share as of August 2010. We evaluated the latest stable version,

2.2.16, using the included “ab” (Apache Benchmark) tool to fetch a simple static page.

A total of 250k requests were served with 256 requests being requested concurrently.

Because we look only at static loads, the results will indicate a best-case scenario for

Apache.

MySQL MySQL is the traditional database server of choice for websites. The most recent

stable version is MySQL 5.1.50 Community Server, which we evaluated. To exercise

its functionality, we ran the “sql-bench” benchmarking scripts included with MySQL’s

source code.

PARSEC The PARSEC benchmark suite [18] is a set of parallel applications largely tar-

geting RMS workloads. We executed seven of the multithreaded benchmarks: blacksc-

holes, swaptions, fluidanimate, vips, x264, canneal and streamcluster.

We instrumented each of these applications using LiMiT to track their critical sections

and locking behaviors. Specifically, we collected information on the number of cycles spent

acquiring and releasing locks, and time spent with locks held.

Results The charts in Figures 3.5 and 3.6 summarize the collected data. Figure 3.5

contains an overview of synchronization overheads and critical section times. Execution

time is computed as the total number of cycles in all threads, lock and unlocking times

as all time spent in pthread mutex lock and pthread mutex unlock in all threads. Lock

held time, however, is defined as summation of the amount of time each thread has at least

one lock held; if more than one lock is held, time is not double-counted.

1Since the time of experimentation, Google Reader has been discontinued. It was a cloud-based RSS

aggregator.
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Figure 3.5: Comparison of synchronization and critical section timing for various popular

applications and the PARSEC benchmark suite along with execution times for MySQL.

Results obtained with PAPI are inflated due to instrumentation overheads. We also see

that PAPI instrumentation increases userspace cycle counts by more than 745% compared

to LiMiT’s 42% increase. We also note that Firefox (being an interactive program) could

not execute with PAPI instrumentation.
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Firefox Apache PARSEC MySQL

Average Lock Held Time 789 149 118 1076

Dynamic Locks per 10k Cycles 3.24 1.12 0.545 3.18

Static Locks per Thread per Application 57 1 17 13853

Table 3.2: Locking-related averages. We note that the vast majority of PARSEC’s static

locks are observed in one benchmark: fluidanimate. Without this benchmark, the number

of static locks per thread per application drops to 0.575. These data indicate that scientific

and web workloads have significant difference in synchronization behavior.
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Figure 3.6: Histograms of synchronization overheads and critical section times for several

applications. Times are broken down by dynamic locks (number of lock acquisitions) and

average for each static lock (observed lock instance). We note that many critical section

times are very short, comparable in cycle counts to lock acquisition times.
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These data show that locking behavior varies a great deal between the applications.

Figure 3.6 contain histograms of locking and unlocking overheads (latency of lock acquire

and release) and times spent in critical sections. We break down this data by both dynamic

locks (number of lock acquires during execution) and static locks (number of lock instances

observed during execution), revealing insights about lock usage patterns. From this data,

we make several observations:

Critical Section Times The histograms in Figure 3.6 indicate that the manner in which

each application uses locks varies. PARSEC, for instance, holds locks for very short

amounts of time in stark contrast to MySQL and Firefox. (See Table 3.2.) This is

likely because many of PARSEC’s applications parallelize nicely, e.g., using data par-

allelism and static assignment. The other applications, however, are interactive and

must respond to events as they occur. Since this makes static assignment impossible,

threads must interact more often, requiring more synchronization.

Number of Locks The previous point is further supported by the number of locks shown

in Table 3.2. Highly interactive applications like Firefox and MySQL require sig-

nificantly higher number of locks. PARSEC is likely able to use only barrier-like

constructs to synchronize computation.

Based on this data, we will attempt to answer the questions set forth. To answer our

first question, about locking patterns in web workloads, we observe that synchronization

is a mixed bag in web applications. Some workloads, like Apache, are likely to be very

parallel and scale easily. MySQL does not fit into this category as it does not scale as

easily. Additionally, Firefox has far more synchronization overheads then one would expect.

Based on personal experience with Mozilla code, we suspect this is a result of difficulties in

parallelizing legacy “spaghetti” code which is likely to have many side effects which must

be isolated from other threads.

Implications for Architects (#1, #2, #3) Our second question — How are architects

affected by these results and what future directions would best support the web? — bears

further analysis. There are several interesting points:
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# 1: New Benchmarks A new benchmark suite of web software may be necessary for

new web-centric architecture research. SPEC has several versions of the “SPECweb”

benchmark; future studies should include comparisons. However, many of the applica-

tions we have reviewed and other important cloud workloads are not part of SPECweb,

including Firefox, Javascript, website supporting databases (non-transactional work-

loads), server caching and load balancing.

# 2: Locking Overheads Our data show locking overheads can be non- trivial compared

to critical section times. Since locking/unlocking overheads can be 8% to 13% of

overall cycles, speedups in this range may be possible with architectural/software

techniques for streamlining lock acquisition. Further, we observe that the static lock

distributions differ from the dynamic lock distributions, suggesting that one may be

able to statically determine which locks are likely to be contended and which are likely

to be held for many cycles.

# 3: Critical Section Serial Performance Critical section times for MySQL are rela-

tively large. In particular, over half of the lock instances have average lock hold times

around 8,000 cycles (although they are locked less often). These represent segments of

code which will not scale well. These regions are prime targets for microarchitectural

optimization. If they can be sped up, parallel performance and scalability of MySQL

will improve.

3.5 Case Study B: Kernel/Userspace Overheads in Runtime

Library

Our next case study is aimed at examining the interaction of programs with the Linux

kernel via popular library calls and understanding their impact on program performance.

A prior study has shown that kernel calls can negatively impact performance by polluting

branch predictors [104]. Are there other on-chip structures that are affected by kernel calls?

To what degree are modern applications affected by their kernel interaction? Is it possible

to obtain fine-grained information about execution that can be tracked back to originating
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function calls? Our goal is to use LiMiT to study common library functions’ behaviors in

both userspace and kernel space.

Necessity of LiMiT There are two alternatives to using LiMiT for collecting this data.

First, simulation can be used to study the interaction of user and kernel code. Full

system multiprocessor simulators can model the effect of system interaction and can shed

light on effect of library calls but can be prohibitively slow without scaling workloads.

Although LiMiT cannot achieve the accuracy and detail level of simulation, it can be used

to rapidly gather precise information and coarsely locate problem regions.

The second option is sampling with external interrupts. This style of sampling provides

an interrupt every N events at which point the sampling interrupt can analyze the applica-

tion’s execution state. In this study, however, we must determine which library functions

use processor resources and the purpose of the function calls. For instance, we would like

to know whether memcpy is manipulating program data or copying data for I/O. Obtain-

ing this data in both user and kernel space is difficult for sampling-based methods as each

sample interrupt must also run a stack trace (often from the kernel stack all the way back

to and through the user stack) to identify the library entry point. To our knowledge, no

existing sampling tool is able to track kernel function usage back to the calling userspace

function. While theoretically possible for sampling, LiMiT makes this approach downright

easy. With LiMiT, we read counters at the entry and exit points of functions in each cat-

egory, so all events occurring between the function entry and exit, including all functions

called from within the function, are counted towards that function. For example, if pwrite

calls memcpy internally or the kernel executes some locking functions during a read system

call, any microarchitectural events resulting from the memcpy or kernel locking will count

towards pwrite or read rather than memory or locking categories.

Experimental Setup To examine the effects of kernel code, we intercept and instrument

functions in libc and pthreads. During calls to these libraries, we count cycles, L3 cache

misses and instruction cache stalls in user space and kernel space separately. After collect-

ing data, we aggregate the data from each function into three separate categories: I/O,

memory and pthreads. I/O contains functions such as read, write and printf whereas
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memory has functions like malloc and memset. Pthreads contains all of the commonly-

used synchronization functions. We look at two important systems applications, Apache

and MySQL, using the workloads described in Section 3.4.

Results The results of this study are shown in Figures 3.7, 3.8 and 3.9. Figure 3.7 reveals

potential inefficiencies. First, we observe that MySQL spends over 10% of its execution

cycles in kernel I/O functions. Apache spends a comparable amount of time, but also spends

a large amount of time in user I/O code. Overall, in fact, Apache spends the majority (about

61%) of its cycles in library code. Looking at cache information, Figure 3.7b shows that

kernel I/O experiences far more cache misses per kiloinstruction than userspace code. The

last chart, Figure 3.7c helps explains further, revealing extremely poor instruction cache

utilization in kernel mode, especially in I/O functions.

Figures 3.8 and 3.9 show the CPI and last level cache misses for the worst performing

functions in libc plus aggregates of userspace code, kernel code, library functions and normal

program code. These data show that kernel code does not perform as well as userland code

and that several functions perform very poorly, especially in terms of cache misses. In

particular, the math function floor performs very poorly (due largely to cache misses)

though it does not contain a kernel call. Fortunately, MySQL does not call it often (241

times compared with 4.4e8 times for memcpy). The infrequent calls and last level cache miss

results suggest that that poor temporal locality and prefetching of mathematical constants

or code in libm may be to blame for the poor performance.

Implications for Architects (#4,#5,#6) The first important result from this data

is that system applications have large amounts of kernel interaction and their behavior in

kernel regions is markedly different from userspace. As a result, userspace-only simulation

misses potentially important information. Additionally, there are two key observations in

the above data which indicate potential avenues for optimization:

# 4: I/O Optimizations The Apache results show the importance of I/O optimization.

Apache spends much time interacting with the kernel, incurring significant overheads.

Hardware support to allow Apache (and similar programs) to circumvent the kernel
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gories of library functions. Comparing userspace to kernel, we see that kernel code behaves

very differently than userspace code. Please note the different scale in (b) for Apache in

kernel space.
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Figure 3.8: Cycles per instruction for various library functions executed by MySQL are

listed here, sorted by number of calls. We see that in many cases, code in the dynamically

linked library performs worse than typical program code. The same is true of kernel code to

an even greater extent. Although performance is particularly poor for functions like floor

and getpid, they are not called often and thus do not affect overall speed.
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Figure 3.9: L3 cache misses in various dynamically linked library functions show that a

handful of library functions account for a large portion of all the cache misses. Many of

these functions result in kernel calls which suffer from abnormally high cache miss rates,

as seen in Figure 3.7b. The MySQL benchmark executed for these data uses a database

growing up to 45MB in size, relative to 8MB of CPU cache.
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to do its I/O could drastically decrease its latency and increase throughput.

# 5: Syscall I-Cache Poor instruction cache behavior in kernel mode may indicate that

the processor is unable to prefetch kernel instructions before interrupts occur. It

should be possible for a hardware prefetcher to determine the system call number and

prefetch the necessary upcoming instruction code, avoiding I-Cache misses.

# 6: New Research Style Finally, this LiMiT-obtained data has identified several prob-

lem points in real applications with unscaled workloads. With LiMiT, a process that

would have taken months using simulators took only 3 days. If microbenchmarks

can be designed to capture these bottlenecks, they can be used in full system simula-

tion. This style of combining LiMiT’s precise event counter approach with detailed

simulation may be necessary for quantitative architecture research in the cloud era.

3.6 Case Study C: Longitudinal Study of Locking Behavior

in MySQL

Embarking on parallelization is often a risky investment with little guarantee of performance

improvements due to the difficulties in writing multithreaded code. Many organizations that

have legacy sequential codes are hesitant to invest in parallelization without quantitative

models that can be used to predict return of investment on parallelization. LiMiT offers

capabilities to build such a model.

In this case study, we use LiMiT to examine the benefits of adapting software to multi-

cores over multiple versions spanning years. To examine software development progress, we

examine several versions of MySQL, an extremely popular database management system.

Gartner Group estimates that 50% of IT organizations had MySQL deployments in 2008,

making MySQL a very common workload. As an open source product, we are also able to

access its source code from many versions going back to 2004. Releases from 2004 on are

beneficiaries of increased market penetration of multicore machines, increasing pressure on

MySQL to use multithreading for performance.
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Goals We will attempt to answer the following questions using behavioral information:

(1) Has synchronization in MySQL changed through versions? (2) Has the amount of time

in critical sections changed? We will use these questions to judge if MySQL developers have

improved at multicore development since the widespread availability of multicore systems.

Necessity of LiMiT As in case study A, we are examining fine-grained program sec-

tions: lock acquires/releases and critical sections. To avoid perturbation, interference from

multiple threads and error introduced by sampling, we require LiMiT’s low-overhead reads,

process isolation and precision. Sampling is a poor option for the same reasons as given in

case study A.

Experimental Setup To answer these questions, we intercept mysqld calls to the pthread

library’s locking routines to insert timing instrumentation. All versions of MySQL were

compiled and executed on identical systems, so they all use the same, recent version of

pthreads. As input, we run the “sql-bench” benchmark suite supplied with MySQL.

Results The results of this study are shown in Figure 3.10. They indicate that synchro-

nization efficiency has increased since the 4.1 series, first introduced in 2004. Figure 3.10a

examines overall times in synchronization and critical sections. Figure 3.10b rehashes the

critical section results from the previous chart and overlays the average lock held time.

Finally, Figure 3.10c examines the number of static and dynamic locks observed during

execution. There are several interesting points to note:

Average Lock Held Times MySQL developers have decreased the total amount of time

spent with locks held while simultaneously increasing the average amount of time

each lock is held. This implies that the functionality of multiple critical sections has

been combined. For low-contention critical sections, this increases overall efficiency

by avoiding lock overheads.

Lock Granularity The number of static and dynamic locks have both decreased. This

implies that – on average – lock granularity has increased. Although this could increase
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(c) Static and Dynamic Locks

Figure 3.10: A history of synchronization in MySQL. With the exception of MySQL 6

(a likely un-optimized alpha-quality version), time with locks held and time getting locks

(contention and overhead) has decreased since version 4.1.
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contention, it has not come at that cost, so this granularity shift has likely been

carefully tuned.

Alpha Version MySQL 6, the alpha version, is an outlier with respect to recent versions.

This is likely because it has not yet been optimized with respect to locking and new

features have been implemented in overly conservative fashions.

To answer our initial questions, both synchronization overheads and critical section times

have decreased over time. These performance improvements clearly show that developers

have become more skilled, likely a result of multicore availability as parallel machines were

not commonly available to hobbyist hackers before 2004.

Implication for Architects (#7): Performance Counter Utility While this is pri-

marily a software engineering/project management study – and to the best of our knowledge

the first study to use precise performance counters for software engineering – there is a very

important take away point here for computer architects: there is a potentially broader

consumer base for on-chip performance counter data beyond computer architects, OS and

compiler writers. Computer architects should take this into consideration when designing

future hardware monitoring systems. Broadly, this means that monitors should be opti-

mized not to capture just the common execution cases but also uncommon cases which are

interest in domains such as software engineering and security.

3.7 Related Work: Performance Counter Studies

Using performance counters to study workloads is common. Many studies have used them

to point out deficiencies in benchmarks or microarchitectures. In a classic paper, Emer and

Clark [49] constructed hardware counters which allowed them to construct histograms of

microcode execution on the VAX-11/780. Phansalkar et al. [129] used performance counters

to study redundancy in SPEC CPU2006 [67]. Ailamaki et al. [2] characterize database

systems with performance counters. These are but several examples of characterization

studies using performance counters.
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Benchmark suites are also often studied using performance counters. BioBench [3],

is developed and then analyzed with performance counters. Jaleel et al. [79] study the

last level cache behavior bioinformatics workloads. Ferdman et al. [55] use performance

counters to examine the microarchitectural characteristics of modern cloud workloads like

web servers and MapReduce. They conclude that existing benchmarks do not represent

accurately represent these applications and that modern high-end processors are improperly

provisioned for them, both similar to the conclusions that we have made.

3.8 Conclusion

This chapter makes the following contributions: (1) We have introduced a lightweight, pre-

cise interface to performance counters on contemporary hardware. (2) We have conducted

detailed case studies to demonstrate the utility of precise monitoring to architects. (3)

Based on data collected with LiMiT, we offer new insights on program behavior which

were not possible with existing tools.

As a demonstration of the usefulness of precise performance monitoring capabilities

offered by LiMiT, we conducted three case studies on current web workloads. These

studies lead us to the following conclusions:

• A new benchmark suite is recommended for research in computer architectures for the

cloud era because traditional multithreaded benchmarks have different execution character-

istics than multithreaded applications frequently used today.

• Web applications tend to have many very short critical sections which could be sped

up with architectural support for lighter weight synchronization. Since the total overhead

of lock acquisition and release is about 13% and 8% for Firefox and MySQL respectively,

speedups in that range may be possible.

• Dynamically linked libraries and kernel code suffer from poor microarchitectural perfor-

mance and also make up substantial portions of run time for system applications. Further

research to enhance this performance could significantly accelerate web workloads.

• Performance counters have far wider applicability than just computer architecture (e.g.,

software engineering) and architects designing performance counter systems should consider
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other applications.

These insights were made possible by precise, low-overhead performance monitoring

capabilities provided by the LiMiT tool. These features allow monitoring of parallel pro-

grams more precisely than existing sampling based tools. In LiMiT we revisited and re-

architected existing performance counter access methodologies (which had not been revised

in the past decade). Specifically, we used novel kernel/user space cooperative techniques to

allow user space readouts of performance counters. As a result, LiMiT is at least an order

of magnitude faster than its existing state-of-the-art alternative, and reduces instrumented

execution overheads significantly. In short, LiMiT can read virtualized counters in less

than 12 nanoseconds, allowing precise measurements at finer granularities than have ever

been studied.
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Chapter 4

Measuring Side-Channel

Vulnerability

There have been many attacks that exploit side-effects of program execution to expose secret

information and many proposed countermeasures to protect against these attacks. However

there is currently no systematic, holistic methodology for understanding information leakage

in microarchitecture. As a result, it is not well known how design decisions affect information

leakage or the vulnerability of systems to side-channel attacks.

In this chapter, we propose a metric for measuring information leakage called the Side-

channel Vulnerability Factor (SVF). SVF is based on our observation that all side-channel

attacks ranging from physical to microarchitectural to software rely on recognizing leaked

execution patterns. SVF quantifies patterns in attackers’ observations and measures their

correlation to the victim’s actual execution patterns and in doing so captures systems’

vulnerability to side-channel attacks. We also conduct a detailed case study of on-chip

memory systems. In it, SVF measurements help expose unexpected vulnerabilities in whole-

system designs and shows how designers can make performance-security trade-offs. Thus,

SVF provides a quantitative approach to secure computer architecture.
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4.1 Introduction

Data such as user inputs tend to change the execution characteristics of applications; their

cache, network, storage and other system interactions tend to be data-dependent. In a side-

channel attack, an attacker is able to deduce secret information by observing these indirect

effects on a system. For instance, in Figure 4.1 Alice uses a service hosted on a shared

system. Her inputs to that program may include URLs she is requesting, or sensitive infor-

mation like encryption keys for an HTTPS connection. Even if the shared system is secure

enough that attackers cannot directly read Alice’s inputs, they can observe and leverage

the inputs’ indirect effects on the system which leave unique signatures. For instance, web

pages have different sizes and fetch latencies. Different bits in the encryption key affect

processor cache and core usage in different ways. All of these network and processor effects

can and have been measured by attackers. Through complex post-processing, attackers are

able to gain a surprising amount of information from this data.

While defenses to many side-channels have been proposed, currently no metrics exist to

quantitatively capture the vulnerability of an entire system to side-channel attacks.

Existing security analyses offers only existence proofs that a specific attack on a partic-

ular system is possible or that it can be defeated. As a result, it is largely unknown what

level of protection (or conversely, vulnerability) modern computing systems provide. Does

turning off simultaneous multi-threading or partitioning the caches truly plug the informa-

tion leaks? Does a particular network feature obscure information needed by an attacker?

Although each of these modifications can be tested easily enough and they are likely to

defeat existing, documented attacks, it is extremely difficult to show that they increase

resiliency to future attacks or even that they increase difficulty for the attacker using novel

improvements to known attacks. To solve this problem, we present a quantitative metric

for measuring side channel vulnerability.

We observe a commonality in all side-channel attacks: the attacker always uses patterns

in the victims program behavior to carry out the attack. These patterns arise from the

structure of programs used, typical user behavior, user inputs, and their interaction with the

computing environment. For instance, memory access patterns in OpenSSL (a commonly

used crypto library) have been used to deduce secret encryption keys [126]. These accesses
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Unsuspecting Victim 
"Alice"

Attacker "Boris"

Attacker "Chang"

Attacker "Daisy"

runs a
program

Known side-channel C
(e.g., encrypted network traffic)

Known side-channel B
(e.g., shared caches) Published

Extraction
Technique X

Unpublished side-channel D

Secret

Secret

E.g., Websites 
visited

Secret

E.g., AES key 

Undiscovered 
Side-channels?

Unpublished
Extraction

Technique Y

Unpublished
Extraction

Technique Z

receives 
normal output

Figure 4.1: Information leaks occur as a result of normal program execution. Alice’s ac-

tions can result in side effects. Attackers can measure these side effects as “side-channel”

information and use it to extract secrets using known or unpublished attack techniques.

were indirectly observed through a shared cache between the victim and the attacker process.

As another example, crypto keys on smart cards have been compromised by measuring

power consumption patterns arising from repeating crypto operations [113].

In addition to being central to side channels, patterns have the useful property of being

computationally recognizable. In fact, pattern recognition in the form of phase detection [70,

134] is well known and used in computer architecture. In light of this observation, side-

channel attackers appear to actually do no more than recognize execution phase shifts over

time in victim applications. In the case of encryption, computing with a 1 bit from the key

is one phase, whereas computing with a 0 bit is another. By detecting shifts from one phase

to the other, an attacker can reconstruct the original key [63, 126]. Even HTTPS side-

channel attacks work similarly – the attacker detects the network phase transitions from

“request” to “waiting” to “transferring” and times each phase. The timing of each phase is,

in many cases, sufficient to identify a surprising amount and variety of information about

the request and user session [29]. Given this commonality of side-channel attacks, our key
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(a) A high SVF system (≈0.77) (b) A low SVF system (≈0.098)

Figure 4.2: Visualization of execution patterns using similarity matrices. Each triangular

matix compares a point in time with every other point in time within an execution trace.

LHS of each figure shows “ground-truth” execution patterns of the victim and RHS shows

patterns observed by the attacker for two different microarchitectures. One can visually tell

that the higher SVF system (left) leaks more information.

insight is that side-channel information leakage can be characterized entirely by recognition

of patterns through the channel.

Figure 4.2 shows an example of pattern leakage through two microarchitectures, one of

which transmits patterns readily and one of which does not. In Figure 4.2a, we can observe

many of the visual patterns in the oracle matrix (on the left) can also be observed in the

side-channel matrix (on the right). This intuitively demonstrates a leaky system: if the data

which generated these patterns in the oracle is sensitive, then the side-channel attack has

gained a good deal of information about those data. In Figure 4.2b, however, we observe

that only some of the visual features from the oracle matrix can be seen in the side-channel

matrix, and not all appear accurate. This visual example also nicely corresponds to the

SVFs of the systems from which these data were collected: the visually leaky system has a

high SVF, indicating high leakage, whereas the second system has a relatively low SVF.

Accordingly, we can measure information leakage by computing the correlation between

ground-truth patterns and attacker observed patterns. We call this correlation Side-channel

Vulnerability Factor (SVF). SVF measures the signal-to-noise ratio in an attacker’s obser-

vations. While any amount of leakage could compromise a system, a low signal-to-noise

ratio means that the attacker must either make do with inaccurate results (and thus make
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Example Example Similar to attacked

Insecure CPU Secure CPU CPUs in [126], [63]

SVF 0.86 0.01 0.73 0.27

SMT 2-way 1-way 2-way 2-way

Cache Sharing L1 L2 L1 L1

L1D Size 1k 32k 8k 32k

L1D Associativity 4-way 4-way 4-way 8-way

L1D Line Size 8B 64B 64B 64B

L1D Prefetcher Arithmetic None None None

L1D Partitioning Static Static None None

L1D Latency 4 cycles 4 cycles 2 cycles 3 cycles

L2 Size 8k 256k 512k 1M

L2 Associativity 4-way 4-way 8-way 8-way

L2 Line Size 8B 8B 64B 64B

L2 Prefetcher None None Arithmetic Arithmetic

L2 Partitioning Static Static None None

L2 Latency 16 cycles 16 cycles 10 cycles 7 cycles

Table 4.1: SVFs of example systems running an OpenSSL RSA signing operation. We have

selected two hypothetical systems from our case study in addition to approximations of

processors which have been attacked in previous cache side-channel papers [63, 126]. It is

interesting to note that while the processor with an SVF of 0.27 was vulnerable to attack,

the attack required a trained artificial neural network to filter noise from the attacker

observations. The 0.73 SVF system required no such filtering to be attacked.
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many observations to create an accurate result) or become much more intelligent about

recovering the original signal. This assertion is supported by published attacks given in

Table 4.1. While the attack [126] on the 0.73 SVF system was relatively simple, the less

vulnerable 0.27 system’s attack [63] required a trained artificial neural network to filter

noisy observations.

As a case study to demonstrate the utility of SVF, we examine the side-channel vulner-

ability of processor caches, structures previously shown to be vulnerable [63, 121, 122, 126].

Our case study shows that design features can interact and affect system leakage in odd,

non-linear manners. Evaluation of a system’s security, therefore, must take into account all

design features. Further, we observe that features designed or thought to protect against

side-channels (such as cache partitioning) can themselves leak information. Our results

show that predicting vulnerability is difficult, therefore it is important to use a quantitative

metric like SVF to evaluate whole-system vulnerabilty.

