
Side-channel Vulnerability Factor:
A Metric for Measuring Information Leakage

John Demme Robert Martin Adam Waksman Simha Sethumadhavan
Computer Architecture Security and Technology Lab

Department of Computer Science, Columbia University, NY, NY 10027
jdd@cs.columbia.edu, rdm2128@columbia.edu, {waksman,simha}@cs.columbia.edu

Abstract

There have been many attacks that exploit side-effects of
program execution to expose secret information and many
proposed countermeasures to protect against these attacks.
However there is currently no systematic, holistic method-
ology for understanding information leakage. As a result,
it is not well known how design decisions affect informa-
tion leakage or the vulnerability of systems to side-channel
attacks.

In this paper, we propose a metric for measuring infor-
mation leakage called the Side-channel Vulnerability Fac-
tor (SVF). SVF is based on our observation that all side-
channel attacks ranging from physical to microarchitectural
to software rely on recognizing leaked execution patterns.
SVF quantifies patterns in attackers’ observations and mea-
sures their correlation to the victim’s actual execution pat-
terns and in doing so captures systems’ vulnerability to
side-channel attacks.

In a detailed case study of on-chip memory systems,
SVF measurements help expose unexpected vulnerabilities
in whole-system designs and shows how designers can make
performance-security trade-offs. Thus, SVF provides a
quantitative approach to secure computer architecture.

1 Introduction
Data such as user inputs tend to change the execution

characteristics of applications; their cache, network, storage
and other system interactions tend to be data-dependent. In
a side-channel attack, an attacker is able to deduce secret
information by observing these indirect effects on a sys-
tem. For instance, in Figure 1 Alice uses a service hosted
on a shared system. Her inputs to that program may include
URLs she is requesting, or sensitive information like en-
cryption keys for an HTTPS connection. Even if the shared
system is secure enough that attackers cannot directly read
Alice’s inputs, they can observe and leverage the inputs’ in-
direct effects on the system which leave unique signatures.

Unsuspecting Victim
"Alice"

Attacker "Boris"

Attacker "Chang"

Attacker "Daisy"

runs a
program

Known side-channel C
(e.g., encrypted network traffic)

Known side-channel B
(e.g., shared caches) Published

Extraction
Technique X

Unpublished side-channel D

Secret

Secret

E.g., Websites
visited

Secret

E.g., AES key

Undiscovered
Side-channels?

Unpublished
Extraction

Technique Y

Unpublished
Extraction

Technique Z

receives
normal output

Figure 1: Information leaks occur as a result of normal program
execution. Alice’s actions can result in side effects. Attackers can
measure these side effects as “side-channel” information and use
it to extract secrets using known or unpublished attack techniques.

For instance, web pages have different sizes and fetch laten-
cies. Different bits in the encryption key affect processor
cache and core usage in different ways. All of these net-
work and processor effects can and have been measured by
attackers. Through complex post-processing, attackers are
able to gain a surprising amount of information from this
data.

While defenses to many side-channels have been pro-
posed, currently no metrics exist to quantitatively capture
the vulnerability of a system to side-channel attacks.

Existing security analyses offers only existence proofs
that a specific attack on a particular system is possible or
that it can be defeated. As a result, it is largely unknown
what level of protection (or conversely, vulnerability) mod-
ern computing systems provide. Does turning off simulta-
neous multi-threading or partitioning the caches truly plug
the information leaks? Does a particular network feature
obscure information needed by an attacker? Although each
of these modifications can be tested easily enough and they
are likely to defeat existing, documented attacks, it is ex-
tremely difficult to show that they increase resiliency to
future attacks or even that they increase difficulty for the

This is the authors’ version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version will appear in Proc. of ISCA 2012. (c) 2012, IEEE.

(a) A high SVF system (≈0.77) (b) A low SVF system (≈0.098)

Figure 2: Visualization of execution patterns. LHS of each figure
shows “ground-truth” execution patterns of the victim and RHS
shows patterns observed by the attacker for two different microar-
chitectures. One can visually tell that the higher SVF system (left)
leaks more information.

attacker using novel improvements to known attacks. To
solve this problem, we present a quantitative metric for
measuring side channel vulnerability.

We observe a commonality in all side-channel attacks:
the attacker always uses patterns in the victims program be-
havior to carry out the attack. These patterns arise from the
structure of programs used, typical user behavior, user in-
puts, and their interaction with the computing environment.
For instance, memory access patterns in OpenSSL (a com-
monly used crypto library) have been used to deduce se-
cret encryption keys [13]. These accesses were indirectly
observed through a shared cache between the victim and
the attacker process. As another example, crypto keys on
smart cards have been compromised by measuring power
consumption patterns arising from repeating crypto opera-
tions [9].

In addition to being central to side channels, patterns
have the useful property of being computationally recog-
nizable. In fact, pattern recognition in the form of phase
detection [5, 14] is well known and used in computer archi-
tecture. In light of our observation about patterns, it seems
obvious that side-channel attackers actually do no more than
recognize execution phase shifts over time in victim appli-
cations. In the case of encryption, computing with a 1 bit
from the key is one phase, whereas computing with a 0
bit is another. By detecting shifts from one phase to the
other, an attacker can reconstruct the original key [13, 4].
Even HTTPS side-channel attacks work similarly – the at-
tacker detects the network phase transitions from “request”
to “waiting” to “transferring” and times each phase. The
timing of each phase is, in many cases, sufficient to iden-
tify a surprising amount and variety of information about
the request and user session [1]. Given this commonality
of side-channel attacks, our key insight is that side-channel
information leakage can be characterized entirely by recog-
nition of patterns through the channel. Figure 2 shows an
example of pattern leakage through two microarchitectures,
one of which transmits patterns readily and one of which
does not.

