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ABSTRACT

We tackle the important problem class of solving nonlinear
partial differential equations. While nonlinear PDEs are typ-
ically solved in high-performance supercomputers, they are
increasingly used in graphics and embedded systems, where
efficiency is important.

We use a hybrid analog-digital computer architecture to
solve nonlinear PDEs that draws on the strengths of each
model of computation and avoids their weaknesses. A weak-
ness of digital methods for solving nonlinear PDEs is they
may not converge unless a good initial guess is used to seed
the solution. A weakness of analog is it cannot produce high
accuracy results. In our hybrid method we seed the digital
solver with a high-quality guess from the analog side.

With a physically prototyped analog accelerator, we use
this hybrid analog-digital method to solve the two-dimensional
viscous Burgers’ equation —an important and representative
PDE. For large grid sizes and nonlinear problem parameters,
the hybrid method reduces the solution time by 5.7x, and re-
duces energy consumption by 11.6x, compared to a baseline
solver running on a GPU.
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1 INTRODUCTION

Emerging microscopic robots require the use of powerful
mathematical models to simulate the physical world. Prob-
lems such as fluid dynamics and optimal control, once con-
sidered supercomputing workloads, are now needed in au-
tonomous mobile robots where energy budgets are limited.
These problems are phrased as nonlinear partial differential
equations (PDEs). One unconventional computing approach
is to use analog electronic circuits as differential equations
solvers. Such an approach forgoes two fundamental abstrac-
tions in digital computing: the binary number representation
of data, and the step-by-step operation of hardware and
programs. By relaxing these abstractions which hold back
performance and efficiency, the analog model provides a better
fit for these challenging workloads. In this paper we explore
the benefits of using a programmable analog accelerator as a
domain specific accelerator for nonlinear PDEs.

The keys to benefiting from accelerator offloading are two-
fold: first, there must be a dominant kernel that consumes a
significant portion of the application execution time. Second,
there should be a simple way of refactoring existing programs
to take advantage of new accelerators. A workload character-
ization of some engineering PDE solvers reveals they spend a
large fraction of their runtime in solving systems of algebraic
equations (Table 1). Thus, these programs can benefit from
an accelerator for solving systems of algebraic equations. In
fact, these core kernels are often offloaded to GPUs, and in
our prior work, we examined an accelerator for solving linear
systems of algebraic equations [22, 23]. In contrast, in this
work we present an accelerator for solving nonlinear systems
of algebraic equations, a more challenging problem class.

Compared to linear equations, nonlinear systems of equa-
tions are challenging for two reasons: first, to be able to find
a solution, nonlinear numerical solvers need a good initial
guess. This is more critical than in linear solvers not only to
avoid redundant work but to even achieve convergence. As a
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Discipline Problem Representative| Solving approach Dominant kernel Dominant
description solver kernel
time
Fluid dynamics | 3D transonic SPEC CPU2006 | finite difference discretization | Bi-CGstab 76.7 +
transient 410.bwaves with implicit time stepping on 11.7%
laminar viscous | (test) the compressible, viscous Navier-
flow Stokes equations
Magneto- 2D Hartmann OpenFOAM finite difference discretization on | preconditioned conjugate 45.8%
hydrodynamics | problem incompressible, viscous Navier- | gradients
Stokes equation, coupled with
Maxwell’s equations
Fluid dynamics | lid-driven cavity | OpenFOAM finite volume discretization on | preconditioned conjugate 13.1%
flow incompressible, viscous Navier- | gradients
Stokes equations
Engineering Cook’s deal 1T finite element discretization with | Solving Helmholtz PDE with | 15.3%
mechanics membrane nonlinear spring forces preconditioned SOR and CG

Table 1: Function profile of nonlinear PDE solvers which would be the envisioned targets for analog acceler-
ation. Linear and nonlinear algebra is the dominant kernel in all solvers. The equation solving proportion is
higher for structured grids such as finite difference. Irregular memory accesses shift computation time away
from equation solving for less structured grids such as finite volume and finite elements.

rough analogy, if solving linear equations is like navigating
an orderly city grid, solving nonlinear equations is like hiking
in the mountains. In the latter case there is a higher chance
of getting lost, and thus starting close to the solution spot
is critical. Second, numerical solvers for nonlinear equations
rely on a careful choice of the step sizes they take toward
the solution. To further our analogy, this is as if nonlinear
solvers need to frequently check the map, never traveling too
far in any one direction, while linear solvers can speed to
their solutions in just a few turns. These difficulties entail
more work in solving nonlinear systems of equations.

Our proposed analog accelerator for solving nonlinear sys-
tems of equations has three major benefits: first, the analog
units in the accelerator naturally implement nonlinear func-
tions, reducing the amount of work compared to a digital
accelerator. Second, the accelerator uses a different algorithm
for solution finding, one that operates in continuously in
time with no notion of step-by-step operation as required by
digital hardware. In our analogy it allows the nonlinear solver
to always know which direction to proceed, without pausing
to check the map. Third, we use a method of initial solution
guessing uniquely suited for the analog accelerator called
homotopy continuation, which in effect maps an orderly city
grid to the (nonlinear) wilderness, making it easier to find
initial guesses.

Only using the analog accelerator is not without problems.
While the strengths of the analog accelerator are its speed,
its efficiency, and its ability to naturally support nonlinearity,
it gives only approximate results and does not scale to large
problem sizes. On the other hand, digital offload accelerators
require lots of tuning on numerical parameters such as step
sizes and initial guesses, but can give high precision results
and handle large problem sizes. In this paper we combine
the strengths of both approaches without complicating pro-
gramming. We propose a program partitioning where the

traditional, digital methods are used to break the nonlinear
PDEs into subproblems that can be solved on an analog
accelerator approximately. These analog approximate solu-
tions are then seeded into the digital algorithm to obtain an
accurate solution.

Using measurements from a system of physically proto-
typed analog accelerator chips, we show we can get approxi-
mate results (with lower accuracy—within about 5% of the
fully accurate digital solution) nearly 100X faster; and obtain
fully accurate, higher precision results with 5.7x speed im-
provements by using the analog results as good initial guesses
for the digital solver (compared to a GPU). The extremely
low power dissipation of analog circuits results in an energy
consumption reduction of 11.7x. The lower accuracy results
may be suited for graphics or motor control applications
while the higher accuracy results can be used for accelerating
innermost kernels of scientific computations.