The primary contributions of this chapter are: (1) We propose a metric and methodology

for measuring information leakage in systems; this metric represents a step in the direction

of a quantitative approach to whole system security, a direction that has not been explored

before. (2) We evaluate cache design parameters for their effect on side-channel vulnerability

and present several surprising results, motivating the use of a quantitative approach to

security evaluation.

4.2 Side-channel Vulnerability Factor

Side-channel Vulnerability Factor (SVF) measures information leakage through a side-

channel by examining the correlation between a victim’s execution and an attacker’s obser-

vations. Unfortunately these two data sets cannot be directly compared since they represent

different things – for instance, instructions executed versus power consumed. Instead, we

use phase detection techniques to find patterns in both sets of data then compute the

correlation between actual patterns in the victim and observed patterns.



CHAPTER 4. MEASURING SIDE-CHANNEL VULNERABILITY 56

System
under
attack

(Simulated 
or real)

Victim application

Victim application
inputs

Attack application

Environmental
inputs / noise

Oracle (victim)
events

Side-channel 
observations

Oracle
trace

Side-channel 
trace

Splitting 
into 

intervals

(i.e. trace 
assembly)

SVF 
Computation

Figure 4.3: The SVF data collection and analysis process

4.2.1 SVF Context & Applications

SVF is an experimental measurement framework, meaning that rather than measuring a

system’s leakage in a vacuum, it measures leakage for a particular execution of a particular

victim application with particular inputs while running a particular attack application. A

overview of this method is shown in Figure 4.3.

Measuring SVF To measure SVF, victim and attack applications are executed on the

test system, which may be simulated or real (if it is possible to accurately collect runtime

data on the real system). During execution, events of interest are monitored and recorded.

These events include data which the victim would like to keep secret – possibly bits in an

encryption key or memory accesses. The events also include observations (measurements)

which the attacker is able to make. After execution, the events are assembled into a pair

of traces (oracle and side-channel) by splitting the events up into time intervals to form

time series traces. Finally, SVF is used to compute the leakage between the two traces, as

defined in Section 4.2.3.

Computation Dependencies As an experimental measurement, any SVF measurement

will depend on a variety of factors, some of which are likely to vary dynamically (from run

to run) and some of which may be statically defined for a set of experiments:

Victim Application & Inputs Since attackers are attempting to sense the data-dependent

side effects of a victim’s execution, both the victim and some input data must be mod-
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eled and can affect SVF. During execution, the victim is monitored for critical events.

Attack Application SVF measurement is based on correlation between victim execution

and attacker observations. Therefore, an attack must be modeled and monitored to

provide these observations.

Environment As in any experiment, environmental noise could affect the system being

monitored. In a simulated setting, this noise is likely to be non-existent, though in a

real system the effects of external interference could be significant.

System The system itself models or otherwise governs how the two applications execute

and their interactions. We would expect the system to have the most drastic effect

on leakage since leakage is – to a first order approximation – an artifact of resource

sharing between the applications in the system. Systems with little or no sharing have

little possibility for leakage, and systems with more sharing potentially leak significant

amounts of data.

Events of Interest Another parameter which must be defined is what events are of inter-

est and thus be monitored for later use to compute SVF. The choice of attacker events

is reasonably obvious – it is the observations that the attacker has been able to make.

The victim (or oracle) case is less obvious. Ideally, the events are secret data as they

are being used; however, these secret data can be difficult to define, especially without

making them application specific. For instance, bits in an RSA encryption key may

be most informative for leakage in OpenSSL, but don’t apply to other applications.

Alternatively, memory addresses have been indirectly used in side-channel attacks, so

memory loads and stores (and the addresses they touch) could be a useful application

independent event stream.

Interval Splitting SVF computation operates on two discrete time series traces which

are of equal length and aligned in time. To accommodate this requirement, we break

up the events into intervals and combine all the events for each interval into a single

data item. For instance, all of an attacker’s observations within an interval may be

combined into a single vector.
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SVF Computation Specifics Finally, there are a number of parameters within the SVF

computation which can be customized. For example, SVF needs to be able to compare

the data items in each time step to items in other time steps via a distance function.

This function can be defined in any number of ways. The SVF computing specifics

are discussed formally in Section 4.2.3.

Dependence on Victim and Attacker Applications Ideally, we would able to mea-

sure the leakiness of a system independent of as many factors as possible. We suspect,

however, that measuring leakiness independent of the victim and attack applications may

be impossible for one basic reason: the interaction between the attacker and the victim may

affect leakage. This could occur in two basic ways:

1. The method by which an attacker probes a system is critical and potentially affected

by a variety of system factors, including the victim. For example, for a cache side-

channel attack application may continuously scan a cache shared between itself and

the victim. It seems logical that the speed at which this scan occurs could affect

the quality of information obtained by the attacker – faster scans translate to more

information per second. Further, this cache scanning speed could be affected by the

victim itself – if the victim has many memory operations, it will use more resources

in the cache, slowing down the attacker.

2. The execution of the attacker is likely to affect the execution of the victim. If, for

example, the attacker operates by probing a shared resource, it is likely to slow down

execution of of the victim. This slowdown could increase the effective leakiness of the

system since it may make critical events and side effects easier to observe.

Applications As an experimental metric like performance or power, SVF can be used

for a variety of different applications. For instance, one could vary any of the parameters

listed above to determine its affect on leakage. Later in Section 4.5 we describe a case

study wherein the system executing the applications was varied in a large design space.

This allowed us to determine the effects of various processor design parameters on leakage.

However, this is only one application. It may also be interesting to try a series of different
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Figure 4.4: An overview of computing SVF: two traces are collected, then analyzed inde-

pendently for patterns via similarity analysis, and finally correlation between the similarity

matrices is computed.

attack applications which probe the system differently to determine more effective methods

of attack. Similarly, software engineers could execute different versions of their software to

determine if software can be made to leak less. Any number of different experiments are

possible.

4.2.2 SVF Computation Overview

An overview of SVF computation is shown in Figure 4.4. We begin by collecting oracle

and side-channel traces. These traces are time series data which represent the important

information an attacker is trying to observe and the measurements an attacker is able

to make, respectively. We then build similarity matrices for each trace and compute the

correlation between these two matrices.

4.2.2.1 System Specification

Oracle The oracle trace contains ground-truth about the execution of the victim. It is

the information which an attacker is attempting to read; in an ideally leaky side-channel,

the attacker could directly read the oracle trace. For instance, one might use memory

references (as we do in the upcoming case study) so the resulting SVF would indicate how
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well memory reference patterns are observed through the side-channel.

Side-Channel The side-channel trace contains information about events which the at-

tacker observes. The side-channel data should be realistic with respect to data which an

attacker can practically measure. For instance, in an analog attack, the side-channel trace

may be instantaneous power usage over time. In a cache side-channel, the trace may be the

latency to access each cache line over time.

Distances For each trace, we SVF detects execution phases. This involves comparing

parts of each trace to every other part. This comparison is done simply with a distance

function, the selection of which will depend on the data types in the two traces. For instance,

if they are represented as vectors, one might use Euclidean distance. If a trace contains bits

from an encryption key, the distance function may simply be equality.

4.2.2.2 Similarity Matrix

After collecting oracle and side-channel traces, we have two series of data. However, the

type of information in each trace is different. For instance, the attacker may measure

processor energy usage during each time step whereas the oracle trace captures memory

accesses in each time step. As a result, we cannot directly compare the traces. Instead, we

look for patterns in each trace by computing a similarity matrix for each trace. This matrix

compares each time step to every other in the sequence.

4.2.2.3 Correlation

In the previous step, we build similarity matrices for both the oracle and side-channel

information. Patterns in execution behavior present in the original traces are reflected in

these matrices. Indeed, these patterns are often visually detectable (see Figure 4.2a). A

maximally leaky side-channel will faithfully mirror the patterns in the oracle trace. However,

if the side-channel conveys information poorly, it will be more difficult to discern the original

pattern, as in Figure 4.2b. We can determine presence of pattern leakage by computing the

correlation between the two matrices. Specifically, for each element in the oracle matrix,

we pair it with the corresponding element in the side-channel matrix. Given this list of
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pairs, we compute the Pearson correlation coefficient [125], more commonly known simply

as correlation. The closer this value is to one (it will never be above one), the more

accurately an attacker is able to detect patterns. The closer the coefficient is to zero, the

less accurately the attacker is observing patterns. At values very near zero, the attacker is

essentially observing noise and we are measuring random correlation.

4.2.3 SVF Definition

Now that we have qualitatively described SVF’s various parts, this subsection defines each

component and SVF overall. Table 4.2 defines many of the terms and symbols used in this

section.

Traces We define both the oracle and side-channel traces as finite sequences of symbols

from two different alphabets. The length of both traces must be equal. The alphabets, how-

ever, can be nearly anything. Symbols in the oracle alphabet, for instance, could represent

bits in an RSA encryption key or memory addresses accessed. The side-channel alphabet

could represent cache hits/misses or even real numbers representing power usage.

Distance Functions & Similarity Matrices Since each trace has its own alphabet,

they are not directly comparable. Instead, we require that for each alphabet, one define a

distance function which can compare any two symbols. This function will be used to detect

phases in each trace using similarity matrices, as defined in Table 4.2.

SVF SVF is defined as the correlation between MO and MS , two triangular matrices of

the same size. We first build two sequences X and Y both of length |TO|2−|TO| containing

the reals from MO and MS . We then compute the Pearson Correlation Coefficient (PCC)

between X and Y . PCC is defined [125] as:

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(4.2)
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Term Symbol Definition

Oracle Trace TO A finite sequence of symbols from an alphabet AO

Side-channel Trace TS A finite sequence of symbols from an alphabet AS

Oracle Distance

Function

DO A function which computes the distance between two

symbols from AO. (AO, AO) 7→ R

Side-channel Dis-

tance Function

DS A function which computes the distance between two

symbols from AS . (AS , AS) 7→ R

Similarity Matrix SM(T,D) A triangular matrix of size |T |x|T | computed from

trace T using distance function D. Each matrix entry

is defined as:

SM(T,D)(i, j) =


D(T (i), T (j)), if i > j

undefined, otherwise

(4.1)

Oracle Similarity

Matrix

MO SM(TO,DO), the resulting similarity matrix given an

oracle trace and distance function.

Side-channel Simi-

larity Matrix

MS SM(TS ,DS), the resulting similarity matrix given an

oracle trace and distance function.

Side-channel Vul-

nerability Factor

SVF Correlation between MO and MS . Any correlation

metric could be used. In this chapter, we use Pearson

Correlation Coefficient [125].

Table 4.2: Definitions of terms to compute SVF
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4.2.4 Optimization: Partial Matrix Correlation

There is a practical difficulty in computing the SVF as we have defined it above. While

most of the steps’ runtimes are linear with the size of their inputs, computing the similarity

matrix exactly is in θ((nc )2) for n as the program run time and c as the interval size. As a

result, this computation does not scale well to long running applications with short intervals.

Fortunately, it turns out that we can instead compute an approximation of the full ma-

trix correlation. This is possible because similarity matrices are typically very redundant,

seen visually in Figure 4.2a. The reason for redundancy follows from the triangle inequality

property of distance computations. Specifically, given intervals A, B and C, if A is similar

to B and B is similar to C then A is also similar to C. In the matrix, however, all three

similarities are reflected. Additionally, recall that we use n intervals to create an n2 ma-

trix yet no new information is created in the conversion (it is analysis only) though much

more space is used, so from an information-theoretic stand point, the similarity matrix is

extremely redundant.

As a result of this redundancy, we have found that we can compute a subset of the matrix

and find the correlation for only that subset, as long as the same subset is computed for

both the oracle and side channel matrix. In practice, we have found that randomly selecting

a subset proportional to the number of intervals yields an accurate approximation. Further,

this keeps the entire SVF computation complexity linear with the number of intervals (and

thus victim application running time).

4.3 Caveats and Limitations

Now that we have defined SVF, we review some caveats which must be considered when

using SVF and finally discuss some of the limitations of SVF.

4.3.1 Caveats

SVF analysis relies on a number of assumptions that are reasonable based on known facts

about attack models and intuition about program and system behavior. However it is

possible for situations to exist in which SVF may not capture vulnerability clearly. For
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uses beyond the case study presented in remaining sections, the following issues must be

evaluated and small changes to SVF may be necessary.

Self-Similarity Pattern Analysis SVF analysis assumes that attackers use time-varying

information (e.g., changes in cache miss rates over time) and look for patterns in the changes.

If an attacker is able to gain information from single measurements (without looking at

changes over time), SVF cannot capture such measurements. For instance, if an attacker is

able to measure the number of evictions in some cache sets, make these measurements only

once and gain sensitive information, then SVF will not detect the leak. However, these leaks

are often easily defended; in this example, randomized hashing would likely be effective.

Linear Correlation SVF analysis as presented here compares oracle and side-channel

similarity matrices using the Pearson correlation coefficient. This correlation test is only

robust to linear correlation. If some non-linear correlation is expected then the SVF analysis

should use alternate correlation metrics.

Latency Effects SVF computes correlation between time-aligned elements of the simi-

larity matrices. This implicitly assumes that the attacker receives information through the

side-channel instantly. If the attacker’s information from the victim is delayed the correla-

tion computation must be adjusted for the latency, for instance using cross-correlation.

4.3.2 Limitations

Known side-channels Since SVF requires the definition of a side-channel trace, it can

be computed only for known (or suspected) side-channels. If an attacker has discovered

an unknown side-channel and is secretly using it, SVF cannot be used to compute the

vulnerability of the system to this secret side-channel. However, SVF can be used to help

find new side-channels. For instance, in our later case study of caches, we quantitatively

discover a side-channel through a pipeline since it interacts with the cache side-channel.

Relativity SVF is a relative metric. For two systems A and B, if the SVF of A is greater

than SVF B, SVF only says that A leaks more than B. It does not translate to ease of
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hacking or hacker hours to carry out an attack. This translation requires a model of human

creativity, knowledge, productivity, etc., which is likely impossible. SVF also is a function

of the side-channel trace, so an attacker is implicitly defined. Creating an absolute metric

completely independent of an attack would require a measurement of the total amount of

information leaked during a computation. It is not known how to do this. It is also likely

that this bound will be too high to be practically useful; since we know that computations

are orders of magnitude less energy efficient than theoretically possible, they likely leak

much information. For this reason, we use a relative metric, just as architects do when

reporting energy efficiency.

Experimental Methodology One pitfall of SVF is that it cannot analyze a particular

system in a vacuum. Rather, it is computed for particular executions so is subject into

input bias; the application being run, environmental noise, and a variety of factors affect

SVF. As a result, SVF will likely have to be run on a benchmark set rather than single

application. This creates the need to select an interesting benchmark set, both in terms of

programs and oracle/side-channel trace selection.

SVF Validation We have presented intuitive case that SVF is a good descriptive metric

which should be used to evaluate side-channel leakage. We have not, however, provided

an quantitative evaluation showing that SVF is effective for this task. The reason for

this is simply that such a study likely cannot be done. Such a study would have to show

that in high SVF systems, leaks are both easily exploited to gain accurate data. This is

relatively easy to show by executing well known attacks on high SVF systems. However,

the contrapositive (that low SVF systems are either difficult to exploit or only inaccurate

information can be gained) is far more important to show. If we cannot show this, then

the study would not be able to indicate that lowering a system’s SVF leads to increased

security, the primary application for SVF. Unfortunately, it is probably not possible to

quantitatively and convincingly show that low SVF systems are resilient to attack (and at

the very least would require a breakthrough in security analysis) as at requires a provably

optimal attacker. Indeed, were such analysis possible, we would simply use this method in

place of SVF! As such, we consider SVF to be a strong descriptive metric but – like nearly
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all practical security methodologies – not provably infallible.

4.4 Case Study: Memory Side-Channels

Since shared cache microarchitectures have been exploited in the past [63, 121, 122, 126], it

is important to characterize the vulnerability of cache design space. Are there cache features

which obscure side-channels? Do protection features reduce vulnerability to undiscovered

attacks in addition to known attacks? To answer these questions, we simulate 34,020 possi-

ble microarchitectural configurations running OpenSSL RSA algorithm and measure their

SVF. In this section, we describe our methodology for computing SVFs. The next section

presents the results.

4.4.1 Framework for Understanding Cache Attacks

A cache side-channel attack can exist whenever components of a chip’s memory are shared

between a victim and an attacker. Figure 4.5 illustrates a typical cache attack called the

“prime and probe” attack. In this attack style, the attacker executes cache scans during the

execution of a victim process. During each cache scan, the attacker scans each set of the

cache by issuing loads to each way in the set and measuring the amount of time to complete

all the loads. If the loads complete quickly, it is because they hit in the cache from the

last cache scan. This further implies that there is no contention between the victim and

attacker in this cache set. Inversely, if the loads are slow, the attacker assumes contention

for that set. By measuring the contention for many cache sets, an attacker obtains an image

of the victim’s working set. Further, by regularly re-measuring this contention, the attacker

measures shifts in the victim’s working set. These shifts represent phase shifts in the victim

and often implicitly encode sensitive information. Of course this is an idealized model

for the attacker; various system effects distort the measurements, making the side-channel

noisy.

In the example of Figure 4.5, the victim repeats a distinct memory access pattern A.

This repetition cannot be detected by the attacker because the pattern is much shorter

than the scan time. The victim’s shift from access pattern A to pattern B, however, can
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Figure 4.5: In cache side-channel, an attacker times loads to each set in a shared cache one

set at a time. The amount of time to complete the loads indicates the amount of contention

in the set, thus leaking data about a victim’s working set.

likely be detected. In general, caches with fewer sets allow attackers to scan faster and

thus detect finer granularity behavior. However, smaller caches divulge less information

about the victim’s behavior during each scan. It is intuitively unclear which factor is more

important, though our results in the next section imply that speed is the critical factor.

There can also exist cases where the victim applications’ important phase shifts occur

more slowly than in our example. Further, they may occur much more slowly than the

attacker’s cache scans. In this case, it may make sense for an attacker to combine the

results of multiple cache scans (by adding them), hopefully smoothing out any noise from

individual scans. We call one or more scans an interval , and it defines the granularity of

behavior which an attacker is attempting to observe. We characterize the length of these

intervals by calculating the average number of instructions which the victim executes during

each interval.
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4.4.2 SVF Computation Specifications

In this section we illustrate how SVF can be computed and used to evaluate modern on-chip

memory system. The aim of this study is to understand how microarchitectural aspects of

the memory system such as cache configurations, prefetchers, etc., affect SVF. A meta-goal

of this section is to outline a template/methodology for designers interested in measuring

SVF.

As a first step for this study we will define our experimental world using of three key

components: the victim program of interest, attacker capabilities, and assumptions about

the microprocessor. We will then describe the memory system aspects we are interested

in studying and explain why we consider them to be interesting for vulnerability analysis.

Following this we will describe the type of analysis we use to compute SVF; results are

presented in the following section. The apparatus for this study is a simulator that is setup

to execute a side channel attacker alongside a victim application in an environment where

they share microarchitectural structures in the memory system and the core pipeline.

Side-channel As demonstrated in Figure 4.5, our attacker scans each cache set and

records a time. Each time the attacker completes a scan through the entire cache, it as-

sembles a vector of the measured load times for each set. We can then compare the results

of a cache scan to any other cache scan using Euclidean distance. This distance gives the

attacker a measure of the difference between the victim’s working sets at the times when

the two scans were taking place.

Oracle Attackers execute cache scans in an attempt determine a victim’s working set. In

order to determine how accurately the attacker obtains this information, we must measure

an oracle of the victim’s working set. In simulation this is easily obtained by recording

the memory locations touched by the victim during each attacker cache scan. We build a

vector of the number of accesses to each memory location during each cache scan. While

these vectors cannot be directly compared to the vectors obtained from the attackers, they

can be compared against each other using Euclidean distance to obtain distances between

actual working sets when attacker cache scans were taking place.
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Correlation Optimization We compute SVF for an entire execution of OpenSSL which

will have many intervals. Unfortunately, computing the similarity matrices described in

Section 4.2.2.2 requires quadratic time and space with the number of intervals. To avoid

this problem, we instead use a random subset of the matrix proportional to the number of

intervals. We have found this to be an accurate approximation of the full computation.

4.4.3 Attacker Capabilities

We model six different types of attackers representing different cache scan patterns and

abilities to circumvent microarchitectural interference.

A simple attacker will likely scan each cache set in order. However, there are two

other options. A random permutation of this ordering (determined before execution and

held constant) may yield different information and may also assist in avoiding noise due to

prefetching. Second, it may be that an attacker can obtain a sufficient snapshot from only

a small portion of the cache sets. In our random subsets attacker, we randomly select 25%

of the cache sets and scan only those sets, decreasing the cache scan time by 4x.

It is also likely that complex prefetching techniques add noise to an attacker’s obser-

vations. However, if an attacker has enough knowledge about the prefetcher, it may be

able to effectively disable or otherwise negate these effects. As such, we model attacks with

prefetching enabled and also attacks when prefetching is disabled on the attack thread,

simulating a “prefetch-sensitive” attacker.

4.4.4 Microprocessor Assumptions

We model a microprocessor with two integer execution units, two floating point/SSE units

and a single load/store unit. Up to three loads or stores can be issued each cycle from

a 36-entry dispatch stage; the load store buffer has 48 load and 32 store entries. The

load/store unit implements store forwarding and redundant load coalescing. The branch

predictor we model is a simple two-level predictor. Since we are focusing on the cache hier-

archy, we assume perfect memory disambiguation, perfect branch target prediction, and no

branch misprediction side effects. Using these perfect microarchitectural structures reduces

execution variability and thus likely improves the quality of side-channel information, in-
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Replacement Policy LRU

L1 Latency 4 cycles

L2 Latency 16 cycles

L3 Latency 54 to 72 cycles

Inter-cache B/W 16 bytes / cycle

Cache Request Buffer 16 entry

Outstanding Misses (all levels) 4

Table 4.3: Fixed cache design parameters

creasing the SVF of a particular system. Thus our simulation results should be somewhat

conservative.

4.4.5 Experimental Parameters

We are interested in understanding the impact of cache size, line size, set associativity,

hashing function, prefetchers, and several side-channel countermeasures such as partitioning

schemes and eviction randomization. Details of our design space parameters follow:

Cache Size We simulate 1KB, 8KB and 32KB L1D cache sizes. The L1I, L2, and L3

caches are sized relative to the L1D cache at ratios of 1x, 8x, and 256x respectively. As

demonstrated in Figure 4.5, larger caches will take longer to scan. However, the amount of

information obtained by each scan will be greater.

Line Size We study line sizes (in all cache levels) of 8 and 64 bytes. Small line sizes

increase the resolution of side-channel information – the attacker can get more precise

information about victim addresses – but requires more sets to get the same cache size,

thus increasing the amount of time it takes to scan the cache.

Set Associativity In a fully associative cache an attacker cannot get any information

about the addresses a victim is accessing; it can do no better than determine how much

overall contention there is. A direct-mapped cache, however, gives the attacker information

about the victim’s usage of each cache line. We would, therefore, expect varying the set
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associativity to affect information leakage. We study 1, 4, and 8 way caches with the set

associativity identical for all levels.

Hashing We study three hashing schemes for indexing cache sets. The first is the simplest,

which is to index by the low order bits of the address. The second is a bitwise XOR of

half of the bits with the other half, which is another common technique. We also study

permutation register sets (PRS), a mechanism proposed for the RPCache scheme from Wang

and Lee [155]. PRS maintain a permutation of the sets in the cache, providing a time-varying

hashing function. We adapt PRS to our simulator with the following specifications: once

every 100 loads, we change the permutation by swapping the mapping of two randomly

selected sets.1 We also maintain different PRS for each thread, so the attacker and victim’s

mappings to cache sets are different. As a result of changes to the set mapping (which

results in evictions), OpenSSL experiences an average slowdown of 3%. Although our

implementation and algorithm for set permutation is different from Wang and Lee [155] we

obtain similar results; in particular, we find that PRS can improve security.

Prefetching Prefetchers may create noise in the side-channel as they initiate loads that

(from the attacker’s perspective) pollute the cache with accesses which the victim did not

directly initiate. Conversely, prefetchers are essentially doing pattern detection, so it may

be that they are able to amplify the effects of these victim memory patterns by prefetching

based on those patterns. In addition to no profetching, we evaulated four prefetchers: next

line, arithmetic [59], GHB/PCCS, and GHB/PCDC [119]. The “next” prefetcher is always

used in the L1I cache. No prefetching is used at the L2 or L3 level and only one is turned

on at once in the L1D.

Partitioning We would expect partitioning to reduce the amount of information an at-

tacker obtains since it disallows direct access to a subset of the cache’s lines. We use three

policies to balance thread usage in shared caches. The first policy is to have no explicit

management. The second is a static partitioning assignment – each process gets half of the

ways in each set, however the cache load miss buffers and ports are shared. The last policy

1It’s important to note that our usage of PRS is different from RPCache.
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is a simple dynamic partitioning scheme. This scheme tracks per-thread usage in each set.

Once every 106 cycles, the ways of each set are re-allocated between threads. If one thread

is using a set more than twice as often as the other thread it is allocated 75% of the ways

for the next 106 cycles.

Eviction Randomization A simple method of obscuring side channel information is

random eviction. This introduces noise into the side-channel. We implement a policy that

randomly selects a cache line and evicts it. This randomized eviction is activated either

never, every cycle with 50% probability or every cycle.