Example Example Similar to attacked
Insecure CPU Secure CPU CPUs in [13], [4]

SVF 0.86 0.01 0.73 0.27
SMT 2-way 1-way 2-way 2-way

Cache Sharing L1 L2 L1 L1
L1D Size 1k 32k 8k 32k

L1D Associativity 4-way 4-way 4-way 8-way
L1D Line Size 8B 64B 64B 64B

L1D Prefetcher Arithmetic None None None
L1D Partitioning Static Static None None

L1D Latency 4 cycles 4 cycles 2 cycles 3 cycles
L2 Size 8k 256k 512k 1M

L2 Associativity 4-way 4-way 8-way 8-way
L2 Line Size 8B 8B 64B 64B

L2 Prefetcher None None Arithmetic Arithmetic
L2 Partitioning Static Static None None

L2 Latency 16 cycles 16 cycles 10 cycles 7 cycles

Table 1: SVFs of example systems running an OpenSSL RSA
signing operation. We have selected two hypothetical systems
from our case study in addition to approximations of proces-
sors which have been attacked in previous cache side-channel pa-
pers [4, 13]. It is interesting to note that while the processor with
an SVF of 0.27 was vulnerable to attack, the attack required a
trained artificial neural network to filter noise from the attacker
observations. The 0.73 SVF system required no such filtering to
be attacked.

Accordingly, we can measure information leakage by
computing the correlation between ground-truth patterns
and attacker observed patterns. We call this correlation
Side-channel Vulnerability Factor (SVF). SVF measures the
signal-to-noise ratio in an attacker’s observations. While
any amount of leakage could compromise a system, a low
signal-to-noise ratio means that the attacker must either
make do with inaccurate results (and thus make many obser-
vations to create an accurate result) or become much more
intelligent about recovering the original signal. This as-
sertion is supported by published attacks given in Table 1.
While the attack [13] on the 0.73 SVF system was relatively
simple, the less vulnerable 0.27 system’s attack [4] required
a trained artificial neural network to filter noisy observa-
tions.

As a case study to demonstrate the utility of SVF, we
examine the side-channel vulnerability of processor caches,
structures previously shown to be vulnerable [12, 11, 13, 4].
Our case study shows that design features can interact and
affect system leakage in odd, non-linear manners. Evalua-
tion of a system’s security, therefore, must take into account
all design features. Further, we observe that features de-
signed or thought to protect against side-channels (such as
cache partitioning) can themselves leak information. Our
results show that predicting vulnerability is difficult, there-
fore it is important to use a quantitative metric like SVF to
evaluate whole-system vulnerabilty.

To summarize, we propose a metric and methodology
for measuring information leakage in systems; this metric
represents a step in the direction of a quantitative approach
to whole system security, a direction that has not been ex-

Figure 3: An overview of computing SVF: two traces are col-
lected, then analyzed independently for patterns via similarity
analysis, and finally correlation between the similarity matrices
is computed.

plored before. We also evaluate cache design parameters for
their effect on side-channel vulnerability and present sev-
eral surprising results, motivating the use of a quantitative
approach to security evaluation.

The rest of the paper is organized as follows: Section 2
describes the method used for calculating SVF in general
then Section 3 discusses SVF’s caveats and several limita-
tions. The rest of the paper then illustrates how SVF can be
applied to on-chip memory systems. Section 4 describes our
evaluation methodology and Section 5 presents SVF anal-
ysis for the on-chip memory system. Section 6 discusses
related work. Finally, Section 7 presents conclusions and
future work.

2 Side-channel Vulnerability Factor
Side-channel Vulnerability Factor (SVF) measures infor-

mation leakage through a side-channel by examining the
correlation between a victim’s execution and an attacker’s
observations. Unfortunately these two data sets cannot be
directly compared since they represent different things – for
instance, instructions executed versus power consumed. In-
stead, we use phase detection techniques to find patterns in
both sets of data then compute the correlation between ac-
tual patterns in the victim and observed patterns.

An overview of SVF computation is shown in Figure 3.
We begin by collecting oracle and side-channel traces.
These traces are time-series data which represent the im-
portant information an attacker is trying to observe and the
measurements an attacker is able to make, respectively. We
then build similarity matrices for each trace and compute
the correlation between these two matrices.

2.1 System Specification

Oracle The oracle trace contains ground-truth about the
execution of the victim. It is the information which an
attacker is attempting to read; in an ideally leaky side-
channel, the attacker could directly read the oracle trace.
For instance, one might use memory references (as we do
in the upcoming case study) so the resulting SVF would

indicate how well memory reference patterns are observed
through the side-channel.

Side-Channel The side-channel trace contains informa-
tion about events which the attacker observes. The side-
channel data should be realistic with respect to data which
an attacker can practically measure. For instance, in an
analog attack, the side-channel trace may be instantaneous
power usage over time. In a cache side-channel, the trace
may be the latency to access each cache line over time.

Distances For each trace, we will be detecting execution
phases. This involves comparing parts of each trace to ev-
ery other part. This comparison is done simply with a dis-
tance function, the selection of which will depend on the
data types in the two traces. For instance, if they are rep-
resented as vectors, one might use Euclidean distance. If
a trace contains bits from an encryption key, the distance
function may simply be equality.