The rest of this paper is organized as follows: Sections 2, 3
review scalar and vector nonlinear equations. We discuss the
pitfalls of the Newton method for solving nonlinear equations;
we show how a continuous model of computation avoids
them. In Section 4 the theme of collaboration between analog
and digital computers turns to the digital discretization of
PDEs which are then solved in analog. Section 5 details the
programming model, architecture, and microarchitecture of a
prototype analog accelerator for solving nonlinear PDEs, and
provides measured results in analog solution accuracy. Section
6 evaluates the merits of analog acceleration for nonlinear
PDEs, including the use of larger accelerators, using the
analog solution as a seed, compared against a GPU baseline.
Section 7 discusses how our techniques generalize to other
PDE problems and Section 8 discusses prior work in analog
computing.
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2 TUTORIAL: SCALAR NONLINEAR
ROOT-FINDING

This section is a review of digital methods for solving non-
linear equations and a tutorial on doing the same using an
analog accelerator. We highlight pitfalls of the digital method
which are avoided in the analog computational model.

2.1 Digital classical and damped Newton’s

Digital algorithms for nonlinear equations must have a good
initial guess to the solution, or else it must spend a lot of
time to find the right solutions. In order to understand this
tradeoff, let’s first review the problem statement.

Solving nonlinear equations entails finding a floating-point
value u that satisfies the nonlinear function f(u) = 0. The
solution w is called a root of f. For example, the equation

flu)=u’-1=0 (1)
has one real-valued root © = 1 and two complex-valued roots.
To get these roots numerically, the Newton method starts
with an initial guess uo and iterates through multiple guesses
up according to the recurrence relation:
3
flup) up — 1

R O BT

A downside of Newton’s method is it is sensitive to the
initial guess of what the roots should be. When we plot on
the imaginary plane the root to which Newton’s method
converges against the choice of the initial guesses, the re-
sulting picture is fractal: the regions of the plot are inter-
twined in complex patterns, indicating a small change in
the initial guess for Newton’s method can lead to different
conclusions [25]. This is because Newton’s method updates
its guess of the solution in discrete steps [37].

One way to reduce the classical Newton method’s sensitiv-
ity to initial guesses is to increase the the computation time.
We do this by using relaxed or damped steps, where the full
step size is diminished to a fraction h between 0 and 1:

f(up)

f'(up)

By reducing the step size the guesses are more likely to stay
in the same convergence basin. The pictures plotting the
final solutions against initial conditions become less complex
as the convergence basins grow in size and become contigu-
ous [25]. In effect, the damped Newton method decreases
the algorithm’s sensitivity to initial conditions, at the cost of
having to run the algorithm for more iterations. In practice
it is difficult to choose the correct step size.

Upt1 = up — h

2.2 Analog continuous Newton’s method

Now, we show how a continuous-time analog accelerator offers
a more natural and reliable way to solve f(u) = 0 by avoiding
the problem of finding a correct step size. We test the scheme
on a prototype chip we will cover in detail in Section 5.

We take damped Newton’s methods to the logical extreme
and shrink the step size h to infinitesimally small, and take
infinitely many steps of the resulting continuous Newton’s
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Figure 1: Analog circuit for continuous Newton’s
method. Clockwise from the center left, the major
analog function units: integrators for holding the
present guess of u, a block for evaluating the Ja-
cobian (the derivative f'(u) in the scalar case), a
block (shaded) for finding the Jacobian inverse (the
quotient f(u)/f'(u) in the scalar case) using gradi-
ent descent, and a block for evaluating the nonlin-
ear function. Numbers are represented as analog
current and voltage. Physically, integrators are ca-
pacitors. Digital-to-analog converters (DACs) gener-
ate constant values. Joining wires sums numbers by
summing currents. The circuit values change contin-
uously in time, with no clock cycles or steps.

T

0=],(u)F(u)

A 4

+F(u) <D

method, which should be minimally sensitive to the choice of
the initial conditions [21, 29, 31, 34]. In fact, the continuous
Newton method could be considered the natural way of solv-
ing nonlinear equations. It is stated concisely as an ordinary
differential equation (ODE).

Digital computers cannot directly solve ODEs and in-
stead approximate them using numerical integration. For
example, the damped Newton method is an Euler’s method
approximation of the continuous Newton method ODE. More
sophisticated Newton’s method solvers use better numerical
integration, but those improved algorithms quickly become
complex and costly.

Analog accelerators on the other hand directly solve the
continuous Newton method’s ODE description. Let’s walk
through how this is done as it underpins the techniques used
in the rest of this paper.

Analog implementation: Figure 1 shows an analog cir-
cuit that operates in continuous time, implementing the
continuous Newton method. We use the integrators at the
left side of the circuit to store the analog value of the real and
imaginary parts of u(t) as functions of time. The integrators
take as their input the value ?j—?, the rate of change of u at
any moment in time. u(t) is then fed to analog hardware that
multiplies and sums values to create the derivative f’'(u) and
the function f(u). Complex number multiplication is done by

cross multiplying the real and imaginary parts appropriately.
f(u)

> f(u)”

The quotient is calculated in analog hardware using negative

feedback, using continuous gradient descent, a technique

explored in detail in [22, 23].

Next, we must find the quotient between these values




MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Imaginary

Figure 2: The results of continuous Newton’s method
running on an analog accelerator prototype chip solv-
ing Equation 1. The colors encode which of the three
cubic roots the chip returns, plotted on the imagi-
nary plane indicating the initial conditions. Each of
the 256 x 256 pixels is one run of the chip. The conver-
gence basins are more contiguous compared to those
in classical or damped Newton methods.

The quotient is negated and fed to the inputs of the u(¢)
du

integrators as g7, the rate of change of u. The values change
continuously, with no notion of clock cycles or time steps,
so the whole system is described as an ODE—the ODE for
continuous Newton’s. When the continuous Newton method
converges, the inputs to the integrators tend toward zero, so
the output of the integrators are steady, and at that point we
can measure the output using analog-to-digital converters.

Analog accelerator result: Figure 2 shows the chip is
able to return all of the three roots. Which root it converges
to depends on the choice of the initial condition. The picture
is simple and the convergence basins are contiguous compared
to the pictures generated by classical and damped Newton’s
method [25], implying small changes in the initial condition
are less likely to cause changes in the final solution. Using
the analog accelerator it becomes easier to explore the effect
of the initial guess.

3 MOTIVATION: NONLINEAR
SYSTEMS OF EQUATIONS

In this section we discuss how analog and digital models
of computing can work together, drawing on strengths and
avoiding weaknesses of both. These ideas are important in
understanding why hybrid analog-digital computing is useful
for solving nonlinear PDEs.

