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Abstract—In this paper, we propose Random Embedded Secret
Tokens (REST ), a simple hardware primitive to provide content-
based checks, and show how it can be used to mitigate common
types of spatial and temporal memory errors at very low cost.
REST is simply a very large random value that is embedded
into programs. To provide memory safety, REST is used to
bookend data structures during allocation. If the hardware
accesses a REST value during execution, due to programming
errors or adversarial actions, it reports a privileged memory
safety exception.

Implementing REST requires 1 bit of metadata per L1 data
cache line and a comparator to check for REST tokens during a
cache fill. The software infrastructure to provide memory safety
with REST reuses a production-quality memory error detection
tool, AddressSanitizer, by changing less than 1.5K lines of code.

REST based memory safety offers several advantages com-
pared to extant methods: (1) it does not require significant
redesign of hardware or software, (2) the overhead of heap and
stack safety is 2% compared to 40% for AddressSanitizer, (3)
the security of the memory safety implementation is improved
compared AddressSanitizer, and (4) REST based memory safety
can mitigate heap safety errors in legacy binaries without recom-
pilation or source code. These advantages provide a significant
step towards continuous runtime memory safety monitoring and
mitigation for legacy and new binaries.

Keywords-memory safety, hardware support, REST, Random
Embedded Secret Tokens, AddressSanitizer, privileged memory
safety exception, microarchitecture, load store queue, cache
microarchitecture.

I. INTRODUCTION

Memory corruption errors have been one of the most

persistent and long-standing problems in computer security.

However, practical and effective solutions to this challenge,

although critical to secure program operation, remains an

elusive goal to this day. In fact, heap-based memory attacks,

exploiting out-of-bounds heap read/writes and use-after-free

(UAF) bugs alone, accounted for 80% of root causes that

led to remote code execution (RCE) in Microsoft software

in 2015 [1].

Previous hardware techniques to address memory safety

concerns are broadly based on two approaches — whitelisting

safe memory regions and blacklisting (some portion of) un-

safe memory regions. Previous work in the former approach,

broadly referred to as bounds checking, associates metadata

with every pointer indicating the bounds of the data structure it

can legitimately access, and flagging any access outside those

bounds as memory errors. In the latter approach, commonly

called the tripwire approach, critical locations in the address

space (for instance, both ends of an array) are marked invalid

and any access to them raises a memory violation exception.

Whitelisting approaches [2], [3], [4], [5], [6], [7] offer

stronger security guarantees since they monitor all memory ac-

cesses against exact bounds. Another advantage to per-pointer

metadata is that some of these mechanisms also maintain

liveness/version information about data structures they point

to, thus detecting dangling pointers in addition to out-of-bound

errors. However, they suffer from one or more of the following

problems.

1 Performance Overhead. Since they monitor every

pointer dereference, the performance overhead scales with

the number of dynamic pointer references. For each of these

references there is at least one additional memory instruction

for loading the meta data and one comparison operation for

checking the data. Even if some overhead can be mitigated

by optimizations such as caching, the energy overheads due

to the additional instructions are not easily mitigated.

2 Implementation Overhead. They usually require sig-

nificant hardware modifications including modifications to the

cache hierarchy [2], [4], execution pipeline [2], [4], [7], or

even addition of coprocessors [6].

3 Inaccurate/incomplete Coverage. Since most of them

rely on static pointer analyses for metadata propagation during

pointer operations, any inaccuracy in pointer identification

leads to incorrect/unstable program behavior. This is espe-

cially problematic in the C-memory model, which allows

interchangeability between pointer and native data types [8].

Additionally, this also necessitates source code availability,

thus preventing such techniques from being compatible with

legacy binaries.

Tripwires, originally proposed for software, are not a

commonly explored technique in hardware [9], [10]. These

techniques provide a relatively fast mechanism for marking

memory locations invalid. By associating metadata with the

locations instead of their pointers, they avoid metadata prop-

agation costs, thus mitigating some drawbacks of whitelisting

techniques. However, this comes at the expense of weaker

security guarantees since they do not detect all spatial vio-

lations (specifically ones that access unmarked regions). In

fact, these techniques target a specific access pattern which

is commonly responsible for memory overflows. This pattern

manifests itself when the program sequentially starts accessing

locations beyond the bounds of the data structure (in a loop, for

instance). Previous attempts at hardware support for tripwire

implementation have required non-trivial hardware modifica-
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tions (including storage of metadata) and/or incurred non-

trivial performance penalty. Furthermore, previous hardware

techniques in this category only focus on detecting out-of-

bounds accesses and do not address temporal memory safety

even though it accounted for 51% of RCE exploits in Microsoft

software in 2015, whereas the former accounted for 28.5% [1].

Additionally, checks performed by previous schemes were

tag-based, in that they use metadata tags, stored in a region

separate from program data, to compare and verify access

validity. This, in turn, requires (explicit or implicit) out-of-

band fetching and processing of metadata.

In this paper, we propose Random Embedded Security

Tokens (REST ), a hardware primitive for content-based checks,

and describe a framework based on a primitive enabling

programs to blacklist memory regions at a low overhead. This

primitive allows the program to store a long unique value, a

token, in the memory locations to be blacklisted and issues

a privileged REST exception if it is ever touched with a

regular access. We propose a low overhead, low complexity

microarchitecture for detecting these tokens. When an L1 data

cache line is filled, that memory line is checked for the REST

token value and if so, marked as such. If a memory instruction

accesses that marked line, we throw an exception. These

hardware modifications are trivial, requiring no modifications

to either the core design, or the coherence and consistency

implementations of the cache, even for multicore, out-of-

order processors. Ours is also the first scheme to rely on

content-based checks wherein the metadata is stored alongside

program data and requires no modification of the program’s

overall memory layout. Token checks are performed directly

on all data accessed by the program and requires no behind-

the-scene metadata processing.