2.2 Similarity Matrix

After collecting oracle and side-channel traces, we have
two series of data. However, the type of information in each
trace is different. For instance, the attacker may measure
processor energy usage during each time step whereas the
oracle trace captures memory accesses in each time step.
As a result, we cannot directly compare the traces. Instead,
we look for patterns in each trace by computing a similarity
matrix for each trace. This matrix compares each time step
to every other in the sequence. For a sequence S of length
|S|, we define each element of the similarity matrix M of
size |S|2 as:

M(i, j) =

{
D(Si, Sj), if i > j

0, otherwise
(1)

where D is a distance function between two time steps. This
definition creates a triangular matrix without the diagonal.
In all cases (due to the definition of a distance function)
the diagonal will contain all zeros in both the oracle and
side-channel matrix. So, if we included the diagonal in the
matrix, we would observe a false (or trivial) correlation.

2.3 Correlation

In the previous step, we build similarity matrices for both
the oracle and side-channel information. Patterns in exe-
cution behavior present in the original traces are reflected
in these matrices. Indeed, these patterns are often visu-
ally detectable (see Figure 2a). A maximally leaky side-
channel will faithfully mirror the patterns in the oracle trace.
However, if the side-channel conveys information poorly,
it will be more difficult to discern the original pattern, as
in Figure 2b. We can determine presence of pattern leak-
age by computing the correlation between the two matrices.
Specifically, for each element in the oracle matrix, we pair it

with the corresponding element in the side-channel matrix.
Given this list of pairs, we compute the Pearson correlation
coefficient, more commonly known simply as correlation.
The closer this value is to one (it will never be above one),
the more accurately an attacker is able to detect patterns.
The closer the coefficient is to zero, the less accurately the
attacker is observing patterns. At values very near zero, the
attacker is essentially observing noise and we are measuring
random correlation.

After working through all these steps, we call the final
correlation the Side-channel Vulnerability Factor.

3 Applications, Caveats and Limitations
Now that we have defined SVF, we review some caveats

which must be considered when using SVF and finally dis-
cuss some of the limitations of SVF.

3.1 Caveats

SVF analysis relies on a number of assumptions that are
reasonable based on known facts about attack models and
intuition about program and system behavior. However it is
possible for situations to exist in which SVF may not cap-
ture vulnerability clearly. For uses beyond the case study
presented in remaining sections, the following issues must
be evaluated and small changes to SVF may be necessary.

Self-Similarity Pattern Analysis SVF analysis assumes
that attackers use time-varying information (e.g., changes
in cache miss rates over time) and look for patterns in the
changes. If an attacker is able to gain information from sin-
gle measurements (without looking at changes over time),
SVF cannot capture such measurements. For instance, if an
attacker is able to measure the number of evictions in some
cache sets, make these measurements only once and gain
sensitive information, then SVF will not detect the leak.
However, these leaks are often easily defended; in this ex-
ample, randomized hashing would likely be effective.

Linear Correlation SVF analysis as presented here com-
pares oracle and side-channel similarity matrices using the
Pearson correlation coefficient. This correlation test is only
robust to linear correlation. If some non-linear correlation
is expected then the SVF analysis should use alternate cor-
relation metrics.

Latency Effects SVF computes correlation between
time-aligned elements of the similarity matrices. This
implicitly assumes that the attacker receives information
through the side-channel instantly. If the attacker’s infor-
mation from the victim is delayed the correlation compu-
tation must be adjusted for the latency, for instance using
cross-correlation.

3.2 Limitations

Known side-channels Since SVF requires the definition
of a side-channel trace, it can be computed only for known

(or suspected) side-channels. If an attacker has discovered
an unknown side-channel and is secretly using it, SVF can-
not be used to compute the vulnerability of the system to
this secret side-channel. However, SVF can be used to help
find new side-channels. For instance, in our later case study
of caches, we quantitatively discover a side-channel through
a pipeline since it interacts with the cache side-channel.

Relativity SVF is a relative metric. For two systems A
and B, if the SVF of A is greater than SVF B, SVF only
says that A leaks more than B. It does not translate to ease of
hacking or hacker hours to carry out an attack. This transla-
tion requires a model of human creativity, knowledge, pro-
ductivity etc., which is likely impossible. SVF also is a
function of the side-channel trace, so an attacker is implic-
itly defined. To create an absolute metric completely inde-
pendent of an attack we need to measure to total amount of
information leaked during a computation. Currently we do
not know how to do this. It is also likely that this bound
will be too high to be practically useful; since we know that
computations are orders of magnitude less energy efficient
than theoretically possible, they likely leak much informa-
tion. For this reason, we use a relative metric, just as we do
when reporting energy efficiency.

4 Case Study: Memory Side-Channels
Since shared cache microarchitectures have been ex-

ploited in the past [12, 11, 13, 4], it is important to char-
acterize the vulnerability of cache design space. Are there
cache features which obscure side-channels? Do protection
features reduce vulnerability to undiscovered attacks in ad-
dition to known attacks? To answer these questions, we
simulate 34,020 possible microarchitectural configurations
running OpenSSL RSA algorithm and measure their SVF.
In this section, we describe our methodology for computing
SVFs. The next section presents the results.

4.1 Framework for Understanding Cache Attacks

A cache side-channel attack can exist whenever compo-
nents of a chip’s memory are shared between a victim and
an attacker. Figure 4 illustrates a typical cache attack called
the “prime and probe” attack. In this attack style, the at-
tacker executes cache scans during the execution of a vic-
tim process. During each cache scan, the attacker scans
each set of the cache by issuing loads to each way in the
set and measuring the amount of time to complete all the
loads. If the loads complete quickly, it is because they hit
in the cache from the last cache scan. This further implies
that there is no contention between the victim and attacker
in this cache set. Inversely, if the loads are slow, the at-
tacker assumes contention for that set. By measuring the
contention for many cache sets, an attacker obtains an im-
age of the victim’s working set. Further, by regularly re-
measuring this contention, the attacker measures shifts in

Shared Cache

Way 1 Way 2 Way 3 Way 4
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7
Set 8
Set 9

Set N

...