3.1 Nonlinear systems: digital challenges

A weakness of the digital discrete-time model of computation
becomes clear when we use the damped Newton method for
solving nonlinear systems of equations. These problems have
multiple unknown variables, unlike the previous section’s
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root finding example which had one unknown. As a result
the algorithm must find correct initial guesses for all of the
unknowns, and solve a matrix equation in each step of the
algorithm. These tasks are are inefficient when we are limited
to using step-by-step digital computation.

Finding the Jacobian and its inverse: The Newton
method requires finding the Jacobian matrix and solving a
linear algebra problem involving the Jacobian. These tasks
take the most time in nonlinear PDE solvers, as confirmed
in the software profiles in Table 1.

First, let’s discuss why the Jacobian matrix appears. Solv-
ing multidimensional nonlinear systems of equations entails
finding @, a d-dimensional vector satisfying F(@@) = 0. Just
like in the scalar case, we need F'(uy,), the derivative of F
with respect to @ at the present guess wup. But unlike the
scalar case, in multi-variable calculus this derivative is the
Jacobian matrix Jg (@), which is defined as:

F'(@) = Jp(il) =

OF, OF, OF,

e COMMY el (1) R s (1))
oF oF oF
Tué(u) Tui(u) N audil (u)
oF,_ oF,_  oR.
ug (W) (W) G ()

Each row of the Jacobian corresponds to each element of
F (@), while each column differentiates F(%) against each
component of .

Next, let’s discuss why linear algebra is involved. In the
scalar example, we could simply find the quotient between
the function and the derivative by doing scalar division. Now,
the derivative is a matrix, and matrix division is not defined;
so instead of doing division we multiply by the Jacobian
matrix’s inverse. The Newton method is then:

Ut =10y — by
where,6, = Jp ' (i,) F(up)

In practice we find the unknown 6:, from the known Jp (1)
and F(up) by solving the linear system of equations

Jr(up)dp = F(up)
So in each step of Newton’s method we have to solve a
linear algebra problem, and these subroutines becomes costly
as problem sizes grow. Accelerating these subroutines with
approximation techniques or dedicated hardware would be
one way to speed up the overall algorithm.

Uncertainty in the number of solutions and the
effect of initial conditions: Another challenge in solving
nonlinear systems of equations in digital computers is it’s
difficult to know if any solutions, or how many solutions,
there should be. Incorrect guesses at the beginning of the
algorithm may prevent us from finding the right solutions.

It’s difficult to visualize where the roots are located for
nonlinear systems of equations. The problem asks us to find
intersections of nonlinear surfaces that could have arbitrary
shapes. This is in contrast to the simpler problem of finding
the root of a scalar nonlinear function, which we can easily



Hybrid Analog-Digital Solution of

Nonlinear Partial Differential Equations MICRO-50, October 14-18, 2017, Cambridge, MA, USA

System of nonlinear equations Solution without homotopy At homotopy beginning Solution at homotopy end

A

A
W
N8

NN s
A0S 1] p, initial
S 1

Qi
e

P, initial
condition

condition

Solution points

Figure 3: Far left: Visualization of Equation 2. The two equations are surfaces (blue mesh and red checkerboard)
formed by parabolas swept along straight lines. The root finding problem entails finding where two surfaces
intersect at the z = 0 (solid green) plane. The RHS constants in the equations shift the surfaces up and down,
so there can zero or several such solutions. Center left: Continuous Newton’s without homotopy. Colors
indicate the roots found by the chip, plotted against the initial conditions. Two solutions (green and yellow)
are roots of Equation 2. The pink region is a set of initial conditions where Newton’s method returns a wrong
result. Clearly, the initial conditions strongly impacts the Newton method result. Center right: The initial
state for a homotopy process. The chip settles on the four roots (po, p1) = (+1,+1) of Equation 3. The chip then
solves an ODE to smoothly guide this initial state to the final state. Far right: Final result of the homotopy
method. The chip returns two roots for Equation 2. Compared to naive Newton’s method, all choices of initial

conditions in the homotopy method lead to one correct solution or another.

visualize in a 2D plane, showing the relationship between
the nonlinear function and the function’s unknown parame-
ter. With that picture it was straightforward to locate the
solutions for scalar problems.

As a concrete example, let’s solve a coupled system of
equations:

{Pg + po + p1 = RHSg )

pt + p1 — po = RHS;

This type of coupled system of equations may arise from solv-
ing a one-dimensional semilinear PDE problem on two grid
points. The nonlinear term where the variables are squared
indicate for example a reaction process.

We can visualize this coupled system of equations in 3D
space shown in the leftmost panel of Figure 3, which shows
that depending on the constant RHS coefficients, there may
be 0, 1, 2, 4, or infinitely many solutions. Whether the New-
ton method converges to one of these solutions, and which
one it ends up at, depends on the initial conditions to the
algorithm. Wrong choices would make the algorithm incorrect
or inefficient.

3.2 Nonlinear systems: analog homotopy

A strength of the analog continuous-time model of computa-
tion is we can naturally evaluate the nonlinear function and
the Jacobian matrix by multiplying and summing analog sig-
nals. Then we can solve the Jacobian matrix equation and do
the Newton method faster and more efficiently than in digital.
We do so using continuous gradient descent and continuous
Newton’s method, which are continuous-time algorithms with
no counterpart in digital computing.

To further illustrate the advantages of the analog computa-
tional model, here we try another continuous algorithm, homo-
topy continuation, which makes it easier to pick initial condi-
tions for solving nonlinear systems of equations [3, 14, 30, 32].

In homotopy methods, we smoothly connect a simple prob-
lem with obvious initial conditions to the hard one we would
like to solve. We would devise a simple root-finding problem
S(p) = 0, representing a trivial system of equations:

s(ﬁ)z{Zgjjg Q

We know that this system’s four roots are (po, p1) = (£1, £1).
Then, we denote a harder nonlinear system, such as Equa-
tion 2, as H(p) = 0. The example hard nonlinear system has
as many as four non-degenerate roots, but we do not know
what initial conditions to set to get those solutions.

With the hard system and simple system in hand, we
construct a joint system characterized by a homotopy param-
eter A\ that controls the system’s degree of nonlinearity and
solution difficulty:

(1= NS(F) + AH() =0

We would start Newton’s method with A = 0 and g set
to be one of the known roots, satisfying the simple system
S(p) = 0. Then, we smoothly guide the simple system to the
hard system by incrementing A\ until A = 1. At each moment
while incrementing A, we perform a Newton method inner
loop so p remains the correct root for the combined system.

The end result is we have smoothly mapped each of the
unknown roots of the hard system to the known roots of the
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simple system. By exploring the roots of the simple system we
explore the roots of the difficult problem. Homotopy methods
are an appealing extension of Newton’s methods, except
for the fact the homotopy continuation is again an ODE in
disguise [9, 10, 29, 33], and therefore costly to approximate
in a digital computer.