The rest of our framework is based on a software tripwire-

based scheme, AddressSanitizer (ASan) [11], which consists

of a compilation framework and runtime library that auto-

matically fortifies programs against memory errors without

any programmer effort. ASan is a highly popular memory

error detector, used in the testing infrastructure of production

softwares such as Firefox [12] and Chromium [13]. However,

due to its high performance overhead (~1.4x), it is mainly

used for software testing and debugging, not in deployment

builds. Comparatively, REST incurs an overhead of 2% on the

SPEC benchmarks while not only providing the same scope of

protection as ASan, but even improving its security in several

aspects. Moreover, our technique is also able to provide heap

safety for legacy binaries at similar overheads. Additionally,

as we show later, the observed overheads are completely

attributable to the software framework; our hardware primitive

incurs nearly zero additional performance overhead, and has

negligible implementation complexity.

We illustrate the basic idea of our defense with a simplified

version of CVE-2014-0160 [14], a bug commonly known as

the Heartbleed vulnerability reported in OpenSSL 1.0.1, as

shown in the code shown in Listing 1.

Line 7 in the listed routine contains the overflow bug

wherein the payload length, payload, is used to determine

the size of data to be copied into the response packet without

checking its validity. The resulting exploit can then be used

1 int tls1_process_heartbeat(SSL *s) {

2 unsigned char *p = &s->s3->rrec.data[0];

3 unsigned short hbtype = *p++;

4 unsigned int payload;

5

6 /* Attacker-controlled memcpy length */

7 n2s(p, payload);

8

9 if (hbtype == TLS1_HB_REQUEST) {

10 unsigned char *buffer =

11 OPENSSL_malloc(payload);

12

13 /* Vulnerable OOB memory read */

14 memcpy(buffer, p, payload);

15 ...

Listing 1: Heartbleed out-of-bounds memory read bug.
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Fig. 1: (A) Unsanitized memcpy bug reads sensitive data

outside the benign buffer. (B) REST tokens placed around the

buffer detects this out-of-bounds access.

to leak sensitive information such as passwords, usernames,

secret keys etc., to the client. Furthermore, common protec-

tions involving (stack or heap) canaries would be unable to

detect this attack, since it involves a read overflow and does

not otherwise corrupt any program state. To prevent this, REST

tokens are placed around the source buffer to be copied, so

that when access goes beyond its bounds, a security exception

is triggered, as shown in Figure 1.

II. MOTIVATION

Functionally, REST provides similar safety features as ASan,

a state-of-the-art memory error detector widely used for veri-

fication and debugging. Despite its effectiveness, it is not used

as a live security scheme due to its performance overheads.

ASan implements a software tripwire-based system, wherein

blacklisted zones (also called redzones) are placed around

sensitive data structures. It then detects erroneous program

behavior that leads to illegitimate accesses of these location

(in case of an overflow, for instance). To do so, ASan primarily

relies on two techniques — shadow memory and memory ac-

cess instrumentation (see Figure 2). Firstly, it reserves a chunk

of memory, called shadow memory, that contains metadata and

should never be explicitly accessed by the program. The rest of
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Original

Shadow Memory

addr

f (addr)

Data Memory SpaceCode

*addr = val

if isInvalid(f (addr))
    throw error;

ASan-Instrumented

*addr = val

Original

Fig. 2: Code and address space transformation done by ASan.

Memory accesses are instrumented to check against the corre-

sponding value in the shadow memory (dark region in figure),

calculable with a simple mapping function, f .

the address space maps to its corresponding shadow location

via a simple mapping function. Additionally, ASan imposes

memory-safe program behavior by checking the validity of

every memory access against the metadata for the accessed

location. This is achieved by statically instrumenting the

program to insert checks before every memory access. When

data structures are deallocated, the corresponding regions are

marked invalid by zeroing out the corresponding metadata.

Sources of Overhead. In terms of performance, ASan has

four major sources of overhead. 1 ASan uses a custom

allocator designed with security in mind that maintains sep-

arate pools for free memory (from which new allocations

are made) and deallocated memory (consisting of recent

deallocations), and allows virtually no allocation reuse in

order to prevent use-after-free (UAF) errors. Hence, it is

slower than other allocators which are primarily designed

with performance as a first-order feature. 2 ASan inserts

code at function prologues and epilogues to modify the stack

frame by inserting and aligning stack variables in order to

deter stack attacks. 3 Instrumentation for validating memory

accesses, as discussed above, also contributes towards ASan’s

slowdown. 4 Furthermore, since memory checks cannot

be inserted in third party libraries, ASan partially mitigates

the problem by intercepting common libc data-handling API

calls (e.g.,strcpy and memcpy) to verify that no invalid access

occurs therein for the particular set of arguments.

Figure 3 provides a breakdown of these components for the

SPEC CPU2006 benchmarks simulated on an in-order core1.

As we see in the figure, memory access checks ( 3 and

4 ) account for the most persistent and grievous source of

overhead, although the allocator also contributes significantly

for benchmarks that make frequent heap allocations. In the

subsequent sections, we show how our scheme removes the

overheads associated with most of these components.

Notably, ASan’s developers also consider potential hardware

assistance [15] to speed up metadata lookup and memory

access checks transparently by encoding the corresponding

logic within a single architectural instruction in a design

similar to Watchdoglite [5]. As such, ASan-fortified programs

could compress the entire memory-access validation into a

1The memory side configuration is same as in Table II.
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Fig. 3: Breakdown of various sources of overhead in ASan

with respect to a plain binary using libc’s allocator.

single instruction, thus optimizing the expensive operations,

but not necessarily removing them. Furthermore, although

Watchdoglite has been shown to be highly effective for mem-

ory safety in its own respect, such a design would suffer

from some of the drawbacks of bounds checking schemes

discussed earlier and would necessarily require recompilation.

We discuss and contrast similar hardware techniques in more

detail in §VII.

III. HARDWARE DESIGN

Since REST hardware aims to detect and flag accesses to

tokens, our main challenge is to be performant by hiding

latencies associated with additional memory checks, while

maintaining existing microarchitectural optimizations and en-

suring the integrity of token semantics. Modifications for REST

consists of extending the ISA with two new instructions and an

exception type, as well as microarchitectural modifications to

support them with minimal overhead. We discuss these aspects

of the REST primitive design below.

A. ISA Modifications

The width of the token is that of a cache line (64B in our

system), and its value is held in a token configuration register

(which is not directly accessible to user-level applications).