Attacker
position
at time t

At
ta

ck
er

 P
os

iti
on

 (S
et

 #
)

Time (Cycles)

t

...

...

Cache Scan

Timed memory loads
to all ways in each set

Vi
ct

im
M

em
or

y
O

ps

Time (Cycles)
A A A B

Set Scan

Figure 4: In cache side-channel, an attacker times loads to each
set in a shared cache one set at a time. The amount of time to
complete the loads indicates the amount of contention in the set,
thus leaking data about a victim’s working set.

the victim’s working set. These shifts represent phase shifts
in the victim and often implicitly encode sensitive informa-
tion.

In the example of Figure 4, the victim repeats a distinct
memory access pattern A. This repetition cannot be detected
by the attacker because the pattern is much shorter than the
scan time. The victim’s shift from access pattern A to pat-
tern B, however, can likely be detected. In general, caches
with fewer sets allow attackers to scan faster and thus detect
finer granularity behavior. However, smaller caches divulge
less information about the victim’s behavior during by each
scan. It is intuitively unclear which factor is more impor-
tant, though our results in the next section imply that speed
is the critical factor.

There can also exist cases where the victim applications’
important phase shifts occur more slowly than in our exam-
ple. Further, they may occur much more slowly than the
attacker’s cache scans. In this case, it may make sense for
an attacker to combine the results of multiple cache scans
(by adding them), hopefully smoothing out any noise from
individual scans. We call one or more scans an interval, and
it defines the granularity of behavior which an attacker is
attempting to observe. We characterize the length of these
intervals by calculating the average number of instructions
which the victim executes during each interval.

4.2 SVF Computation Specifications

Based on this outline for cache side-channel attackers,
we define traces for our oracle (the information an attacker
is trying to obtain) and side-channel (information the at-
tacker can obtain) and methods of comparing them, as out-
lined in Section 2.1.

Side-channel As demonstrated in Figure 4, our attacker
scans each cache set and records a time. Each time the at-
tacker completes a scan through the entire cache, it assem-
bles a vector of the measured load times for each set. We

can then compare the results of a cache scan to any other
cache scan using Euclidean distance. This distance gives
the attacker a measure of the difference between the vic-
tim’s working sets at the times when the two scans were
taking place.

Oracle Attackers execute cache scans in an attempt de-
termine a victim’s working set. In order to determine how
accurately the attacker obtains this information, we must
measure an oracle of the victim’s working set. In simula-
tion this is easily obtained by recording the memory loca-
tions touched by the victim during each attacker cache scan.
We build a vector of the number of accesses to each mem-
ory location during each cache scan. While these vectors
cannot be directly compared to the vectors obtained from
the attackers, they can be compared against each other us-
ing Euclidean distance to obtain distances between actual
working sets when attacker cache scans were taking place.

Correlation Optimization We compute SVF for an en-
tire execution of OpenSSL which will have many intervals.
Unfortunately, computing the similarity matrices described
in Section 2.2 requires quadratic time and space with the
number of intervals. To avoid this problem, we instead use
a random subset of the matrix proportional to the number of
intervals. We have found this to be an accurate approxima-
tion of the full computation.

4.3 Attacker Capabilities

We model six different types of attackers representing
different cache scan patterns and abilities to circumvent mi-
croarchitectural interference.

A simple attacker will likely scan each cache set in order.
However, there are two other options. A random permuta-
tion of this ordering (determined before execution and held
constant) may yield different information and may also as-
sist in avoid noise due to prefetching. Second, it may be
that an attacker can obtain a sufficient snapshot from only
a small portion of the cache sets. In our random subsets at-
tacker, we randomly select 25% of the cache sets and scan
only those sets, decreasing the cache scan time by 4x.

It is also likely that complex prefetching techniques add
noise to an attacker’s observations. However, if an attacker
has enough knowledge about the prefetcher, it may be able
to effectively disable or otherwise negate these effects. As
such, we model attacks with prefetching enabled and also
attacks when prefetching is disabled on the attack thread,
simulating a “prefetch-sensitive” attacker.

4.4 Microprocessor Assumptions

We model a microprocessor with two integer execution
units, two floating point/SSE units and a single load/store
unit. Up to three loads or stores can be issued each cy-
cle from a 36-entry dispatch stage; the load store buffer
has 48 load and 32 store entries. The load/store unit im-

Replacement Policy LRU
L1 Latency 4 cycles
L2 Latency 16 cycles
L3 Latency 54 to 72 cycles

Inter-cache B/W 16 bytes / cycle
Cache Request Buffer 16 entry

Outstanding Misses (all levels) 4

Table 2: Fixed cache design parameters

plements store forwarding and redundant load coalescing.
The branch predictor we model is a simple two-level pre-
dictor. Since we are focusing on the cache hierarchy, we as-
sume perfect memory disambiguation, perfect branch target
prediction, and no branch misprediction side effects. Us-
ing these perfect microarchitectural structures reduces ex-
ecution variability and thus likely improves the quality of
side-channel information, increasing the SVF of a particu-
lar system. Thus our simulation results should be somewhat
conservative.

4.5 Experimental Parameters

We are interested in understanding the impact of cache
size, line size, set associativity, hashing function, prefetch-
ers, and several side-channel countermeasures such as parti-
tioning schemes and eviction randomization. Details of our
design space parameters follow:

Cache Size We simulate 1KB, 8KB and 32KB L1D cache
sizes. The L1I, L2, and L3 caches are sized relative to the
L1D cache at ratios of 1x, 8x, and 256x respectively. As
demonstrated in Figure 4, larger caches will take longer to
scan. However, the amount of information obtained by each
scan will be greater.