We can instead solve this ODE on our analog accelerator
prototype chip. The results are shown in Figure 3. The results
show that analog accelerators can perform more advanced
global Newton methods, in addition to the continuous Newton
method, adding to our repertoire of continuous algorithms
for analog accelerators.

3.3 Approximate analog & precise digital

An ideal solving system should use analog methods where
digital ones are weak, while keeping all the convenient aspects
of digital computing. The digital methods allow use of binary
floating point numbers, which have higher precision and
accuracy, but encounter problems in selecting a Newton step
size and an initial condition. The analog methods have more
reliability, but the computational results have low accuracy
and precision. In prior work researchers have tried various
ways to combine analog and digital computing. We review
some ways below. This work extends and is distinct from
those techniques.

Analog approximate solutions can be used to seed high-
precision Newton solvers, by providing a good initial guess
from which the Newton method immediately enters the re-
gion of quadratic convergence. For example, in prior work
where analog computers served as direct physical models,
Cowan et al. used an analog co-processor to solve a periodic
nonlinear ODE directly, and the sampled low-precision ana-
log trajectory assists a high-precision digital solver, helping
it converge [11, 12]. This work achieves a similar effect, with
an important distinction our analog accelerator performs an
abstracted continuous algorithm instead of solving a physical
model directly. Our approach more readily supports existing
solvers that invoke solving nonlinear systems of equations as
an underlying kernel.

In digital approximation approaches, numerical methods
can first use single-precision floating point numbers with
cheaper operations, allowing longer vectors to reside in local
caches, before finishing off with double precision [4, 5, 8, 28].
The analog acceleration techniques in this paper can extend
those methods due to its fundamental energy efficiency in
the low bit precision regime [13].

This paper so far considers analog accelerator support
for nonlinear algebra. The continuous-time analog model of
computation supports the uniquely more reliable continuous
Newton’s and homotopy methods, which are less sensitive to
choices of step size and initial conditions. Such an approach
has not been done in prior analog work, and is incompatible
with conventional discrete-time digital accelerators.

In the next section we combine the strengths of analog
and digital computing another way. We discuss how a digital
computer can break down large problems to make use of
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Reynolds Mach Viscosity Effect of Dominant Nonlinearity

number number diffusion PDE
character
Large High Low Small First-order, Quasilinear
advective
(hyperbolic
PDE)
Small Low High Targe Second- Semilinear

order,
diffusive
(parabolic
PDE)

Table 2: Effect of Reynolds number on Burgers’ and
Navier-Stokes equations. Larger Reynolds numbers

result in more nonlinear and difficult problems.

an analog accelerator, which is fast and efficient for limited
problem sizes. We will return to using analog approximations
to help high-precision digital in Section 6.

4 NONLINEAR PDES &
DISCRETIZATION

PDEs describe the relationship of variables in terms of their
derivatives, and are thus an important model for the natural
world, which is also described using real numbers in continu-
ous space. In this section we convert PDEs into the systems
of nonlinear equations that have been the focus of this paper
thus far.

4.1 The viscous Burgers’ equation

In our effort to benchmark our analog accelerator as a non-
linear systems of equations solver, we must first choose an
illustrative source of a nonlinear equation. Specifically the
rest of this paper focuses on the viscous Burgers’ equation, a
nonlinear PDE. The Burgers’ equation is the subset which as-
serts momentum is conserved in the Navier-Stokes equations
for modeling fluids [16].
The viscous Burgers’ equation has the form:

TSNP I
u u u 2u 2u
%+ug—x+vg—y—é(g§2+g—2):RHSO )
G +ugs +uge — 5 (55 + §,5) = RHS

The center of attention is on the pair of vector-valued vari-
ables @ = (u,v), where u represents the x-velocity field and
v represents the y-velocity field of a fluid in 2-dimensional
space. The PDE is nonlinear because the partial derivatives
of u and v have coefficients depending on v and v themselves.

We are drawn to this example problem in part because
only one parameter needs to be selected; examples with
more parameters may obscure the evaluation. Furthermore,
different choices of that parameter causes the viscous Burgers’
equation to behave similarly to a variety of PDEs, allowing
us to generalize our techniques in this paper to other classes
of PDEs, which we discuss in Section 7. That parameter is
the Reynolds number, Re, a dimensionless coefficient which
controls the behavior of the the Burgers’ equation and the
incompressible Navier-Stokes equations, as shown in Table 2.
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Higher Reynolds numbers result in more nonlinear systems
of equations, and increases the difficulty of solving this PDE.

4.2 Space discretization

With an example nonlinear PDE in hand, in the next two
subsections we summarize how nonlinear PDEs are converted
to nonlinear systems of equations. We advocate for doing
these discretization steps in digital, where there are a wide
variety of advanced techniques. The analog accelerator sup-
ports the variety of techniques by focusing on the inner kernel
of solving the system of equations.

First we have to handle the fact the PDEs describe con-
tinuous fields in space. We do space discretization to convert
the continuous fields into a grid of node variables. This is
necessary because digital machines and our analog accelera-
tor represent variables as scalars, which capture a value at
one place in space as a function of time. In this paper we
use a central finite difference method for simplicity. Analog
accelerators can nonetheless help solve the nonlinear systems
of equations generated by some other space discretization
schemes, which we discuss in Section 7.

Applying space discretization to a PDE results in a system
of ODEs, which is discrete in space but continuous in time.
We handle the equations’ time evolution next.

4.3 Time stepping

With the PDE spatially discretized into a system of ODEs,
we can tackle the time derivative in several ways.

The first approach is to solve the ODEs directly in an
analog computer, which then becomes the “method of lines”
approach used in earlier hybrid computers [6, 15, 24, 26,
27, 36, 38]. Applying those techniques to support existing
modern PDE solvers would require some way to generate
and measure analog waveforms at both high precision and
frequency, which are difficult to have simultaneously in DACs
and ADCs.

So instead of solving the ODEs directly using the analog
accelerator (as was typical in previous hybrid computing
work), we will let the digital host do time stepping as well
as space discretization. This approach allows the analog
accelerator to work inside modern PDE solvers where these
types of discretization are standard practice.

In this paper we use Crank-Nicolson, an implicit method
which offers second-order accuracy, to decompose the 2D
Burgers’ equation into a nonlinear system of equations. Sec-
tion 7 discusses how our approach generalizes to other time
stepping schemes.

