
Why Do Programs Have Heavy Tails?
Hiroshi Sasaki∗ Fang-Hsiang Su∗ Teruo Tanimoto† Simha Sethumadhavan∗

∗Department of Computer Science, Columbia University
†Graduate School of Information Science and Electrical Engineering, Kyushu University

∗{sasaki,mikefhsu,simha}@cs.columbia.edu
†teruo.tanimoto@cpc.ait.kyushu-u.ac.jp

Abstract—Designing and optimizing computer systems require
deep understanding of the underlying system. Historically many
important observations that led to the development of essential
hardware and software optimizations were driven by empirical
studies of program behavior. In this paper we report an interest-
ing property of dynamic program execution by viewing it as a
changing (or social) network. In a program social network, two
instructions are friends if there is a producer-consumer relation-
ship between them. One prominent result is that the outdegree of
instructions follow heavy tails or power law distributions, i.e., a
few instructions produce values for many instructions while most
instructions do so for very few instructions. In other words, the
number of instruction dependencies is highly skewed.

In this paper we investigate this curious phenomenon. By
analyzing a large set of workloads under different compilers,
compilation options, ISAs and inputs we find that the dependence
skew is widespread, suggesting that it is fundamental. We
also observe that the skew is fractal across time and space.
Finally, we describe conditions under which skew emerges within
programs and provide evidence that suggests that the heavy-tailed
distributions are a unique program property.

I. INTRODUCTION

The discovery of common and widely employed program
properties such as the existence of hot code regions, presence
of spatial and temporal locality, repeated control flow and
dependence patterns have had an indelible impact on computer
systems. Each one of these fundamental broadly applicable
observations has been leveraged to improve computer systems
in numerous ways.

Recently, Sasaki et al. revealed another undiscovered pro-
gram property, the presence of dependence skew in pro-
grams [13]. They observed that most instructions in a program
produce values for a few instructions while a handful of
instructions produce outputs for an inordinate number of
instructions. This observation is borne out of their view of
program execution as a social or information network.

In a program social network two nodes (instructions) are
considered friends if they have a producer-consumer relation-
ship. In other words the source node is an “influencer” and
the destination node is an influencee or a “follower”. With this
network view they observe that the number of followers of an
instruction obeys a heavy-tailed distribution, and in majority
of cases a specific class of the distribution, the power law
distribution.

What is the importance of this observation? Broadly speak-
ing, the presence of skew is interesting for two reasons: first,

power law and heavy-tailed distributions have been previously
reported to occur in many natural and artificial, social and
scientific phenomena, including human social networks, and
it is surprising that they appear in programs. As such, many
classical modeling results and analysis techniques in these
fields may be directly used to improve computer systems mod-
eling. Second, and perhaps more importantly, power laws and
heavy tails in programs indicate the possibility of intervention
on small part of a program (high outdegree instructions) to
enable systematic large scale change. This asymmetry makes
it a prime candidate for microarchitectural exploitation with
low investment.

Before the phenomenon can be exploited, however, we need
to understand it thoroughly. In this paper we provide a mech-
anistic reasoning for the presence of heavy-tailed distributions
in program social networks. We conduct a series of controlled
experiments to investigate what causes the emergence of heavy
tails: is it for particular classes of programs? Is it due to
specific compilers or compiler optimizations? Or is it due to
specific instruction set features such as the use of two operands
for most instructions? How does the behavior of the network
change over time, or at the granularity of functions?

Our results show that heavy tails are broadly seen in a large
class of programs (10 SPEC Int, 11 SPEC FP, 8 CortexSuite,
7 DaCapo, SQLite and V8), and are largely agnostic to
the programming language (C, C++, Fortran and Java), the
compiler (LLVM and GCC) and its optimization level (-O0
to -O3), the instruction set architecture (variable operand or
stack-based), and across input types and sizes. We also observe
that heavy tails are fractal across time and space.