Line Size We study line sizes (in all cache levels) of 8
and 64 bytes. Small line sizes increase the resolution of
side-channel information – the attacker can get more precise
information about victim addresses – but requires more sets
to get the same cache size, thus increasing the amount of
time it takes to scan the cache.

Set Associativity In a fully associative cache an attacker
cannot get any information about the addresses a victim is
accessing; it can do no better than determine how much
overall contention there is. A direct-mapped cache, how-
ever, gives the attacker information about the victim’s usage
of each cache line. We would, therefore, expect varying the
set associativity to affect information leakage. We study 1,
4, and 8 way caches with the set associativity identical for
all levels.

Hashing We study three hashing schemes for indexing
cache sets. The first is the simplest, which is to index by
the low order bits of the address. The second is a bitwise
XOR of half of the bits with the other half, which is an-

other common technique. We also study permutation reg-
ister sets (PRS), a mechanism proposed for the RPCache
scheme from Wang and Lee [16]. PRS maintain a permuta-
tion of the sets in the cache. We adapt PRS to our simulator
with the following specifications: once every 100 loads, we
change the permutation by swapping the mapping of two
randomly selected sets. We also maintain different PRS for
each thread, so the attacker and victim’s mappings to cache
sets are different. As a result of changes to the set map-
ping (which results in evictions), OpenSSL experiences an
average slowdown of 6%. Although our implementation is
different from Wang and Lee [16] to account for SMT we
obtain similar results.

Prefetching Prefetchers may create noise in the side-
channel as they initiate loads that (from the attacker’s per-
spective) pollute the cache with accesses which the victim
did not directly initiate. Conversely, prefetchers are essen-
tially doing pattern detection, so it may be that they are
able to amplify the effects of these victim memory patterns
by prefetching based on those patterns. In addition to no
profetching, we evaulated four prefetchers: next line, arith-
metic [3], GHB/PCCS, and GHB/PCDC [10]. The “next”
prefetcher is always used in the L1I cache. No prefetching
is used at the L2 or L3 level and only one is turned on at
once in the L1D.

Partitioning We would expect partitioning to reduce the
amount of information an attacker obtains since it disallows
direct access to a subset of the cache’s lines. We use three
policies to balance thread usage in shared caches. The first
policy is to have no explicit management. The second is
a static partitioning assignment – each process gets half of
the ways in each set, however the cache load miss buffers
and ports are shared. The last policy is a simple dynamic
partitioning scheme. This scheme tracks per-thread usage
in each set. Once every 106 cycles, the ways of each set
are re-allocated between threads. If one thread is using a set
more than twice as often as the other thread it is allocated
75% of the ways for the next 106 cycles.

Eviction Randomization A simple method of obscuring
side channel information is random eviction. This intro-
duces noise into the side-channel. We implement a policy
that randomly selects a cache line and evicts it. This ran-
domized eviction is activated either never, every cycle with
50% probability or every cycle.

SMT Finally, we are interested in studying how much si-
multaneous multithreading (SMT) contributes to informa-
tion leakage. SMT potentially introduces a side-channel via
the pipeline as contention for resources like the load/store
queue and functional units could allow an attacker to sense
a victim’s activity based on interference in these units. Con-
sequently, one would expect SMT configurations to yield
more side-channel information. SMT-based attacks, how-

Simple Leaky Secure
SMT On Off Off

Cache Sharing L1 L1 L2
L1D Size 32k/8k/1k 1k 1k
Line Size 64 64 64

Ways 8 8 4
Attacker In Order Subset In Order

L1 Prefetcher None Next Line None
Partitioning None None Static

Figure 5: SVF for several memory system configurations executing OpenSSL’s RSA signing algorithm over a range of attack granularities.
We see that memory subsystem significantly impacts on the quality of information an attacker can obtain. Note that “leaky” and “secure”
are not the most leaky or secure, merely two configurations towards each end of the spectrum. Leaky represents L1 cache sharing without
SMT in the style of core fusion or composable processors.

ever, are easily foiled by simply disabling SMT or disallow-
ing SMT sharing between untrusted processes. To model
this “protected” configuration, we also simulate the vic-
tim and attacker threads running simultaneously on differ-
ent cores (so they share no pipeline resources) wherein the
cores share caches at either the L1 or L2 level. Although the
shared L1 configuration is rare, this configuration allows us
to directly compare against SMT configurations to deter-
mine the extent to which pipeline side-channels contribute
to SVF.

Some of the cache design features are fixed, limiting our
design space. For instance, prefetch requests are only con-
sidered if there is space available in the request buffer; we
also do not modify prefetcher aggressiveness. We do not
model OS interference like process swapping or interrupts
as these effects are likely to add noise to the side-channel so
removing them strengthens the attacker. Other fixed design
choices are shown in Table 2.

5 Results
Our results are drawn from simulations of possible con-

figurations varying core configuration (SMT, cache shar-
ing), cache size, line size, set associativity, hashing func-
tion, prefetcher, partitioning scheme and eviction random-
ization policies. Here we present results about the impact
of each of these factors on SVF.

5.1 Interval Sizing

As discussed in the last section and Figure 4, an attacker
may combine multiple cache scans into an interval. This
combining may help smooth out noise, so information gath-
ered about the victim over larger time spans may be more
accurate. Ideally, the intervals are sized to align with the
natual phases of the victim. There are many possible inter-
val sizes, and choosing an effective one depends on various

system parameters as well as characteristics of the victim
application. Instead of computing the SVF for a particular
interval size, we do so for a large range of them beginning
with the finest possible, the time it takes for the attacker to
complete one scan of the all the cache lines. Figure 5 shows
a graph of many SVFs over a wide range of interval sizes
for several cache implementations. There are several inter-
esting conclusions we can draw from this graph.

