
 Tamper Evident Microprocessors
(Building hardware that you can trust)

Prof. Simha Sethumadhavan
Adam Waksman

Computer Architecture and Security Technologies Lab
http://castl.cs.columbia.edu

Department of Computer Science
Columbia University

1

A Quiz

•  What do these hardware components do?
•  Can you guarantee that these chips don’t have backdoors?

•  Will you blindly trust hardware if you were buying this?
•  Military Equipment

•  Financial Sector

 PROBLEM: Currently impossible to certify
trustworthiness of processors & controllers.

Why is Hardware Vulnerable?

•  Hardware is complex
•  OpenSPARC T2 code base larger than the Chrome code base

•  Chips unsurprisingly have unintentional bugs, e.g., Intel errata

•  Hardware design resembles software design
•  Often include third-party IP components (ip-extreme.com)

•  Review of IP difficult because of intentional obfuscation

•  Complexity, distribution increases risk of backdoors
•  More hands, easier to hide

•  Designs are crafted by globally distributed teams

•  Creates a significant security vulnerability
•  Hardware is the root of trust; software builds on hardware

•  Attacks have been reported [The Hunt for the Kill Switch]

Concern in Military Circles

Prior Work and Scope

•  ASIC hardware design stages

•  Prior work focuses on back end
•  More immediate threat, fabrication is outsourced

•  Example: IC fingerprinting [Agrawal et al., 2007]

•  However, front end is the extreme root of trust
•  Common assumption: golden model from front end

•  How do you ensure that front-end doesn’t contain backdoors?

•  Our work: Make golden netlist a reality
•  Integrate into the front-end a continuous monitoring system

High Level
Design

Specification
Design

Validation
Physical
Design

Tapeout/
Fabrication

Deployment

Back End Front End

Solution: An Analogy

•  Bob
•  Generous guy

•  Donates $100

•  Eric
•  Evil accountant

•  Steals $10

•  Alice
•  Charity president

•  Receives $90

•  What is the solution to this problem?

Thank you, Bob,
 for your $90!

Charity

?!

Applying Idea to Microprocessors

•  Problem: Units do different work trust each other
•  One bad unit breaks the whole system

•  Solution: Have units watch each other
•  Build continuous invariant checking in hardware

•  KEY IDEA: EXPLOIT DIVISION OF WORK
•  Universally available in microprocessor designs
•  Execution requires a series of tightly coupled microarch events

•  Solution works because all units cannot be malicious
•  Turned a threat into a solution!

Fetch Decode Execute

(Bob) (Eric) (Alice)

Outline

•  Taxonomy
•  Ticking Timebombs, Cheat Codes, Emitters, Corrupters

•  Solutions
•  Common solutions are unsatisfactory

•  TrustNet and DataWatch

•  Smart Duplication

•  Results
•  Correctness, Coverage and Costs

•  Future Work, Broader Vision

Taxonomy of Attacks

•  Backdoor = Trigger + Payload
•  Trigger: Mechanism for initiating an attack

•  Payload: Malicious, illegal action

•  Why do we need a Trigger?

•  Trigger-less designs will be caught during validation

•  Most designs deploy intensive transactional testing
•  Small units are validated thoroughly, followed by aggregations

•  Typically smaller units are validated for 106 - 108 cycles
•  Larger units validated for fewer cycles

High Level
Design

Specification
Design

Validation
Physical
Design

Tapeout/
Fabrication

Deployment

Taxonomy of Attacks: Triggers

Triggers

Data Time

•  How many ways can a backdoor be triggered?

•  Triggers are finite state machines
•  Can change state only when time or input data changes

•  A complete taxonomy of hardware backdoors

Taxonomy of Attacks: Triggers

Cheat Code Trigger •  Data Triggers
•  Cheat codes (CC)

•  Triggered by special
instructions or data

•  Pros/Cons of CC’s
•  Easy to bypass validation

•  1 in 264 chance!

•  However, hacker needs
access to the machine

Taxonomy of Attacks: Triggers

•  Time Triggers
•  Ticking Timebomb (TT)

•  Triggered over time

•  Pros/Cons of TTs
•  Easy to bypass validation

•  48-bit counter takes ~ 20
minutes @ 1 GHz

•  Easy to hide

•  However, open to everyone

Ticking Timebomb Trigger

Taxonomy of Attacks: Payloads

•  Emitter Attacks
•  Extra malicious events

•  Separate from normal events

•  Unlikely to be noticed by user

Payloads

Emitter Corrupter

•  Corrupter Attacks
•  No extra malicious events

•  Normal operations altered

•  Difficult to engineer

Is the payload separate from the normal instructions?

Visualizing Attacks at the Unit Level

Hardware Unit

In
p

u
t

In
te

rf
a

c
e

s

O
u

tp
u

t
In

te
rf

a
c

e
s

Emitter Attacks

Hardware Unit

In
p

u
t

In
te

rf
a

c
e

s

O
u

tp
u

t
In

te
rf

a
c

e
s

Corrupter Attacks

Hardware Unit

In
p

u
t

In
te

rf
a

c
e

s

O
u

tp
u

t
In

te
rf

a
c

e
s

Control

Data

Interface

Taxonomy of Attacks: Summary

Emitter
Timebomb

Corrupter
Timebomb

Emitter
Cheatcode

Corrupter
Cheatcode

Outline

•  Taxonomy
•  Ticking Timebombs, Cheat Codes, Emitters, Corrupters

•  Solutions
•  Common solutions are unsatisfactory

•  TrustNet and DataWatch

•  Smart Duplication

•  Results
•  Correctness, Coverage and Costs

•  Future Work, Broader Vision

Problem Constraints Favor Attackers

•  Large design team
•  Each designer works on one unit or part of one

•  Security add-ons can be done by one member

•  Full knowledge
•  Attacker has complete access to all design specifications

•  Attacker also knows about additional security mechanism

•  Equal distrust
•  Any one designer/unit may be evil

•  Security add-ons may contain backdoors

Common Solutions are Unsatisfactory
•  Careful audits

•  Audits not completely effective at catching unintentional bugs
•  Can audits catch intentional, hidden backdoors?