Two instructions are added to set (store) and unset (remove)

tokens in the application:

1 arm <reg> This instruction stores a token at location

specified in register reg, which should be capable of ad-

dressing the entire address space. The implicit operand in this

instruction is the token value stored in the token configuration

register. The specified location has to be aligned to the token

width, otherwise a precise invalid REST instruction exception

is generated.

2 disarm <reg> This instruction overwrites a token

at location specified in the register <reg>, which should be

capable of addressing the entire address space, with the value

zero. The specified location also has to be aligned to the token

width, otherwise a precise invalid REST instruction exception

is generated. Additionally, in case there is no token at the

location, a REST exception is generated as well.
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Fig. 4: Hardware modifications for REST include an extra

metadata bit per cache line in L1 data cache indicating whether

it contains a token, and the token detector to examine incoming

data from lower caches and fill the token value into evicted

lines.

When a REST exception is triggered, the exception is

handled by the next higher privilege level. If the exception

is generated at the highest privilege mode, we consider it a

fatal exception. We also assume the faulting address is passed

in an existing register.

Setting the token value is done through a store instruction

that writes to a memory-mapped address. Depending on the

token width, one or more stores might be necessary to set the

full token value. This operation can only be performed by a

higher privileged mode.

We also provide two modes of operation, debug and secure.

The secure mode is expected to be the typical mode of

operation for programs in deployment and does not guarantee

precise recovery of program state on a REST exception (be-

havior for other exceptions remains unchanged). In the debug

mode, the entire program state at the time of REST exception

can be precisely recovered by the exception handler. Thus,

this mode is intended for use by developers. The current mode

of operation can be configured by setting a bit in the token

configuration register.

B. Microarchitecture

In our design, loads and stores check the accessed data

against the token value and raise an exception in case of a

match. Thus, logically each load becomes a load followed by

a comparison of the loaded value with the token, while a store

becomes a load of the value to be overwritten, a comparison

with the token value, followed by the store. Additionally,

reading and/or writing a 64B token value would involve data

transfers over multiple cycles, since data buses are narrower.

Naively implemented, this could increase the latency and

energy of memory operations significantly.

We show a novel construction for REST that minimizes

changes to load store pipelines and latency for memory

operations. Our key observation is that checks necessary for

the REST system can be performed when the cache lines are

installed or accessed instead of explicitly fetching the values

and checking them.

Cache Modifications. We extend each cache line in the L1

data cache to include one additional bit to indicate if that line

contains a token. Note that since tokens are aligned, a token is

guaranteed to be contained within a single line. When a cache

line is being installed, the value of that line is compared to
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Fig. 5: Modifications to the LSQ. Added structures are noted

in darker shade.

the token value register and in case of a match, the token bit

corresponding to that line is set. Since cache fills typically

happen over multiple cycles the token comparison can be

decomposed into small manageable compare operation, say

a 32b compare per cache fill stage, to reduce energy. After

the fill, memory operations that access lines with the token bit

set are flagged to throw a REST exception.

A disarm instruction unsets the token bit corresponding to

the accessed line and concurrently zeroes out the entire cache

line. Since such an operation involves all data banks of the

cache, disarm writes incur an additional, typically one cycle,

latency. Additionally, disarms raise a REST exception if the

token bit is not set on the destination line, thus ensuring that

the program can only disarm armed locations. The arm instruc-

tion sets the token bit of the accessed line, but does not write

the token value into it; the token values are written out when

the line is evicted from the L1 data cache. This construction

ensures that arm operations that hit in the cache complete in

a single cycle, despite being a wide write. Our construction

works naturally for write-allocate caches, which is one of the

most commonly used allocation policies supported in current

microarchitectures.

LSQ Modification. Since arm and disarm instructions write

values, they are functionally stores and handled as such in the

microarchitecture with one key difference. Unlike stores, the

arm and disarm instructions should not forward their values

to younger loads, as this will violate the invariant that the

REST token must be a secret. One simple way to provide

this invariant is to serialize the execution of arm and disarm

execution, i.e., ensure that an arm or disarm instruction is the

only inflight instruction when it is encountered in the decode

stage. This option, while simple to implement, can introduce

significant performance penalities.

Instead of serialization, we next describe design to prevent

such forwarding in a common (and complex) structure used

to support store to load forwarding, the load-store queue

(LSQ). Consider a scenario where an arm request is closely

followed by a read to the same cache line. In this case the

load may “hit" the in-flight arm in the LSQ, thus forwarding

an otherwise illegal read. When this case is encountered, we

throw a privileged REST exception.

This exception support can be implemented without any

additional state or impact on LSQ access timing. To do so,
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Action LSQ Cache Hit Cache Miss

Arm Create entry in SQ, tag as arm. Set token bit Fetch line, set token bit.

Disarm Raise exception if SQ has disarm for
same location. Else insert entry with no
store value in SQ, tag as disarm.

If token bit unset, raise exception. Else
clear line, unset token bit(s).

Fetch line, set token bit if it has token.
Proceed as hit.

Load If value can be forwarded from armed SQ
entry, raise exception. As usual otherwise.

If token bit set, raise exception. Else read
data.

Fetch line, set token bit if it has token.
Proceed as hit.

Store (Secure) Raise exception if SQ has arm for same
location. As usual otherwise.

If token bit set, raise exception. Else write
data.

Fetch line, set token bit if it has token.
Proceed as hit.

Store (Debug) Raise exception if SQ has arm for same
location. As usual otherwise.

If token bit set, raise exception. Else write
data.

Fetch line, set token bit if it has token.
Delay store commit till ack from L1-D.

Coherence Msgs. N/A As usual. As usual.

Eviction N/A If token bit set, fill token value in outgoing
packet.

N/A

TABLE I: Actions taken on various operations for L1-D cache hits and misses.

we incorporate the REST violation check into the existing

matching logic simply by breaking the match down to perform

two matches — one an address match for the cache line

address and another for the remaining — and adding a few

logic gates (as shown in Figure 5). Additionally since the arm

and disarm write values are implicit and known by the cache,

we do not attach a value with the corresponding entry in the

store queue. With these modifications, LSQ access latencies

and data widths remain unchanged despite the introduction

of very wide writes. Such address modifications may be

necessary at other places in the microarchitecture where store

to load forwarding may occur.