SMT Finally, we are interested in studying how much simultaneous multithreading (SMT)

contributes to information leakage. SMT potentially introduces a side-channel via the

pipeline as contention for resources like the load/store queue and functional units could allow

an attacker to sense a victim’s activity based on interference in these units. Consequently,

one would expect SMT configurations to yield more side-channel information. SMT-based

attacks, however, are easily foiled by simply disabling SMT or disallowing SMT sharing

between untrusted processes. To model this “protected” configuration, we also simulate

the victim and attacker threads running simultaneously on different cores (so they share no

pipeline resources) wherein the cores share caches at either the L1 or L2 level. Although

the shared L1 configuration is rare, this configuration allows us to directly compare against

SMT configurations to determine the extent to which pipeline side-channels contribute to

SVF.

Some of the cache design features are fixed, limiting our design space. For instance,

prefetch requests are only considered if there is space available in the request buffer; we

also do not modify prefetcher aggressiveness. We do not model OS interference like process

swapping or interrupts as these effects are likely to add noise to the side-channel so removing

them strengthens the attacker. Other fixed design choices are shown in Table 4.3.
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4.5 Case Study Results

Our results are drawn from simulations of possible configurations varying core configuration

(SMT, cache sharing), cache size, line size, set associativity, hashing function, prefetcher,

partitioning scheme and eviction randomization policies. Here we present results about the

impact of each of these factors on SVF.

4.5.1 Interval Sizing

As discussed in the last section and Figure 4.5, an attacker may combine multiple cache

scans into an interval. This combining may help smooth out noise, so information gathered

about the victim over larger time spans may be more accurate. Ideally, the intervals are sized

to align with the natural phases of the victim. There are many possible interval sizes, and

choosing an effective one depends on various system parameters as well as characteristics

of the victim application. Instead of computing the SVF for a particular interval size, we

do so for a large range of them beginning with the finest possible, the time it takes for

the attacker to complete one scan of the all the cache lines. Figure 4.6 shows a graph of

many SVFs over a wide range of interval sizes for several cache implementations. There are

several interesting conclusions we can draw from this graph.

1. The SVFs for these systems range widely from essentially zero to nearly one. This

means that configurations exist with virtually no potential for cache leakage (small

absolute values of SVFs indicate essentially no leakage) while others leak heavily.

2. In the 32k L1D cache configuration, in the time it takes for the attacker to scan the

cache once, about 11,000 victim instructions have committed on average, thus its

line begins at 11,000 on the X axis. As a result, the inorder attacker cannot gather

side channel information leaked during 11,000 instructions. The 8k L1D and 1k L1D

caches, on the other hand, can be scanned much more quickly than the 32k L1D cache

and (as a result) much more information is obtained.

3. SVF tends to increase with interval size. This intuitively makes sense; one would

expect it to be easier to get accurate information about larger time spans than shorter
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Simple Leaky Secure

SMT On Off Off

Cache Sharing L1 L1 L2

L1D Size 32k/8k/1k 1k 1k

Line Size 64 64 64

Ways 8 8 4

Attacker In Order Subset In Order

L1 Prefetcher None Next Line None

Partitioning None None Static

Figure 4.6: SVF for several memory system configurations executing OpenSSL’s RSA sign-

ing algorithm over a range of attack granularities. We see that memory subsystem signifi-

cantly impacts on the quality of information an attacker can obtain. Note that “leaky” and

“secure” are not the most leaky or secure, merely two configurations towards each end of

the spectrum. Leaky represents L1 cache sharing without SMT in the style of core fusion

or composable processors.
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ones.

4. Despite a general trend upward SVF can vary widely, indicating that (for an attacker)

interval size selection is important. These peaks and valleys likely indicate areas where

the attacker’s interval size aligns with phase shifts in the victim application.

Notes on Data Analysis and Presentation For the rest of the chapter, due to space

considerations, we present only a subset of the intervals sizes shown in Figure 4.6. Specifi-

cally, we examine the case of fine granularities — which could be used to recover information

like encryption bits — which we define as less then 10,000 committed victim memory in-

structions. This is represented by the shaded region in Figure 4.6. For each memory system

configuration, we will use the maximum SVF observed in this region, as this represents an

attacker which has selected an optimal interval size.

In order to aggregate the data from many simulations in a meaningful way, we present

cumulative distribution function (CDF) plots of number of microarchitectural instances

that have a value less than a given SVF. In each diagram, each line represents a large set

of microarchitecture implementations. Sets which are more secure will have lines to the left

of less secure sets. This format allows us to answer many different questions. For instance,

does a particular feature allow us to close a leak entirely? For how many configurations

does it do so? For example, in Figure 4.7 we see that in this set of configurations, turning

off SMT results in lower SVF. However, when SMT is turned off, not sharing the L1 is

usually more secure, but not in all cases.

4.5.2 Core Configuration

Several side channel attacks take advantage of SMT capabilities. Accordingly, a first reac-

tion to defeat these attacks is to simply turn off SMT. Does this indeed eliminate cache side

channels? Figure 4.7 demonstrates that it does not, though it helps. While SMT (which

implies a shared L1D) provides more information to the attacker than no SMT (which re-

alistically means the L1D is not shared), there are still many configurations in which an

attacker gets information through sharing in the L2.

To evaluate the leakiness of the pipeline, we also include a relatively unrealistic config-
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Figure 4.7: This cumulative histogram shows the percentage of configurations with various

sharing configurations which have SVFs no more than the value on the X axis. For instance,

all SMT configurations have SVFs of at least 0.2 and only 40% of them have SFVs less than

0.6. Without SMT, however, the SVF can be reduced to nearly zero, but many non-SMT

configurations still leak information. Note that none of the configurations represented here

have protection mechanisms like cache partitioning.
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uration which turns off SMT but still shares an L1 (e.g., Core Fusion composition). These

data indicate that the pipeline side channel offers additional information to the attacker,

even if the pipeline is not specifically targeted by the attacker. It is thus likely that existing

SMT-based attacks implicitly benefit from pipeline side channel information in addition to

cache side channels.

4.5.3 Cache Design Space Exploration

Caches come in many different flavors; sizes, set associativity, prefetchers and other features

differ amongst designs. Additionally, cache designers may implement side channel protection

features such as randomized eviction, randomized hashing or cache partitioning. In this

section, we examine the effect that some implementations of these features can have on the

cache’s vulnerability. Figures 4.8, 4.9, and Table 4.4 show these results in an SMT system,

so in all cases both the L1 caches and pipeline are shared between the attacker and victim.

The results we have obtained are specific to our simulation model, workload choice and

attacker implementations.

Cache Size One of the largest determinants of SVF is cache size. Consistent with the

data in Figure 4.6, the cache size graph in Figure 4.8 indicates that larger caches leak less.

This can be attributed to the time it takes for the attacker to scan the cache. Larger caches

take longer to scan, so in the time it takes an attacker to scan the cache, the victim makes

much more progress and thus the attacker misses fine grained OpenSSL behaviors.

Line Size We expected that the smaller the line size, the more resolution an attacker

can obtain about addresses being accessed. The next graph, however, shows that line size

selection does not seem to make a huge difference to cache vulnerability.

Associativity The set associativity graph contains some interesting results. We see that

increased associativity provides the opportunity for decreased vulnerability, though not in

all situations. There are likely two reasons for this. First, more ways in a set decreases

the precision of the side channel; missing in an 8-way set tells an attacker that one of the

8 locations the attacker pre-loaded was evicted whereas in a direct mapped cache, a miss
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Figure 4.8: Cumulative histograms demonstrating how cache size, line size, set associativity

and attacker style effect SVF in systems with SMT and a shared L1 and no protection (like

partitioning and random eviction). In each graph, a set of features are selected and we

draw a cumulative histogram with respect to Side-channel Vulnerability Factor. In short,

lines (features) to the left of others have more configurations with a lower SVF – a desirable

trait.
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Figure 4.9: Cumulative histograms demonstrating how prefetching, random eviction, cache

partitioning and hashing scheme effect SVF in systems with SMT and a shared L1 and no

protection (except for the last two).
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Figure 4.10: Static partitioning is extremely effective when SMT is turned off. Since this

disables pipeline side channels and static partitioning disables cache content side channels

the only remaining side channels are shared cache buffers and ports, which are not terribly

effective side channels. Additionally, we see that a simple dynamic partitioning mechanism

can itself leak information.

Figure 4.11: In some SMT configurations, our implementation of permutation register sets

(PRS) can leak information. However, this is largely because it does not address pipeline

side channels, yet slows down the victim. If we turn off SMT yet still share the L1 cache

(as in this figure), we see that PRS obscures the side channel as expected.
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# of SVF

Configuration Option SVFs Mean Median S.D. Min Max

* * 3,933 0.473 0.557 0.222 0.000 0.771

SMT On 2,493 0.563 0.623 0.158 0.188 0.771

Off 1,440 0.316 0.328 0.229 0.000 0.735

Cache Size 1k 2,213 0.499 0.598 0.226 0.002 0.761

8k 1,194 0.475 0.544 0.219 0.000 0.771

32k 526 0.355 0.321 0.163 0.004 0.698

Partitioning None 1,505 0.511 0.572 0.173 0.031 0.761

Dynamic 1,170 0.511 0.567 0.168 0.147 0.771

Static 1,258 0.390 0.432 0.285 0.000 0.744

Hashing PRS100 1,330 0.490 0.558 0.207 0.004 0.761

XOR 1,309 0.470 0.569 0.230 0.000 0.771

Low bits 1,294 0.458 0.546 0.226 0.000 0.744

Line Size 8 1,161 0.482 0.600 0.227 0.002 0.736

64 2,772 0.469 0.554 0.219 0.000 0.771

Associativity 4-way 1,500 0.514 0.606 0.212 0.002 0.761

Direct 335 0.487 0.567 0.188 0.031 0.689

8-way 2,098 0.441 0.488 0.228 0.000 0.771

Prefetcher Next 790 0.467 0.519 0.219 0.002 0.756

Arithmetic 783 0.471 0.561 0.221 0.001 0.765

GHB/PCDC 787 0.462 0.539 0.214 0.001 0.757

GCB/PCCS 787 0.475 0.567 0.219 0.000 0.760

None 786 0.487 0.588 0.235 0.000 0.771

Table 4.4: Summary of design space exploration showing the number of microarchitectural

configurations which completed a cache scan in under 10k victim instructions. These data

indication that some hardware features have a greater effect on SVF than others. However,

no single design feature makes the system secure or insecure; rather, multiple security

policies must be implemented to secure this system.
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tells the attacker with certainty about a particular line. However, increasing the number of

ways slightly increases the speed at which the attacker can scan (since OoO cores allow the

loads in each set scan to execute in parallel) and speed is an important factor.

Attacker Style Three different attacks have been tested. Two of them – inorder and

random order – are nearly identical; they differ only in their ordering of the cache sets

during their scans, so nearly the same information is obtained from both, though at slightly

different times. The random subset attack, however, is substantially different as it scans

only 25% of the cache. These data imply that in about 70% of cache configurations (10%

with low SVFs, 60% with high SVFs) examining less data but doing so 4x faster is a fair

trade off. In the remaining 30%, however, the attacker misses critical data.

Prefetching We expected prefetching to significantly degrade information leakage as it

often accurately predicts and prefetches cache lines which the attacker would have otherwise

missed. These data, however, contradict this intuition. In some cases, we assume that the

attacker can defeat the prefetcher (effectively turning it off) and in others we assume that it

cannot. In both cases we see that prefetching does not heavily degrade the side channel. This

is likely because prefetchers are deterministic and guided by address streams; we can think

of them as a deterministic transform on the pattern rather than information destruction.

Random Eviction One might expect randomly evicting cache lines to introduce noise,

and thus degrade the side-channel. Our simulations indicate that this is true, but only to

a relatively small extent. Further, this technique is only effective on about 70% of cache

configurations.

Partitioning Another protection mechanism is partitioning. Partitioning protects caches

by sometimes disallowing the sharing interference which the attacker measures. As such, we

would expect partitioning to degrade the side-channel. Our data, however, do not support

this expectation. As we saw in Figure 4.7, other side channels exist in the shared system

and even with partitioning, these other side channels can be exploited. In some cases static

partitioning even strengthens the attacker. This can be explained by the fact that the at-
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tacker runs faster allowing other side channels to be polled much more often. This is not

to say, however, that static partitioning is ineffective. Figure 4.10 shows the effectiveness

of partitioning in systems without SMT and a shared L2. Although the dynamic parti-

tioning mechanism itself leaks information, static partitioning is a very effective protection

mechanism.

Hashing Scheme Lastly, we look at the effect of hashing schemes. We see that there is

virtually no difference between using the low bits of an address and XOR’ing parts of it. This

is to be expected because XOR’ing amounts to relatively simple reordering of cache lines

rather than information loss. Our implementation of permutation register sets, however,

ends up slowing down the victim (about 3% on average, more for some configurations) and

thus the other timing and pipeline channels are able to get more information. However,

PRS is not always more leaky; in Figure 4.11 we look at cache configurations with SMT

turned off and see that in this case, PRS helps obscure the side-channel information. In

other words, PRS performs exactly as expected: it protects against the cache line sharing

side-channel. In doing so, however, it can make victims more vulnerable to other side-

channels like a shared pipeline channel. Also, using different cache set swapping algorithms

could easily improve security. RPCache, a different usage of PRS [156] does exactly this.

4.5.4 Performance and Security

Some protection features may incur a performance penalty. For instance, both PRS and

random eviction often make systems more secure but both methods degrade performance.

In Figure 4.12 we examine performance trade-offs in SMT and non-SMT processors. In

the SMT case, we see that SVF decreases are correlated with performance improvements.

In the non-SMT case, there is no correlation but there exist configurations with both low

SVF and good performance. Further, we also observed in the last subsection that faster

victim execution often means better security as it is harder to observe a moving target. Our

conclusion, therefore, is that performance and security need not always be traded off.
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Figure 4.12: Many security proposals result in decreased performance. However, these

results indicate that this need not always be the case. For instance, in SMT processors

(top figure) increasing the cache size both decreases SVF and increases performance. In

non-SMT systems (bottom figure) there exist high-performance systems with very low SVFs

using both no cache partitioning and static partitioning.
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4.5.5 Broader Observations

Through simulation and SVF computation, we have examined the effect of cache design

choices on the cache’s vulnerability to side channels. We must stress that the results of our

case study are specific to our simulation model: we cannot and do not claim these results to

generalize to other models or real processors. We recommend that microprocessor designers

adapt SVF evaluation methodology to their simulation environments to obtain results for

their specific designs.

However, there are several generalized lessons learned: (1) Any shared structure can leak

information. Even structures intended to protect against side channel leakage can increase

leakage. (2) No single cache design choice makes a cache absolutely secure or completely

vulnerable. Although some choices have larger effects than others, several security-conscious

design choices are required to create a secure shared system. (3) The leakiness of caches

is not a linear combination of design choices. Some features leak information in some

configurations but protect against it in others. Others only offer effective protection in

certain situations. Predicting this leakiness is, therefore, extremely difficult and probably

requires simulation and quantitative comparison like we have done in this chapter.

4.5.6 Protection Mechanisms

In addition to the two protection mechanisms reviewed earlier this section (random eviction

and PRS), we evaluate two others. The first is a mechanism from our group called Time-

Warp. The second is similar to PRS from the last section which uses a different algorithm

for swapping cache sets. Both of these mechanisms were implemented in a different version

of the simulator, thus these results are not comparable to the others so we present them

here in a separate subsection.

TimeWarp TimeWarp [109] is a proposal to mitigate side-channels by obscuring an at-

tacker’s ability to measure time. In short, TimeWarp “fuzzes” the results of timing functions

like reading the processor’s timestamp counter and adds a delay to each timer read as a

penalty. As a result, the attacker shouldn’t be able to make the accurate timing measure-

ments necessary for published attacks. We implemented TimeWarp in our SVF simulator
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Figure 4.13: SVF measurements of Timewarp systems at the 10K victim instruction gran-

ularity. We see than a relatively small Warpfactor of 5 (e = 5 or up to 32 cycles) somewhat

obscures the side channel. At e = 13, however, the attacker is not even able to complete a

scan.

Figure 4.14: SVF measurements of Timewarp systems at the 100K victim instruction gran-

ularity. Again we see than e = 5 obscures the side channel. At this granularity the attacker

is able to complete cache scans for the higher warp factor, so we see data for e = 13.

Although some leakage still occurs, the side channel is heavily obscured.
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and measured it for different levels of fuzzing (denoted by e, the TimeWarp factor). The

results are shown in Figures 4.13 and 4.14 relative to statically partitioning the cache and

no protection mechanisms. We see that for a fine granularity attack (10k instruction gran-

ularity), even a relatively small fuzzing factor begins to obscure the side-channel. A larger

factor slows down the attacker enough that a single cache scan cannot complete in less than

10k victim instructions. In Figure 4.14, we increase the granularity of the attack to 100k

victim instructions. Here, an attacker can complete a cache scan with a large TimeWarp

factor, though we see that the side-channel is largely obscured.

RPCache RPCache [156] uses the same permutation register sets (PRS) as examined in

the previous subsection in order to maintain separate logical to physical cache set mappings

for the victim and attacker processes. However, in contrast to the simple policy we used in

the last section (swapping two random cache sets every 100 loads), RPCache selects more

intelligently. In this, whenever a process misses in a cache set, RPCache selects that cache

set for swapping along with a randomly selected cache set. The inventors claim that this

closes the cache side channel entirely. Figure 4.15 quantitatively evaluates RPCache using

SVF in a system context. We see that RPCache’s selection policy does indeed result in lower

SVFs than our simple policy (PRS-100) on average. As we saw with statically partitioned

caches, however, in the context of a system with SMT it does not make a large difference,

likely because other side-channels (like a pipeline side-channel) also contribute heavily to

leakage.

4.6 Related Work

A side-channel is a method of gaining protected information that exploits the implemen-

tation of a system, rather than its theory or design. Side-channels can (and most likely

will) exist in any given implementation and can be difficult to foresee, discover or protect

against. Side channels can take many disparate forms including electrical signals, acoustic

signals, microarchitectural and architectural effects, application level timing channels, and

any other shared resource through which an eavesdropper can detect any information or

state left by another program. Consequently there is a long history of side-channel attacks
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Figure 4.15: RPCache proposes to permute cache sets more intelligently. It seems to result

in less leakage than our simplistic permutation algorithm in PRS-100, though it does not

make a significant difference in our system context.

and countermeasures [89–91, 156, 157].

A classic (blue sky) goal in information flow security is non- intereference [133]. Strict

non-interference ensures that an adversary can deduce nothing about secret inputs from

public outputs. By definition, non-interference between two processes ensures that no side-

channel leaks occur. For example, by physically isolating the computing resources of two

processes, non-interference is assured. This goal has been difficult to achieve in a practical,

efficient manner but there have been some recent investigation on this topic [149]. Given

the difficultly of ensuring strict non-interference there has also been work to relax non-

interference with quantitative estimates of how much information leaks, enabling leak/risk

analysis. This area of study is called quantitative information flow and works in this area

typically uses information theoretic measures and simple theoretical models. Extending

this theory to complex software systems is being investigated [68]. SVF is the first practical

experimental method to measure information leakage in hardware systems.

Traditionally, cryptographic systems have made the assumption that no resources are

shared so there is no side-channel leakage. As a result, they assume the only information

which can be seen by an attacker are messages exchanged between cryptographic systems.
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Layer Related Work

Algorithm New cryptographic strategies [46, 85] are resilient to bounded

amounts of leakage. They rely, however, on assuming a cer-

tain bound on leakage, requiring leakage characterization of

the lower levels of the stack.

Software A large body of work (reviewed by Sabelfield and Myers [133])

focuses on analyzing software via quantitative information

flow. Backes et al. [11], for instance, use information flow to

discover equivalence classes which map to secret data.

Operating System No known work.

Architecture &

Microarchitecture

Since cache side channels are well known, there has been some

investigation in modeling/measuring cache leakage. Cache

Side-channel Vulnerability (CSV) [162] attempts to measure

cache leakage using an approach similar to SVF, but avoids

using similarity matrices by limiting their scope certain types

of caches. Dominitser et al. propose an analytical model to

predict the amount of information leakage through cache side-

channels [43]. The technique proposed in their paper tracks

the fraction of the victim’s critical items accessible in the

cache to determine leakage.

Hardware Gates GLIFT [149] adds information flow tracking (IFT) at the gate

level to hardware designs. The IFT results can be used to

detect interference between processes and thus verify non-

interference or detect new leaks. It is possible that GLIFT

could be extended to also characterize the amount of leakage.

Table 4.5: Efforts to model and/or measure leakage at various levels in the soft-

ware/hardware stack.
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Increasingly, however, it is recognized that it is impractical to avoid resource sharing, so

models and measures of leakage are being created at various levels of the hardware/software

stack: from the algorithmic layer to the gate level, as shown in Table 4.5.

SVF applies most directly to the architecture/microarchitecture layer. Our work differs

from existing work in three aspects: first, our technique does not require data items to

be marked as critical, secondly, as we have shown, focusing on caches alone is insufficient

to evaluate side-channel leaks of cache based attacks. Finally, our metric can be used to

determine leakage in any microarchitectural structure, and more broadly to full systems.

4.7 Objections to SVF

Since the original publication of SVF in 2012 [40], there has been another publication from

Zhang et al. [162] (which we will refer to as the “CSV paper”) which voiced several objec-

tions to SVF and proposed an alternative metric called Cache Side-channel Vulnerability

(CSV). The CSV paper contains a section entitled “Discussions on SVF” which contains

three objections to SVF: Scope, Definition, and Measurements. Their arguments leading to

these objections contain errors which we will correct here.

Scope Zhang et al. erroneously state that “the aim of SVF is to use a single metric to

reveal the information leakage of the entire system for all side-channel attacks” and as a

result, they claim that SVF’s scope is overstated. SVF does indeed measure leakage of an

entire system, however does so for a particular victim and attack. In fact, SVF is not a

single metric – it is a way to define side-channel leakiness metrics.

Definition The critical piece of SVF is to compare the similarity matrices generated from

two traces – a victim and attacker trace. The CSV paper takes exception to both the use

of similarity matrices and the selection of traces used in the the cache side-channel case

study we presented in this dissertation and in our original publication. This objection to

the specific traces used in the SVF paper is somewhat superficial; their arguments may

or may not have merit (depending on your perspective), but the SVF methodology allows

any trace to be defined. More importantly, while Zhang et al. claim that the similarity
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matrices are unnecessary and propose eliminating them (using direct correlation instead),

using them is in fact necessary in order to compare most types of traces. For instance,

say one wished to compare a trace of bits in the victim’s encryption key with cache misses

which the attacker observed – how can correlation be directly calculated? The CSV paper

implicitly assumes it can get around that problem by always correlating traces regarding

cache sets to traces regarding cache sets, however this assumption only holds if one doesn’t

play with the cache’s hashing policy, a oft-used trick to defend caches.

Measurement The CSV paper’s final objection to SVF is that it does not separate system

vulnerability from attacker capability. While this observation is accurate, the paper misses

the fact that the system can directly affect attacker capability. To divorce the two, Zhang et

al. propose to use a synchronous attack model, assuming that an attacker has the ability to

frequently pause execution of the victim for a sufficient amount of time to probe it. Given

that synchronous attacks exist [63], this could be a reasonable model, however it is actually

a very strong attacker model.2 In the more plausible asynchronous attack model – which

the SVF paper (this chapter) used in its case study – the attacker’s capability is directly

affected by how quickly it is able probe shared resources – like scanning a shared cache in

cache side-channel attacks. This speed can be directly affected by both the system under

attack and the concurrently executing victim – i.e., cache misses and pipeline resource

contention will slow down the attacker (thus enabling the attack, actually). The point is

that while Zhang et al. claim that we have not stated the attacker’s capability, they miss

that this capability is governed by the system and the method by which the attacker probes

it, both of which are defined in the case study.

Intuitive Assertions Though not explicitly stated as an objection to SVF, one of the

CSV paper’s implicit objections to SVF is that the results of our case study do not match

their intuitive expectations, which they claim to be “ground truths”. In particular, they

state the relative leakage of several cache configurations and claim that a good metric

2Were attackers allowed to arbitrarily interrupt execution of victims, denial of service attacks would be

possible, so systems generally disallow this behavior. As a result, synchronous attacks must rely on other

system vulnerabilities (such as the O/S scheduler).
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should reflect these beliefs.3 These “ground-truths” are intended to be self-evident and

are backed up with some intuitive explanation. However, the authors again miss one of

the major conclusions from the SVF paper: that intuition is difficult to apply in a system

context. Side-channel attacks operate on a system as a whole, not just one small part of it.

Further, complex systems are very difficult to reason about – their components’ interactions

can have odd side-effects, which are difficult to predict; there is a reason we have to run

detailed simulations instead of using analytical models. As a result, when defining a

metric, intuition needs to be applied very carefully, if at all.

For example, Zhang et al. claim that a statically partitioned cache should leak less

than an unpartitioned cache. An intuitive assertion, for sure. Indeed, if the entire system

were composed of only cache sets, we would agree with this assertion. However, the mea-

surements which attackers make are affected by more than just contention for cache lines.

The attacker’s data are affected by contention for many resources: interconnect bandwidth,

memory bandwidth, pipeline functional units, and MSHRs, just to name a few. As a result,

the basic model of the system which motivates all of Zhang et al.’s assumptions – the model

of cache conflicts as the only source of slowdown which the attacker observed – is insufficient

for judging a full-system property like side-channel leakage.