1. The SVFs for these systems range widely from essen-
tially zero to nearly one. This means that configura-
tions exist with virtually no potential for cache leakage
(small absolute values of SVFs indicate essentially no
leakage) while others leak heavily.

2. In the 32k L1D cache configuration, in the time it takes
for the attacker to scan the cache once, about 11,000
victim instructions have committed on average, thus
its line begins at 11,000 on the X axis. As a result,
the inorder attacker cannot gather side channel infor-
mation leaked during 11,000 instructions. The 8k L1D
and 1k L1D caches, on the other hand, can be scanned
much more quickly than the 32k L1D cache and (as a
result) much more information is obtained.

3. SVF tends to increase with interval size. This intu-
itively makes sense; one would expect it to be easier to
get accurate information about larger time spans than
shorter ones.

4. Despite a general trend upward SVF can vary widely,
indicating that (for an attacker) interval size selection
is important. These peaks and valleys likely indi-
cate areas where the attacker’s interval size aligns with
phase shifts in the victim application.

Notes on Data Analysis and Presentation For the rest
of the paper, due to space considerations, we present only a
subset of the intervals sizes shown in Figure 5. Specifically,
we examine the case of fine granularities — which could be
used to recover information like encryption bits — which
we define as less then 10,000 committed victim memory
instructions. This is represented by the shaded region in
Figure 5. For each memory system configuration, we will
use the maximum SVF observed in this region, as this rep-
resents an attacker which has selected an optimal interval
size.

In order to aggregate the data from many simulations in
a meaningful way, we present cumulative distribution func-
tion (CDF) plots of number of microarchitectural instances
that have a value less than a given SVF. In each diagram,
each line represents a large set of microarchitecture imple-
mentations. Sets which are more secure will have lines to
the left of less secure sets. This format allows us to answer
many different questions. For instance, does a particular
feature allow us to close a leak entirely? For how many
configurations does it do so? For example, in Figure 6 we
see that in this set of configurations, turning off SMT re-
sults in lower SVF. However, when SMT is turned off, not
sharing the L1 is usually more secure, but not in all cases.

5.2 Core Configuration

Several side channel attacks take advantage of SMT ca-
pabilities. Accordingly, a first reaction to defeat these at-
tacks is to simply turn off SMT. Does this indeed elimi-
nate cache side channels? Figure 6 demonstrates that it
does not, though it helps. While SMT (which implies a
shared L1D) provides more information to the attacker than
no SMT (which realistically means the L1D is not shared),
there are still many configurations in which an attacker gets
information through sharing in the L2.

To evaluate the leakiness of the pipeline, we also in-
clude a relatively unrealistic configuration which turns off
SMT but still shares an L1 (e.g., Core Fusion composition).
These data indicate that the pipeline side channel offers ad-
ditional information to the attacker, even if the pipeline is
not specifically targeted by the attacker. It is thus likely that
existing SMT-based attacks implicitly benefit from pipeline
side channel information in addition to cache side channels.

5.3 Cache Design Space Exploration

Caches come in many different flavors; sizes, set associa-
tivity, prefetchers and other features differ amongst designs.
Additionally, cache designers may implement side channel
protection features such as randomized eviction, random-
ized hashing or cache partitioning. In this section, we ex-
amine the effect that some implementations of these fea-
tures can have on the cache’s vulnerability. Figure 7 shows
these results in an SMT system, so in all cases both the L1
caches and pipeline are shared between the attacker and vic-

Figure 6: This cumulative histogram shows the percentage of
configurations with various sharing configurations which have
SVFs no more than the value on the X axis. For instance, all SMT
configurations have SVFs of at least 0.2 and only 40% of them
have SFVs less than 0.6. Without SMT, however, the SVF can
be reduced to nearly zero, but many non-SMT configurations still
leak information. Note that none of the configurations represented
here have protection mechanisms like cache partitioning.

tim. The results we have obtained are specific to our simula-
tion model, workload choice and attacker implementations.

Cache Size One of the largest determinants of SVF is
cache size. Consistent with the data in Figure 5, the cache
size graph in Figure 7 indicates that larger caches leak less.
This can be attributed to the time it takes for the attacker
to scan the cache. Larger caches take longer to scan, so
in the time it takes an attacker to scan the cache, the victim
makes much more progress and thus the attacker misses fine
grained OpenSSL behaviors.

Line Size We expected that the smaller the line size, the
more resolution an attacker can obtain about addresses be-
ing accessed. The next graph, however, shows that line size
selection does not seem to make a huge difference to cache
vulnerability.

Associativity The set associativity graph contains some
interesting results. We see that increased associativity pro-
vides the opportunity for decreased vulnerability, though
not in all situations. There are likely two reasons for this.
First, more ways in a set decreases the precision of the side
channel; missing in an 8-way set tells an attacker that one of
the 8 locations the attacker pre-loaded was evicted whereas
in a direct mapped cache, a miss tells the attacker with cer-
tainty about a particular line. However, increasing the num-
ber of ways slightly increases the speed at which the at-
tacker can scan (since OoO cores allow the loads in each set
scan to execute in parallel) and speed is an important factor.