Exception Reporting. We can further optimize the perfor-

mance cost of REST by being flexble about how and when

exceptions are reported. Supporting precise exceptions with

REST requires disabling performance optimizations such as

critical-word first, and early and eager commit of stores that

are common in modern processors. However, REST exceptions

do not have to reported precisely especially when it is used

for monitoring for security violations during deployment as

in these cases the user is typically interested in knowing if

a security violation occurred or not, and not the state of the

machine when the violation occurred.

If the L1 data cache supports critical-word first fetching,

the access request may be satisfied before the whole line has

arrived and a match determined. This creates the possibility

of a delay between load commit and the security check,

especially when the load is at the head of the ROB and is

committed as soon as the critical word arrives but the entire

line has not. In the debug mode, loads are not released from

the MSHRs as long as the delivered word partially matches

the token value. On a mismatch, the load is released without

any performance penalty. In the secure mode, REST exception

is reported independent of the load commit.

Additionally, since stores are committed from the ROB as

soon as the store/arm/disarm becomes the oldest instruction,

REST violations due to a faulty access might not be resolved

in time. By the time the violation is detected at the cache and

the response is received at the ROB, the offending instruction

may have retired. This will result in an imprecise REST

exception. In the debug mode, we guarantee precise exceptions

by delaying store commit until writes completion.

Modifying Token Width. The token width can be reduced

for security and performance reasons. For instance, instead of

a full cache line width, half or quarter cache line tokens may

be used. Most changes described above can be simply scaled

to accommodate this. For instance, the token value register can

be smaller, and the number of token bits per line will increase

to 2 and 4 for 32- and 16-byte tokens respectively.

IV. SOFTWARE DESIGN

The REST primitive described above provides programs the

capability to blacklist certain memory locations and disallow

regular accesses to them. In this section, we describe how

programs can leverage this primitive to obtain spatial and

temporal memory safety with little to no changes in its

construction and/or layout.

A. Userlevel Support

We base our software design on ASan, which is a highly

popular open-source memory error detection tool. REST ’s

software framework, however, uses tokens instead of metadata

to denote redzones. This obviates two major components

of ASan’s original design. Since our hardware continuously

detects access to tokens without software intervention, mon-

itoring every program read and write in software becomes

unnecessary. Thus, memory operations no longer need to be

instrumented for checking access validity. Secondly, since

REST tokens do not require separate maintenance of metadata,

the need for shadow memory is eliminated as well. Combined,

this essentially eliminates the two major sources of ASan’s

performance and memory overheads, simplifying its imple-

mentation complexity.

Protecting the Stack. As shown in Figure 6, protecting

vulnerable stack variables involves placing redzones around

it. This is done by code added at the function prologue, so

redzones isolate these variables from the other local variables.

The size of each redzone is chosen as a multiple of the token

width and is based on the size of the data structure. Sub-

sequently, overflows during the frame’s lifetime are detected
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void foo() {

  char redzone1[64];

  char arr[16];

  char padding[48];

  char redzone2[64];

  arm(redzone1);

  arm(redzone1);

  ...

  disarm(redzone1);

  disarm(redzone2);

  return;

}
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(A) Stack Safety

(B) Heap Safety

Free Pool

Quarantine Pool

Allocated 
Memory Chunks

Allocation Metadata

Allocated Space

REST Tripwire

Allocated Space

REST Tripwire

malloc()

free()

Fig. 6: (A) For stack safety we instrument the program to

insert tokens around vulnerable buffers. (B) Our allocator

provides heap safety by surrounding allocations with tokens

and blacklisting deallocated regions in the quarantine pool.

when accesses go past their boundaries and into one of the

redzones. Code is also inserted at the function epilogue to

clean up the tokens so that future frames inherit a clean stack.

Since the above changes involve modifying the stack layout,

REST requires that binaries be compiled with our plugin.

However, since stack attacks have become an insignificant

threat vector in recent years [1], users may also choose to

forego stack protection, if performance is a concern, and just

opt for heap protection as described next.

Protecting the Heap. REST secures the heap with a custom

allocator adapted from ASan. Spatial heap protection is pro-

vided by ensuring that the allocator surrounds every allocation

with redzones (see Figure 6). These redzones not only separate

the allocations from each other but also from the metadata.

Temporal bugs are prevented by filling all freed allocations

with tokens and placing them in a separate quarantine pool,

instead of the pool of free memory from which new allocations

are assigned. They remain there until the free memory pool

has been sufficiently consumed at which point, they are

disarmed and released for reallocation. Hence, UAF attacks

are mitigated since freed allocations remain blacklisted and

any attempts at accessing them via dangling pointers or double

frees are caught.

We make one modification to ASan’s free pool manage-

ment however. ASan originally maintains the invariant that

all entries in its free and quarantine pool be blacklisted.

This necessitates blacklisting newly mapped region from the

system, and mark them valid just before allocation. For REST

we relax the invariant to guarantee that only quarantined

regions are blacklisted while those in the free pool are zeroed.

This is because blacklisting, in our case, involves storing

tokens all over the newly mapped regions and is hence slower

than just rewriting corresponding metadata as is done by ASan.

Our invariant is maintained for reused regions since disarms

zero out memory before they are moved to the free pool and

reallocated, thus avoiding uninitialized data leaks.

One key advantage of our protection mechanism is that it

works with legacy binaries. Since REST performs memory

access checks in hardware, heap protection in our case does not

require any instrumentation of the original program and can

thus be availed even by legacy binaries, as long as our custom

allocator is used (with LD_PRELOAD environment variable in

Unix-based systems, for instance).

B. System Level Support

At the system level, we propose having a single token value.

As will be discussed in §V, the token widths are sufficiently

long that the chances of a random program value matching

a token is vanishingly small (see §V-B). However, leaking

this value via physical or side-channel attacks might still

be possible and would compromise the entire system. So

periodically this token value can be rotated (at reboot, for

instance). Our design for heap safety allows this model without

the need for recompilation.