4.4 Viscous Burgers’ PDE discretization

Using the techniques in the past two sections, we take Equa-
tion 4, the 2D viscous Burgers’ equation, and apply second-
order central finite difference and second-order Crank-Nicolson
time stepping. Then, we make isotropic assumptions about
the relative size of the space and time grid points to simplify
the problem. We choose values for At, Az, and Ay so these
coefficients are eliminated, for the sake of clarity.
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The resulting stencil consists of a nonlinear system of
equations and its Jacobian, which can be found in the litera-
ture [16, pg.172]. These two sets of mathematical expressions
are what we need to program into the analog accelerator
circuit shown in Figure 1. Different types of PDEs and dis-
cretization schemes will result in different nonlinear systems
of equations and their Jacobians, which similarly can be set
up inside the analog accelerator.

5 ANALOG ACCELERATOR
SOLUTION OF NONLINEAR PDES

So far, we’ve shown how an analog accelerator can solve
nonlinear systems of equations, using the continuous Newton
method. We have also shown how solving nonlinear PDEs is
converted into solving nonlinear systems of equations.

Now, we bring these ideas together: we discuss how the
2D viscous Burgers’ equation is solved in a prototype ana-
log accelerator. We will show the programming model and
architecture interface of a reconfigurable analog accelerator.
We test the approach using a physically prototyped analog
accelerator chip, for a small 2 x 2 grid size due to prototype
size constraints, and present measured accuracy results.

5.1 Programming and data interface

The analog accelerator has a digital interface for configuration,
transmitting data, and programming.

A digital host processor prepares the analog accelerator for
equation solving by configuring the chip so the analog signals
in the chip represent the nonlinear system of equations F ()
and the Jacobian matrix Jr(@). Then, these mathematical
expressions are connected according to Figure 1 so the signals
evolve according to the continuous Newton method. This way
of setting up the analog accelerator is distinct from prior
work in analog computing where differential equations had to
be directly mapped and programmed to analog computers.

The data transmission costs for the analog accelerator
would be the same as a digital accelerator device such as a
GPU or a node-attached FPGA. This is because the con-
figuration of the analog accelerator remains the same when
solving for different instances of the same kind of PDE. Once
the connectivity between analog components is set, the digital
host sends digital codes for equation constants and coeffi-
cients to be set by DACs. The analog accelerator solves the
equation, and the digital host retrieves values measured by
the ADCs. Only new problem parameters and results need
to be transmitted between analog accelerator runs.

We program the accelerator using object-oriented C++, a
style of programming that improves code reuse and minimizes
errors when programming the analog accelerator. A code sam-
ple is given in Figure 4. Each analog subcomponent can be
instantiated on the analog accelerator and tested individu-
ally. The programming scheme allows us to apply software
and digital hardware engineering techniques to analog com-
ponents, including unit testing, randomized validation, and
incremental bringup of larger systems.
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/*initialize and calibrate analog accelerator fabricx*/
Fabric * fabric = new Fabric();
fabric->calibrate();

/*create top-level data structure representing 2D Burgers’

equation analog node variablesx*/

/*upon instantiation, node variables get allocation of analog hardware to implement the needed analog datapathx*/

cells = new NewtonTile[8] {

/*cell variables take as parameters an initial condition, various Burgers’ equation coefficients & settingsx*/

NewtonTile ( fabric->chips[0].tiles[0], 1.0, 128,

};

5.0, 0.0, 0.0, true, true, true ),

/*connect exposed analog interfaces together to form continuous Newton method circuit for 2D Burgers’ equationx*/

parallelConnect ( &cells[0], &cells[1] );

/*additional connections export variables between analog accelerator chips, off chip, and into ADCsx*/
Fabric::Chip::Connection ( cells[0].u_out_chip, fabric->chips[0].tiles[0].slices[0].chipOutput->in0 ).setConn();

/*change analog parameters such as initial conditions,

coefficients, and constants for different problemsx*/

for (unsigned char cellIndx = 0; cellIndx < 8; celllIndx++) {
cells[cellIndx].setUCoeffParallel ( coeff_parallel[cellIndx] );

cells[cellIndx].setRHS ( rhs[cellIndx] );
cells[cellIndx].setDynamicRange ( dynamic_range );

}

/*underlying above high-level calls, analog accelerator is changing the analog parameters of subcomponents:*/
slice.muls [0].setGain ( 1.0 / dynamic_range ); // coefficients realized by multipliers

slice.dac->setConstant ( jaco_coeff );
slice.integrator->setInitial (initial);

/*commit the analog accelerator config and parameters;
fabric->cfgCommit () ;
fabric->execStart ();

// constant biases provided by digital-to-analog converters
// integrator initial conditions for Newton initial guesses

release the integrators to start continuous Newton’sx*/

/*measure final analog value using ADCs, restore integrators and prepare for next set of parametersx*/
newton_u[0] [0] = fabric->chips[0].tiles[3].slices[3].chipOutput->analogAvg(REPS);

fabric->execStop();

/+*destroying objects representing analog variables frees the analog hardware for other calculationsx*/

delete[] cells;

Figure 4: Analog accelerator object-oriented C++4 code sample.

Component Nonlinear | Jacobian Quotient Newton
function matrix feedback method
loop feedback
loop
integrator 0 0 1 1
fanout 2 0 3

multiplier | 4 3 1 0
DAC | 3 1 0 0
tile input | 4 4 0 0
tile output | 4 0 4 3

total area (mm?2) | .30 17 .14 .09

total power (uW) | 284 152 188 139

Table 3: Summary of analog chip component use
for each PDE variable with area and power model
from [18, 19, 22, 23].

5.2 Board and chip hardware mapping

We use a circuit board with two analog accelerator chips to
solve the 2D Burgers’ equation. One analog accelerator chip
stores and computes on i, the x-velocity field, and the other
does the same for ¥, the y-velocity field. The interaction
between these two fields is sparse, so they can be connected

via circuit board-level connections. The characteristic analog
bandwidth of the accelerator chips is kept low enough so
the propagation time for data and control signals across
board-level connections does not matter.

As shown in Figure 5, each analog accelerator chip contains
four identical tiles. In this example each tile is in charge of
one scalar element in 4 or ¢. Within each tile, the analog
function units are connected together to form the nonlinear
equations and the Jacobian matrix. In the Burgers’ equation
the expressions are polynomials, which can be built using
multipliers and summers. Table 3 shows the hardware needed
to implement each mathematical component.