4.8 Conclusion

In this chapter we introduced Side channel Vulnerability Factor (SVF), a metric intended

to quantify the difficulty of exploiting a particular system to gain side channel information.

Using SVF, we also presented the results of a study exploring the side-channel potential of

a large cache design space. We find several surprising results, indicating that predicting the

security of a system is extremely difficult; a quantitative, holistic metric is necessary.

As a result of using execution traces, SVF is useful beyond caches; one can compute

SVF for any system for which oracle and side-channel traces can be defined. For instance,

one could look at encryption keys on smart cards versus their power usage variability during

3In fact, one of their assertions is that PRS and RPCache [155, 156] – work previously published by the

same group – reduce leakage. It seems biased for the inventors of a scheme to propose it as a benchmark for

the metric by which that very scheme should be judged.
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encryption. SVF could also be used to find a correlation between an audio conversation and

the size/rate of network packets observed by an intermediate node in the Skype network.

Many systems lend themselves well to SVF analysis.

Another advantage of using execution traces is that they are often easily defined and

measured. No mathematical modeling is required to compute SVF. This freedom may

help discover or prevent new side channel leaks, as the same subtleties that allowed the

leak to survive the design process may make accurate mathematical modeling difficult or

impossible. Indeed, a recurring theme in the study of side-channel research is this: any

shared structure can leak information. As such, only an end-to-end analysis, like SVF,

which accounts for system level effects and oddities, can accurately determine side channel

vulnerability.
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Chapter 5

Finding Common Code Patterns

An important aspect of system optimization research is the discovery of program traits or

behaviors. In this chapter, we present an automated method of program characterization

which is able to examine and cluster program graphs, i.e., dynamic data graphs or control

flow graphs. Our novel approximate graph clustering technology allows users to find groups

of program fragments which contain similar code idioms or patterns in data reuse, control

flow, and context. Patterns of this nature have several potential applications including

development of new static or dynamic optimizations to be implemented in software or in

hardware.

For the SPEC CPU 2006 suite of benchmarks, our results show that approximate graph

clustering is effective at grouping functions which react similarly to compiler optimizations.

Graph based clustering also produces clusters that are more homogeneous (with respect to

performance reaction to compiler optimization) than previously proposed non-graph based

clustering methods. Further qualitative analysis of the clustered functions shows that our

approach is also able to identify some frequent, though unexploited program behaviors.

These results suggest that our approximate graph clustering methods could be very useful

for qualitative program characterization.
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5.1 Introduction

Identifying interesting program execution behaviors is important for creating optimized, se-

cure systems. Today, program characterization is a laborious and increasingly time consum-

ing process due to a combination of factors including the growth in number of applications,

the wide variety of platforms these applications run on, and difficulty in the characteriza-

tion process. To see some of the challenges in program characterization consider the case

of SPEC benchmarks. Figure 5.1 plots the number of functions responsible for a certain

fraction of the execution time. For example, five functions from each SPEC INT benchmark

(of which there are 11), contribute to, on average, 67% of execution time. If SPEC FP is ex-

amined as well, the number of functions grows from 55 to 135. In fact, examining all of the

functions in SPEC responsible for any non-trivial amount of execution time (at least 1%)

requires characterizing about 300 functions comprising about 14,000 lines of code. This is a

significant amount of code but is still small in comparison to real-life codes. The last data

set shown in figure 5.1 is coverage data from the V8 Javascript Engine, a production library

used in the Chrome web browser. The V8 profiling data indicate that the amount of code

that must be characterized is very large – nearly 30% of its functions must be examined to

cover 90% of its execution. Given this immense scale, automated program characterization

could be much more comprehensive than manual characterization, potentially yielding more

and more accurate qualitative insights into code behaviors.

To ameliorate these challenges researchers have proposed a wide variety of technologies

including sophisticated code profiling, fast simulation techniques, and machine learning with

performance counter data [38, 44, 118]. Some researchers have even proposed crowdsourcing

approaches [60, 61]. In this chapter we propose a new technique to study program behavior

which allows automatic identification of unique code behaviors across code bases by approx-

imately clustering program graphs. By clustering similar graphs, we expose similar control

and dataflow patterns in software, allowing one representative sample from each cluster to

be studied rather than all graphs.

While we are not the first to observe the benefit of clustering [83], prior approaches have

focused on clustering of non-graphical formats such instruction frequency, or microarchitec-

ture dependent features such as cache misses or IPC measured from performance counters.
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Figure 5.1: This chart plots cumulative program execution time (on the Y-axis) along with

number of functions contributing to the execution time (on the X-axis). Measurements on 11

SPEC INT benchmarks and 16 SPEC FP (both averaged in the figure) and the V8 Javascript

engine distributions all demonstrate that many functions contribute to total execution time

significantly. This spread presents a significant challenge for program characterization.

Our technique is the first to propose clustering on program graphs and thus enables mi-

croarchitecture independent characterization of programs. Futher, graphical intermediate

representations are a semantic step closer to algorithmic description and thus may offer

more fundamental insights into program traits and lead to more comprehensive program

characterization.

We adapt a decade old advance in identifying similarity in graphs [112] to create approx-

imate graph clustering for program characterization. Traditional graph similarity methods

such as isomorphism can determine if two graphs match, but are not useful for clustering

because even very similar programs can produce slightly different graphs. Approximate

graph clustering, on the other hand, instead of providing discrete answers, produces a con-

tinuous measure for similarity based on the number and content of nodes and edges and

graph topologies. This continuous measure lends itself to grouping graphs using known

clustering techniques.

To evaluate the usefulness of graph clustering we compare it to known non-graphical,

microarchitecture dependent and independent information. We measure the effectiveness
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by applying and comparing the effect of existing optimizations to functions in clusters. We

hypothesize that if functions in these clusters react homogeneously to optimization then

they share common behaviors or characteristics.

The results of our evaluation on the SPEC benchmark suite show that clustering pro-

grams based on dynamic dataflow graphs produces much better clusters than clustering

with instruction mixes (non-graphical) or other static/dynamic run time characteristics

(non-graphical, microarchitecture dependent). We also qualitatively examined our best

clusters to investigate if new distinct behaviors could be identified in the clusters. We were

able to locate distinct behaviors in some clusters, but not all. This is likely because the

SPEC benchmark is intended to be diverse so little obvious redundancy exists. Our results

suggest that automated behavior identification may be possible with graphical clustering.

Interesting characteristics found with our techniques could assist in the discovery of a

variety of optimizations in software, hardware or some hybrid of the two. These optimiza-

tions could be purely serial in nature or take advantage of parallelism. For instance, if one

was to build clusters using data dependence information, resulting clusters might highlight

data parallelism patterns ripe for optimization. As another example, we find an interesting

pattern in our results (Table 5.4) which we call “guarded accessors”. As we discuss later,

this very common pattern could be further optimized.

The contributions of this chapter are: (1) A new method of approximately comparing

the similarity of program graphs. (2) The application of this comparison method to ap-

proximately cluster program graphs. (3) A case study of the SPEC CPU 2006 benchmark

suite using our new technique.

5.2 Methodology

Our clustering framework, Centrifuge supports three primary steps: building program

representations, clustering and evaluation. The first stage involves collecting static and

dynamic characteristics of functions into approximate representations of the functions. The

second stage involves two processes: comparison and clustering. Comparison involves ex-

amining the approximate representation of different functions to judge their similarity. This
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Figure 5.2: Centrifuge involves three stages: data collection, analysis and evaluation. In

data collection, information on function behavior is assembled. Analysis uses this informa-

tion to compute distances between each function, in turn using this distance data to cluster

the functions. Finally, in the evaluation stage we examine the clusters to determine their

quality.

similarity information is then used to cluster the functions into similar groups. At the end

of the second stage a user could study functions from each cluster. In the evaluation stage

– the third and final stage – the contents of each cluster can be used to analyze the quality

of the clusterings. This section provides details about each of these stages and is intended

to give an overview of the processes, desiderata and tradeoffs relevant to each stage.

5.2.1 Representations

The first task in identifying code behaviors is to find static and/or dynamic features that

capture function behavior. Good features will capture all characteristics that influence

performance significantly. In this chapter, we include traditional static and dynamic char-

acteristics that are believed to influence performance such as static instruction mix, static

control/data flow graphs and dynamic data flow graphs. In addition we included two new

features: dynamic data flow graphs augmented with locality information and a representa-

tion based on how well functions perform on existing hardware using existing optimizations.

Each of these representations is described below.

1. Static Instruction Mix Static instruction mix can be useful as an indicator of how

functions react to optimizations. For instance, clustering based on instruction mix may

group math heavy functions or data movement functions in different clusters, and opti-
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mizations (such as vectorization or optimizations that use string movements) may operate

on functions in different clusters differently. We compute the static instruction mix by com-

piling a program without any optimization and then categorizing the instructions into one

of following categories: control transfer, arithmetic, logical, and memory. The fraction of

instructions in each category are represented in a vector for each function in the code base.

2. Static CDFG Static control/data flow graphs are commonly used in compiler analy-

ses. These graphs can capture the parallelism that is available in a function (or program)

and thus may be good candidates to represent function behavior. As is common in com-

piler analyses, we use basic blocks as vertices in the flow graphs. We further annotate

our graph vertices with basic block instruction mixes and edges with the dependence type

(control, must pointer, may pointer, register). These dependencies were generated using

the LLVM [100] compiler.

3. Dynamic DFG Static CDFGs include static memory dependence information. This

dependence information is computed using alias analysis algorithms, which have been shown

to be imprecise [114]. In the worst case, overly conservative analysis yields completely

connected dependence graphs. Since there is only one complete graph given a number of

vertices, this poor analysis effectively reduces the amount of information about the function.

Dynamic data flow graphs, on the other hand, can be more detailed than Static CDFGs

because they represent only observed dependence edges instead of potential dependence

edges. Further, we can annotate these graphs with other dynamic information. In this

chapter, we use dependence observation frequencies (the number of times a data dependence

is observed between two basic blocks divided by the number of times the consuming basic

block is executed) to add dependence edge weights to our Dynamic DFGs. To annotate

these graphs’ vertices, we compute the basic block’s dependence chain length (the length of

the longest producer-consumer chain of machine instructions within a basic block), number

of integer instructions, number of floating point instructions, and number of memory loads,

all of which are expressed as a fraction of total instructions. Dynamic features like execution

count can also be used, though we have found that this can increase sensitivity to input

bias.
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4. Dynamic DFG with Load Distance It has been known for long time that Data

locality is an important determinant of performance along with parallelism [9]. While the

CDFG and Dynamic DFG are likely to be good at capturing parallelism constraints, they

do not explicitly capture locality. To capture locality, we measure the number of dynamic

instructions since each load’s address was last accessed in the program (measured with PIN

on executables with no optimizations). This is similar to reuse distance [42], except we

count instructions instead of memory accesses. For example, if a called function accesses

an address X which was last written by the calling function, a very low load distance will

likely result. If, however, address X was last written during program initialization and has

not been read since, a very high load distance will result, reflecting the improbability of the

location being in the processor cache. We then compute the average and standard deviation

of the logarithms of all load distances in a function and use these two measures as indicators

of reuse.

5. Function Optimization Reactions In addition to the above representations, we can

use existing optimizations to cluster similar functions. The intuition is that functions that

are similar will be affected to the same degree when a set of optimizations are applied to

them. Observing the optimization reactions, therefore, may give us an indirect indication

of function characteristics. We construct this model by applying various combinations

of known optimizations to a function, measuring the change in execution time for that

function, and computing the function’s optimization reaction, as defined in Eqn. 5.7. The

optimization reactions are then used to cluster functions.

5.2.2 Comparison Methods

Now that we have the features to create the clusters, the next step is to determine how these

features should be compared. We formalize the comparison by defining distance functions:

for features that are represented in vector formats (e.g., static instruction mix), we use

the Euclidean distance between the two vectors to measure their similarity. In our initial

experiments Euclidean distance yielded better results than alternatives (like Manhattan
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Figure 5.3: Simple example of the mapping stage, a variant of Similarity Flooding. In this

example, we use unity edge weights and scalar (instead of vector) values in each vertex.

distance). For two vectors A and B both with length n, Euclidean distance is defined as:√∑n

i=1
(Ai −Bi)2 (5.1)

Comparison of the graphical representations (e.g., static CDFG, dynamic DFG, locality-

annotated Dynamic DFGs) is more complex, deserving further explanation.

Traditional graph comparison algorithms such as isomorphism and subgraph isomor-

phism produce boolean “match” or “no match” results when two graphs are compared and

are not useful for computing the approximate similarity between two functions represented

as graphs. Instead, we use an approximate graph comparison technique [112] to compute

the distance between two graphs. Determining the distance between two graphs involves

two steps: mapping and scoring. In the mapping stage, we pair nodes from the two input

graphs. That is, for each vertex in graph A, we find the vertex in graph B which is most

similar, both in terms of the local information (basic block instruction mix) and neighbor-

hood information (the similarity of connected vertices). The scoring phase then uses this

mapping to compute vertex and graph structural similarity. With our graphical features,

this process corresponds to finding similar basic blocks and then using the edge information

(presence or absence of edge, and edge annotations) to judge the similarity of two functions.
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Mapping The mapping phase has been adapted from the approach described by Melnik et

al. as “Similarity Flooding” [112]. Although we use a similar set of steps, we have modified

the ways in which values are normalized in various phases. The basic idea is to construct

a new graph which contains all possible pairs of vertices and edges derived from edges in

the two original graphs.1 We assign a similarity value to each vertex (described shortly)

in this graph and then iteratively propagate these values along edges. Upon convergence,

each value represents the similarity of a pair of vertices which is sensitive to both the basic

blocks’ functional similarity (as determined by instruction mix distance) and the two graphs’

structural similarity. We can then use these values to determine the optimal mapping. The

precise details follow in addition to an example in Figure 5.3.

Formally, we begin by forming a tensor graph product (which we will use synonmously

with “product graph”) of two function graphs to be matched. For weighted graphs (VA, EA)

and (VB, EB) – wherein for (V,E), V is a set of vertices and E is a set of edge weights –

we form the tensor graph product (VP , EP ):

VP ≡ {(A,B)|A∈VA, B∈VB}

EP ≡ {((A,B), (A′, B′),WA·WB)|

(A,A′,WA)∈EA, (B,B
′,WB)∈EB}

(5.2)

This product graph contains all the possible mappings, so the final mapping is intuitively

a restricted subset of this graph.

Next, we define a primitive product graph vertex similarity function, D(v). In our case,

each product graph vertex represents a pair of basic blocks – one from each input graph –

so we use the Manhattan distance between the basic blocks’ vectors (the contents of which

were described in Section 5.2.1. In our initial experiments, Manhattan distance yielded

better results than the more popular Euclidean distance. For two vectors A and B each of

length n, Manhattan distance is defined as:

∑n

i=1
|Ai −Bi| (5.3)

Step three involves propagating the similarity scores along the graph edges, in a manner

similar to that described by Melnik et al. [112]. This is an iterative calculation wherein

1This is known as a product graph. Specifically, we use the Tensor product graph.
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at each step, i, we compute each vertex value M i
j for each vertex j in V using the set of

adjacent vertices, Ej , and weight of outgoing edges from j to each adjacent vertex a, W a
j :

M0
j = D(Vj)

M i
j =

D(Vj)
max(D(Vi−1))·

∑
Wj

∑
a∈Ej

W a
j ·M i−1

a

(5.4)

The intuition behind this step is that if a node represents a good match and its neighbors

are also good matches, then that node is probably a very good match and hence its score

improves.2

The output from this similarity propagation step is a matrix of vertex-vertex pair scores

which reflect both the primitive basic block and structural similarity. Determining the

optimal mapping is thus a matter of selecting the set of pairs which are overall most sim-

ilar. This is an instance of the assignment problem and we use the well known Hungarian

Algorithm [95] to solve it.

Scoring Once the optimal mapping is established, we merge the two input graphs and

score the merged graph. There are a number of scoring methods one could use. One

might use the scores assigned by the previous mapping step. However, the scores from the

mapping stage have been heavily affected by scores from potential pairs which turned out

to be bad matches. (Recall that the product graph through which scores are propagated

contains all possible pairs from which we select a small subset.) As a result, the scores from

the mapping phase reflect the fitness of the selected vertex pairs relative to all the possible

vertex pairs. The score we want, however, is the similarity of the two input graphs relative

to other graphs.

We have designed an alternative scoring metric which essentially takes the basic block

Manhattan distance and combines it with the structural mismatch which we define as the

normalized quantity of unmatched edges. For each merged vertex, i in V , we produce the

basic block instruction mix Manhattan distance, Di, the number of common shared edges,

Si, and the number of non-shared edges, Ei. For vertices with no counterpart, we use∑
d∈Di

d for Di and set Si = Ei. We compute the score as:

2Detailed explanation of the Similarity Flooding algorithm is outside the scope of this chapter. Please

refer to Melnik et al. [112] for more information.
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1

|V |
∑

i∈V
(Di +

Ei

Si + Ei
) (5.5)

5.2.3 Clustering Methods

Equipped with quantitative comparisons for each representation, Centrifuge can use well

known clustering methods such as agglomerative clustering, k-means, or SOM. In general,

a clustering algorithm will attempt to group most similar functions together based on item

distances or similarity of their features.

Some of these clustering techniques such as agglomerative clustering are hierarchical

and produce dendrograms as the output instead of discrete clusters. The dendrograms can

be converted to flat clusters by thresholding – cutting off growth of a cluster at a particular

maximum diameter or a predetermined average internal distance. Thresholding creates a

tradeoff between cluster size and the similarity of the contained functions. Higher thresholds

typically create larger clusters with more dissimilarity than lower thresholds.

The user can also use an alternative property called savings instead of thresholding.

Savings indicates the reduction in number of functions to be examined after clustering.

Formally, the savings yielded from clustering f functions into c clusters is (1− c
f )·100. For

example, if 50 functions are clustered 20 groups, then only 20 representative functions must

be studied. This results in a 60% savings in the number of functions to be understood.

The savings and threshold metrics are related because a larger threshold results in larger

savings. Importantly, the savings metric can be compared across different representations

and distance functions whereas threshold cannot since it is specific to the distance function.

Additionally, parameterizing function organization via savings allows the user to gain better

insight into functions’ similarities by adjusting the savings level. Different clusters are shown

at each savings level, indicating the distribution of similarity for various thresholds.

For this chapter, we use average linkage agglomerative clustering with the following four

representations and distance functions:

1. Instruction Mix: Euclidean distance

2. Static CDFG: Similarity flooding-based graph distance defined in section 5.2.2 using
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unity edge weights.

3. Dynamic DFG: Similarity flooding-based graph distance defined in section 5.2.2.

4. Locality annotated Dynamic DFG: We must combine the score from Similarity Flooding-

based graph distance (defined in section 5.2.2) for the Dynamic DFG with the load

distance information detailed in section 5.2.1. This data is represented by five num-

bers: the graph distance, g, for each function, the logarithms of the mean of the load

distances, Ma and Mb along with logarithms of the standard deviations of the load

distances, Sa and Sb. We combine them as such:

g + |Ma −Mb|+ |Sa − Sb| (5.6)

Our fifth representation, optimization reaction, also uses agglomerative clustering, but

instead uses Ward’s linkage [158]. Ward’s linkage clustering attempts to minimize the

variance of vector data within clusters. In other words, each time a cluster is selected for

a particular data point, the cluster with the least increase in internal average variance is

selected. Since our evaluation will eventually compute internal standard deviations, we can

expect this clustering technique to create better clusters.

Optimization Reaction Metric Since profiling yields absolute times, we cannot directly

compare optimization affects without some normalization of the times. Throughout this

chapter, we use optimization reaction, defined below, to normalize all execution times to

the range [0, 1]. If T (f, o, i) is the runtime for function f when compiled with optimization o,

executed with input set i and O is set of all profiled optimizations, we define the optimization

reaction:

R(f, o, i)≡
T (f, o, i)−minj∈OT (f, j, i)

maxj∈OT (f, j, i)−minj∈OT (f, j, i)
(5.7)

Normalizing the optimizations allows functions to be compared based on their relative

effectiveness rather than raw speedup. The optimization reaction metric allows us to judge

a reaction to an optimization by rank, so functions which are both sped up best by a

particular optimization will have similar reactions for that optimization.
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Parameter Tuning In all of these comparison methods, some information may be more

important than others for similarity comparison i.e., the number of memory instructions

may influence performance more than the number of math instruction. To account for

this, we can add additional parameters to each distance function allowing them to weight

information differently. For instance, when we compute vector distances, we can instead use

a weighted vector distance, changing the importance of each vector field. We add parameters

for two representationss — Dynamic DFGs and Dynamic DFGs with Load Distances — in

the following places:

1. Vector Distances All vector distance calculations (in both similarity flooding and

scoring) get weights for each vector field.

2. Similarity Flooding In the mapping phase, similarity scores propagate through

the product graph (Eqn. 5.2). At each iteration, these propogated scores are com-

bined with local scores, creating a trade off between local and neighborhood similarity

(Eqn. 5.4). We add weights to each input before adding them.

3. Graph Scoring After mapping, a merged graph is created and scored. During this

scoring, several factors are combined to create a single similarity score. Here, we add

importance weights when combining local and neighborhood similarity (similar to the

last point), plus a weights to use for local and neighborhood similarity for unmatched

vertices.

4. Load Distances When combining data flow graphs with locality information (Eqn. 5.6),

we add three pieces of information: graph similarity, difference in log load distance

means and difference in standard deviations. When tuned, each term is given a weight.

In total, we have 12 parameters which must be tuned. Given the extreme non-linearity

of graph mapping, scoring and clustering, it is not possible to back-calculate optimal param-

eter values. Instead, we must use black-box optimization. In particular, we implemented

simulated annealing, splitting our set of functions into 1
3 for training and 2

3 for testing.

As an objective function, we measure the variance of reaction to optimization within the
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generated clusters. As such, simulated annealing with this objective function will attempt

to minimize the variance of reaction to optimization within the generated clusters.

5.2.4 Evaluation Strategy for Centrifuge

We have now defined various representations, distance functions and clustering algorithms.

Combined, these are used to create a clustering of functions. In this chapter, we compare

functions across programs. This function granularity is neither the only possible granularity

nor the optimal granularity, and virtually any block of code could be compared to any

other. However, we chose function granularity for two reasons: First, functions are the

granularity at which programmers generally think. Since we are attempting to find patterns

in programmers’ code, functions are a reasonable code unit. Second, identifying appropriate

code sequences from an entire program is a difficult analysis problem. Other work [124, 151]

explores this problem and should integrated into Centrifuge in the future.

To determine the utility of each representation, we must examine the resulting cluster-

ing and judge its quality. We can quantitatively measure quality by studying optimizations

that have already been discovered; in particular, we wish to determine if our clustering

could have been useful in discovering an optimization which already exists. If the functions

in each cluster tend to react similarly to an existing optimization, then those clusters are

significant with respect to that optimization. As a result, having those clusters may have

been useful in developing the optimization. This metric can easily be quantified by mea-

suring the functions’ reactions to various optimizations. With this insight it is also fairly

straightforward to come up with lower bound and upper bounds for the quality of the clus-

ters. We can then compare various quality metrics about each representation’s clustering

to these bounds.

Random Clustering It is reasonable to expect a clustering to do no worse than randomly

grouping functions. To estimate this worst case, we randomly generate similarity distances

between all pairs of functions in the code base and use these distances along with average

linkage agglomerative clustering to generate clusters. We would expect all properties of the

functions in each of these clusters to be random selections of properties from the global set
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of functions.

Ideal Clustering Clusters built using the same information upon which they are evalu-

ated should represent an upper bound. We will evaluate clusters based on the consistency

with which their functions react to optimization, so we use the evaluation data and Ward’s

linkage agglomerative clustering to build this loose upper bound. (Loose due to the heuris-

tic nature of agglomerative clustering in this context.) It is important to note that this is

also an unfair upper bound because it assumes complete knowledge whereas other represen-

tations, by definition, are incomplete approximations of function behavior. With complete

knowledge, this ideal clustering can account for random variations in runtime as well as

measurement error.

5.3 Experimental Methodology

5.3.1 Data Collection

We collected static and dynamic execution characteristics data from functions in SPEC

CPU 2006 suite. The static information (viz., instruction mix and CDFG representations)

were collected using a custom LLVM pass operating on code compiled to bitcode with “-

O0 -g” options. Optimization is mostly turned off as we want to analyze code which is

closely related to the original source code; optimizations distort this relationhip. We used

the “mem2reg”3 and “basicaa”4 optimization and analysis passes before invoking our own.

Dynamic data flow graphs and load distances were collected using custom PIN [107] tools.

Function Profiling Framework To measure the reactions of functions to optimization,

we used performance counters via LiMiT (Chapter 3) to measure the execution times of

functions precisely. To account for random variation, we execute programs three times and

use the average.

3The mem2reg optimization is necessary to create sane LLVM bitcode from LLVM-GCC’s output, which

converts all stack variables to pointers instead of using LLVM’s SSA form.

4Although LLVM has other alias analysis passes, we observed no difference in behavior.
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Function Pruning Data is collected about SPEC functions from four different tools (viz.,

LLVM, GCC, PIN and profiling tools), each of which have some limitations and caveats e.g.,

measurement errors of very short functions e.g., less than 10k cycles. To fairly evaluate our

representations, we need to execute Centrifuge with a set of functions for which all of this

data is available and accurate. As a result of pruning we are left with 628 functions, 1
3 of

which are selected for training and the remaining 2
3 are used for evaluation in the following

section.