Alternatively, a unique token value could be used for

every process with the OS maintaining them across context

switches. This design requires some changes to the OS such

as the generation of token values and the ability to deal with

tokens from different processes when processes are cloned or

communicate with each other.

V. HARDWARE/SOFTWARE SECURITY

A. Threat Model

In line with recent related work regarding memory error

based attacks and defenses, we assume the following in and

of our system. The target program has one or more memory

vulnerabilities, that can be exploited by an attacker operating

at the same privilege level to gain arbitrary read and/or write

capabilities within the execution context. We do not make

any assumptions as to how these vulnerabilities arise or what

attack vectors are used to exploit them. We also assume that

the target has common hardware defenses available in most

systems today (e.g., NX-bit). Furthermore, we assume that the

hardware is trusted and does not contain and/or is not subjected

to bugs arising from improper usage parameters resulting in

glitching, physical, or side-channel attacks.

B. Hardware Discussion

In this section, we discuss the security implications of

our token primitive independent of the software framework

utilizing it.

• Token Width. A key assumption of our design is that token

detection does not suffer from false positives, which occur

when token exceptions are triggered by a legitimate chunk of

program data. Three conditions have to be met for this.

1 The data chunk equals token value,



7

2 It is aligned to token width, and

3 It is fetched into the L1 data cache, thus passing through

the token detector. If data transiently acquires the token value

while already in L1 data cache or any other part of the memory

subsystem, no exception is raised.

To avoid false positives, it is therefore critical not only to

choose a properly random token value but also an appropriate

token width. In our design we choose a width of 512 bits,

which makes the chances for a program data chunk causing a

false positive less than 1
2512

2. If this degree of overprovisioning

is considered excessive, smaller token widths of 256 bits or

even 128 bits could be used. As discussed in §III, these values

should entail minimal changes in our original design and can

even be supported simultaneously.

• Immutability and Unmaskability. REST makes sure that

once a token is set, it can only be removed through a disarm

operation and cannot be otherwise overwritten (or even read)

by any process at the current privilege level. Additionally,

REST exceptions cannot be masked from the same privilege

level. These measures ensure that adversaries cannot exploit

inter-process, inter-core, or inter-cache interactions to bypass

token semantics.

• Detector Placement. We place our detector at the the L1

data cache in order to keep the other caches unmodified and

hence, minimize design costs. Consequently, however, REST

does not catch token accesses via means that completely

sidestep the cache (e.g., DMA).

C. Software Discussion

While REST is based on ASan, it improves upon ASan’s

security in a number of ways. In this section, we elaborate

upon the weaknesses of ASan, if/how REST mitigates them,

and whether we introduce any vulnerabilities of our own.

• False Negatives. Token width affects token alignment and

therefore, the target data structures3. Imposing this granularity

on program data, in turn, introduces small gaps between

variables. For instance, in Figure 6, REST adds a pad space

adjacent to an array to conform to the granularity require-

ment (64B in the figure). This introduces the scope for false

negatives, wherein REST is unable to detect overflows that are

small enough to spill into the pad, but not into the token itself.

This implies that although we still protect against read/write

overflows, our system is vulnerable uninitialized data leaks in

the stack [17], which can be simply prevented by zeroing out

the padding or using narrower tokens. Uninitialized data leaks

are not a problem in the heap, however, due to our invariant

that all regions in our allocator’s free pool are zeroed.

• Brute-force Disarm. Our decision to mandate precise spec-

ification of an armed location while disarming is to counter

a scenario when an attacker has somehow obtained control of

a disarm gadget (i.e., can influence its address argument), but

does not accurately know the layout regarding which memory

2For simple reference, a maximum of 248 token-aligned data chunks can
reside in a 64b address space simultaneously. Additionally, a modern system
operating at 3GHz would need ~10145 years to guess a 512b random value
via simple increment operations.

3ASan also imposes alignment on protected data structures [16].

locations are specifically armed. In such a scenario, this design

decision prevents attackers from blindly disarming swathes

of memory regions. Properly compiled code, however, should

have no problems due to this stipulation.

• Privilege. Although used in some security mechanisms [18],

ASan was primarily developed for debugging. While it can

serve as a security tool under weak threat models and per-

formance requirements, realistically it has limited utility as

one. This is primarily because its framework is implemented

at the same privilege level as the program itself. While the

location of shadow memory is randomized, it remains open

to memory disclosure attacks, upon which the metadata can

be easily tampered with. Memory access monitoring, while

statically baked into the program, can also be subverted with

carefully crafted code gadgets or even simple code injection.

We overcome this issue by raising a REST violation on a token,

regardless of privilege.

• Handling setjmp/longjmp. Since the program can nei-

ther probe for the presence of a token, nor does it keep a log of

all armed locations, disarming necessarily needs to be carried

out in the presence of a known reference point. For the stack,

frames serve this purpose, i.e., for a given function, arms/dis-

arms occur at fixed offsets within the frame. Consequently,

we could not extend REST ’s protection to support programs

that use setjmp/longjmp since these instructions alter the

stack layout. ASan takes a very conservative approach in such

cases by zeroing out the metadata, and hence whitelisting the

entire region of the current stack. We cannot take the same

approach since we do not keep track of active tokens on the

stack. Providing a secure and cheap mechanism for handling

this case remains a topic of future research.

• Predictability. Our design, as well as ASan’s, suffers

from predictable layout as attackers can simply jump over

redzones (countered to some extent by adjusting redzone size

according to the buffer size). Although we do not use it in our

system, we recommend that REST be used in conjunction with

some variant of layout randomization, depending on the usage

scenario. Layout randomization for the heap [19], [20] and

stack [21], [22] has already seen a significant amount of work

in recent times and has been shown to be easily and effectively

applicable. Alternatively, programs could also sprinkle arbi-

trary tokens across the data region in a configurable manner

to catch such attempts.

• Temporal Protection. In terms of temporal safety, ASan’s,

and consequently our guarantees are incomplete since we

unmark previously allocated blocks when we reallocate them,

after which point, dangling pointers or double frees can no

longer be detected. This can be prevented to some extent by

using heuristics such as reducing reallocation predictability

by maintaining some degree of randomness for new alloca-

tions and ensuring that its entropy is never compromised by

maintaining a large enough free memory pool. In our setup,

however, we rely on ASan’s existing allocation algorithm and

do not augment it any further.