5.3 Dynamic range of values and scaling

The full dynamic range of the PDE problem variables must
scale down to fit in the dynamic range of the analog hardware.
The details of how to scale depend on the nonlinear PDE’s
type of nonlinear function. In the Burgers’ equation, the non-
linear function is a quadratic polynomial. So, if the variables
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Figure 5: Left: Microphotograph of an analog accelerator, measuring 3.7mm x 3.9mm, fabricated in a TSMC
65nm process. Center: Architecture diagram of an analog accelerator designed to test scalable multi-chip
integration and calibration of large analog accelerators. The chip contains four tiles, each an instance of the
microarchitecture presented in [18, 19, 22, 23]. Connectivity between tiles and between chips is tree-like with
sparse connectivity, matching the neighbor-to-neighbor connection pattern for PDEs. The orientation of the
analog inputs and outputs is designed for multiple-chip board-level integration. Right: Diagram of an analog
accelerator tile containing 4 integrators. Other components include multipliers, current mirrors, ADCs, and
DACs. A programmable crossbar enables all-to-all connectivity within each tile, matching the connection
patterns needed to realize a variety of polynomial functions and Jacobians.
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Figure 6: Distribution of analog solution error for
400 randomly generated problems.

% and ¥ are scaled by é, the system of equations should be
scaled by S% To make sure the terms in the nonlinear poly-
nomial stay in correct proportion, any coefficients on linear
terms of ¥ and ¥ should also be scaled by % Scaling can be
applied to nonlinear PDEs with polynomial nonlinearities,
which excludes some PDEs with transcendental nonlinear-
ities of theoretical interest, but fortunately includes many
physically meaningful PDEs.

5.4 Analog accelerator accuracy results

We use the analog accelerator to solve 400 sets of nonlin-
ear equations that would be generated from a 2D Burgers’
equation stencil. The constants in the nonlinear system of
equations are randomly chosen between a dynamic range of
-3.0 and 3.0. The constants and the solution vector are then
scaled to fit in the analog accelerator’s dynamic range.

We define the error between the analog solution and the
digital solution as:

>y (Ua — ua)®

- (6)

Where N is the number of elements in the analog and digital
solutions. Figure 6 shows the distribution of the errors for the
400 trials. The total RMS error for the 400 trials is 5.38%.
The limited accuracy of the analog accelerator is due to
several reasons. One is limited ADC resolution. Another is
process variation and transistor mismatch, which we control
by calibrating all components on the analog datapath, though
the calibration precision is itself limited by DAC precision.
The analog accelerator solutions can be used where lower
accuracy results are useful, or as a seed for a digital solver.

6 DESIGN SPACE EXPLORATION OF
SCALED-UP ACCELERATORS

So far, the case studies of Sections 2.2, 3.2 and the 2 x 2 2D
Burgers’ equations showcase the unique properties of the con-
tinuous Newton method and validate its implementation on
an analog accelerator. In this section, we quantify the benefit
of larger scale analog accelerators in terms of performance
and efficiency improvements. Then, we show the approximate
analog solution can provide a better initial guess to greatly
speed up precise digital solvers.
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Figure 7: Time to convergence for digital and analog solvers.

2D Burgers’ solver size [ Chip area (mm?) [ Power use (mW)

1x1 | 1.38 1.53

2x2 | 550 6.10

4 x4 | 22.02 24.42

8 x 8 | 88.06 97.66
16 x 16 | 352.36 390.66

Table 4: Area and power model for scaled-up ana-
log accelerators. Power consumption is peak power;
as the continuous Newton method approaches con-
vergence the circuit activity and power consumption
decreases. While the analog chip area is large, power
consumption is extremely low.

6.1 Performance vs. accelerator size

As the problem size increases, a digital Newton method solver
takes more iterations to converge and give a solution. On the
other hand, a scaled-up analog accelerator takes a relatively
constant amount of time to converge, as long as the scaled-up
design is feasible. Area constraints on the analog accelerator
limit us to solving grid sizes as large as 16 X 16, corresponding
to a large nonlinear system of equations with a 512 x 512
sparse Jacobian matrix.

Problem setup: We solve randomly generated 2D Burg-
ers’ equations with grid sizes of 2 X 2, 4 x 4, 8 x 8, and
16 x 16. The initial and boundary conditions for the problems
are again randomly chosen within the dynamic range of the
analog accelerator.

First, we get the correct solution using a golden-model
Newton method solver taking small steps to generate an
accurate solution. The golden-model solution is certified to
satisfy the nonlinear system of equations.

Then, we use both a baseline digital solver taking moderate
step sizes and a simulated experimental analog accelerator
to solve the same problem. We compare the baseline digital
and experimental analog solvers at equal, relatively low, ac-
curacy. Both the baseline digital solver and the simulated
analog solver are stopped when their error metric defined in
Equation 6 reaches 5.38%, the value we measured from the
analog accelerator chip.

The baseline digital solver is a parallelized damped
Newton solver, implemented as a vectorized, 16-threaded
OpenMP program running on two Intel(R) Xeon(R) X5550

CPUs running at 2.67GHz. The digital solver initially uses a
damping parameter of 1.0. If the solution does not converge,
it reduces the damping parameter by half until convergence
is possible, at the cost of a long time-to-convergence. We
give the digital solver the advantage counting only the time
spent using the correct damping parameter, even though in
practice this damping parameter is found via trial-and-error.

The simulated scaled-up analog accelerator models
the variables in the analog accelerator as it solves the nonlin-
ear problem. The model is built on the Odeint ODE solver
library [2]. The time it takes for the continuous Newton ODE
to reach a stable value corresponds to the reaction time of
the analog circuit, which is in turn the solution time for
the analog accelerator. The predicted solution time of the
2 x 2 analog accelerator is normalized to match the measured
solution time of the physical analog accelerator. With this
setup we can model analog accelerators larger than the one
we physically prototyped.

The dimensions and power consumption of the
analog accelerator are extrapolated for larger problem
sizes. Table 4 shows that an analog accelerator for 16 x 16
problems is roughly the same size as CPU dies, while power
density is about 400x lower. Evidently, area costs constrain
the problem sizes analog accelerators can solve directly. Fortu-
nately, analog accelerators have unique strengths in extremely
low power density and fault-tolerance, thereby avoiding con-
straints on digital die sizes such as heat and yield [35]. These
unique strengths of analog accelerators may permit die sizes
and stacking techniques otherwise impossible in digital de-
signs. For now we limit ourselves to 16 x 16 problems.

We assume the analog accelerator generates a result with
the same error metric as measured in the physical prototype
chip, which would rely on the demonstrated calibration tech-
niques to control for process variation and mismatches. The
additional noise sources in scaled-up chips would have to be
controlled at the expense of greater power dissipation.

Figure 7 shows the solution times for digital and analog
accelerators. The axes, both in logarithmic scale, are the so-
lution time in seconds plotted against the choice of Reynolds
number for the problem.

