Tamper Evident Microprocessors

(Building hardware that you can trust)

Prof. Simha Sethumadhavan
Adam Waksman

Computer Architecture and Security Technologies Lab
http://castl.cs.columbia.edu
Department of Computer Science
Columbia University

A Quiz

 What do these hardware components do?
« Can you guarantee that these chips don’t have backdoors?

« Will you blindly trust hardware if you were buying this?
« Military Equipment
* Financial Sector i

I . CR
PP -

PROBLEM: Currently impossible to certify
trustworthiness of processors & controllers.

Why is Hardware Vulnerable?

Hardware is complex
« OpenSPARC T2 code base larger than the Chrome code base
« Chips unsurprisingly have unintentional bugs, e.g., Intel errata

Hardware design resembles software design
« Often include third-party IP components (ip-extreme.com)
* Review of IP difficult because of intentional obfuscation

Complexity, distribution increases risk of backdoors
 More hands, easier to hide
* Designs are crafted by globally distributed teams

Creates a significant security vulnerability

« Hardware is the root of trust; software builds on hardware
« Attacks have been reported [The Hunt for the Kill Switch]

Concern in Military Circles

UNITED STATES CYBER COMMAND

CYBER
SECURITY

Defending a New Domain

The Pentagon's Cyberstrategy
William J. Lynn Ill

In 20N tha 11 © Nanartmant Af Nafanecn coiffarad A cianifinant anmnramicon AfF ite Alacaifind militang

Computer networks themselves are not the only vulnerability. Software and hardware are at risk of being
tampered with even before they are linked together in an operational system. Rogue code, including
so-called logic bombs, which cause sudden malfunctions, can be inserted into software as it is being
developed. As for hardware, remotely operated "kill switches" and hidden "backdoors” can be written into
the computer chips used by the military, allowing outside actors to manipulate the systems from afar. The
risk of compromise in the manufacturing process is very real and is perhaps the least understood
cyberthreat. Tampering is almost impossible to detect and even harder to eradicate. Already, counterfeit
hardware has been detected in systems that the Defense Department has procured. The Pentagon's
Trusted Foundries Progam, which certifies parts produced by microelectronics manufacturers, is a good
start, but it is not a comprehensive solution to the risks to the department's technological base. Microsoft
and other computer technology companies have developed sophisticated risk-mitigation strategies to
detect malicious code and deter its insertion into their global supply chains; the U.S. government needs to
undertake a similar effort for critical civilian and military applications.

Prior Work and Scope

« ASIC hardware design stages

Front End Back End

High Level 3 Design 3 Physical 3 Tapeout/ 3

Specification > Design Validation Design Fabrication

Deployment

* Prior work focuses on back end
 More immediate threat, fabrication is outsourced
« Example: IC fingerprinting [Agrawal et al., 2007]

* However, front end is the extreme root of trust
« Common assumption: golden model from front end
« How do you ensure that front-end doesn’t contain backdoors?

 Our work: Make golden netlist a reality
* Integrate into the front-end a continuous monitoring system

Solution: An Analogy

Bob

 Generous guy
« Donates $100
Eric

* Evil accountant
« Steals $10
Alice

» Charity president
* Receives $90

—1 I

Charity

 What is the solution to this problem?

Applying ldea to Microprocessors

Problem: Units do different work trust each other
* One bad unit breaks the whole system

ad Decode —

(Bob) (Eric) (Alice)

Solution: Have units watch each other
« Build continuous invariant checking in hardware

KEY IDEA: EXPLOIT DIVISION OF WORK

« Universally available in microprocessor designs
« Execution requires a series of tightly coupled microarch events

Solution works because all units cannot be malicious
e Turned a threat into a solution!

Outline

Taxonomy
* Ticking Timebombs, Cheat Codes, Emitters, Corrupters

Solutions

« Common solutions are unsatisfactory
* TrustNet and DataWatch
« Smart Duplication

Results
 Correctness, Coverage and Costs

Future Work, Broader Vision

Taxonomy of Attacks

 Backdoor = Trigger + Payload
* Trigger: Mechanism for initiating an attack
« Payload: Malicious, illegal action

 Why do we need a Trigger?