5.3.2 Evaluation

To evaluate the merit of the Centrifuge methodology and the success of each represen-

tation we have proposed, we must judge the utility of its results. To do so, we take a

retrospective approach: if the clusters which Centrifuge produces react homogeneously

to existing optimizations, then there exists some relationship between the clusters and these

existing optimizations. As a result, we speculate that these clusters may have been useful

in discovering these optimizations.

Existing Optimizations We select four of GCC’s optimizations (unswitch-loops, predictive-

commoning, gcse-after-reload and tree-vectorize) which can be applied beyond the -O2 level.

These are all of the optimizations which are turned on by ’-O3’ with the exception of inlining-

based optimization, which we cannot use since we are measuring each function. We then

create 15 different combinations of these four5 and use them with -O2. We measured the

effect of these fifteen different combinations of optimization flags on SPEC.

By evaluating Centrifuge against advanced optimizations (which often have minimal

or negative effect on functions) and simultaneously combining them with basic optimizations

we make our task both more difficult and more realistic. Newer optimizations are likely to

be relatively complex and/or less-than-universally applicable as much of the “low-hanging

fruit” has been realized in the simpler optimizations. (Indeed this is the case, as evidenced

by the data in Table 5.1, which shows that our selected optimizations have significant

5GCC does not allow optimization re-ordering; each optimization can simply be on or off, so 24 − 1 = 15

since we don’t use only ’-O2’.
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(Percent of Functions)

Speedup Slowdown

Optimizations ≥ 15% ≥ 15%

-O2 -fpredictive-commoning -fgcse-after-reload 3.1% 6.9%

-O2 -fpredictive-commoning -ftree-vectorize 3.9% 9.1%

-O2 -fpredictive-commoning 2.7% 6.8%

-O2 -fgcse-after-reload 1.9% 9.6%

-O2 -funswitch-loops -fpredictive-commoning

-fgcse-after-reload -ftree-vectorize 25.5% 4.4%

-O2 -ftree-vectorize 3.0% 7.5%

-O2 -fpredictive-commoning -fgcse-after-reload -ftree-vectorize 4.1% 9.0%

-O2 -fgcse-after-reload -ftree-vectorize 3.3% 10.2%

-O2 -funswitch-loops -fgcse-after-reload -ftree-vectorize 7.4% 7.5%

-O2 -funswitch-loops 5.0% 7.7%

-O2 -funswitch-loops -ftree-vectorize 33.2% 5.3%

-O2 -funswitch-loops -fpredictive-commoning -fgcse-after-reload 2.5% 8.0%

-O2 -funswitch-loops -fgcse-after-reload 2.5% 7.9%

-O2 -funswitch-loops -fpredictive-commoning 24.4% 3.3%

-O2 -funswitch-loops -fpredictive-commoning -ftree-vectorize 16.2% 9.1%

Table 5.1: Of our 628 selected functions, this table shows the percentage of programs that

were sped up or slowed down a significant percent (15%) over optimization with just ’-O2’.
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effect on a small percentage of our experimental functions.) Should our representations

work well only with simpler optimizations, they are less likely to be useful in the future.

However, if our clustering is effective with advanced optimizations which are often not

effective themselves, this implies that our method has very good resolution.

Additional Clusterings To provide context for the results, we artificially generate two

additional clusterings – random and ideal – which represent loose lower and upper bounds.

Random clusters are produced using a Gaussian random distance function to judge the dis-

tance between functions. The ideal clusters were built using the profiling data collected for

evaluation. Since they are built and evaluated on the same data, they are close to optimal.

This optimality is not guaranteed, however, due to the heuristic nature of agglomerative

clustering. Additionally, we construct other clusters using randomly selected subsets of the

evaluation data. These “Existing (1/2)” and “Existing (1/3)” clusterings use one-half and

one-third of the optimizations, respectively, for construction but are evaluated on all of the

optimizations. They are intended to judge how well optimization reaction data generalizes

to other optimizations.

Savings In our cluster analyses, we parameterize groups of clusters by savings. Recall

that “savings” indicates the reduction in number of functions to be examined after clustering

and is defined as (1− c
f )·100 for f functions grouped into c clusters. The savings level also

represents a trade off: the higher the savings level, there are fewer clusters, but the functions

in each cluster are less likely to be similar. At the extreme high end, all functions are in a

single cluster, and thus there is no interesting information. At the extreme low end, each

cluster contains one function, so there is also no interesting information. The Centrifuge

user must determine an appropriate point.

5.4 Results

We design statistical tests to answer the following two questions and qualitatively evaluate

two more:

1. Are similarity distances (as determined by each representation) within random and
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ideal clusters different from global similarity distances? If a representation captures

characteristics pertinent to the optimizations, we expect that representation to pro-

duce small distances between functions in ideal clusters. As a sanity check, we expect

distances within random clusters to be little different from the global set of distances.

(Section 5.4.1)

2. How consistently does optimization affect functions in each cluster? We would expect

functions in clusters which are relevant with respect to existing optimizations to react

similarly to optimization. (Section 5.4.2)

3. After tuning, what features proved most effective? (Section 5.4.3)

4. Qualitatively, what type of clusters are produced? (Section 5.4.4)

5.4.1 Evaluating Distances in Ideal and Random Clusters

We first wish to determine if our representations’ judgment of similarity is interesting with

respect to existing optimizations. This test uses each representation’s distance function but

not the clusters produced using these distances, only the random and ideal clusters. As

such, it allows us to test for significance using a minimal amount of clustering and thus

eliminate a potential source of error.

For each representation, we compute the average distance between all function pairs.

This average global distance indicates how far apart – on average – functions usually are

for each representation. We then examine the ideal and random clusterings at each savings

level (0%-50%). For each cluster, we look at the distances between each pair of functions, as

determined by each representation. We compute an average of these internal distances and

subtract that number from the representation’s global average. If the cluster is significant

with respect to the representation, the cluster’s internal distance average will be small and

thus this difference will be high. We also run Student’s T-Test [144] to determine the

significance of this difference. We further calculate weighted (by cluster size) averages of

the mean differences and average T-Test probabilities for each savings range.

The summary results of this analysis are shown in Figure 5.4. As expected, differences in
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Figure 5.4: To measure the acuity of our representations we compare the average distance

between clustered functions (in the 0% to 50% range) to the global average distance. We

expect the random clusters’ averages to be approximately zero and the ideal clusters’ av-

erages to be greater than that. Measurements show that random clusters tend to be zero

or negative whereas ideal clusters have high differences (T-Test significance values are in

parenthesis). Results indicate that our representations’ distances are not correlated with

random clusters, but are correlated with ideal clusters.
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the random clusters tend to be closer to zero than in the ideal clusters.6 This result indicates

that there is no correlation between random clusters and our representation distances.

The fact that differences in ideal clusters are higher indicates that representation distances

tend to be smaller in these clusters than the average global distance. Further, the T-

Test probability values are smaller for the ideal clusters, showing a greater chance that

these differences are significant. On the whole, this test shows that all of the proposed

representations have a closer relationship to ideal clusters than random clusters. Although

tempting, we cannot determine from this difference data which of the representations is

superior. Although normalized using distance averages, these distances are not guaranteed

to have similar distributions, so we cannot determine the significance of these values relative

to each other.

5.4.2 Clustering Quality and Implications

Next, we evaluate the consistency of optimization reactions within each cluster. In contrast

to the previous test of distances in random and ideal clusters, this test evaluates the clusters

generated by each of our representations in addition to the two artificial ones – random and

ideal – allowing us to directly compare all of them. To test this consistency, we compute

the standard deviation of reaction to optimization (as defined in Eqn. 5.7) for all functions

within each cluster. The intuition behind this metric is simple: good clusters should contain

functions which react similarly to optimization. To present these data, we compute the

reaction standard deviation for each cluster and average across all the clusters at each

savings level.

Figure 5.5 shows the consistency of optimization reaction for each representation de-

scribed in this chapter, plus the ideal and random clusters. As expected, the consistency of

the clusters tends to decrease with savings because the clusters must grow in size, forcing

functions with decreasing similarity into the same clusters. This is a direct result of the

tradeoff discussed in the above “savings” paragraph.

6In some cases, the bars for random clusters are visibly above or below zero. This is because the

distributions are skewed, so random selection is more likely be closer to the global median rather than the

global average. The more important comparison is the difference between the two bars.
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Figure 5.5: Consistency of optimization reactions for clusters from various representations.

Consistency is calculated as standard deviation, so lower numbers are better. Each clus-

tering is shown relative to loose upper and lower bounds, “ideal” and “random”. Although

none of the representations perform perfectly, we see that “Tuned Dynamic Data Flow

Graph” performs very well.
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There are several other interesting things to note in these results:

1. These results clearly demonstrate that instruction mixes and “Existing (1/3)” are

largely worthless for clustering because they are barely better than random.

2. As expected, using a substantial amount of the evaluation data (Existing 1/2) pro-

duces good results. When this quantity is decreased to one-third, however, the re-

sults are little better than random. This result implies that optimization reactions

themselves are poor predictors of similarity because they do not generalize to other

optimizations.

3. Few of the representations perform well in the very low savings range (0% to 25%)

compared to ideal. Although subtle, this affirms a widely-held belief that performance

is extremely difficult to predict accurately. Although several of the representations are

able to predict large performance changes, none can do so at the accuracy required

to perform well in this regime.

4. Static CDFG fairs very poorly overall but perform well in the small savings range (0%

to 25%). This result implies that Static CDFGs are very useful for identifying identical

functions, but poor for gauging approximate function similarity. We speculate that

this is due to weaknesses in alias analysis and as a result, Static CDFGs contain too

many edges to be useful.

Overall, our proposed representations are a mixed bag: some perform well and some do

not. In general, representations utilizing dynamic data flow graphs perform well; the area

under the tuned dynamic data flow graph representation curve is 80% closer to the area

under the ideal curve than that of the random curve! This result is encouraging and confirms

the utility of Centrifuge: clusters of functions which react similarly to optimization can

be built using generic representations.

Discussion of Optimizations We can also examine our results’ relationship to the op-

timizations we are using for evaluation – predictive-commoning, tree-vectorize, unswitch-

loops, and gcse-after-reload. Predictive commoning examines loops and attempts to pull
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out redundant computations. Tree vectorization is GCC’s auto vectorizer, intended to cre-

ate parallel SSE code from normal loops. Unswitch loops pulls conditional statements out

of loops allowing the loop to be optimized with less hindrance. Finally, GCSE after reload

invokes another subexpression elimination with the goal of eliminating redundant loads. In

each case, there are characteristics in the code which determine whether or not the opti-

mization can be applied and how performance will be affected. The results of some of our

representations imply that they are capturing some of these characteristics whereas others

are not.

With regard to our DDFG (dynamic data flow graph) representation, what features

relevant to these optimizations could it be capturing? All of these optimizations deal with

movement (or elimination) of operations and thus the optimizations sensitive to both control

and data dependences – if certain dependencies exist, the optimization cannot be applied.

Alternatively, if certain dependence patterns do exist, the first three optimizations may be

applied and strongly affect performance.

We also add load distances to indicate data locality for one representation. Although

it does not seem to have a strong effect on our results, it is possible that it could related

strongly to unswitch loops and GCSE optimizations. Both eliminate redundant operations

(which are likely to have memory operations); since these operations are likely to occur often

and are guaranteed to access the same memory, they will likely have very good locality. As

such, low load distances may weakly indicate that these optimizations would apply.

Lastly, it is not surprising that instruction mix does poorly; merely knowing that a

function has memory loads or integer calculations tells us nothing about whether or not the

operations can be moved.

Although our results are specific to these four optimizations, we suspect that depen-

dencies are key to most complex optimization, thus our DDFG representations are likely to

scale well.

5.4.3 Evaluation of Parameter Tuning

As discussed in Sec. 5.2.3, “Parameter Tuning”, we use simulated annealing to optimize

parameters used for our graph comparisons – dynamic data flow graphs and dynamic data
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Parameter DDFG DDFG w/ LD

Basic Block Annotations

Dependence Chain Length 1.0 0

Number of Int Instructions 1.0 0.68

Number of FP Instructions 0.64 0.95

Number of Memory Loads 0 0.26

Graph Mapping

Neighborhood Score (vs. local similarity score) 0.46 1.0

Graph Scoring

Difference in Local Similarity 0.05 0

Difference in Edges 1.0 0.54

Unmatched Annotation Penalty 0 0.18

Unmatched Edge Penalty 0.64 0.33

Load Distances

Graph Similarity Score - 0.45

Difference in LD Means - 0.84

Difference in LD Std. Dev. - 0

Table 5.2: Parameter values for dynamic data flow graphs and dynamic data flow graphs

with load distances after tuning them via simulated annealing. Area under the curves of

Fig. 5.5 was used as the objective function to minimize.
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flow graphs with load distances (locality information). The resulting weights are shown in

Table 5.2. Though potentially interesting, these results have no guarantee of optimality as

they are found in continuous in 12-dimensional space. Although not optimal these weights

were used to generate the clusters evaluated and presented here and evaluate better than

untuned representations. There are several interesting observations to make about the

weights:

1. The dependence chain length within a basic block is hugely important to gauging

similarity unless load distances are being considered. Further, the number of memory

loads in each basic block are not a good indicator of similarity unless load distances

are also considered.

2. Although the similarity between basic blocks is used in the graph mapping stage,

they are not used in scoring. Instead, the graphical edge similarity (number of

matched/unmatched edges) is used. As a result, graphs of different sizes are penalized

far less with out tuned models than untuned.

3. When integrating load distances, the difference in standard deviations is not used,

however the difference in log load distance averages is given nearly twice the weight

as the graph similarity. This indicates that data locality is important in judging

similarity.

5.4.4 Qualitative Evaluation of Cluster Results

The results presented in Figure 5.5 show that tuned dynamic data flow graphs tend to

do a reasonable job clustering functions which will react similarly to optimization. So,

what sort of functions get grouped together? To answer this question, we examine clusters

produced around the 15% to 20% savings level. In some clusters, we see functions which

are nearly duplicates. Others have obvious patterns – these may indicate potential widely-

applicable opportunities for optimization. Other clusters contain functions which do not

appear similar, yet react similarly to optimization and have similar data flow graphs. Here

are some examples.
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Cluster #1

rtx gen_rtx_fmt_ee (RTX_CODE code, enum machine_mode mode,

rtx arg0, rtx arg1) {

rtx rt = ggc_alloc_rtx (2);

memset (rt, 0, sizeof (struct rtx_def) - sizeof (rtunion));

PUT_CODE (rt, code); PUT_MODE (rt, mode);

XEXP (rt, 0) = arg0; XEXP (rt, 1) = arg1;

return rt;

}

rtx gen_rtx_fmt_e0 (RTX_CODE code, enum machine_mode mode, rtx arg0) {

rtx rt = ggc_alloc_rtx (2);

memset (rt, 0, sizeof (struct rtx_def) - sizeof (rtunion));

PUT_CODE (rt, code); PUT_MODE (rt, mode);

XEXP (rt, 0) = arg0; X0EXP (rt, 1) = NULL_RTX;

return rt;

}

rtx gen_rtx_fmt_s (RTX_CODE code, enum machine_mode mode, rtx arg0) {

rtx rt = ggc_alloc_rtx (2);

memset (rt, 0, sizeof (struct rtx_def) - sizeof (rtunion));

PUT_CODE (rt, code); PUT_MODE (rt, mode);

XSTR (rt, 0) = arg0;

return rt;

}

Table 5.3: An example cluster of near-duplicate functions. These functions are all from

403.gcc.
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Near-Duplicates Programs like GCC tend to have many functions which are auto-

generated and thus nearly identical, like those shown in Table 5.3. Many of these near-

duplicates are very small functions (often constructors) with a single basic block. These

clusters are largely uninteresting as they are best optimized via inlining and in-context

optimization.

Guarded Accessors By far, the most common pattern we see clustered is a pattern we

call “guarded accessors”. Although class field accessors are thought to be a pattern used

primarily in object-oriented languages, we also see in C that many functions are created to

conditionally get or mutate a data structure. For an example, see Table 5.4. These clusters

represent a common behavior that one might be able to optimize. First, all of them have a

very uncommon branch case – the error conditions – where performance does not matter.

Second, the conditions being checked have few side effects (with the exception of NULL

checks), so they can be evaluated in any order. These uncommon cases may be detected

via profiling. Alternatively, it may be reasonable to assume simple return values like -1 or

not returning (like the exit call) are uncommon cases. Further, the functions shown here

are not directly affected much by the four optimizations we are applying, and thus may

represent a new optimization opportunity.

Non-Intuitive Clusters There is another set of clusters which contain functions which

react similarly to optimization, but it is not intuitively (or obviously) clear why. Table 5.5

shows an example – one function which reverses a list and another that inserts a record into

a hash table. While one has a loop (which is likely not unrolled as it is pointer chasing) the

other has no loop in either its body nor function calls. One allocates memory and makes

a function call, the other is a terminal in the call chain. What do these functions have in

common? First, their dynamic dataflow graphs are identical (as shown in Figure 5.6), have

very similar edge weights and their basic block annotations are similar – they have very

few integer and floating point calculations but have memory loads in some basic blocks.

The similar memory patterns mean that similar data placements, layouts or prefetching

strategies may work similarly on both functions. This class of clusters is probably the most

interesting; it shows similarity that likely would not have been recognized during manual
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Cluster #2

int CCTK_NumTimeLevelsFromVarI (int var) {

return ((0 <= var && var < total_variables) ?

groups[group_of_variable[var]].n_timelevels : -1);

}

int CCTK_GroupTypeFromVarI (int var) {

return ((0 <= var && var < total_variables) ?

groups[group_of_variable[var]].gtype : -1)

int ETree_frontSize (ETree *etree, int J) {

if ( etree == NULL || J < 0 || J >= etree->nfront ) {

fprintf(stderr, "\n fatal error in"

"ETree_frontSize(%p,%d)\n"

" bad input\n", etree, J);

exit(-1);

}

return(etree->nodwghtsIV->vec[J]);

}

Table 5.4: An example cluster in which all functions are guarded accessors. The first two

are from 436.cactusADM and the last is from 454.calculix. In these clusters, conditions

are checked before returning data from a structure. The error case, however, is different –

two return error codes, one aborts. Error cases are uncommon, so they have little effect on

performance, and may provide an (de)optimization opportunity.
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Cluster #3

tree nreverse (tree t) {

tree prev = 0, decl, next;

for (decl = t; decl; decl = next) {

next = TREE_CHAIN (decl);

TREE_CHAIN (decl) = prev;

prev = decl;

}

return prev;

}

void type_hash_add (unsigned int hashcode, tree type) {

struct type_hash *h;

void **loc;

h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));

h->hash = hashcode;

h->type = type;

loc = htab_find_slot_with_hash(type_hash_table, h, hashcode, insert);

*(struct type_hash **>) loc = h;

}

Table 5.5: An example cluster in which functions react similarly to optimization, but do

not appear similar. Despite the dissimilarity, these two functions have identical dynamic

data flow graphs and react similarly to optimization.
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(a) nreverse
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Figure 5.6: Dynamic data flow graphs for the cluster shown in Table 5.5. Althought the

code snippets do not appear similar, the resulting DDFGs are very similar.

inspection of the code, yet our generic representation and profiling of optimized code shows

similar behavior and reactions to optimization.

5.5 Related Work

Related research topics include performance prediction mechanisms, machine learning ap-

plications in optimization, program behavior analysis and code mining for topic analysis

and microarchitectural enhancement, and computational kernel classification.

Several works [26, 44, 73] attempt to predict the reaction of code to various program

transformations using code features, profiling information from subsets of possible program

transformations and dynamic program characteristics (like instruction mix and strides),

respectively. These works, however, are based entirely on overall program speedup and

whole program analysis. While there are some similarities to our work (in spirit) none

of these works discuss clustering based on the program features. These works are largely

motivated by the problem of determining if/when an optimization should be applied during

compilation and not for characterizing program behavior.

A large body of work [1, 4, 27, 60, 102, 139, 140] attempts to apply machine learning

techniques to compiler optimizations. The bulk of this work attempts to improve existing

optimizations and their associated heuristics via machine learning or find better combi-

nations of program optimizations (phase ordering). While some of them implicitly use
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clustering, none of these cluster on graphical formats which this work shows to be advan-

tageous.

The software engineering community has several works [94, 147, 152] in which functions

are clustered to identify functions which have similar keywords or are semantically similar.

These efforts use textual analysis, so there is little reason to believe these analysis tech-

niques could be relevant to program characterization as minor changes in source code (e.g.,

changing variable names) do not typically affect optimization or performance behavior.

The software engineering community has also long worked to identify “copy and paste”

code. Many approaches [13, 14, 62, 84, 92, 93, 105, 128, 137] have been developed, nearly

all of which rely solely on static code analysis. Typically, these tools are not designed to

calculate similarity – they only detect when code has been copied, thus any graph matching

algorithms they use do not require the same level of approximation our approach provides.

In the architecture community there is also some relevant work in both benchmark

selection and program graph mining. Several papers [47, 83, 129] use analysis to find

redundancy in sets of benchmark programs. These techniques can be used for benchmark

selection; however they operate at the granularity of an entire program. As a result, this

work is largely complementary and in fact was indirectly used to select benchmarks for this

chapter as [129] was used to create SPEC06. Another set of papers [34, 35, 72] use program

mining to assist in instruction set customization. In this work, Clark et al. examine and

find common patterns in graphs; however their techniques work to find very small patterns

– several instructions – only rather than function-granularity patterns and idioms.

Another effort to recognize patterns in code is XARK [7]. XARK’s is able to classify loop

structures into several categories of computational kernels types such as inductions, maps

and scalar assignments. Centrifuge is distinctly different as it computes approximate

similarity and hierarchically clusters functions. Other work [64] on design pattern mining

uses inexact graph matching, an approach similar to ours. It uses a different approximate

graph matching algorithm, however, and operates on UML graphs rather than automatically

collected data.
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5.6 Conclusion

In this chapter, we proposed clustering on graphical intermediate program representations

for program characterization. We introduced a novel approximate graph similarity metric

to drive our graph clustering. Unlike existing approaches, we avoid some feature selection,

operating directly on graphs. To evaluate the effectiveness of our approach, we designed a

framework called Centrifuge that clusters functions based on common static and dynamic

characteristics. We have shown that functions grouped by graphical properties tend to react

similarly to several existing optimizations. These results indicate that (1) it is possible to

classify code snippets into behavioral groups which react similarly to optimization and

(2) that clustering on graphical representations produces better results compared to static

non- graphical formats. Further, based on manual analysis of some of clustered functions we

determine that there is potential for discovering interesting patterns and thus our techniques

may be useful for qualitative program characterization. Future work will do two things:

First, it is likely that our approximate graph matching technique can be improved further.

Second, there are a number of other interesting applications like finding and automatically

synthesizing accelerators.
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Chapter 6

Machine Learning Architectural

Behaviors for Malware Detection

The proliferation of computers in any domain is followed by the proliferation of malware

in that domain. Systems, including the latest mobile platforms, are laden with viruses,

rootkits, spyware, adware and other classes of malware. Despite the existence of anti-

virus software, malware threats persist and are growing as there exist a myriad of ways to

subvert anti-virus (AV) software. In fact, attackers today exploit bugs in manually-written

AV software to break into systems.

In this chapter, we examine the feasibility of automatically building a malware detector

based on microarchitectural behavior data produced by malware. We find that data from

performance counters can be used to identify malware and that our detection techniques

are robust to minor variations in malware programs. As a result, after examining a small

set of variations within a family of malware on Android ARM and Intel Linux platforms, we

can detect many variations within that family. Further, we propose hardware modifications

allow the malware detector to run securely beneath the system software, thus setting the

stage for AV implementations that are simpler and less buggy than software AV. Combined,

the robustness and security of hardware AV techniques have the potential to advance state-

of-the-art online malware detection.
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6.1 Introduction

Malware – short for malicious software – is everywhere. In various forms for a variety of

incentives, malware exists on desktop PCs, server systems and even mobile devices like

smart phones and tablets. Some malware pollutes devices with unwanted advertisements,

creating ad revenue for the malware creator. Others can dial and text so-called “premium”

services resulting in extra phone bill charges. Some other malware is even more insidious,

hiding itself (via rootkits or background processes) and collecting private data like GPS

location or confidential documents.

This scourge of malware persists despite the existence of many forms of protection

software, antivirus (AV) software being the best example. Although AV software decreases

the threat of malware, it has some failings. First, because the AV system is itself software, it

is vulnerable to attack. Bugs or oversights in the AV software or underlying system software

(e.g., the operating system or hypervisor) can be exploited to disable AV protection. Second,

production AV software typically use static characteristics of malware such as suspicious

strings of instructions in the binary to detect threats. Unfortunately, it is quite easy for

malware writers to produce many different code variants that are functionally equivalent,

both manually and automatically, thus defeating static analysis easily. For instance, one

malware family in our data set, AnserverBot, had 187 code variations. Alternatives to

static AV scanning require extremely sophisticated dynamic analysis, often at the cost of

significant overhead.

Given the shortcomings of static analysis via software implementations, we use dynamic

analysis of programs to detect malware. We posit that dynamic analysis makes detection of

new, undiscovered malware variants easier. The intuition is as follows: we assume that all

malware within a certain family of malware, regardless of the code variant, attempts to do

similar things. For instance, they may all pop up ads, or they may all take GPS readings.