Higher Reynolds number problems are more difficult to
solve in both analog and digital. At high Reynolds numbers,
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Figure 8: Time to convergence for digital and seeded
digital solvers to double-precision floating point ep-
silon precision.

the PDE becomes more nonlinear and hyperbolic in character.
The elements on the diagonal of the Jacobian diminish with
higher Reynolds numbers, increasing the chance the Jacobian
becomes singular in the process of solving the equation. In
these situations, the baseline digital solver would then have
to use many smaller-sized steps to get a solution. The data
points become more sparse as the Reynolds numbers and
problem sizes increase because fewer of the randomly gener-
ated problems have a correct solution. Even higher Reynolds
number problems exist and have solutions, but would need
different choices to be made during PDE discretization. We
are limited by the spatial grid size and time step size we
chose in our discretization scheme.

Looking across the different problem sizes, we see that the
4 x 4 problem has the analog and digital solving in roughly
the same time. The digital solution time increases with each
quadrupling of the problem size, while the analog accelerator
solution time remains the same. The data show the 16 x 16
analog accelerator for solving nonlinear systems of equations
may have 100x faster solution time compared to a purely
digital approach, and at much lower power dissipation.

6.2 Analog approx. as digital initial guess

We take the findings from the previous experiment and use
the largest modeled analog accelerator design, capable of
approximately solving 16 x 16 2D Burgers’ equations. We
consider the benefits using such a chip to seed a digital solver
that solves large problems at high precision.

For a given problem, the analog continuous Newton solver
more reliably finds a solution, as discussed in Sections 2.2, 3.2,
and does so in negligible time compared to the digital solver
for the same accuracy, according to Figure 7. The analog so-
lution is set as the initial condition for a seeded digital solver,
which is then immediately in the quadratic convergence re-
gion for the Newton method. The digital solver carries on
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Figure 9: Time and energy for solution for digital
and seeded digital solvers running on a GPU.

and terminates when the error metric is the smallest value
representable in double-precision floating point numbers.

Figure 9 shows the solution time of a baseline digital solver
compared to a seeded digital solver which benefits from the
low-precision solution of an analog accelerator. The average
solution time over 16 trials for both is plotted against various
choices of Reynolds number for the problem, which influences
the nonlinearity of the problem. The error bars represent the
standard deviation of the solution times.

In relatively easier problems with low Reynolds number,
the analog solver saves the digital solver a few steps. As
the Reynolds number approaches 2.0, the baseline digital
solver running the damped Newton method is forced to take
smaller steps, causing the algorithm to run longer with greater
variance in the solution time. On the other hand the analog
seed saves the digital solver from having to use damped steps,
greatly decreasing the digital solver’s solution time.

6.3 Scaling to larger problems on GPUs

We now consider yet larger scale problems that potentially
are solved using GPUs, and estimate how much energy is
saved when an analog accelerator assists a GPU. The problem
setup here is the 2D Burgers’ equation with Re = 2.0, at
which point Newton’s method may have poor convergence.
A common approach for solving larger nonlinear systems
of equations is to offload the linear algebra inner loop of each
Newton step to a GPU. For our baseline digital solver we
offload work to a QR factorization solver, provided in the
Nvidia cuSolver GPU sparse linear algebra library, running
on an Nvidia GTX 1070 GPU. First, we certify the problem
sizes are large enough to fully exercise the parallelism offered
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by the GPU. For the 16 x 16 2D Burgers’ equation, the GPU
program profiler nvProf reports the top three subroutines,
accounting for 80% of the GPU runtime, use on average 90%
of the GPU multiprocessors. When the problem size increases
to 32 x 32, resulting in a 2048 x 2048 sparse Jacobian, the
average multiprocessor activity increases to 95%.

The analog seeding solver needs a way to divide and
conquer the larger systems of nonlinear equations, as our ana-
log accelerator model is limited to solving 16 x 16 problems
due to area constraints. We use red-black nonlinear Gauss-
Seidel to split the 32 x 32 problems to fit. The Gauss-Seidel
algorithm is in its most basic form an iterative algorithm
for linear algebra, but it can also be used here for nonlin-
ear problems [17, pg.291]. Digital architectures use the same
decomposition and parallelization techniques to make sub-
problems fit in CPU caches or split work among nodes [20,
pg.1-9], so the penalty of decomposition is not unique to the
analog accelerator approach. The analog accelerator solves
subproblems generated by nonlinear Gauss-Seidel several
times until the Gauss-Seidel loop converges, and that solu-
tion is fed to the GPU as the initial condition.

Figure 9 shows seeding the GPU decreases the solution
time for 32 x 32 Burgers’ equations by 5.7x, and the energy by
11.6x. Not accounting for transfer costs between the analog
accelerator, GPU, and CPU, the time and energy spent in
the analog hardware is negligible compared to that spent in
the digital solvers. Time and energy saved in these iterations
would be significant, as Newton iterations are the innermost
and dominant kernel in PDE solvers such as those in Table 1.

7 EXTENSIONS FOR OTHER PDES

Now we discuss whether our techniques can be extended to
other varieties of nonlinear PDEs and solving methods. In this
evaluation we have been focusing on a canonical nonlinear
PDE, the quasilinear viscous Burgers’ equation, defined on
a two-dimensional grid. Our proposed way of using analog
acceleration can be extended to other problems depending
on the PDE properties and solver choices.

Nonlinear PDE class: We demonstrate solving a quasi-
linear PDE, which is a superset of semilinear PDEs and is
generally more difficult to solve. Beyond quasilinear PDEs
are fully-nonlinear PDEs, which permit the partial differ-
ential operators themselves be part of nonlinear functions.
Fully-nonlinear PDEs are not generally solved using space
and time discretization, so they are outside the scope of our
investigation.

Type of nonlinearity: We demonstrate solving the Burg-
ers’ equation, which has a polynomial function as its source
of nonlinearity. These polynomial functions can be calculated
using multipliers and summers in the analog accelerator.
Occasionally, nonlinear PDEs have transcendental nonlin-
ear functions such as e* and sin(u). These transcendental
equations would require analog nonlinear function generators.
Transcendental nonlinear functions cause problems for analog
accelerators because there is no clear way to scale problem
variables to fit in the analog accelerator dynamic range.

Y. Huang et al.

Dimensionality: We demonstrate solving a two dimen-
sional problem, which is more difficult to solve than one-
dimensional ones. But most physical models are done in
at least three-dimensional space. When multiple interacting
physical laws appear in the model, the additional state vari-
ables can be thought as adding yet more dimensions to the
problem. Solving higher-dimensional problems with analog
acceleration would increase area consumption, and make the
chip- and board-level routing of analog signals complicated.
We note, however, all practical PDE solvers decouple the
problem dimensions and solve the problem in one or two di-
mensions at a time, permitting the use of analog acceleration.