These results indicate that heavy tail pattern is a fundamen-
tal feature of how programs are written. We further demon-
strate that heavy tails emerge when functions that compose the
program have heavy tails by developing a synthetic model. We
also conduct source code analysis to uncover the existence of
high outdegree instructions. Finally we provide some evidence
that dependence skew may lead to new architectures by
clustering programs based on the outdegree distributions, and
comparing those clusters to (micro)architectural metric based
clustering results.

II. METHODOLOGY

Network Construction: in a program social network, each
node (or vertex) is a static instruction and each directed

{sasaki,mikefhsu,simha}@cs.columbia.edu
teruo.tanimoto@cpc.ait.kyushu-u.ac.jp


edge represents dynamic dependency, either control or data
dependency. Multiple dynamic dependencies between a pair of
instructions are represented by a single edge. We define a con-
trol dependence as a connection between a source instruction
and its immediate successive destination instruction. A data
dependence is defined as a producer-consumer relationship.
Specifically, when a source instruction writes a value and the
following destination instruction reads the value before it gets
overwritten. For the sake of brevity, we generate a network
from the main thread of program execution where most of
the programs analyzed are single-threaded benchmarks. We
run our analysis on SPEC CPU2006 benchmarks, CortexSuite,
DaCapo suite, and two commercial programs: SQLite and V8.
While many analyses can be performed on program social
networks, in this paper we focus on outdegrees (number of
outgoing edges) of instructions to understand how instructions
influence the whole program execution. The dependence skew
is the distribution of the outdegrees.
Background on Distributions: formally speaking, heavy-
tailed distributions are probability distributions whose tails are
not exponentially bounded. Roughly speaking, this means that
the distribution is not random and more importantly there are
some heavy skews in the distribution. Power law distribution is
a specific and popular subclass of heavy-tailed distributions. A
distribution obeys a power law if it is drawn from a probability
distribution p(x) ∝ x−α . A power law distribution has two
parameters: the scaling factor α and the minimum value xmin.
The α controls how sharply the probability decreases (the
smaller the α the heavier the tail), and the xmin decides where
the heavy tail of the distribution begins. Readers who wish to
skim may skip rest of this section without loss of continuity.
Testing Method: we apply a standard statistical testing pro-
cedure to verify if the distributions align with power laws and
heavy tails [3]. This procedure has three steps: (1) estimate the
parameters (α and xmin) of the power law model, (2) perform a
goodness-of-fit test to obtain a p-value, where a value greater
than 0.1 indicates that the power law is a plausible hypothesis
for the distribution, otherwise it is rejected, and (3) compare
the power law against other distributions via a likelihood ratio
test to see if there exist better alternatives than the power
law. Also we test whether the distribution is a heavy-tailed
distribution or not in this step.

In the first step the α is estimated by the maximum
likelihood method. To find an estimate for the standard error
on α̂ , we make a quadratic approximation to the log-likelihood
at its maximum and take the standard deviation of the resulting
Gaussian form for the likelihood as our error estimate. In
order to estimate the correct xmin, we choose the x̂min value
that makes the probability distributions of the empirical data
and the best-fit power law model as similar as possible above
x̂min. We use the Kolmogorov-Smirnov or KS statistic which
is commonly used for non-normal dataset to quantify the
distance between two probability distributions. KS statistic
is the maximum distance between the CDFs (cumulative
distribution functions) of the empirical data and the fitted

model. Readers who are interested in the mathematical details
of the procedure are referred to relevant papers [1, 3].

Second step is a Monte Carlo procedure which synthesizes
testing datasets by the estimated α and xmin. We fit each
synthetic dataset to its own power law model and count what
fraction of the time the model is a poorer fit. This fraction
becomes our p-value and hence higher values indicate that
the empirical dataset is more likely to fit power law. If the
p-value ≥ 0.1, we consider the power law is a plausible fit.
In other words, our null hypothesis is: the empirical data and
the synthetic data are both drawn from the same distribu-
tion. Higher p-value (≥ 0.1) means that there is statistically
insufficient evidence to distinguish the empirical data from
the synthetic data drawn from a power law distribution. We
compare our empirical dataset with 5,000 synthetic datasets.