As a result, we would expect them to work through a similar set of program phases, which

tend to exhibit similar detectable properties in the form of performance data (e.g., IPC,

cache behavior).

In this chapter, we pose and answer the following central feasibility question: Can

dynamic performance data be used to characterize and detect malware? We collect longitu-
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dinal, fine-grained microarchitectural traces of recent mobile Android malware and Linux

rootkits on ARM and Intel platforms respectively. We then apply standard machine learn-

ing classification algorithms such as KNN or Decision Trees to detect variants of known

malware. Our results indicate that relatively simple classification algorithms can detect

malware at nearly 90% accuracy with 3% false positives for some mobile malware.

6.2 Background on Malware

In this section, we provide an abbreviated and fairly informal introduction on malware.

6.2.1 What is Malware and Who Creates It?

Malware is software created by an attacker to compromise security of a system or privacy of

a victim. A list of different types of malware is listed in Table 6.1. Initially created to attain

notoriety or for fun, malware development today is mostly motivated by financial gains [24,

142]. There are reports of active underground markets for personal information, credit cards,

logins into sensitive machines in the United States, etc. [150]. Also, government-funded

agencies (allegedly) have created sophisticated malware that target specific computers for

espionage or sabotage [31, 97, 98]. Malware can be delivered in a number of ways. To list

a few, an unsuspecting user can be tricked into: clicking on links in “phishing” emails that

download and install malware, opening email attachments with malicious pdfs or document

files, browsing web pages with exploits, using infected USB sticks or downloading illegitimate

applications repackaged to appear as normal applications through mobile stores.

6.2.2 Commercial Malware Protections

The most common protection against malware is anti-virus (AV) software. Despite what

the name anti-virus suggests, anti-virus can also detect and possibly remove categories of

malware besides viruses. A typical AV system works by scanning files during load time for

known signatures, typically code strings, of malware. Figure 6.1 shows how anti-virus sig-

natures are prepared: Honeypots collect malware and non-malware which are then analyzed

by humans to create signatures. These signatures are then delivered to the host anti-virus
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Table 6.1: Categories of Malware

Malware Brief Description

Worm Malware that propagates itself from one infected host to other hosts

via exploits in the OS interfaces typically the system-call interface.

Virus Malware that attaches itself to running programs and spreads itself

through users’ interactions with various systems.

Polymorphic

Virus

A virus that, when replicating to attach to a new target, alters

its payload to evade detection, i.e. takes on a different shape but

performs the same function.

Metamorphic

Virus

A virus that, when replicating to attach to a new target, alters

both the payload and functionality, including the framework for

generating future changes.

Trojan Malware that masquerades as non-malware and acts maliciously

once installed (opening backdoors, interfering with system behav-

ior, etc).

AdWare Malware that forces the user to deal with unwanted advertisements.

SpyWare Malware that secretly observes and reports on users computer us-

age and personal information accessible therein.

Botnet Malware that employs a user’s computer as a member of a network

of infected computers controlled by a central malicious agency.

Rootkit Malware that hides its existence from other applications and users.

Often used to mask the activity of other malicious software.
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Figure 6.1: AV signature creation and deployment.

software periodically.

A complementary approach to signature-based detection is also used in practice [131].

In reputation based AV detection, users anonymously send cryptographic signatures of

executables to the AV vendor. The AV vendor then determines how often an executable

occurs in a large population of its users to predict if an executable is malware: often,

uncommon executable signatures occurring in small numbers are tagged as malware. This

system is reported to be effective against polymorphic and metamorphic viruses but does

not work against non-executable threats such as malicious pdfs and doc files [19]. Further

it requires users to reveal programs installed on their machine to the AV vendor and trust

the AV vendor not to share this secret.

6.2.3 How Good is Anti-Virus Software?

Just like any other large piece of software, AV systems tend to have bugs that are eas-

ily exploited, and thus AV protections are easily bypassed. In a recent paper, Jana and

Shmatikov [80] found that all of the 36 commercially available AV systems they examined
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could be bypassed. Specifically, they detected many bugs in the code that parse program

binaries which either allowed bad code to pass undetected or gain higher privilege. They

argued that the problem of building robust parsers (and hence software malware detectors)

is not easy since the number of file formats is quite large, and many of their specifications

are incomplete in several ways. Their paper demonstrates the futility in trying to secure

complex, million-line softwares like AV. Unlike software detectors, the hardware malware

detectors we propose do not have to deal with multiple executable formats. Instead they

work on single input format – integer streams from performance counters. Further, they

are not easily turned off. Thus hardware detectors are significant step towards more robust

detectors.

6.2.4 Malware Arms Race

There is an arms race between malware creators and detectors. The earliest detectors

simply scanned executables for strings of known bad instructions. To evade these detectors,

attackers started encrypting their payloads. The detectors, in response, started scanning

for the decryption code (which could not be encrypted) packed with the malware. The

malware creators then started randomly mutating the body of the payload by using different

compilation strategies (such as choosing different register assignments or padding NOPs)

to create variants [146].

In response to these advances in malware creation, defenders were motivated to con-

sider behavioral detection of malware instead of static signatures. Behavior-based detection

characterizes how the malware interacts with the system: what files it uses, the IPC, sys-

tem call patterns, function calls and memory footprint changes [32, 57, 99]. Using these

characteristics, detectors build models of normal and abnormal program behaviors, and de-

tect abnormal execution by comparing against pre-built behavioral models. Many of these

schemes use machine learning techniques to learn and classify good and bad behaviors from

labeled sets [12, 15, 103, 132].
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6.2.5 Improving Malware Detection

While behavioral schemes permit richer specification of good and bad behaviors than static

checkers, they tend to have high performance overheads since the more effective ones de-

mand creation and processing of control- and data-flow graphs. Because of their overheads

behavior-based detectors are not typically used on end hosts, but analysts in malware-

detection companies may use them to understand malware-like behaviors. All of these

techniques are envisioned to be implemented in software.

In this work, for the first time, we use hardware performance counters for behavior based

detection of malware, and describe the architecture necessary to support malware detection

in hardware. Our performance counter based technique is a low-overhead technique that will

not only allow analysts to catch bad code more quickly, it may also be feasible to deploy our

system on end hosts. Unlike static signature based detection AV, we aim to detect variants

of malware from known malware signatures. Unlike reputation based system our scheme

does not require users to reveal programs installed on their computer.

Recent research has also examined using hardware performance counters for detecting

anomalous program behaviors [108, 160]. This is a different and (intuitively) harder problem

than attempted here. The anomaly detection works aim to detect small deviations in

program behavior during an attack such as a buffer overflow or control flow deviation from

otherwise mostly benign execution. In contrast, we attempt to identify execution of whole

programs such as key logger when it is run, typically as the end result of exploitation such

as buffer overflow vulnerability.

6.3 Key Intuition

A major thesis of this chapter is that runtime behavior captured using performance counters

can be used to identify malware and that the minor variations in malware that are typically

used to foil signature AV software do not significantly interfere with our detection method.

The intuition for this hypothesis comes from research in program phases [78, 134]. We

know that programs exhibit phase behavior. They will do one activity A for a while, then

switch to activity B, then to activity C. We also know that programs tend to repeat these
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Figure 6.2: Performance counter measurements over time in the SPEC benchmark suite.

We also observe readily apparent visual differences between the applications. Intuitively,

we expect it to be possible to identify programs based on these data.
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phases – perhaps the program alternates between activities B and C. Finally, and most

importantly, it has been shown that these phases correspond to patterns in architectural

and microarchitectural events.

Another important property of program phases and their behaviors is that they differ

radically between programs. Figure 6.2 plots event counts over time for several SPEC ap-

plications. In it, we see the differences between the benchmarks as well as interesting phase

behavior. Given these data, it seems intuitive that these programs could be differentiated

based on these time-varying signatures.

Our hypothesis that minor variations in malware do not significantly affect these data

cannot be inferred from previous work. Rather, it is based on two observations:

• First, regardless of how malware writers change their software, its semantics do not change

significantly. For instance, if a piece of malware is designed to collect and log GPS data,

then no matter how its writer re-arranges the code, it still collects and logs GPS data.

• Second, we assume that in accomplishing a particular task there exist subtasks that

cannot be radically modified. For instance, a GPS logger will always have to warm up the

GPS, wait for signals, decode the data, log it and at some future point exfiltrate the data

out of the system. As a result of these invariant tasks, we would expect particular phases

of the malware’s execution to remain relatively invariant amongst variations.

If indeed microarchitectural behaviors remain relatively invariant amongst variations

and they are unique enough to build some sort of signature, then we may be able to use

machine learning (ML) techniques to automatically learn malware behaviors and identify

them in new variants. In the following sections, we will describe an approach to use existing,

well known ML algorithms for exactly this purpose. We will also apply this approach

to malware on Android/ARM and Linux/x86 systems, demonstrating its feasibility and

evaluating several ML algorithms.

6.4 Experimental Setup

Can simple performance metrics be used to identify malware? To answer this question we

conduct several feasibility studies. In each, we collect performance counter data on malware
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and train a set of classifiers to detect malicious behavior. In addition to data from malware

programs, we collect data from non-malware programs (Figure 6.3). Here we describe our

program sets, provide details of our data collection infrastructure, describe our classifiers,

and discuss types and granularity of malware detection.

6.4.1 Malware & Non-Malware Programs Used

In this study we used 503 malware and 210 non-malware programs from both Android ARM

and Intel X86 platforms. The full list of programs is available in the dataset website1. The

malware programs were obtained from three sources. First from the authors of previous work

studying Android malware [163], and second from a website2 that contains a large number

of malware. We also obtained two publicly available Linux x86 rootkits [22, 110]. Data

from non-malware programs serve two purposes: during training as negative examples, and

during testing to determine false positive rates, i.e., the rate of misclassifying non-malware.

For the purposes of this chapter, we use a wide definition of malware. Malware is any

part of any application (an Android APK file or rootkit binary) that has been labeled as

malware by a security analyst. We use this definition to enable experimentation with a

large amount of malware, which is necessary for supervised machine learning.

This definition of malware is, however, imprecise. Much malware comes attached to

legitimate code, so users often execute malware alongside their desired applications. As such,

an accurate definition would require malware samples that have undergone deep forensic

analysis to determine exact portions that result in malicious actions, and to identify inputs

or environmental conditions under which the malware actually performs malicious actions.

As researchers designing a problem for supervised machine learning algorithms, this

presents a particular challenge: what parts of our “malware” data should be labeled as

such for training? Should we label the entirety of the software as malicious while much of

our “malicious” training data could actually be mostly benign? The only other option is to

laboriously pick out the good threads or program portions from the bad. This latter option,

however, is neither scalable nor practical and to the best of our knowledge not available

1http://castl.cs.columbia.edu/colmalset

2http://contagiominidump.blogspot.com/

http://castl.cs.columbia.edu/colmalset
http://contagiominidump.blogspot.com/
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even in datasets from commercial vendors [45].

While our definition of malware is imprecise, it is practical. However, it makes our

classification task more difficult since our classifiers see both malicious behaviors and le-

gitimate behaviors with “malware” labels during training. With more accurate labels we

would likely see lower false positive rates and higher malware identification rates. In other

words, our experimental framework is conservative and one would expect better results in

practice. Our experiments are only designed only to demonstrate feasibility.

6.4.2 Data Collection

Most existing processors have performance counters. They can be configured to count a

variety of events such as cycles, instructions, cache misses, etc. Typically they are used to

assist in software performance optimization. In this chapter, however, we want to collect

time-series data for multiple events simultaneously. For instance, we might want to know

when an application simultaneously has high load density, no instruction cache misses and

perfect branch prediction. This condition could indicate that a cache side-channel attacker

is running.

Unfortunately, existing tools for performance counter collection are not appropriate for

this task. Typical tools configure counters for independent sampling; they set each counter

to overflow and interrupt once every N events and sample the program’s instruction pointer

during each interrupt. Instead, we have written a Linux kernel module that interrupts once

every N cycles and samples all of the event counters along with the process identifier of the

currently executing program. Using this tool we collect multidimensional time-series traces

of applications like those shown in Figure 6.2.

Our data collection tool is implemented on two platforms. For x86 workloads, we run

Linux 2.6.32 on an 8 core (across two sockets) Intel Xeon X5550 PC with TurboBoost

up to 2.67GHz and 24GB of memory. These processors are based on Intel’s Nehalem

design, which implement four configurable performance counters, so our Intel x86 data is 4-

dimensional. For ARM workloads, we run Android 4.1.1-1 which is based on Linux 3.2. We

use a distribution of Android from Linaro that runs on Texas Instrument’s PandaBoard,

a demonstration board for their OMAP4460 processor with dual ARM Cortex-A9 cores.
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Figure 6.3: Our workflow for malware experiments.

ARM architectures of this generation have six configurable performance counters, so ARM

data is 6-dimensional.

Performance As a result of interrupting once every N cycles, the programs we are mon-

itoring suffer some performance degradation. To determine the severity, we run SPEC on

both platforms while collecting performance data once every 10,000 cycles. On Intel, this

results in a 24.7% geomean slowdown; on ARM, a 24.4% geomean slowdown. To mitigate

overheads, for the data collection in the our other experiments we use sampling periods of

50,000 and 25,000 cycles for Intel and ARM respectively. At these periods, the slowdowns

largely go away.

Events On ARM, we configure the counters for the following six events as described by

the ARM reference manual [8]:

0x06 Memory-reading instruction architecturally executed. This counter increments for

every instruction that explicitly read data, including SWP. This counter does not

increment for a conditional instruction that fails its condition code check.

0x07 Memory-writing instruction architecturally executed. The counter increments for

every instruction that explicitly wrote data, including SWP. This counter does not

increment for a Store-Exclusive instruction that fails, or for a conditional instruction

that fails its condition code check.
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0x0C Software change of PC, except by an exception, architecturally executed. This

counter does not increment for a conditional instruction that fails its condition code

check.

0x0D Immediate branch architecturally executed:

• B{L} <label>

• BLX <label>

• CB{N}Z <Rn>,<label>

• HB{L} #HandlerId (ThumbEE state only)

• HB{L}P #<imm>, #HandlerId (ThumbEE state only).

• This counter counts for all immediate branch instructions that are architecturally

executed, including conditional instructions that fail their condition code check.

0x0F Unaligned access architecturally executed. This counts each instruction that is an

access to an unaligned address. That is, the instruction either triggered an unaligned

fault, or would have done so if the CPSR.A bit had been 1. This counter does not

increment for a conditional instruction that fails its condition code check.

0x12 Branch or other change in program flow that could have been predicted by the branch

prediction resources of the processor.

On Intel, we configure the counters for the following four events as described by the

Intel reference manual [76]:

L1D CACHE LD.E STATE Counts L1 data cache read requests where the cache line

to be loaded is in the E (exclusive) state.

L2 RQSTS.LOADS Counts all L2 load requests. L2 loads include both L1D demand

misses as well as L1D prefetches.

UOPS EXECUTED.PORT0 and .PORT1 Counts number of Uops executed that were

issued on port 0/1. Port 0 handles integer arithmetic, SIMD and FP add Uops. Port

1 handles integer arithmetic, SIMD, integer shift, FP multiply and FP divide Uops.
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BR INST EXEC.ANY Counts all near executed branches (not necessarily retired). This

includes only instructions and not micro- op branches. Frequent branching is not

necessarily a major performance issue. However frequent branch mispredictions may

be a problem.

Bias Mitigation We aim to mimic real-world deployment conditions as much as possible

when collecting data. There are a variety of factors that could affect our results: (1) Con-

tamination – malware does its best to infect machines and be persistent, possibly influencing

subsequent data captures. We control for this by wiping and restoring all non-volatile stor-

age in between data captures for different malware families and, more importantly, between

data collection runs of the training and testing set. (2) Environmental noise and input bias:

these two factors cannot be controlled in deployment conditions, so in order to make our

problem both more difficult and realistic, we do not control for them. (3) Network connec-

tivity: some malware requires an internet connection, so our test systems were connected

over Ethernet and were not firewalled or controlled in any way, as they would be in the

wild. (4) User bias: We had three different users collect data in arbitrary order for the

training and testing runs to mitigate systematic biases in interacting with applications. (5)

Ensuring successful malware deployment: We cannot say with certainty if malware actually

worked during a run. While the consequences were clear for some malware such as adware,

for some malware we observed unexplainable behaviors, such as the system crashing. It is

unknown to us whether these bizarre behaviors were intended or not (there are no specifi-

cation documents for malware), so all data collected was included, possibly polluting our

training and testing data, again likely making our classification task more difficult.

6.4.3 Machine Learning Methods

In machine learning, classifiers are able to examine data items to determine to which of N

groups (classes) each item belongs. Often, classification algorithms will produce a vector

of probabilities which represent the likelihoods of the data item belonging to each class. In

the case of malware detection, we can simply define two classes: malware and non-malware.

As a result, the output from each of our classifiers will be two probabilities representing the
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likelihood of the data item being malware.

Features Our data collection produces multidimensional time series data. Each sample

is a vector made up of event counts at the time of sampling. In addition to that, we

can also aggregate multiple samples, and then use the aggregate to build feature vectors.

Aggregation can even out noise to produce better trained classifiers or dissipate key signals

depending on the level of aggregation and the program behavior. In this chapter, we

experiment with a number of different feature vectors: (1) raw samples (2) aggregations

all the samples between context swaps using averages or sums, (3) aggregations between

context swaps (previous option) with a new dimension that includes the number of samples

aggregated in a scheduling quanta, (4) histograms in intervals of execution. This last one,

histograms, breaks up the samples into intervals of fixed size (32 or 128 samples) and

computes discrete histograms (with 8 or 16 bins) for each counter. It then concatenates the

histograms to create large feature vectors (192 or 768 features on ARM).

Classifiers There are a large number of classifiers we could use. Classifiers broadly break

down into two classes: linear and nonlinear. Linear algorithms attempt to separate n-

dimensional data points by a hyperplane – points on one side of the plane are of class X and

points on the other side of class Y. Nonlinear classifiers, however, have no such restrictions;

any operation to derive a classification can be applied. Unfortunately, this means that the

amount of computation to classify a data point can be very high. In choosing classifiers to

implement for this chapter, we choose to focus on nonlinear algorithms as we did not expect

our data to be linearly separable. Here we briefly describe the algorithms we implement:

KNN In k-Nearest Neighbors (KNN), the classifier is trained by inserting the training data

points along with their labels into a spatial data structure like a kd-tree. In order to

classify a data point, that point’s k nearest neighbors (in Euclidean space) are found

using the spatial data structure. The probability that the data point is of each class

is determined by how many of its neighbors are of that class and their Euclidean

distance. We train and test KNN classifiers using k = 5, 10, and 25.

Decision Trees Another way to classify data points is to use a decision tree. This tree
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is built by recursively splitting training data into groups on a particular dimension.

The dimension and split points are chosen to minimize the variance in training data

within each group. These decisions can also integrate some randomness, decreasing

the quality of the tree but helping to prevent over training. After some minimum

variance is met, a maximum depth is reached, or minimum number of data points

remaining in the branch is hit, a branch terminates, storing in the node the mix of

labels in its group. To classify a new data point, the decision tree is traversed to

find the new point’s group (leaf node) and return the stored mix. We train and test

decision tree classifiers with minimum number of training data points per branch of

5, 10, and 25.

Random Forests One way to increase the accuracy of a classifier is to use multiple dif-

ferent classifiers and combine their results. In a random forest, several (or many)

decision trees are built using some randomness. When classifying a new data point,

the results of all trees in the forest are weighted equally. We train and test random

forests with 5, 10, 25, and 50 decision trees.

ANN Finally we attempt classification with Artificial Neural Networks (ANNs). In our

neural nets, we define one input neuron for each dimension and two output nodes:

one for the probability that malware is running, and one for the probability that

non-malware is running. We train and test ANNs using RProp or Quickprop back-

propagation, 3 or 5 layers, and 5 or 10 neurons per layer.

For implementation, we use KNN, Decision Trees, and Random Forests from the Waffles

ML library3. For our ANNs, we use the FANN library4.

Classifying Time-Series Data The ML algorithms listed above are capable of classify-

ing only fixed dimension vectors and thus cannot themselves classify time-series data. To

classify our multidimensional time-series data (a program thread or multiple threads), we

train the classifiers on the vectors from each time step in our data, discarding all notions

3waffles.sourceforge.net 2012-08-31

4fann.sourceforge.net FANN-2.2.0
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or ordering and time. During testing, we run the classifier on each vector in the time se-

ries, resulting in a unidimensional time-series of probabilities that malware is running. To

compute the probability that an entire time-series or multiple time-series were generated

by malware, we simply average the probabilities of all points in time.

6.4.4 Training and Testing Data

As mentioned before many production malware detectors build blacklists using static mal-

ware signatures. As a result, they can only detect malware that the AV vendor has already

discovered and cataloged. Minor variations thereof – which are relatively easy for attackers

to produce – cannot be detected in the wild using existing signatures. If we wanted to,

we could design a hardware detector that works exactly as the software signature AV. We

would evaluate the feasibility of this by running the same malware multiple times under

different conditions to produce the training and testing data. But in this work we want to

design a more robust malware detector that in addition to detecting known malware, will

also detect new variants of known malware. In order evaluate this functionality, we train

a classifier on data from one set of programs – non-malware and variants of malware in a

family. We then test the classifier’s accuracy on different variants of malware in the same

family (and also on non-malware programs). To mitigate bias, the data for training and

testing are collected in separate runs without knowledge of whether the data is to be used

for testing or training. The data is also collected by different users.

6.4.5 Classification Granularity

Our data collection can procure performance counter data every 25,000 or 50,000 cycles with

little slowdown. So in theory we can classify malware at the granularity of each sample.

However, due to large number of small variations in programs we should expect a large

number of false positives. We have indeed found this to be the case, and in fact, we obtained

high false positives even at a coarser granularity of every operating system context swap.

As such, in this chapter, we present classification results for malware at two even coarser

granularities: thread and application group. In the thread based classification, each thread

is classified as malware (or non-malware) by aggregating the classification probabilities for
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all data points in that thread. In application group level classification, we classify Android

Java packages and package families as malware. This approach requires our classifier to

determine if, for example, “com.google.chrome” is malicious or not and allows the classifier

to use samples from any thread executing that code.

6.5 Detecting Android Malware

With the rise of Android has come the rise of Android malware. Android has the con-

cept of permissions; during each package install, software must ask the user permission

to do certain things, i.e., read GPS location, access the network, et cetera. However this

permissions-based approach often fails because users typically provide permissions indis-

criminately or can be tricked into giving permissions by the application. For instance, a

fake application packaged like Skype can trick the user into giving permissions to access the

camera and microphone. In fact, several Android malware applications mask themselves as

legitimate software, and it is not uncommon for malware writers to steal existing software

and repackage it with additional, malicious software.

6.5.1 Experimental Design

The Android malware data sets are divided up into families of variants. In families with

only one variant, we use the same malware but different executions of it for training and

testing. For families with more than one variant, we statically divide them up, using 1
3 for

training and the rest for testing. The names of each family and the number of installers

(APKs) for each can be found in our results, Table 6.2. In total our data set includes nearly

368M performance counters samples of malware and non-malware.

Classifier Parameters The classification algorithms outlined in Section 6.4 can be

parameterized in different ways. For instance, for k-Nearest Neighbors, k is a parameter.

We search a large space of classifiers, varying many parameters. In order to determine the

best set of parameters, we want to choose the classifier that identifies the most malware

correctly. However, as we make the classifier more sensitive, we find more malware but

also identify some legitimate software as malware. In order to determine which classifier
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to use, we find the one that performs best (on the training data) for a given false positive

percentage. As a result, the results we present are not necessarily monotonically increasing.

Re-training Optimization Since malware applications are known to include both

malicious and benign code, we use an optimization to select data points for training that

are more likely to be from the malicious part of an malware package. We first train our

classifier on all data points. We then run all of our training data through this classifier and

sort the data based on the classifier’s score, i.e., we calculate the probability of data being

malware as called by the malware classifier. We then use only the most “malware-like” data

in our training set to re-train the classifier, which we then use in evaluation. The intuition

behind this technique is that the non-malicious parts of our training data are likely to look

a lot like non-malware to the classifier, so we use our initial classifier to filter out those

data. In many cases, this retraining allows us to retrain with a smaller amount of data

while achieving comparable accuracy (and speeding up training and testing.) In the case of

decision trees, we find that this technique significantly improves results. Further, it creates

relatively small decision trees, so the computational requirements of classifying each sample

is orders of magnitude lower than some of the other methods.

Next we report results on detecting malware at the granularity of threads and at the

application level.

6.5.2 Malware Thread Detection Results

Testing The classification metric we use is the percentage of threads correctly classified.

For instance if the malware application has T threads, our classifier, in the ideal case, will

flag only those subset of threads that perform malicious actions. For non-malware, ideally

all threads should be flagged as benign. As mentioned before, the testing data samples are

obtained from a separate run from training and under different input and environmental

conditions. We also use different non-malware applications in testing than in training to

ensure that we do not build a de facto white- or blacklist of applications.

Training We ensure that an equal number of samples from malware and non-malware

are used for training. Strictly speaking this is unnecessary but we did it to prevent our

classifier results from being biased by the volume of samples from the two categories. The
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Accuracy of Malware Thread Classifiers

Excluding 'netd' application

Figure 6.4: The accuracy of binary classifiers in determining whether or not each running

thread is malware.

samples are chosen without any relation to the number of threads to mitigate classification

bias due to thread selection.