Space discretization scheme: There are many ways to
do space discretization, which vary depending on whether
the grid is regularly spaced, and on what the node variables
represent. We solve the Burgers’ equation using central finite
difference, which features second-order accuracy. Higher-order
finite difference schemes are more accurate and efficient, at
the cost of having larger stencils, thereby requiring a larger
accelerator. More advanced discretization schemes such as
finite volume and finite elements are important in fluid and
solid mechanics solvers. Those methods use unstructured
grids, which on digital computers shift the bottleneck away
from solving systems of equations and into generating the
stencil. Analog accelerators offer only fixed stencils unless
they are reconfigured frequently, so they would work poorly
with unstructured grids.

Time stepping scheme: In this paper we use Crank-
Nicolson time stepping, an implicit time stepping scheme with
second-order accuracy suitable for time-dependent parabolic
equations such as the viscous Burgers’ equation. Higher-order
time stepping methods allow larger step sizes to be taken, at
the cost of putting more unknown variables at play in the
systems of equations, thereby requiring a larger accelerator.
Beyond parabolic PDEs, time-dependent PDEs also include
hyperbolic PDEs. Those are often solved using explicit time-
stepping, where there is no need to solve systems of algebraic
equations and are therefore outside the scope of this paper.

8 RELATED WORK

Analog computers were used in early computing history as
direct models for physical systems: one would describe an
interesting physical system as a differential equation, then
solve that equation on an analog computer [15, 24, 26, 27, 36].
Our research group revisited those techniques and revived
analog computing in modern integrated circuits to solve
various differential equations [11, 12, 18, 19, 22, 23]; the
efforts are summarized in Table 5. Unfortunately, directly
mapping differential equations to analog hardware limits us
to solving problem sizes that can fit in the hardware, and
provides solutions with accuracy limited by the analog circuit.
Making matters more difficult, the analog computational
model provides limited choices on how to break down the
PDE and map equation variables to hardware. By using
analog computers directly for differential equations we risk
reinventing PDE solving algorithms discovered in the digital
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DE types Problem Programming Analog-digital interaction Relevant parch.
abstraction model features
This | Nonlinear parabolic | Supports Newton User configures Digital decomposition using red- | Multi-chip integration;
work | PDEs solver and nonlinear function black Gauss-Seidel; analog solu- | enhanced calibration
homotopy and Jacobian for tion seeds digital Newton for all analog blocks
continuation inside | Newton solver
digital solvers
22, Linear elliptic PDEs | Supports sparse User provides linear | Digital decomposition using | Automatic calibration
23] linear algebra inside | equation coefficients | multigrid; analog solves re- | for all analog blocks;
digital solvers and constants cursively on linear equation | continuous-time ADC,
residual lookup table, DACs;
[18, Nonlinear system of | Direct mapping of User configures Digital provides continuous-time | impl. in 65nm CMOS
19] ODEs ODE to analog analog datapath for | lookup for nonlinear functions
hardware ODE
[11, Nonlinear ODEs, Direct mapping of User configures Analog solution seeds digital | Calibration only for
12] linear parabolic, ODE or PDE to analog datapath for | Newton integrators; impl. in
stochastic PDEs analog hardware ODE or PDE 250nm CMOS

Table 5: Summary of recent work in physically prototyped analog accelerators for differential equations.

era. We need an analog-digital program partitioning where
analog kernels support existing digital solvers.

Toward that goal, we observed modern scientific computa-
tion is founded on algebraic equations, not ODEs. In effort
to adapt analog acceleration to conventional digital architec-
tures, in prior work we evaluated the merits of using an analog
accelerator for linear algebra [22, 23]. The performance and
efficiency gains in that work were limited due to the following
reasons: first, the continuous gradient descent algorithm in
the analog accelerator was inefficient to compared to optimal
digital algorithms such as conjugate gradients. Second, high
area costs for analog functional units meant too little compu-
tation work was done per problem instance for a given analog
accelerator silicon area. So even though an analog accelerator
for linear algebra would be broadly useful, we established
in that prior work the gains from an analog approach to
linear algebra would not be worth the overheads of using an
unconventional computational model.

9 CONCLUSION

This paper demonstrates how hybrid analog-digital comput-
ing can be used to accelerate solving nonlinear systems of
equations and partial differential equations. Because the ana-
log model of computing uses continuous-value variables and
evolves in continuous time, we are able to use the continuous
Newton method and homotopy continuation for solving non-
linear equations. In contrast to the linear algebra case study
in prior work [22, 23], the continuous Newton method used
in this paper is competitive with the digital alternative, for
two reasons: first, the analog continuous-time algorithm is
less sensitive to the choice of algorithm step sizes and initial
conditions, while the prototypical digital algorithm for non-
linear equations needs careful tuning for these parameters.
Second, the continuous Newton method repeatedly invokes
the continuous gradient descent subcircuit (see Figure 1) as
an analog “subroutine” for linear algebra, resulting in higher
computational intensity than the linear algebra case study,

effectively pulling a greater proportion of PDE solving work
into the analog domain.

We tested our ideas on a multi-chip system of physically
prototyped analog accelerators. The approximate analog so-
lutions, when used in a divide-and-conquer scheme to break
down large problems, are shown to accelerate the Newton
method inside a precise digital nonlinear PDE solver. Using a
simulated model of an analog accelerator that fits in 350mm?,
we predict such an accelerator could reduce solution times for
the innermost Newton method loops on a GPU by 5.7x, and
reduce energy consumption by 11.6x. The insight relayed by
this paper is we get tangible performance and efficiency im-
provements by seeking out problems where digital stumbles
and analog can succeed.

The missing analog-digital program partitioning for analog
accelerators may be continuous algorithms. These algorithms
are continuous-time analogs of iterative numerical methods
that are workhorses of scientific computing [1, 7, 9, 10]. Con-
tinuous algorithms include continuous gradient descent for
linear algebra, continuous Newton’s and homotopy continua-
tion for nonlinear equations, and others for problems such as
eigenanalysis and linear programming. Because the digital
counterparts to continuous algorithms are iterative numerical
methods, they are amenable to the approximation technique
we use in this paper where an analog approximation serves
to replace or reduce the iterations done in a digital algorithm.
As we look to the analog model of computation to overcome
limitations in digital computing, continuous algorithms point
the way to additional analog kernels.
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