• Composability and Coverage. In order for ASan to be

effective, all memory accesses to user data need to be mon-

itored. Hence, it is essential that all software modules (the
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C
o
re

Frequency 2 GHz
BPred L-TAGE, 1+12 components, 31k entries total
Fetch 8 wide, 64-entry IQ
Issue 8 wide, 192-entry ROB
Writeback 8 wide, 32-entry LQ, 32-entry SQ

M
em

o
ry

L1-I 64kB, 8-way, 2 cycles, 64B blocks, LRU
replacement, 4 20-entry MSHRs, no prefetch

L1-D 64kB, 8-way, 2 cycles, 64B blocks, LRU
replacement, 8-entry write buffer, 4 20-entry
MSHRs, no prefetch

L2 2MB, 16-way, 20 cycles, 64B blocks, LRU
replacement, 8-entry write buffer, 20 12-
entry MSHRs, no prefetch

Memory DDR3, 800 MHz, 8GB, 13.75ns CAS latency
and row precharge, 35ns RAS latency

TABLE II: Simulation base hardware configuration.

main program and shared libraries) be compiled with ASan

support. Consider a situation where the program itself has been

compiled as desired but a third-party library has not. In such a

case, if the library has faulty code resulting in buffer overflow

and it operates on a ASan-augmented buffer, the scope for

exploitation still remains since read/writes in the library are

not being monitored. The reverse situation also applies when

the fortified code is in the ASan-augmented program but

the data originates in the library, since the foreign buffer

does not have the right bookends. Hence, ASan requires both

access monitoring and metadata maintenance, one or both of

which might break when using non-ASan augmented modules.

Analysing and instrumenting the shared libraries at runtime

would incur a huge performance penalty (as demonstrated by

tools like Valgrind [23])4.

REST relaxes this requirement greatly by not requiring

explicit access monitoring. Thus, as long as the data itself

is properly bookended, it does not matter whether the code

accessing it has been instrumented or not. As such, it is

more compatible with untreated external libraries. Since token

access also generates exceptions at higher privileged levels,

token manipulation via syscalls is also prevented.

VI. EVALUATION

A. Experimental Setup

We implement REST in the out-of-order CPU model of

gem5 [24] for the x86 architecture. Due to its limited sup-

port for large memory mappings, we were unable to run

x86/64 binaries since gem5 could not accommodate ASan’s

shadow memory requirements. Consequently, we simulate 32-

bit i386 binaries of the SPEC CPU2006 C/C++ benchmark on

the modified simulator in the syscall emulation mode with

a configuration shown in Table II. The arm and disarm

instructions were implemented by appropriating the encodings

for x86’s xsave and xrstor instructions respectively, which

are themselves unimplemented in gem5.

The benchmarks were compiled with Clang version

5.0.0 with "-O3 -mno-omit-leaf-frame-pointer

-mno-sse -fno-optimize-sibling-calls

4ASan mitigates this to some extent by intercepting common library calls
(like strcpy), checking the input data appropriately before the call.

-fno-omit-frame-pointer" flags. We run these programs

to completion with the test input set. Since executions with

these inputs spend a significant amount of time initializing

(and allocating) compared to the ref input set, this choice of

input sets should reflect on our results adversely since the

overheads associated with our allocator will not be amortized

with computation as well as in the case of ref inputs.

B. Overheads

To evaluate REST , we compare it against two baselines

— unsafe, plain binaries using the stock libc allocator, and

binaries fortified with ASan. We evaluate two modes, secure

with imprecise exception and debug with precise exceptions,

for two defensive scopes, full (i.e., stack and heap) and heap

only. Additionally, we present another category of numbers for

perfect, zero overhead REST hardware (referred as PerfectHw)

as a limit study of the current hardware design’s optimality.

The results are presented for each benchmark in Figure 7

as slowdowns relative to the unsafe binary. In addition, we

show the weighted average mean overhead5 as well (referred

as the WtdAriMean). For reference, the geometric mean of the

overheads6 is also presented in the figure, but for the following

discussion, the cited values refer to the weighted average, not

geometric mean7.

REST vs. Baseline. In the secure mode, REST shows an

overhead of 2% while providing full or heap safety respec-

tively. For the debug mode, the corresponding values are

25% and 23% respectively. In both modes, we find that the

overall trend is roughly consistent with the results presented in

Figure 3. Relative to ASan, REST does not perform memory

checks (via explicit program instrumentation or libc call

interception). In case of just heap safety, it additionally does

not bear the cost of stack instrumentation. Accordingly, we

observe that the numbers for REST ’s full safety follow the

expected trend. gcc and xalanc exhibit especially high over-

heads since they use the allocator more frequently than others

(as also indicated in Figure 3), which provided the breakdown

of various components of REST ’s slowdown. Especially in the

case of xalanc which makes a high frequency of allocations

(0.2 allocations per kilo-instructions), the allocator overheads

dominate significantly compared to other benchmarks. Bench-

marks that use the allocator more sparingly (lbm and sjeng,

for instance, which make less than 10 allocation calls overall)

have little to negligible overheads.

These results additionally indicate that our allocator, based

on ASan, is a major contributor to REST ’s overhead. This is

evidenced by the fact that the full and heap safe categories

exhibit almost equal overheads, differing only by 0.16% on

average. Thus, if recompilation is an option for users, REST

could provide stack safety at nominal extra cost. We chose

to use the ASan allocator for convenience; in the future, we

plan to design a custom REST allocator that could potentially

mitigate some of the observed overheads.

5Weighted arithmetic mean overhead = AriMean(<Plain-normalized run-
time>*<Plain runtime>/<Sum of plain runtimes>) - 1

6Geometric mean overhead = GeoMean(<Plain-normalized runtime>) - 1
7There has been a lot of discussion on the right way of aggregating

results [25]. For this work, we follow [26].
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Fig. 7: Runtime overheads of ASan and REST in the debug, secure, and perfect (zero-cost) hardware modes while providing

full and heap safety. WtdAriMean gives the weighted arithmetic mean overhead, while GeoMean refers to the geometric mean.
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mean overhead, while GeoMean refers to the geometric mean.