Specification

High Level
Design

« Trigger-less designs will be caught during validation

 Most designs deploy intensive transactional testing

Design
Validation

Physical
Design

Tapeout/
Fabrication

—>

Deployment

« Small units are validated thoroughly, followed by aggregations

* Typically smaller units are validated for 10° - 108 cycles

« Larger units validated for fewer cycles

Taxonomy of Attacks: Triggers

l Triggers I

l Data Il Time I

« How many ways can a backdoor be triggered?

« Triggers are finite state machines
« Can change state only when time or input data changes

A complete taxonomy of hardware backdoors

Taxonomy of Attacks: Triggers

 Data Triggers Cheat Code Trigger
« Cheat codes (CC)

 Triggered by special
instructions or data @ Original

Logic

Multiplexer

* Pros/Cons of CC’s

Malicious
Logic

 Easy to bypass validation
* 1in 2% chance!

Comparator

« However, hacker needs
access to the machine

Taxonomy of Attacks: Triggers

 Time Triggers

* Ticking Timebomb (TT)
 Triggered over time

Pros/Cons of TTs

« Easy to bypass validation

* 48-bit counter takes ~ 20
minutes @ 1 GHz

« Easy to hide
« However, open to everyone

Ticking Timebomb Trigger

Original
Logic

Malicious
Logic

Multiplexer

Comparator

Taxonomy of Attacks: Payloads

Payloads

Emitter Corrupter

Is the payload separate from the normal instructions?
Emitter Attacks « Corrupter Attacks

« Extra malicious events * No extra malicious events

* Separate from normal events . Normal operations altered
* Unlikely to be noticed by user . pifficult to engineer

Visualizing Attacks at the Unit Level

Input Interfaces

O

odule cam

reset clk

read read_index write write_index
write_data search search_data read_valid

read _value search valid search_index

reset clk

read write search
read_index write_index
write_data search_data
read valid search_valid
read_value

search_index

Output Interfaces

Emitter Attacks

sooeiaju| IndinQ

&>
—

Hardware Unit

110

O

saokejualu| 1ndu|

Corrupter Attacks

O

L33

Input Interfaces

Interface

Hardware Unit

Control
Data

Output Interfaces

Taxonomy of Attacks: Summary

Corrupter
Timebomb

Emitter Corrupter
Cheatcode Cheatcode

Outline

« Taxonomy
* Ticking Timebombs, Cheat Codes, Emitters, Corrupters

(. Solutions

« Common solutions are unsatisfactory
* TrustNet and DataWatch
« Smart Duplication

_

* Results
 Correctness, Coverage and Costs

 Future Work, Broader Vision

Problem Constraints Favor Attackers

 Large design team
 Each designer works on one unit or part of one
» Security add-ons can be done by one member

* Full knowledge
« Attacker has complete access to all design specifications
« Attacker also knows about additional security mechanism

 Equal distrust
 Any one designer/unit may be evil
« Security add-ons may contain backdoors

Common Solutions are Unsatisfactory

Careful audits

* Audits not completely effective at catching unintentional bugs
« Can audits catch intentional, hidden backdoors?

Random validation
» Catching a 48-bit TT requires 281.4 trillion cycles of validation!
* The chance of catching a 48-bit CC is 3.5 * 10-1°

Static verification

« Attacker has complete access to all design specifications
» Attacker can work around theorems or proofs

Cannot fix problem in run time software
» All software runs on hardware
» Software fix will likely use malicious hardware

TrustNet Architecture

\
\
I
I
/
/1

\
\
\
/

/

/
7 O

rd

Predictor Reactor

add $rl, $r2, S$r3

* Predictor and Reactor monitor the Target
« Each cycle reactor announces events to predictor (little logic)
 Disagreement results in alarms

 Guarantees

» Division of work prevents one bad guy from breaking two units
« Simple checker allows formal verification