Figure 7: Cumulative histograms indicating the small interval size vulnerability of various cache features. In all but the last two cases,
configurations are limited to SMT on (with shared level 1) with no protection (like partitioning and random eviction). In each graph, a set
of features are selected and we draw a cumulative histogram with respect to Side-channel Vulnerability Factor. In short, lines (features) to
the left of others have more configurations with a lower SVF – a desirable trait.

Figure 8: Static partitioning is extremely effective when SMT is
turned off. Since this disables pipeline side channels and static parti-
tioning disables cache content side channels the only remaining side
channels are shared cache buffers and ports, which are not terribly
effective side channels. Additionally, we see that a simple dynamic
partitioning mechanism can itself leak information.

Figure 9: In some SMT configurations, our implementation of per-
mutation register sets (PRS) can leak information. However, this is
largely because it does not address pipeline side channels, yet slows
down the victim. If we turn off SMT yet still share the L1 cache (as
in this figure), we see that PRS obscures the side channel as expected.

Attacker Style Three different attacks have been tested.
Two of them – inorder and random order – are nearly iden-
tical; they differ only in their ordering of the cache sets
during their scans, so nearly the same information is ob-
tained from both, though at slightly different times. The
random subset attack, however, is substantially different as
it scans only 25% of the cache. These data imply that in
about 70% of cache configurations (10% with low SVFs,
60% with high SVFs) examining less data but doing so 4x
faster is a fair trade off. In the remaining 30%, however, the
attacker misses critical data.

Prefetching We expected prefetching to significantly de-
grade information leakage as it often accurately predicts and
prefetches cache lines which the attacker would have other-
wise missed. These data, however, contradict this intuition.
In some cases, we assume that the attacker can defeat the
prefetcher (effectively turning it off) and in others we as-
sume that it cannot. In both cases we see that prefetching
does not heavily degrade the side channel. This is likely be-
cause prefetchers are deterministic and guided by address
streams; we can think of them as a deterministic transform
on the pattern rather than information destruction.

Random Eviction One might expect randomly evicting
cache lines to introduce noise, and thus degrade the side-
channel. Our simulations indicate that this is true, but only
to a relatively small extent. Further, this technique is only
effective on about 70% of cache configurations.

Partitioning Another protection mechanism is partition-
ing. Partitioning protects caches by sometimes disallow-
ing the sharing interference which the attacker measures.

As such, we would expect partitioning to degrade the side-
channel. Our data, however, do not support this expecta-
tion. As we saw in Figure 6, other side channels exist in the
shared system and even with partitioning, these other side
channels can be exploited. In some cases static partitioning
even strengthens the attacker. This can be explained by the
fact that the attacker runs faster allowing other side channels
to be polled much more often. This is not to say, however,
that static partitioning is ineffective. Figure 8 shows the ef-
fectiveness of partitioning in systems without SMT and a
shared L2. Although the dynamic partitioning mechanism
itself leaks information, static partitioning is a very effec-
tive protection mechanism.

Hashing Scheme Lastly, we look at the effect of hashing
schemes. We see that there is virtually no difference be-
tween using the low bits of an address and XOR’ing parts
of it. This is to be expected because XOR’ing amounts to
relatively simple reordering of cache lines rather than in-
formation loss. Our implementation of permutation regis-
ter sets, however, ends up slowing down the victim (about
3% on average, more for some configurations) and thus the
timing and pipeline channels are able to get more informa-
tion. Kong et al. [8] also find vulnerabilities in RPCache,
supporting our results. However, PRS is not always more
leaky; in Figure 9 we look at cache configurations with
SMT turned off and see that in this case, PRS helps ob-
scure the side-channel information. In other words, PRS
performs exactly as expected: it protects against the cache
line sharing side-channel. In doing so, however, it can make
victims more vulnerable to other side-channels like a shared
pipeline channel.

Figure 10: Many security proposals result in decreased performance. However, these results indicate that this need not always be the
case. For instance, in SMT processors (on the left) increasing the cache size both decreases SVF and increases performance. In non-SMT
systems (on the right) there exist high-performance systems with very low SVFs using both no cache partitioning and static partitioning.

5.4 Performance and Security

Some protection features may incur a performance
penalty. For instance, both PRS and random eviction of-
ten make systems more secure but both methods degrade
performance. In Figure 10 we examine performance trade-
offs in SMT and non-SMT processors. In the SMT case,
we see that SVF decreases are correlated with performance
improvements. In the non-SMT case, there is no correlation
but there exist configurations with both low SVF and good
performance. Further, we also observed in the last subsec-
tion that faster victim execution often means better security
as it is harder to observe a moving target. Our conclusion,
therefore, is that performance and security need not always
be traded off.

5.5 Broader Observations

Through simulation and SVF computation, we have ex-
amined the effect of cache design choices on the cache’s
vulnerability to side channels. We must stress that the re-
sults of our case study are specific to our simulation model:
we cannot and do not claim these results to generalize to
other models or real processors. We recommend that mi-
croprocessor designers adapt SVF evaluation methodology
to their simulation environments to obtain results for their
specific designs.

However, there are several generalized lessons learned:
(1) Any shared structure can leak information. Even struc-
tures intended to protect against side channel leakage can
increase leakage. (2) No single cache design choice makes
a cache absolutely secure or completely vulnerable. Al-
though some choices have larger effects than others, several
security-conscious design choices are required to create a
secure shared system. (3) The leakiness of caches is not a
linear combination of design choices. Some features leak

information in some configurations but protect against it in
others. Others only offer effective protection in certain sit-
uations. Predicting this leakiness is, therefore, extremely
difficult and probably requires simulation and quantitative
comparison like we have done in this paper.