The difference in runtimes for the secure and debug modes

arises due to the fact that, in the debug mode, we delay

store commit until the corresponding write completes. In

our simulated out-of-order core, although the impacts of this

change manifests in many ways, a few side-effects were

predominantly observed. First, unsurprisingly we found that

the number of cycles the ROB was blocked by a store was

about an order of magnitude higher in the debug mode.

IQ occupancy was also severely affected for the latter case,

especially for xalanc that had the number of cycles IQ was

full in the secure and debug modes differed by more than

100x. Notably, we also did not observe a lot of traffic at the

main memory interface due to token fills, indicating that most

token accesses hit in the cache and do not otherwise contribute

to memory access bandwidth for any of the benchmarks in

either mode (only 0.04 tokens per kilo-instructions crossed

the L2/memory interface for xalanc in the secure full run).

Software vs. Hardware. To distinguish between the over-

heads added by our software and hardware modifications,

we run the REST binaries on stock hardware with one key

modification — each arm and disarm in the binaries is

replaced by one regular store. This simulates a situation

wherein our REST hardware modifications for managing and

checking tokens have zero cost. The runtimes for this set of

experiments are shown in Figure 7, denoted by the PerfectHW

Full and PerfectHW Heap bars. As these results show, the

overheads incurred by the perfect REST hardware are not

significantly different from that seen in the secure mode, being

only 0.2% lower for full protection and only 0.03% lower

for heap protection. This implies that the cost of the REST

primitive in hardware is nearly zero and that the entirety of

the performance overheads in the secure mode are solely an

artifact of its software component, especially the allocator.

Token Widths. Token widths while affecting the security of

a system might also potentially affect its performance, since

smaller token widths might allow better cache utilization. In

order to evaluate this we configure our implementation to

utilize tokens of 16B and 32B and perform the experiment for

all modes. The corresponding results are shown in Figure 8.

Overall, we see that choosing any single token width does not

make a significant difference in terms of performance. In the

general case, users might thus freely choose robustness in the

form of wider tokens, without compromising performance.

VII. RELATED WORK

Memory safety implies two types of protections — spatial

and temporal. Spatial memory errors usually manifest in two

different ways depending on program behavior. Overflow-

style errors are a result of a sweeping or linear access

pattern wherein the code sequentially starts accessing locations

beyond the bounds of the data structure. Alternatively, invalid

reads/writes might also occur if a pointer is corrupted/overwrit-

ten resulting in a access pattern that can be more precise or

targeted. Protection schemes can be characterized depending

on which pattern they detect. In terms of temporal protection,

schemes can be characterized by the time window within

which their protection lasts. Some schemes provide complete

protection by detecting dangling pointers for the duration of

the entire execution, while others only do so until the invalid

region has been reallocated again.

Since memory safety has been a persistent problem for

decades, a lot of work has been done to address it, especially
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Proposal
Spatial
Prot.

Temporal
Prot.

Shadow
Space

Compos-
ability

Perf.
Overhead

Hardware Modifications

Hardbound [2] Complete None ✓ ✗ Low µop injection, L1 cache & TLB for tags

SafeProc [3] Complete Complete ✗ ✗ Low Multiple CAMs and memory units, hardware
hash table, hash table walker

Watchdog [4] Complete Complete ✓ ✗ Moderate µop injection, pointer lock-ID cache, dan-
gling pointer monitor

Watchdoglite [5] Complete Complete ✓ ✗ Moderate Nominal

Intel MPX [7] Complete None ✗ ✗† High Not known

HDFI [10] Linear None ✓ ✓ Negligible Wider buses and cache lines, tag-aware
memory controller with caches, tag table

ADI [27] Linear‡ Until realloc‡ ✗ ✓ Negligible 4b per cache line at all cache levels‡

CHERI [6] Complete Complete ✗ ✗ Moderate Capability coprocessor tightly integrated
with in-order pipeline

iWatcher [28] N/A N/A ✗ ✓ High Per-byte cache line metadata, a multi-entry
table, small metadata victim cache at L2

Unlimited watch-
points [29]

N/A N/A ✗ ✓ High Range cache, metadata TLB

Safemem [9] Linear None ✗ ✓ High Repurpose DRAM’s error-correction bits

Memtracker [30] Linear Until realloc ✓ ✓ Low Metadata caches, monitoring unit in pipeline

ARM Pointer Au-
thentication [31]

Targeted None ✗ ✓ Negligible Not known

REST Linear Until realloc ✗ ✓ Moderate 1 metadata bit per L1-D line, 1 comparator

TABLE III: Comparison of previous hardware techniques (assuming single-core systems for simplicity). †Although MPX-

supported binaries execute with modules that are not protected, metadata is dropped when such modules manipulate an

MPX-augmented pointer. ‡See text.

in software [32]. In this section, we only discuss relevant

hardware techniques proposed towards solving this problem

(summarized in Table III) below.

• Bounds Checking. Hardware-based bounds checking [2],

[3], [4], [5] solutions were proposed to mitigate the problems

of high performance overhead associated with software en-

forced bounds-checking [33], [34], [35] while retaining its ef-

fectiveness. They were quite successful in this regard, bringing

down the performance penalty significantly (Hardbound [2]

reported considerably lower overheads than the others but

does not provide temporal safety). There are a few differences

between them and REST , however. This is because of the

fact that while bounds-checking performs complete monitoring

of out-of-bounds accesses (assuming pointer identification

in hardware is perfect), REST only detects errors when the

blacklisted locations are accessed and hence, provides weaker

security guarantees. The advantages of the latter approach,

however, are lower overheads and complexity.

Firstly, REST ’s memory overhead scales with the number of

protected data structures, not pointers to them, and does not

need separate memory to do so. We also do not require storage

in the chip itself, other than a register at the L1 data cache.