Finally, in the third step we see whether alternative dis-
tributions, lognormal and exponential distributions, are better
fits via a statistical likelihood ratio test. If either power
law or lognormal distribution is favored over the exponential
distribution, we conclude that the distribution is a heavy-tailed
distribution since lognormal distribution is another heavy-
tailed distribution while exponential distribution is not.

III. HEAVY TAILS IN PROGRAM STRUCTURE

We analyze the outdegree distribution of programs from the
SPEC CPU2006 benchmark suite [7], CortexSuite [14] — a
collection of more simple computation kernels — and also
Chrome V8 JavaScript engine [6] and SQLite [11] as examples
from real-world programs. With CortexSuite, SPEC and the
large scale programs we aim to cover the spectrum of programs
from kernels to in-the-wild programs.

We construct program social networks at the x86–64 ISA
level. For this purpose, we dynamically generate the network
using Pin [9]. Since the machine instructions communicate
with each other by means of register files and memory, we
generate and analyze two sets of networks per benchmark:
one having only register dependencies as data flow edges
and the other having only memory dependencies as data
flow edges. Both networks contain all control edges. Also,
we construct the networks using only the instructions in the
main program binary since we are interested in characterizing
the pure communication behavior of the programs. In other
words, all the nodes and edges that account for other binary
images (e.g., shared library) are not recorded, unless otherwise
specified.

All the programs are compiled using LLVM 3.3 with -O3
optimization except V8 and SQLite which are compiled using
GCC 4.8 with -O2 optimization. We use the test and small
inputs for SPEC CPU2006 and CortexSuite, respectively, and
for V8, we use the crypto input which comes with the V8
source code under the “benchmarks” directory. For SQLite,
“speedtest1.c”, which is a program to estimate the performance
of SQLite under a typical workload, is used.

Fig. 1 demonstrates the results of all the benchmarks. Each
figure represents the complementary cumulative distribution



100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100
p
(x

)
bzip2
gobmk
h264ref
hmmer

libquantum
mcf
perlbench
sjeng

(a) SPEC CINT2006 (memory):
87.5% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

milc
sphinx3
namd
povray
soplex

(b) SPEC CFP2006 (memory):
80.0% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

LDA
Liblinear
ME
PCA
RBM
Sphinx
SRR
SVD3

(c) CortexSuite (memory):
75.0% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

astar
omnetpp
xalancbmk
V8
SQLite

(d) V8, SQLite and CINT C++
Programs (memory): 80.0% power
law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

bzip2
gobmk
h264ref
hmmer

libquantum
mcf
perlbench
sjeng

(e) SPEC CINT2006 (register):
75.0% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

milc
sphinx3
namd
povray
soplex

(f) SPEC CFP2006 (register):
40.0% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

LDA
Liblinear
ME
PCA
RBM
Sphinx
SRR
SVD3

(g) CortexSuite (register):
87.5% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

astar
omnetpp
xalancbmk
V8
SQLite

(h) V8, SQLite and CINT C++
Programs (register): 60.0% power
law.

Fig. 1: Outdegree-based log-log plot of the CCDF for the communication networks for various benchmark suites compiled
with LLVM -O3. V8 and SQLite are compiled with GCC -O2. Both memory and register networks are shown. CINT2006
programs written in C++ are shown with V8 and SQLite for better visibility. Percentage of programs that follow power laws
are also presented. All the results follow heavy-tailed distributions.

function (CCDF) on doubly logarithmic axes, where x rep-
resents the outdegree and p(x) represents the complemen-
tary cumulative probability. Figures 1(a) to 1(d) show the
CCDF of memory-based networks for SPEC CINT2006, SPEC
CFP2006, CortexSuite, and V8 and SQLite, respectively. Fig-
ures 1(e) to 1(h) show the CCDF of register-based networks for
the same set of programs. CINT2006 programs written in C++
(astar, omnetpp and xalancbmk) are shown together
with V8 and SQLite to make the figures legible.

Interestingly, we can see similar trends across programs.
By performing the analysis described in Section II, we find
that all the benchmarks have heavy tails for both memory-
and register-based networks. Also, a majority of them follow
power laws. Program social networks follow heavy-tailed
distributions, and it is likely that the phenomenon is not unique
to any type of programs.