6 Related Work

A side-channel is a method of gaining protected infor-
mation that exploits the implementation of a system, rather
than its theory or design. Side-channels can (and most
likely will) exist in any given implementation and can be
difficult to foresee, discover or protect against. Side chan-
nels can take many disparate forms including electrical sig-
nals, acoustic signals, microarchitectural and architectural
effects, application level timing channels, and any other
shared resource through which an eavesdropper can detect
any information or state left by another program. Conse-
quently there is a long history of side-channel attacks and
countermeasures [7, 6, 16, 15, 8].

There has been little work on the science of side-channel
security in form of experimental frameworks and metrics.
To evaluate the security of caches, Dominitser et al. propose
an analytical model to predict the amount of information
leakage through cache side-channels [2]. The technique
proposed in their paper tracks the fraction of the victim’s
critical items accessible in the cache to determine leakage.
Our work differs in three aspects: first, our technique does
not require data items to be marked as critical, secondly, as
we have shown, focusing on caches alone is insufficient to
evaluate side-channel leaks of cache based attacks. Finally,
our metric can be used to determine leakage in any microar-
chitectural structure, and more broadly to full systems.

7 Conclusion
In this paper we introduced Side channel Vulnerability

Factor (SVF), a metric intended to quantify the difficulty
of exploiting a particular system to gain side channel in-
formation. Using SVF, we also presented the results of a
study exploring the side-channel potential of a large cache
design space. We find several surprising results, indicating
that predicting the security of a system is extremely diffi-
cult; a quantitative, holistic metric is necessary.

As a result of using execution traces, SVF is useful be-
yond caches; one can compute SVF for any system for
which oracle and side-channel traces can be defined. For
instance, one could look at encryption keys on smart cards
versus their power usage variability during encryption. SVF
could also be used to find a correlation between an audio
conversation and the size/rate of network packets observed
by an intermediate node in the Skype network. Many sys-
tems lend themselves well to SVF analysis.

Another advantage of using execution traces is that they
are often easily defined and measured. No mathematical
modeling is required to compute SVF. This freedom may
help discover or prevent new side channel leaks, as the same
subtleties that allowed the leak to survive the design pro-
cess may make accurate mathematical modeling difficult or
impossible. Indeed, a recurring theme in the study of side-
channel research is this: any shared structure can leak in-
formation. As such, only an end-to-end analysis, like SVF,
which accounts for system level effects and oddities, can
accurately determine side channel vulnerability.

Acknowledgements
We thank anonymous reviewers, Dr. Pradip Bose, and

members of the Computer Architecture and Security Tech-
nologies Lab (CASTL) at Columbia University for their
feedback on this work. This work was supported by grants
FA 99500910389 (AFOSR), FA 865011C7190 (DARPA),
FA 87501020253 (DARPA), CCF/TC 1054844 (NSF) and
gifts from Microsoft Research, WindRiver Corp, Xilinx and
Synopsys Inc. Opinions, findings, conclusions and recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the US
Government or commercial entities.

References
[1] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel

leaks in web applications: A reality today, a challenge to-
morrow. In Security and Privacy (SP), 2010 IEEE Sympo-
sium on, pages 191 –206, may 2010.

[2] L. Domnitser, N. Abu-Ghazaleh, and D. Ponomarev. A pre-
dictive model for cache-based side channels in multicore and
multithreaded microprocessors. In Proceedings of the 5th
international conference on Mathematical methods, mod-
els and architectures for computer network security, MMM-

ACNS’10, pages 70–85, Berlin, Heidelberg, 2010. Springer-
Verlag.

[3] T. fu Chen and J. loup Baer. Effective hardware-based data
prefetching for high-performance processors. IEEE Trans-
actions on Computers, 44:609–623, 1995.

[4] D. Gullasch, E. Bangerter, and S. Krenn. Cache games –
bringing access-based cache attacks on aes to practice. In
Security and Privacy (SP), 2011 IEEE Symposium on, pages
490–505, May 2011.

[5] M. J. Hind, V. T. Rajan, and P. F. Sweeney. Phase shift de-
tection: A problem classification, 2003.

[6] C. K. Koc. Cryptographic Engineering. Springer Publishing
Company, Incorporated, 1st edition, 2008.

[7] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis.
pages 388–397. Springer-Verlag, 1999.

[8] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. Decon-
structing new cache designs for thwarting software cache-
based side channel attacks. In Proceedings of the 2nd ACM
workshop on Computer security architectures, CSAW ’08,
pages 25–34, New York, NY, USA, 2008. ACM.

[9] T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Investiga-
tions of power analysis attacks on smartcards. In Proceed-
ings of the USENIX Workshop on Smartcard Technology on
USENIX Workshop on Smartcard Technology, WOST’99,
pages 17–17, Berkeley, CA, USA, 1999. USENIX Associa-
tion.

[10] K. J. Nesbit and J. E. Smith. Data cache prefetching using a
global history buffer. Ieee Micro, 25(1):90–97, 2004.

[11] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and
countermeasures: The case of aes. In CT-RSA, pages 1–20,
2006.

[12] D. Page. Defending against cache-based side-channel at-
tacks. Information Security Technical Report, 8(1):30 – 44,
2003.

[13] C. Percival. Cache missing for fun and profit, 2005.
[14] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and

B. Calder. Discovering and exploiting program phases. Mi-
cro, IEEE, 23(6):84 – 93, nov.-dec. 2003.

[15] Z. Wang and R. Lee. A novel cache architecture with en-
hanced performance and security. In Microarchitecture,
2008. MICRO-41. 2008 41st IEEE/ACM International Sym-
posium on, pages 83 –93, nov. 2008.

[16] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. SIGARCH Com-
put. Archit. News, 35:494–505, June 2007.