•  Random validation
•  Catching a 48-bit TT requires 281.4 trillion cycles of validation!

•  The chance of catching a 48-bit CC is 3.5 * 10-15

•  Static verification
•  Attacker has complete access to all design specifications
•  Attacker can work around theorems or proofs

•  Cannot fix problem in run time software
•  All software runs on hardware
•  Software fix will likely use malicious hardware

TrustNet Architecture

•  Predictor and Reactor monitor the Target
•  Each cycle reactor announces events to predictor (little logic)
•  Disagreement results in alarms

•  Guarantees
•  Division of work prevents one bad guy from breaking two units
•  Simple checker allows formal verification

Predictor Reactor

Target

add $r1, $r2, $r3

DataWatch Architecture

•  Scaled up version of TrustNet
•  Multiple bit messages

•  Confirms types of messages (instead of just yes/no)

Predictor Reactor

Target

add $r1, $r2, $r3

SUB $r1, $r2, $r3

STOP

OpenSPARC T2 LSU Example

Load Store Unit

IFU IRF

RML

TLU

DEC PKU

LSU EXU

MMU FGU FRF

3

30

13

4

5

11 23

2 5

7
3

11

OpenSPARC T2 Modules

5
3

 in
p

u
t

p
o

rt
s

6
5

 o
u

tp
u

t
p

o
rt

s

/design/sys/iop/spc/lsu/rtl/lsu.v	

OpenSPARC T2 LSU Example

Load Store Unit

IFU IRF

RML

TLU

DEC PKU

LSU EXU

MMU FGU FRF

3

30

13

4

5

11 23

2 5

7
3

11

OpenSPARC T2 Modules
/design/sys/iop/spc/lsu/rtl/lsu.v	

1347 output [4:0] lsu_exu_rd_m; // Addr of dest register	
1348 output [2:0] lsu_exu_tid_m; // Thread ID ld return	

Source code:

R T

P

OpenSPARC T2 LSU Example

Load Store Unit

IFU IRF

RML

TLU

DEC PKU

LSU EXU

MMU FGU FRF

3

30

13

4

5

11 23

2 5

7
3

11

OpenSPARC T2 Modules
/design/sys/iop/spc/lsu/rtl/lsu.v	

1254 output lsu_tlb_bypass_b; // TLB in bypass mode	Source code:

R T

P

OpenSPARC T2 LSU Example

Load Store Unit

IFU IRF

RML

TLU

DEC PKU

LSU EXU

MMU FGU FRF

3

30

13

4

5

11 23

2 5

7
3

11

OpenSPARC T2 Modules

/design/sys/iop/spc/lsu/rtl/lsu.v	

1332 output [47:0] lsu_mmu_va_b;	Source code:

T P

R

Hash addresses and compare

When all else fails: Diversity

•  However, diversity is prohibitively expensive
•  Non-recurring design, verification costs due to duplication

•  Recurring power and energy costs

Unit A Unit A

Inputs

Trusted Output Checker

TLB

TLB Full Duplication

CAM RAM Virtual
Address

Matching
Entry Physical Address

& Permissions

C
h

e
ck

P
h

ys
ic

a
l A

d
d

re
ss

&

 P
e

rm
is

si
o

n
s

TLB

CAM RAM
Matching

Entry

TLB

Partial Duplication Example: TLB

CAM RAM Virtual
Address

Matching
Entry

C
h

e
ck

P
h

ys
ic

a
l A

d
d

re
ss

&

 P
e

rm
is

si
o

n
s

Checking TLB

RAM Bookkeeping

Outline

•  Taxonomy
•  Ticking Timebombs, Cheat Codes, Emitters, Corrupters

•  Solutions
•  Common solutions are unsatisfactory

•  TrustNet and DataWatch

•  Smart Duplication

•  Results
•  Correctness, Coverage and Costs

•  Future Work, Broader Vision

Experimental Context, Correctness, Costs

•  Context
•  Simplified OpenSPARC T2

•  Correctness
•  Designed attacks

•  No false positives or negatives

•  Costs
•  Low area overhead (2 KB per core)

•  No performance impact

•  How to measure coverage?

32

Units with a core Units with a core

Paper has plots for other units at a chip level

Coverage: Vulnerability Space

33

Coverage Visualization

WARNING:
This is an approximate
representation

33

Summary

•  Strengthen root of trust: a certifiable microprocessor
•  Hardware-only solution. No perf impact, low area overhead

•  Provided attack taxonomy

•  Method to measure the attack space

•  Applicability of TrustNet & DataWatch
•  Covered: pipelines, caches and content associative memory

•  Not covered: ALU, microcode, power mgmt., side-channels

•  Moving forward
•  Expand coverage

•  Out-of-order processors

•  Motherboard components

•  Design automation tools

•  Programmable monitoring

•  Complexity-effective techniques

•  Steps toward a secure chain of trust w/ untrusted units

✔

Broader Vision: Re-examine Security

•  Current Approach to Security is REACTIVE -- BAD
•  Patch flaws reactively

•  How to be proactive about security (a very difficult problem)

•  What if we took a ground up approach?
•  Make hardware secure

•  Build hardware primitives to support software security

•  Build software security countermeasures using HW primitives

•  Build software securely with security as first order constraint

•  Discovering the primitives: SPARCHS project
•  Inspired by how humans protect from biological threats

•  Securing hardware is the first step

Thank you and Questions!