Results Figure 6.4 shows malware detection by thread in a form similar to a typical

ROC curve. As expected, if we allow some false positives, the classifiers find more malware.

These results indicate that performance counter data can, with simple analysis, be used to

detect malware with relatively good accuracy. To verify the statistical significance of our

findings, we can show that the malware population is significantly different from the non-

malware population. These populations are constructed from the malware probabilities

of all the threads in each set of threads. Running Student’s T-Test [144] on these two

populations, we find a p-value of 0.0000, demonstrating that our results are statistically

significant.

Further analysis of results shows that a single application makes up the majority of non-

malware during the testing phase. This application is an Android system application called

“netd” and is responsible for dynamically reconfiguring the system’s network stack. As
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Accuracy of Malware Family Classifiers

Figure 6.5: The accuracy of binary classifiers in determining whether families of malware

and normal Android packages are malware.

such, it runs often, and our classifiers are excellent at correctly predicting this application

as non-malware. If we remove this application from our testing data, we obtain the results

inlaid in Figure 4. While they are not as good, they remain positive.

We further break down our results by malware family in Table 6.2. This table shows the

number of APKs we were able to obtain for each family along with the number of threads

observed. It also shows the number of threads that our classifier correctly identified while

maintaining a 10% or better false positive rate. We find a range of results, depending on

the family.

6.5.3 Malware Package Detection Results

Testing For application/package-based malware detection, our classifiers use samples from

all the threads belonging to a particular software. For instance, all of the samples collected

from the testing set of Anserverbot are used to determine whether or not that set of software
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Table 6.2: Malware Families for Training and Testing
Malware Training Testing Threads

Family APKs Threads Threads Flagged Rate

Tapsnake 1 31 3 3 100%

Zitmo 1 5 1 1 100%

Loozfon-android 1 25 7 7 100%

Android.Steek 3 9 9 9 100%

Android.Trojan.

Qicsomos 1 12 12 12 100%

CruseWin 1 2 4 4 100%

Jifake 1 7 5 5 100%

AnserverBot 187 9716 11904 11505 96.6%

Gone60 9 33 67 59 88.1%

YZHC 1 9 8 7 87.5%

FakePlayer 6 7 15 13 86.7%

LoveTrap 1 5 7 6 85.7%

Bgserv 9 119 177 151 85.3%

KMIN 40 43 30 25 83.3%

DroidDreamLight 46 181 101 83 82.2%

HippoSMS 4 127 28 23 82.1%

Dropdialerab 1 18* 16* 13 81.3%

Zsone 12 44 78 63 80.8%

Endofday 1 11 10 8 80.0%

AngryBirds-LeNa.C 1 40* 24* 19 79.2%

jSMSHider 16 101 89 70 78.7%

Plankton 25 231 551 432 78.4%

PJAPPS 16 124 174 136 78.2%

Android.Sumzand 1 8 9 7 77.8%

RogueSPPush 9 236 237 184 77.6%

FakeNetflix 1 27 8 6 75.0%

GEINIMI 28 189 203 154 75.9%

SndApps 10 110 77 56 72.7%

GoldDream 47 1160 237 169 71.3%

CoinPirate 1 8 10 7 70.0%

BASEBRIDGE 1 14* 72 46 63.8%

DougaLeaker.A 6 12* 35* 22 62.9%

NewZitmo 1 5 8 5 62.5%

BeanBot 8 122 93 56 60.2%

GGTracker 1 16 15 9 60.0%

FakeAngry 1 7 10 5 50.0%

DogWars 1 14 8 2 25.0%

* Indicates that data collectors noticed little activity upon launching one or

more of the malware APKs, so we are less confident that the payload was

successfully achieved.
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Table 6.3: Malicious Package Detection Results: Raw Scores

Score Malware Family Score Malware Family Score Malware Family

0.67 YZHC 0.61 CruseWin 0.58 NewZitmo

0.66 Tapsnake 0.61 BASEBRIDGE 0.58 DogWars

0.65 Android.Sumzand 0.61 Bgserv 0.57 GEINIMI

0.65 PJAPPS 0.61 DougaLeaker.A 0.56 FakePlayer

0.64 Loozfon-android 0.61 jSMSHider 0.56 AngryBirds-LeNa.C

0.63 SndApps 0.61 FakeAngry 0.55 Android.Trojan.Qicsomos

0.63 GGTracker 0.61 Jifake 0.53 GoldDream

0.62 Gone60 0.61 RogueSPPush 0.53 RogueLemon

0.62 FakeNetflix 0.60 Android.Steek 0.53 AnserverBot

0.62 Zsone 0.60 Dropdialerab 0.49 Plankton

0.62 CoinPirate 0.60 HippoSMS 0.49 BeanBot

0.62 Zitmo 0.60 Endofday 0.47 LoveTrap

0.61 DroidDreamLight 0.59 KMIN 0.59 Average

Score Goodware

0.55 appinventor.ai todoprogramar.

HappyWheelsUSA

0.53 com.android.keychain

0.53 com.pandora.android

0.51 com.bestcoolfungames.antsmasher

....

0.38 com.twitter.android

0.38 com.android.packageinstaller

0.37 com.android.inputmethod.latin

0.36 android.process.media

0.44 Average
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is malware.

Training In the previous experiment on detecting malware granularity by threads,

we used an equal number of samples for both malware and non-malware, but did not

normalize the number of samples by application or malware family. In this study, however,

in addition to using an equal number of samples for non-malware and malware, we use an

equal number of samples from each malware family and an equal number of samples from

each non-malware application. This ensures that during training our classifiers see data

from any application that ran for a non-trivial amount of time and they are not biased by

application run times during the training phase. Since we want to have equal number of

samples, we leave out short-running applications and malware families that produce fewer

than 1,000 samples.

Results The results of our package classifiers are found in Table 6.3 and Figure 6.5.

The results are equally positive by application as they are for threads. As in the last

experiment (thread results), we ran a large number of classifiers with different parameters

and selected the best parameter for each false positive rate based on the accuracy of the

classifier on the training data (these were 100s of different classifiers). However, unlike the

last study, we found that our decision tree classifiers did near-perfectly on all the training

data so we could not pick one best parameter configuration. In Figure 6.5 we show the best

and worst accuracies we obtained with different parameters for the decision trees which

performed near-perfectly on the testing data. Future work should consider a methodology

for selecting classifier parameters in such cases of ties. The table shows raw classifier scores

for our malware and some non-malware, both sorted by score. The particular classifier

results showcased here aggregate raw decision tree scores from all samples collected from

each malware family and non-malware package. We see that on average our malware scores

are higher for malware than non-malware. There is, however, some overlap, creating some

false positives.

6.5.4 Conclusions on Android Malware

In our experiments we are testing on a different set of variants from those we train on,

showing that our classifiers would likely detect new malware variants in the field that
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Table 6.4: AUC below 10% False Positive Rates

Classifier Thread Detection Package Detection

Decision Tree 82.3 83.1

KNN 73.3 50.0

Random Forest 68.9 35.7

FANN 53.3 38.4

security investigators had not yet seen. Table 6.4 shows the area under the curve for

both schemes with 10% false positives. This is a capability that static signature-based virus

scanners lack, so there is little basis for comparison. We also showed that our results are

consistently positive for two different detection granularities (and thus metrics) increasing

our confidence in our malware detection scheme.

Are these results as good as they can be? We are unable to answer this question. The

reason is that malware often includes both malicious and non-malicious code, but we do

not attempt to separate them. As a result, we label all the threads in malware APKs as

malicious in our testing set. But what if only half the threads are responsible for malicious

behavior whereas the other half are legitimate code which was not present in our training

data? Were this the case, it could well be that we are perfectly detecting all the malicious

threads.

Nonetheless, many of our results are quite promising. For instance, after training on

data from only five of our YZHC variants, the remaining variants are given significantly

higher malware scores than our unseen non-malware. Similarly, after training on only 1
3

of AnserverBot’s variants, threads from the remaining variants are tagged as malware far

more often than are non-malware. With further refinement in terms of labeling data and

better machine learning methods, we expect that accuracy could be improved significantly.

6.6 Detecting Linux Rootkits

Rootkits are malicious software that attackers install to evade detection and maximize their

period of access on compromised systems. Once installed, rootkits hide their presence, typ-

ically by modifying portions of the operating systems to obscure specific processes, network
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ports, files, directories and session log-on traces. Although there exist open-source tools like

chkrootkit5 and rkhunter6 to detect rootkits, their use of known signatures makes it easy for

rootkits to evade detection by varying their behaviors. Furthermore, since these tools work

on the same software level as the rootkits, they can be subverted.

6.6.1 Experimental Design

In this case study, we examine the feasibility of rootkit detection with performance data.

We examine the two publicly available Linux rootkits which give an attacker the ability

to hide log-on session traces, network ports, processes, files and directories. The Average

Coder Rootkit works as a loadable kernel module that hides traces via hooking the kernel file

system function calls [110]. The Jynx2 Rootkit functions as a shared library and is installed

by configuring the LDPRELOAD environment variable to reference this rootkit [22].

To exercise these rootkits, we run the “ps”, “ls”, “who”, and “netstat” Linux commands

and monitor their execution. The Average Coder rootkit is used to hide processes, user

logins and network connections whereas the Jynx2 rootkit affects “ls” to hide files. To

introduce some input bias and collect multiple samples for both training and testing, we

run each command with a variety of different arguments. We run half the commands before

the rootkit is installed and half after. After data collection, we split the executions up into

training and testing sets. Since we do not repeat commands with the same arguments,

our training data are input biased differently from our testing data, making the learning

task both more difficult and more realistic. To increase the variability in our data, we

also simulate various user actions like logging in/out, creating files, running programs and

initiating network connections. Lastly, to protect against contamination, we wiped our

system between installation of the rootkits and collection of “clean” data.

For this case study, we also show the results from an additional classifier: tensor density.

This classifier discretizes the vector space into many buckets. Each bucket contains the

relative density of classes in the training data set. A data point is classified by finding its

bin and returning the stored mix. Although simple, the tensor has O(1) lookup time, so

5http://www.chkrootkit.org/

6http://rkhunter.sourceforge.net/

http://www.chkrootkit.org/
http://rkhunter.sourceforge.net/
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the classifier is very time-efficient.

6.6.2 Results

We experimented with five different classifiers, the results of which are presented in Fig-

ure 6.6. The “combined” classifier was trained and tested on all of the above programs

whereas the other experiments used data from only one of the programs.

Our rootkit identification results are interesting, though not quite as good as the results

presented for Android malware in Section 6.5. The reason rootkit identification is extremely

difficult is that rootkits do not operate as independent programs. Rather, they dynamically

intercept programs’ normal control flows. As a result, the data we collect for training is

affected only slightly by the presence of rootkits. Given these difficulties, we believe our

rootkit detection shows promise but will require more advanced classification schemes and

better labeling of the data to identify the precise dynamic sections of execution that are

affected.

6.7 Side-Channel Attacks

As a final case study, we look at side-channel attacks. Side-channel attacks are not consid-

ered malware. However, they also threaten security, and we find that our methods can be

used even to detect these attacks.

In a side-channel attack unintentional leaks from a program are used to infer program

secrets. For example, cryptographic keys can be stolen by observing the performance of the

branch predictor or of the caches for many microprocessor implementations. Nearly any

system is vulnerable to side-channel attacks [40].

In a microarchitectural side-channel attack, a victim process is a process that has secrets

to protect and an attacker process attempts to place itself within the system in such a way

that it shares microarchitectural resources with the victim. Then it creates interference

with the victim, e.g., thrashes a shared resource constantly so as to learn the activity of the

victim process with respect to that shared resource. The interference pattern is then mined

to infer secrets. Since the attackers’ interference pattern is programmed we intuitively
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Combined Rootkit Classifier

ls netstat

ps who

Figure 6.6: Accuracy of rootkit classifiers on several applications in addition to a classifiers

trained and test on all of the applications combined.
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expect that attacker programs that exploit microarchitectural side-channels should have

clear signatures.

Experimental Design To test our intuition we examine one very popular class of side-

channel attacks known as a cache side-channel attack. We hypothesize that one particular

method for this type of attack - the prime and probe attack method - is a good target for

hardware anti-virus. To test our hypothesis, we implement several variants of the standard

prime-and-probe technique. In this technique, an attacker program writes to every line

in the L1 data cache. The program then scans the cache repeatedly — using a pattern

chosen at compile time — reading every line. Whenever a miss occurs, it means there was

a conflict miss caused by the victim process sharing the cache. The result of a successful

prime-and-probe attack is data about the cache lines used by the victim process over time.

Using OpenSSL as the victim process, we compare cache side-channel attack processes

against a wide array of benign processes. These benign programs include SPEC2006 int,

SPEC2006 fp, PARSEC, web browsers, games, graphics editors and other common desktop

applications, as well as generic system-level processes.

Results We train our machine learning algorithms on one third of our total data: 3872

normal program threads and 12 attack threads. We then test our classifiers on the other

2
3 of the data. Our results in this case are perfect. We catch 100% of the attackers and

do not have any false positives on all four classifiers we used. These results demonstrate

that cache side-channel attacks are easy to detect with performance counters. We have

tested a sub-type of side-channel attacks on one microarchitectural structure but it is likely

that other types of microarchitectural side-channel attacks are also detectable. While these

initial results are promising further study is necessary to prove this hypothesis.

6.8 Hardware Support

Moving security protection to the hardware level solves several problems and provides some

interesting opportunities. First, we can ensure that the security system cannot be dis-

abled by software, even if the kernel is compromised. Second, since the security system

runs beneath the system software, it might be able to protect against kernel exploits and
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other attacks against hypervisors. Third, since we are modifying the hardware, we can

add arbitrary static and dynamic monitoring capabilities. This gives the security system

unprecedented views into software behavior.

The overall hardware security system that we propose is shown in Figure 6.7. The

system has four primary components:

Data Collection We must define what data the security processor can collect and how

that data is collected and stored.

Data Analysis The security system must analyze incoming data to determine whether or

not malicious behavior is occurring.

Action System If a threat is detected by the system, it must react in some manner. This

may involve measures as extreme as shutting down the system or as mild as reporting

the threat to a user.

Secure Updates Any security measure must, from time to time, be updated to deal with

the latest malware. However, these updates must be secure to ensure that only a

trusted authority can update the system.

There are many ways to implement a hardware malware detector. The most flexible

solution is to allocate one or more general-purpose cores which allows any classification al-

gorithm to be used for detection. Alternatives include microcontrollers or microcontrollers
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with special-purpose malware detection units that are located on chip, on-chip/off-chip

FPGA, and off-chip ASIC co-processor. These choices represent different trade-offs in terms

of flexibility and area- and energy-efficiency that need to be explored in detail in the future.

In the rest of the section, however, we focus on the backbone system framework required to

realize any of these design choices. As we discuss the system framework, we make recom-

mendations or highlight research advancements needed to enable online malware detection

with performance counters.

But first, a note on terminology: irrespective of the design choice i.e., microcontroller,

accelerator, big or little cores, on-chip unit or off-chip co-processor, FPGA or ASIC, we

refer to the entity hosting the classifier algorithm as the AV engine and the units running

the monitored programs as targets.

6.8.1 System Architecture

The system architecture should allow the AV engine: (1) to run independently of any

operating system or the hypervisor, and at the highest privilege level in the system. This is

to enable continuous monitoring of software at all levels in the stack (2) to enable access to

physical memory to store classifier data and (3) to provide strong memory and execution

isolation for itself. Isolation ensures that the AV engine is not susceptible to denial-of-

service attacks due to resource provisioning (e.g., memory under- or over-flow), or resource

contention (e.g., stalling indefinitely due to excessive congestion on the network-on-chip).

Some of these features already exist in processor architectures today. For instance,

AMD processors allow a core to carve out a region of the physical memory and lock down

that physical memory region from access by other cores [10]. Similarly, some architectures

support off-chip coprocessors to have dedicated and isolated access to physical memory

through IOMMUs. These features must be extended with mechanisms that guarantee

starvation-freedom in shared resources such as the memory controller and in the network-

on-chip (or buses in the case of an off-chip AV) to ensure robust communication between

the AV engine and the targets.

Recommendation #1 Provide strong isolation mechanisms to enable anti-virus soft-

ware to execute without interference.
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6.8.2 Data Collection

From the perspective of implementing an A/V engine in hardware, no additional information

beyond performance information and thread ID is necessary for thread-based classification.

For application-level classification, hardware will need application level identifiers associated

with each thread. Thread IDs can already be obtained by hardware.

The AV engine receives performance counter information periodically from the targets.

In our experiments, the data from the performance counters is fetched once every 25,000

cycles. This translates to a bandwidth requirement of approximately a few hundred KB/s

per target. If the number of active targets (which is at most cores-times-simultaneous-

threads many) is not too large like in today’s systems, we can design off-chip AV engines

using simple serial protocols (such as I2C) with round-robin collection of data from targets.

However, as the number of cores increases, on-chip solutions will become more relevant.

Performance data can be either pulled or pushed from the targets. In the pull model –

the model used in our experiments – the targets are interrupted during execution to read

their performance counters which impacts performance (roughly 5% empirically). If future

hardware support allows performance counters to be queried without interruption, these

overheads can be reduced to effectively zero. Another modification that would simplify the

design of the AV engine would be to set up the counters to push the data periodically to

the AV engine.

The amount of storage required to store the ML data varies greatly depending on the

type of classifier used for analysis. For the KNN algorithm, the data storage was roughly 50

MB for binary classification. On the other hand, other analyses needed only about 2.5 MB.

Given the variability in storage size and the amount needed, it appears that AV engines will

most certainly need mechanisms to access physical memory for retrieving stored signatures.

Recommendation #2 Investigate both on-chip and off-chip solutions for the AV im-

plementations.

Recommendation #3 Allow performance counters to be read without interrupting

the executing process.

Recommendation #4 Ensure that the AV engine can access physical memory safely.
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6.8.3 Data Analysis

A wide variety of classifiers can be implemented for data analysis. In this chapter we exper-

iment with four well-known classifiers to estimate their potential for malware identification.

Most likely, advances in machine learning algorithms and implementations will enable bet-

ter classification in the future. To allow for this flexibility it appears that general purpose

cores are preferable to custom accelerators for the AV engine. However, the AV engine may

present domain-specific opportunities for instruction customization, such as special types

of memory instructions or microarchitectural innovations in terms of memory prefetchers.

A classification scheme is at best as good as the discerning power of its features. We

show that current performance counters offer a good number of features that lead to good

classification of malware. However, it is likely that the accuracy can be improved further

if we included more features. Thus, we add our voice to the growing number of perfor-

mance researchers requesting more performance counter data in commercial implementa-

tions. Specifically, from the point of view of our malware detection techniques, information

regarding instruction mixes and basic block profiles for regions would be very helpful. These

inputs can inform the analysis of working-set changes.

Recommendation #5 Investigate domain-specific optimizations for the AV engine.

Recommendation #6 Increase performance counter coverage and the number of coun-

ters available.

6.8.4 Action System

Many security policies can be implemented by the AV engine. Some viable security policies

are:

• Using the AV engine as a first-stage malware predictor. When the AV engine suspects a

program to be malicious it can run more sophisticated behavioral analysis on the program.

Hardware analysis happens ‘at speed’ and is orders of magnitude faster than behavioral

analysis used by malware analysts to create signatures. Such pre-filtering can avoid costly

behavioral processing for non-malware programs.

• Migrating sensitive computation. In multi-tenant settings such as public clouds, when the
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AV engine suspects that an active thread on the system is being attacked (say through a

side-channel) then the AV engine can move the sensitive computation. Of course, in some

scenarios it may be acceptable for the AV system to simply kill a suspect process.

• Using the AV engine for forensics. Logging data for forensics is expensive as it often

involves logging all interactions between the suspect process and the environment. To

mitigate these overheads, the information necessary for forensics can be logged only when

the AV engine suspects that a process is being attacked.

Thus there are a broad spectrum of actions that can be taken based on AV output. The

AV engine must be flexible enough to implement these security policies. Conceptually, this

means that the AV engine should be able to interrupt computation on any given core and

run the policy payload on that machine. This calls for the AV engine to be able to issue a

non-maskable inter-processor interrupt. Optionally, the AV engine can communicate to the

OS or supervisory software that it has detected a suspect process so that the system can

start migrating other co-resident sensitive computation.

Recommendation #7 The AV engine should be flexible enough to enforce a wide

range of security policies.

Recommendation #8 Create mechanisms to allow the AV engine to run in the highest

privilege mode.

6.8.5 Secure Updates

The AV engine needs to be updated with new malware signatures as they become available

or when new classification techniques are discovered. The AV update should be constructed

in a way to prevent attackers from compromising the AV. For instance, a malicious user

should not be able to mute the AV or subvert the AV system to create a persistent, high-

privilege rootkit.

We envision that each update will contain one or more classifiers, an action program that

specifies security policies, a configuration file that determines which performance features

are to used with what classifiers, and an update revision number. This data can be delivered

to the AV engine securely using techniques used for software signing but requires a few

tweaks to allow it to work in a hardware setting. The process is described in Figure 6.7.
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First, we require that the AV engine implements the aforementioned flowchart directly

in hardware: this is because we do not want to trust any software, since all software is

potentially vulnerable to attacks. Second, we require hardware to maintain a counter that

contains the revision number of the last update and is incremented on every update. This

is to prevent an attacker from rolling back the AV system, which an attacker might do to

prevent the system from discovering new malware. The AV engine offers this protection by

rejecting updates from any revision that is older than the revision number is the hardware

counter. In other words, there are fast-forwards but no rewinds.

Recommendation #9 Provide support in the AV engine for secure updates.

6.9 Conclusions

In this chapter we investigate if malware can be detected in hardware using data available

through existing performance counters. If possible, it would be a significant advance in the

area of malware detection and analysis, enabling malware detection with very low overheads.

Further, it would allow us to build malware detectors which are invisible to the system, in

the hardware beneath the operating system.

The intuition that drove us to ask this question was the observation that programs

appear to be unique in terms of their time-series behavior, while variants of the same

programs do similar things. Our results indicate that this intuition is true. We can often

detect small changes to running programs (rootkit detection) or be somewhat insensitive to

variations (malware detection) depending on how we train our classifier.

We demonstrate the feasibility of our detection methods and highlight the increased

security from leveraging hardware, but more research is necessary. First, our detector

accuracy can be improved. This will involve further research into classification algorithms

and ways to label malware data more accurately. Second, our classifiers are not optimized

for hardware implementations. Further hardware/algorithm co-design can increase accuracy

and efficiencies.

Despite our results it is not clear if dynamic analysis like ours provides a significant

advantage to defenders in the malware arms race. While we are able to detect some variants,
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could virus writers simply continue permuting their malware until it evades our detector?

Would this level of change to the virus require some human intervention, making the task

more difficult? We suspect that our techniques increases difficulty for virus writers. This is

because the virus writer now needs to take into account a wide range of microarchitectural

and environmental diversity to evade detection. This is likely difficult, thus the bar for

repeatable exploitations is likely to be higher. However, this topic merits further study.
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Chapter 7

Recommendations for Data

Collection and Processing

Since this dissertation is about measurement and analysis, we have implemented data collec-

tion and processing infrastructures for each of the described projects. This implementation

has been instructive in terms of providing guidance and lessons for how these systems should

be implemented in the future. In this chapter, we reflect on some of the implementation

difficulties and providing some recommendations for future systems.

7.1 Software for Data Collection, Storage, and Analysis

Each of the projects described in this dissertation involved the collection of data (through

measurement hardware or simulation software), storing this data, and analyzing the data

with custom software. In this section, we review the technical requirements of each project

from a software perspective and make some recommendations for scientific database software

based on our experience.

7.1.1 Requirements

While the data storage and processing requirements of this dissertation’s projects may sound

like exactly the job of a database, no existing database system had both the capabilities

ease-of-use we required. Instead, for each project a rather large amount of infrastructure
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Figure 7.1: Interactions between various softwares and steps in all four projects.

was developed to fulfill these needs and non-trivial amounts of data management were

conducted manually. For two of the projects a database was used, but only for the storage

requirement. Ideally, a database system would have assisted in all three stages.

The interactions for these various pieces are shown in Figure 7.1. There are two big

logistical problems we encountered which could be fixed with better software: (1) The

two pieces of custom software tend to change often to support new features and fix bugs.

The problem is that whenever one changes, it can affect the data which was collected or

the analysis of the data. (2) Neither piece of custom software (which could be written

in a variety of different languages) is able to nicely integrate with the database software.

Instead, they are merely clients of the database software; this works, but often it means that

the analysis software simply reads all the necessary data out of the database and does all

its processing in its own memory. As a result, much of the analysis software has rather long

runtimes (mostly copying data from the database) even though its analysis is very simple.
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7.1.2 Recommendations

Instead of a traditional database system, a data processing controller is needed. A user

should be able to quickly and easily define versioned software which can produce data,

and versioned software which operates on stored data. The system could initiate either

analysis or data collection and records results along with version information about the

software which produced it. For efficiency, it also needs some way of providing access to

data with little overhead and providing some data analysis primitives. Ideally, the system

could simply share the memory space of its data with the custom software and provide a

library for database operations.

Finally, this system must be very easy to use. Technically, existing SQL databases

support all of these features through to use of user-defined functions, other plugin methods,

and by attempting to program some of the analyses in SQL. However, the structure and

programming of their plugin systems tend to be rather Byzantine. Further, setting up and

maintaining schemas for traditional databases adds too much overhead to development;

often it is difficult to plan out the necessary data format before hand. Finally, though some

of the analyses in this dissertation could have been coded in SQL or a data query language,

many were quite complicated and required low-level languages like C++ in order to operate

at sufficient speed.