DataWatch Architecture

;=§§
= ~

Predictor Reactor

add $rl, $r2, S$r3

SUB S$rl, $r2, S$r3

« Scaled up version of TrustNet
* Multiple bit messages
« Confirms types of messages (instead of just yes/no)

OpenSPARC T2 LSU Example

OpenSPARC T2 Modules

Load Store Unit
/design/sys/iop/spc/lsu/rtl/lsu.v

53 input ports
65 output ports

OpenSPARC T2 LSU Example

Source code: 1347 output [4:0] lsu_exu_rd_m; // Addr of dest register
1348 output [2:0] lsu_exu_tid_m; // Thread ID 1d return

P

PKU | DEC
e [)

OpenSPARC T2 Modules

Load Store Unit
/design/sys/iop/spc/lsu/rtl/lsu.v

OpenSPARC T2 LSU Example

Source code: 1254 output lsu_tlb_bypass_b; // TLB in bypass mode

Load Store Unit
/design/sys/iop/spc/lsu/rtl/lsu.v

OpenSPARC T2 LSU Example

Source code: 1332 output [47:0] lsu_mmu_va_b;

Load Store Unit
/design/sys/iop/spc/lsu/rtl/lsu.v

OpenSPARC T2 Modules

Hash addresses and compare

When all else fails: Diversity

Inputs
Unit A Unit A
! !
Trusted Output Checker

 However, diversity is prohibitively expensive
* Non-recurring design, verification costs due to duplication
 Recurring power and energy costs

TLB Full Duplication

Virtual
Address

Physical Address
& Permissions

TLB
Matching
> CAM 2> RAM
TLB
Matching
> CAM |5 RAM

Physical Address

& Permissions

Partial Duplication Example: TLB

Virtual
Address

TLB

Matching

Entry
-1 CAM > RAM
Checking TLB

Physical Address

& Permissions

Outline

Taxonomy
* Ticking Timebombs, Cheat Codes, Emitters, Corrupters

Solutions

« Common solutions are unsatisfactory
* TrustNet and DataWatch
« Smart Duplication

Results
 Correctness, Coverage and Costs

Future Work, Broader Vision

Experimental Context, Correctness, Costs

Context
« Simplified OpenSPARC T2

Correctness
 Designed attacks
* No false positives or negatives

Costs
 Low area overhead (2 KB per core)
* No performance impact

How to measure coverage?

Coverage: Vulnerability Space

Normalized number of shared messages

. @
=Y
x

mmu
tlu

Isu
gu

Units with a core mmu =3 pku. Units with a core

Paper has plots for other units at a chip level

32

Coverage Visualization

Partition of OpenSPARC T2 Die Photo

_-___-a ST

MR EHAREIY:

IRNNE | [NEnEig:

WARNING:

. ._ mn“n““

This is an approximate

representation

:.—TL

¢
qﬁ;ﬁwcp“

T .u-._._

_““ﬁn__m_ e | (1]

K= FINEN
[[TIENERt]

33

Summary

« Strengthen root of trust: a certifiable microprocessor
 Hardware-only solution. No perf impact, low area overhead
* Provided attack taxonomy
 Method to measure the attack space

« Applicability of TrustNet & DataWatch

 Covered: pipelines, caches and content associative memory
* Not covered: ALU, microcode, power mgmt., side-channels

* Moving forward

 Expand coverage
» Out-of-order processors
 Motherboard components

* Design automation tools
* Programmable monitoring
« Complexity-effective techniques

o Steps toward a secure chain of trust w/ untrusted units

Broader Vision: Re-examine Security

Current Approach to Security is REACTIVE -- BAD

« Patch flaws reactively
« How to be proactive about security (a very difficult problem)

What if we took a ground up approach?
 Make hardware secure
« Build hardware primitives to support software security
« Build software security countermeasures using HW primitives
« Build software securely with security as first order constraint

Discovering the primitives: SPARCHS project

* Inspired by how humans protect from biological threats

Securing hardware is the first step

Thank you and Questions!