On the other hand, most previous works store metadata in a

shadow space, a memory region containing metadata for every

location of the address space. This results in fast metadata

access since calculating its location inside the shadow space

is derivable by a simple arithmetic operation on the pointer

address. But it is also highly inefficient in terms of storage

since all of the address space is shadowed even if a negligible

fraction of it is actually occupied by pointers. Watchdog [4]

and Watchdoglite [5] reported ~56% increase in memory usage

for SPEC CPU benchmarks. In terms of on-chip storage, all

schemes, with the exception of Watchdoglite, introduce some

form of fast-lookup memory, such as caches, in order to speed

up metadata lookup and hence, pointer operations.

Most of these schemes also introduce non-trivial hardware

logic to the chip microarchitecture. Hardbound and Watchdog

inject micro-op around memory accesses instructions at run-

time. SafeProc and Watchdoglite, on the other hand, rely on

the compiler to explicitly insert instructions in the program to

this end, enabling static analyses to optimize these operations.

Furthermore, Watchdog logically extends the physical register

file to accommodate metadata, whereas the others use existing

registers, thus increasing register pressure. REST ’s detection

logic is vastly simpler since we do not perform checks for

spatial and temporal violations in the pipeline for every

memory access. Since we defer the detection responsibilities

completely to the caches, the core architecture itself remains

unchanged, also making register pressure a non-issue.

Additionally, reliance on compiler support implies these

systems have limited composability with software (such as

third-party libraries) which have not undergone the necessary

static transformations. This means they necessarily require

shared libraries that have been compiled similarly. Critically

however, a kernel that is unaware of this scheme could cause

errors and presents a potential vulnerability for such systems.
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For instance, an attacker could influence the size arguments

of a data-manipulating syscall to corrupt sensitive data. Since

REST associates metadata with the data structure and not its

pointers, we do not have to worry about static pointer analyses

(or their accuracy). The compiler support necessary for REST

is, hence, significantly simpler (LLVM’s ASan module has

only 2129 LoC with our modifications).

Notably, Intel Memory Protection Extensions (MPX) [7]

marks the first commercial support for this technique. How-

ever, it faces a few compatibility issues and exhibits high

performance overheads [36].

• Tagging. Some defenses “color” memory regions by as-

sociating tags with them and checking these tags when they

are accessed. HDFI [10] marks memory locations with a 1-bit

tag, that subsequently indicates whether that location can be

accessed via regular load/stores. Although it is quite flexible

and exhibits nominal overhead, its hardware requirements are

higher than ours. SPARC ADI [27] uses a 4-bit coloring

scheme, using the 4 most significant bits of a 64b pointer

for this purpose. On an access, the hardware checks whether

the tags of the pointer and accessed regions match. They

also require a custom allocator responsible for coloring heap

allocations but do not require that programs be recompiled to

avail this feature. Although full details of the microarchitecture

have not been disclosed, at a minimum they require 4 bits of

metadata per cache line at all cache levels. Spatial overflows

are prevented by annotating adjacent allocations and their

metadata with different tags, while temporal overflows are

prevented by changing tags on deallocation. However, due to

the limited number of available tags, memory regions might

reuse tags after being reallocated enough times (via heap feng-

shui attacks [37], for instance) after which dangling pointer

access will go undetected. Moreover, since they modify pointer

format, (legacy) programs that do special pointer operations

involving compression or irregular arithmetic will be incom-

patible with this technology. We do not face these problems.

• Capabilities. Capability-based architectures [6], [38] are

another metadata-based secure hardware design that offer

stronger security guarantees than us. Here, all pointers are aug-

mented with metadata that goes beyond bounds information

(permission, for instance). Particularly, works in the CHERI

project [6], [39] have demonstrated its applicability in the

modern era on a whole-system level, not just for applications,

for a MIPS 64-bit in-order processor. However, this support

comes at the expense of high performance and area overheads,

although the authors acknowledge open areas of optimization

in their design.

• Watchpoints. This class of solutions aim to provide a

high number of hardware data watchpoints, primarily for

debugging. iWatcher [28] was one of the first hardware

techniques proposed to this end and functionally provided

support for a high (but limited) number of programmable

hardware watchpoints at a relatively low overhead compared

to some software solutions, but required that the affected

physical pages be pinned to physical memory and not be

swapped out. Although they did not explore memory safety

as an application, Greathouse et al. [29] solved both problems

by providing unlimited watchpoints and allowed pages to be

swapped out by storing metadata separately.

• Others. SafeMem [9] repurposed error checking ECC bits

in main memory to mark memory locations invalid in order

to detect spatial memory errors. They did so by setting the

parity state to an error value, so that accesses to those locations

trigger exceptions, thus trading reliability for safety. However,

each set/unset operation is quite expensive with latencies

comparable to an mprotect syscall. Additionally, it did not

support the swapping main memory contents to disk. Mem-

tracker [30] associates state with each memory location by

monitoring accesses to them. They however, do not make any

modifications to the allocator to inhibit allocation reuse, and

so are more vulnerable to temporal attacks. Besides the above

solutions, ARM recently announced pointer authentication in

select chips [31] that counter pointer corruption and forging,

but do not protect against general temporal or spatial attacks.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed REST , a primitive for content

based checks and showed how it can be used to creae a

low complexity, low overhead implementation for improv-

ing memory safety. REST itself requires local modifications

that integrates within existing hardware intefaces. It incurs a

low performance penalty for stack and heap safety, which

is 22-90% faster than comparable state-of-the-art software

implementations, while additionally being more secure and

providing heap safety for legacy binaries.

There are many open areas of optimization and extension

to REST . The REST software components viz., the repurposed

Address Sanitizer allocator, accounts for almost all of the

slowdown in the secure mode. An allocator designed to take

advantage of REST properties and requirements could be

significantly faster. Similarly, for hardware, our goals was to

minimize number of optimizations: however, a few additional

microarchitectural optimizations such as a dedicated cache

for REST lines has potential to decrease overheads further,

especially for the debug mode and for programs that make

frequent allocations. Finally, we only explore REST at the

application level in this paper; extending and supporting it

at the system level and for heterogeneous architectures, will

increase system security and reliability.

The benefits of REST go well beyond memory safety. As

a primitive for performing content-based checks in hardware,

it provides a number of opportunities not only for improving

other aspects of software security (e.g., control flow), but also

programmability and performance. Developing these new ap-

plications using REST can bring significant exciting benefits.
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