Some of the requirements listed here are similar to those of SciDB [36, 143]. In particular,

issues of not overwriting data and provenance are essentially the same. SciDB is also

intended for environments where fast, efficient data analysis is key, though their plugin

system seems no less complex than is traditional. Also, SciDB requires predefined schemas

and does not integrate with source code versioning systems. With some further integration

work, however, SciDB could fill the role which these projects required.

7.2 Hardware for Measurement

One of the central focuses of this dissertation is data collection, an often difficult task

involving several trade-offs. We have noted in previous chapters that hardware performance

counters have distinct potential to make accurate and precise data collection relatively easy,
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though they currently do not support many features. In this section, we motivate and

propose a series of improvements for on-chip data collection.

7.2.1 Introduction

Collecting data about programs’ execution tends to be difficult, often requiring the use of

simulators or emulators to get detailed information. The one exception to this rule is sam-

pling performance counters, which make finding program hot spots relatively easy. While

the basic idea of performance counters – hardware support for detailed system monitoring

– has much promise, existing performance counters can be difficult to use for anything but

their intended purpose. The reason for this state of affairs is that processor companies (In-

tel, most importantly) view performance optimization to be the only important application

of program analysis.

As some of the projects in this dissertation have shown, however, there are a variety

of potential uses for various pieces of information about program behavior. As the LiMiT

project’s case studies showed, precise measurements using performance counters alone can

reveal interesting, useful data. In fact, all of the projects in this dissertation used program

behavior information, the collection of which was more difficult than should have been

necessary:

Side-Channel Vulnerability Factor In SVF (Chapter 4), we collected two traces with

which to compute leakage through a system. Our study involved changing many mi-

croarchitectural parameters, so we required the use of a simulator. However, we would

also like to be able to measure SVF on a real system. Collecting the attacker trace

would be relatively easy as all we would need to do is execute an attacker. However,

recording the victim trace may be difficult. In our study, we used victim memory ac-

cesses, the collection of which would create far too much overhead in software. Were

there hardware support for monitoring the memory access trace, we could measure

the same SVF on a real system.

Approximate Graph Matching In the Centrifuge project (Chapter 5), we used some

dynamic information about functions in their clustering. Most prominently, we used
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dynamic data flow graphs as one of our models. Collecting the data flow graphs

required the use of PIN, and had very high overheads when running the programs.

As a result, we used small inputs to ensure the benchmarks did not execute for very

long.

Malware Detection The malware detection project (Chapter 6) used existing perfor-

mance counters to collect data. However, we had to use software interrupts to do the

actual data collection, limiting the granularity at which we could monitor software

without introducing large overheads and thus distorting the data. Ideally, we would

have been able to configure the performance counters to automatically send periodic

samples to a separate hardware unit or stream into memory.

It’s not just research projects which could benefit from better hardware support for

program monitoring. Many often-used applications rely on these data:

Valgrind is a tool which tracks memory allocations, loads, and stores in order to find bugs.

While its most frequent use is identifing memory leaks, it also catches accesses to in-

valid memory locations, loads from uninitialized locations, and several other common

memory-related programming mistakes. It is generally considered good practice to

run it on all C/C++ programs, however its overhead often makes it difficult to use.

The overhead is a result dynamic monitoring of the application being run – since there

is no hardware monitoring support, Valgrind must either emulate the processor or use

dynamic binary translation to write instrumentation into the program.

PIN is a library from Intel which allows programmers to instrument programs with ar-

bitrary monitoring code [107]. It can be used to record full program traces, count

dynamic instructions, monitor memory accesses, and many other things. It is very

commonly used in program analysis research, however it can often have a very high

runtime overhead, often making it inappropriate for production use.

Security often relies on monitoring programs’ behavior. Several security proposals involve

dynamic monitoring of fine-grained program behaviors, which can create too much

overhead to be considered acceptable. Dynamic auditing could catch deviations from
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normal operation, indicating the process has been exploited. Schemes which moni-

tor control and data flow to identify malware could be more effective than existing

antivirus, which primarily use static analysis.

Given the usefulness of program behavior data, in this chapter we propose a set of

hardware modifications to expose a variety of information about programs’ behavior. In

the first section (7.2.2), we give several very simple modifications and discuss some of

AMD’s recommendations for enhanced performance counting. In the second section (7.2.3),

we outline a more comprehensive framework for data collection which we argue would be

useful, but would require extensive changes to existing processor designs.

7.2.2 Better Precise Performance Counting

Some modest modifications to existing performance monitoring hardware can reduce the

complexity and overheads of precise counting with tools like LiMiT. The operations sug-

gested below will reduce LiMiT’s read routine from five instructions down to one and

reduce the overhead of frequent counter usage patterns. Such low overheads would encour-

age programs to self-monitor and adapt to changing conditions.

Enhancement #1: 64-bit Reads and Writes LiMiT’s overflow handling is necessi-

tated by a lack of full 64-bit read and write support. With 31-bit counters, the counters

can overflow every 0.72 seconds, but with 64-bit support they would require centuries to

overflow. More recent Intel processors allow full 48-bit writes to performance counters, re-

ducing the number of overflows, but not removing the problem entirely. Until such simple

support can be added LiMiT will have a vital role in low overhead precise performance

measurement.

Enhancement #2: Destructive Reads When characterizing code segments, a differ-

ence in counts between two points in the program is often required. A destructive read

instruction – one that zeros the counter after reading it – could eliminate the currently

necessary subtraction in many cases when counters are used.
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Enhancement #3: Combined Reads Currently, the x86 performance counter read

instruction requires that the %ecx register contain the number of the counter to be read.

Were this integrated into the instruction as an immediate, another instruction would be

eliminated.

A further proposal for hardware support is AMD’s Lightweight Profiling [5]. LWP adds

a huge amount of flexibility to performance counters, and would significantly reduce the

overhead of self-monitoring were it to be implemented. Among the most interesting features

of LWP:

• LWP allows the user process access to all necessary control structures so zero inter-

actions with the operating system are necessary, aside from proper save and restore

support for these control registers (which LWP also facilitates).

• LWP adds an new instruction which tells the performance counters to record their

contents along with some other configurable information (like the current instruction

address) and put these data in a ring buffer. This further reduces the inaccuracy of

precise measurements as it delays any necessary data processing and storage overhead

away from the region being measured.

7.2.3 A Comprehensive Data Collection Framework

To support a variety of applications, we propose adding an “Enhanced Monitor Unit”

(EMU) to each core in a system. The EMU would be capable of monitoring instruction

retirement, memory accesses, and the existing performance counters. This would allow it

to access any potential piece of architectural data in addition to existing microarchitectural

performance event counts.

After filtering events to include only those of interest to the user, the EMU would

emit a stream of events to one of several possible destinations, as shown in Figure 7.2.

We propose that the EMU be capable of targeting both on- and off-chip destinations to

facilitate a variety of usages. For instance, for applications requiring only a small amount

of processing, one may want to use another core on the same chip to do data analysis, an

option which may be ideal for the malware detection discussed in Chapter 6. Alternatively,
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Figure 7.2: An enhanced monitoring unit (EMU) would be capable of monitoring a variety

of events. Users could then configure it to filter the events to only those of interest and send

the events stream to a destination. Possible destinations include memory for later analysis,

other cores for online analysis by software, or off-chip via PCIe to be handled by custom

devices.
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some EMU use cases may be high-bandwidth and require high-bandwidth storage or on the

fly processing. For those tasks, data could be streamed to a custom device (like an FPGA)

via PCIe as proposed by Tiwari et al. [148].

We propose that the EMU emit data on a separate data bus and be capable of sending it

to either other cores on chip or off-die. The separate bus is necessary so that the operation of

the EMU does not impact the normal operation of the application which is being monitored.

As an alternative, if the EMU’s traffic requirements are low enough, it might be able to

piggy-back on the cache hierarchy interconnect (but not the caches themselves); however

that interconnect would have to ensure that the EMU traffic is given a lower priority.

Since the bandwidth which the EMU may require appears to be key in its design, we

examine potential event stream bandwidths in Table 7.1. These data indicate that some

event streams are simply too high-bandwidth for any destination to keep up with. However,

in many cases the maximum possible bandwidth is much higher than a more reasonable

expectation. For instance, it may be useful to monitor the full stream of retired instruction

addresses. Since modern processors can retire up to about four instructions per cycle at

2 GHz and instruction addresses are 8 bytes, this stream could require a 64 GB/s link –

too high for nearly any data sink or interconnect to handle. However, the EMU actually

only needs to transmit an instruction address whenever a branch is taken. Also, processes

almost never reach their peak speed; typically they achieve a bit more than 1 IPC. Taking

those factors into account, the instruction address stream is more likely to require only

3.2 GB/s – a managable bandwidth, even over a PCIe link. The same is true of several

other event streams. Accordingly, it is likely feasible to pipe performance data off-chip for

analysis, reducing or eliminating the need for on-chip software to do it, thereby reducing

perturbation.

We have not evaluated the area impact of providing the EMU or EMU interconnect on

a processor, so it is unclear how much cost it would add. However, if this cost is determined

to be low, we believe it would be beneficial to add EMUs to future processors.
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Event Events / Cycle Max B/W at 2GHz

Retired Instruction Addresses 4 maximum 64 GB/s

with average basic block size of 5 and IPC of 1 0.2 expected 3.2 GB/s

Memory Load/Store Addresses 2 max 32 GB/s

with load/store density of 1
4 and IPC of 1 0.25 expected 4 GB/s

Performance Counters 4 maximum 64 GB/s

sampling at 100 cycle period 0.04 0.64 GB/s

All 64-bit instruction results 4 maximum 64 GB/s

with IPC of 1 1 expected 16 GB/s

I/O Method Bandwidth

PCIe Gen3 x16 15.75 GB/s

PCIe Gen4 x16 31.51 GB/s

DDR3 Single Channel 24 GB/s

Intel QPI 32 GB/s

Table 7.1: Event streams which the EMU should handle and necessary bandwidths for each

assuming a microarchitecture similar to an Intel Nehalem.
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Chapter 8

Concluding Remarks

In this dissertation, we have presented four case studies in the use of advanced measure-

ment and analysis. We have also argued for more quantitative analysis techniques, better

hardware support for measurement, and software tools for data management and analysis.

We conclude with a summary of the dissertation and two notes: first, some lessons learned.

Second, an argument against our main thesis of quantitative methods.

8.1 Summary & Contributions

LiMiT In Chapter 3 we introduced a new method of using existing performance counters

to measure code regions precisely. Our novel method requires only 11ns to read counters,

23x faster than existing interfaces – reducing perturbation, thus increasing accuracy – while

still preserving thread isolation. As a result of our low overhead technique, we were able to

conduct several case studies examining the behavior of fine-grained locks and system library

calls in production software like Firefox, Apache, and MySQL. We found that production

applications differ significantly from the existing, popular Parsec [18] benchmark suite,

motivating a new suite or methods to avoid using benchmarks suites entirely. We also

demonstrated the value and potential of hardware-based measurement systems for collecting

data both precisely and accurately, two attributions which otherwise must often be traded-

off with each other.
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SVF In Chapter 4 we introduced a framework for defining metrics for side-channel secu-

rity. Side-channel information leaks have been demonstrated to reveal information about

secrets like encryption keys and encrypted data, making them potentially very dangerous.

While both attacks and defenses have been published, there is no clear way to measure the

efficacy of defenses or systems’ vulnerability to attack. SVF takes a black box, experimental

approach and defines this vulnerability as the leakage of computationally recognizable pat-

terns through the system. In defining SVF in a very generic manner with few assumptions

and little intuition about the system being measured, we found many surprises about cache

side-channel leakage via a case study. In fact, it seems that “cache side-channel” is often a

misnomer. We conclude that side-channel information leakage a system-level properly and

very difficult to intuitively reason about, motivating quantitative methods further.

Centrifuge In Chapter 5 we introduced a technique for approximately clustering pro-

gram graphs. This technique can be used to assist in program comprehension by finding

and grouping functions which are similar in terms of their program graphs. In a case study

of functions in SPEC 2006 [67], we found that functions clustered based on their dynamic

data flow graphs also react similarly (in terms of performance) to advanced compiler op-

timizations. Perhaps more interestingly, we found examples of functions which are very

similar – based on their program graphs and optimization reactions – but whose code does

not appear at all similar. These examples represent similarities which would not have been

caught by manual inspection.

Malware Detection In Chapter 6 we introduced methods to use standard machine learn-

ing algorithms on performance counter data to learn the behaviors of malware and detect

new versions of them. This system has two advantages: First, because it is dynamic, behav-

ior based detection, it is able to detect new variants of old malware. Second, the methods

we used were entirely automated. This is in contrast to production antivirus systems, which

are typically manually written softwares composed of millions of lines of code, the bugs in

which can sometimes be used to subvert the AV protection. Although the results of our

case study were not sufficiently positive to replace existing AV systems, we conclude that

automated learning techniques have promise.
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8.2 Lessons Learned

Support for Measurement The LiMiT project discussed in Chapter 3 demonstrated

the utility of performance counting beyond traditional hot-code profiling. Its technique

for reading the counters significantly reduced the overhead of using existing counters for

precise instrumentation of code. The malware detection project in Chapter 6 also used

performance counters differently than their intended purpose. In both cases, the overhead

of using counters was relatively low (compared to other techniques), so inaccuracy was also

kept relatively low. Indeed, hardware support for measuring both software and hardware is

likely the only way to shift the accuracy-precision trade-off curve we discussed in Chapter 2.

To that end, we would like to see better support; in Section 7.2.3 we outline a system which

would allow measuring a larger variety of characteristics at an even finer granularity with

less perturbation and thus lower inaccuracy. Such a system may be useful beyond research,

specifically in security for software behavior auditing.

Unbiased, Black Box Investigation When we started building the simulator used in

SVF (Chapter 4), we at first set out to build a cache-only simulator – why bother with more

when we are investigating cache side-channel attacks? However, we ended up concluding

that side-channel leakage has to be investigated in a system context; hardware systems

have so many moving parts that it is never clear exactly which is causing a particular

phenomenon, if it can even be attributed to a single part. In the simulated system we built,

the pipeline turned out to leak just as much as the cache. It wasn’t far from pure serendipity

which caused us to even model the pipeline in the simulator. And therein lies the lesson.

Without an unbiased, quantitative investigation like SVF allowed, this phenomenon would

likely not have been considered. By treating the hardware like a black box and poking it

like a young child scientist pokes an ant, a new possibility in our thinking arose. Very little

investigation of man-made systems (like computer hardware) use this approach, but it has

value.

Unbiased, Automated Investigation Two of the projects presented in this dissertation

relied on automated methods for analysis. In the Centrifuge project of Chapter 5, we
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presented a technique to cluster similar functions based on approximate graph matching.

The results were quantitatively good, but many of the resulting clusters were qualitatively

unintuitive. Similarly, the malware detectors shown in Chapter 6 used labeled data, but no

addition intuition was used in their training. We somewhat surprisingly found that families

of applications could be identified (with reasonable accuracy) based entirely on a large

collection of low-dimensional vectors – no approximate instruction matching, static analysis,

or eyeballing required. In both cases, the unintuitive or surprising results occurred only

because we used automated methods. While automation enabled both studies in dealing

with the sheer scale of data, it also served another, more important purpose: Automation

allowed us to remove as much personal bias as possible.

Informing Qualitative Understanding It is not always possible to completely solve

a problem using quantitative methods. Some problems are not easily quantified, some

do not yet have methods which can be applied. Conversely, not all quantitative methods

necessarily have a well defined problem or need be constrained to the problem for which

they were developed. SVF is not yet a complete solution for measuring leakage – it requires

some knowledge about the method of attack. We have used LiMiT many times to take

interesting measurements which did not have practical use. Phase analysis [134] – used by

both SVF and our malware detection project – reveals very interesting program behavior;

yet, its stated use would constrain it to finding representative samples of within a program’s

execution. Centrifuge merely organizes code and does not directly result in useful new

innovations, yet we gained several interesting new insights.

We argue for a new problem for which all quantitative methods should be considered

partial solutions: comprehension. What are programs doing? How does hardware work?

Understanding some new aspect, gaining some interesting insight, or otherwise informing

one’s intuition are worthy goals in and of themselves, even if this new knowledge has no

immediate application or impact.
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8.3 An Argument Against Quantitative Methods

This dissertation has argued strongly for the use of quantitative methods whenever possible,

eschewing intuition as much as possible. Quantitative methods are a core tenet of science;

they have led the way from alchemy and bloodletting to material sciences and modern

medicine. Our thesis, therefore, is an argument with which few would likely disagree. So

allow us to disagree and make an argument against quantitative methods:

Relying entirely on quantitatively driven investigation can lead to incrementalism. Take,

for example, the Copernican Revolution. When he introduced it, Copernicus’ heliocentric

model of the cosmos was not able to produce more accurate predictions of planetary po-

sitions than the Ptolemaic model it was intended to replace. In fact, as observations of

planetary positions grew in accuracy, the Ptolemaic model was able to correct for inaccu-

racies by making small, incremental changes – by adding more epicycles, for instance [96].

While fundamentally more accurate, Copernicus’ model could not be quantitatively justified

during its development; were he entirely data driven, Copernicus would not have published

his model.

In computer architecture, with the ability to use advanced measurement and analysis

tools to identify faults and bottlenecks in existing systems, it will become easier to find

opportunities for improvements. Many of these opportunities will likely be fixed with rel-

atively small modifications: a better heuristic for a predictor, a new instruction for a new

application. These improvements are fine and likely to yield improvements. They are easy

to quantitatively motivate and it is thus equally easy to justify their research and develop-

ment costs. However, small changes – by their nature – can do little more than play at the

margins. And so quantitative methods can become a trap.

One might think of computer architecture as a high-dimensional optimization problem.

Exploring this space based entirely on rigorous quantitative methods is akin to optimizing

locally; similar to using gradient descent. The trap is being caught in a local minimum. The

only way out is to do something radically different, to create innovations which can rarely be

entirely quantitatively and soundly justified before investigating them. These extreme new

creations can explore totally different areas of the architecture design space, thus escaping

known minima; however, the probability of quickly finding better architectures is low and
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the cost of experimenting in new spaces is high. These are risky propositions. The choice

of where to explore must be guided in some manner – random search in high-dimensional

space is unlikely to yield good results.

In radical innovation, therefore, there must be some element of creativity. There must

be some subjective, qualitative, experienced, intuitive guide. This does not mean, however,

that quantitative methods have no role to play. The ability to quickly measure, analyze,

model, reason, and quantitatively understand software and architectures is the key to de-

veloping better intuition and rapidly evaluating new ideas. New and better quantitative

methods, therefore, need not inhibit or discourage radical innovation and need not lead to

incrementalism. Rather, new quantitative methods can teach us and better inform our intu-

ition. Some may even serve very little purpose besides assisting in uncovering new insights.

Quantitative methods can help scale the intuition wall.
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Glossary

accelerator A dedicated hardware unit which is designed to run one or a small class

of algorithms at higher speed and/or higher energy efficiency than general purpose

processors.

antivirus A system which detects and protects users from malware.

artificial neural network A non-linear supervised machine learning method which makes

predictions by propagating inputs through a graph of “neurons” which transform and

combine values based on connection weights and activation functions.

basic block A linear sequence of instructions with a single entry point and a single exit

point.

BJT Bipolar Junction Transistor. Both a type of transistor and an early silicon manufac-

turing & design technology which used BJTs to implement logic gates.

branch predictor A hardware structure which predicts which direction an branch instruc-

tion (i.e., an ‘if’ in code) will take. Used to avoid stalling processor pipelines.

branch target prediction A hardware structure which determines the address to which

a processor must jump if a branch is taken.

cache A processor cache is a small memory which stores recently accessed data. Used to

speed up memory accesses in the common case.

cache line A block of storage within a cache.
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cache set A set of cache lines which are all associative with each other. i.e., the memory

addresses associated with all of the lines all hash to the same index.

classifier A type of machine learning methods which predict the class (i.e., category) of

data.

clustering verb. The act of grouping similar items. noun. A group of similar items placed

together by a clustering algorithm.

CMOS Complimentary metal-oxide-semiconductor. A silicon manufacturing & design

technology which uses both NMOS and PMOS transistors to implement logic gates.

By using complimentary transistor sets for each gate, it obtains both high stabil-

ity/reliability and low power dissipation.

control/data flow graph A type of program graph which represents both control and

data dependencies.

dark silicon Term given to describe the idea that only a fraction of a modern silicon chip

can operate simultaneously as a result of fixed power budgets. See “Dark silicon and

the end of multicore scaling” [50] .

decision tree A supervised machine learning method which clusters training data into a

binary tree. Issues predictions from input vectors by traversing the tree to a leaf and

combining the training data found in the leaf.

dynamic data flow graph A type of program graph which represents only data depen-

dencies observed during one or more executions of the program.

feature A measurement or property of data which can be used as input or part of an input

to a machine learning algorithm. Typically numeric.

feature vector A fixed-length vector of features which is used as input to machine learning

algorithms.
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front-end The front-end of a processor pipeline is the set of hardware units concerned with

supplying instructions for execution. It includes the instruction cache and instruction

decoder.

hashing function A function which determines in which cache set the data for a particular

memory address must be stored.

instruction mix The breakdown of types of instructions within a set of instructions. i.e., a

vector which contains the fractions of memory instructions, floating point instructions,

integer arithmetic instructions, et cetera.

intermediate representation Also known as “intermediate language”. A abstract, gen-

eral language used internally to compilers to describe computer programs. Typically

include fewer constructs than source code languages. Typically used in compiler anal-

ysis and transformation passes. Example: the LLVM IR [100].

interval Subsequence of an oracle or side-channel trace. The symbols within the sub-

sequence are combined to form a new symbol, creating a shorter trace of intervals,

possibly in a new alphabet.

KNN k-Nearest Neighbors. A supervised machine learning method which predicts based

on the geometric proximity of input data to data in a training set.

malware Malicious software. Includes viruses, adware, worms, et cetera. See Table 6.1.

memory disambiguation The act of determining whether or not two memory operations

access the same memory address. Used to allow multiple in-flight memory operations.

microarchitectural Pertaining to the microarchitecture of an architecture or instruction

set architecture (ISA) rather than its logical (architectural) state.

microarchitecture The implementation of a particular computer architecture (or ISA).

The microarchitecture is typically hidden from the programmer and thus can only

affect software performance rather than correctness, assuming the microarchitecture
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contains no bugs. For example, caches are a microarchictural component – they serve

to speed up applications, but their state cannot be directly accessed by programs.

NMOS N-Channel MOSFET. Both a type of transistor and a silicon manufacturing &

design technology which used NMOS transistors to implement logic gates.

performance counter Register built into modern microprocessors which can be config-

ured to count the occurrences of particular events (e.g., cache misses). Synonymous

with “hardware performance counter”.

phase Portion of program’s execution with a set of consistent characteristics (i.e., cache

misses, or branching behavior). Phases tend to repeat themselves during the execution

of programs and have the same characteristics when they do so. Phases have been

shown to be strongly correlated to the set of program code running during their

execution [134].

PMOS P-Channel MOSFET. Both a type of transistor and a silicon manufacturing &

design technology which used NMOS transistors to implement logic gates.

prefetcher A hardware unit which predicts memory addresses which will be accessed by

software in the near future then pre-loads those data locations into caches.

program analysis See program comprehension.

program comprehension The act of understanding or analyzing software programs to

understand their general operation or a specific property.

program graph A graph which represents some aspect of program code. Includes graphs

like dynamic data flow graphs and control/data flow graphs.

random forest An ensemble machine learning method which uses a set of decision trees

all built with some element of randomness.

ROC curve Receiver Operating Characteristic curve. A plot which shows the trade-off

between false positive and true positive rates.



Glossary 186

rootkit A piece of malicious software which hides activities or processes.

set associativity The number of cache lines within each cache set.

side-channel Channel through which side-channel information leakage can occur.

side-channel information leakage Data which is otherwise private can be “leaked” to

non-privileged due to unintended side effects of programs operating on the data. See

Chapter 4.

SMT Simultaneous Multi-Threading. Hyper-Threading is Intel’s proprietary version. A

CPU technology which exposes a single CPU core as multiple logical cores and allows

multiple threads to execute on the same pipeline simultaneously. Used to increase

utilization of pipeline resources.

TLB Translation Lookaside Buffer. A hardware structure which caches virtual address

mappings. Used to speed up virtual to physical address translation in the common

case.

trace A finite sequence of symbols representing logical events in either a victim’s execution

or observations an attacker has made.
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Acronyms

APK application package file.

AVF Architectural Vulnerability Factor.

CDF cumulative distribution function.

CPI cycles per instruction.

CSV Cache Side-channel Vulnerability.

FPGA field programmable gate array.

GPU graphics processing unit.

HTTP hypertext transfer protocol.

HTTPS HTTP secure.

IFT information flow tracking.

IPC instructions per cycle.

ISA instruction set architecture.

LLVM Low Level Virtual Machine.

ML machine learning.

MTBF mean time between failures.



Acronyms 188

MTTF mean time to failure.

NRE non-recurring engineering.

OLTP online transaction processing.

PCC Pearson Correlation Coefficient.

PCIe Peripheral Component Interconnect Express.

RMS recognition mining synthesis.

SSA static single assignment.

SVF Side-channel Vulnerability Factor.

UML unified modeling language.

URL uniform resource locator.
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