At this point, however, we have exercised only a single pair
of compiler and its optimization level per benchmark, and also
the underlying ISA (x86–64) is fixed. Since the compiler and
the ISA act as a filter for the programs in generating their
communication networks, we would like to ask if either or
both of them are root causes of heavy tails. We explore them
in the following sections, but before delving into these details,
we first explore whether ignoring the nodes and edges from
other binary images affect our results or not in the next section.

IV. ARE HEAVY TAILS DUE TO EXCLUDING SHARED
LIBRARIES?

Although our purpose is to analyze the communication
behavior of instructions in the main program, we would like
to know whether including instructions in other binary images
such as shared libraries break the heavy-tailed distributions
or not. Fig. 2 presents the results of the SPEC CPU2006
benchmarks including instructions in shared libraries. The
compiler and its optimization level are the same with that
of the previous section (LLVM with -O3 optimization). We
can clearly see that the distributions with and without shared
libraries are highly similar (e.g., Figures 2(a) vs. 1(a)), and we
observed that the distributions with shared libraries also have
heavy tails. In the rest of the paper we only present the results
of instructions in main programs, although we believe that the
observations and findings do apply even when we include the
instructions in other binary images.

V. ARE HEAVY TAILS DUE TO COMPILATION?

The choice of a compiler and its optimizations have a poten-
tial to greatly affect the outdegree distributions of program net-
works. For instance, a compiler can reduce (e.g., eliminating
redundancy) or increase (e.g., unrolling) the number of nodes
(static instructions) in the network. Similarly, different register
allocation algorithms can affect the register communication



100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100
p
(x

)
bzip2
gobmk
h264ref
hmmer

libquantum
mcf
perlbench
sjeng

(a) SPEC CINT2006 (memory).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

milc
sphinx3
namd
povray
soplex

(b) SPEC CFP2006 (memory).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

bzip2
gobmk
h264ref
hmmer

libquantum
mcf
perlbench
sjeng

(c) SPEC CINT2006 (register).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

milc
sphinx3
namd
povray
soplex

(d) SPEC CFP2006 (register).

Fig. 2: Outdegree-based log-log plot of the CCDF for the communication networks including the shard libraries for SPEC
benchmark suites compiled with LLVM -O3.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

bzip2
gobmk
h264ref
hmmer

libquantum
mcf
perlbench
sjeng

(a) SPEC CINT2006 (memory):
40.0% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

milc
sphinx3
namd
povray
soplex

(b) SPEC CFP2006 (memory):
80.0% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

LDA
Liblinear
ME
PCA
RBM
Sphinx
SRR
SVD3

(c) CortexSuite (memory):
100% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

astar
omnetpp
xalancbmk

(d) V8, SQLite and CINT C++
Programs (memory): 100% power
law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

bzip2
gobmk
h264ref
hmmer

libquantum
mcf
perlbench
sjeng

(e) SPEC CINT2006 (register):
20.0% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

milc
sphinx3
namd
povray
soplex

(f) SPEC CFP2006 (register):
100% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

LDA
Liblinear
ME
PCA
RBM
Sphinx
SRR
SVD3

(g) CortexSuite (register):
100% power law.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

astar
omnetpp
xalancbmk

(h) V8, SQLite and CINT C++
Programs (register): 66.7% power
law.

Fig. 3: Outdegree-based log-log plot of the CCDF for the communication networks for various benchmark suites compiled
with LLVM -O0 optimization. V8 and SQLite are not shown. All the results follow heavy-tailed distributions.

patterns. It is too onerous to exhaustively list all combinations
of compiler optimizations and qualitatively describe how each
of them affects the network. Instead, we quantitatively evaluate
if a specific compiler and/or its optimization level affects the
distribution of the networks.

For this purpose, we perform the same evaluations with the
previous section using binaries compiled with LLVM (-O0 to
-O2) and GCC (-O0 to -O3). Since we found that LLVM with
-O1 and -O2 optimizations have fairly similar results with
that of Section III (LLVM with -O3), we only demonstrate
the results with -O0 optimization. Also, we do not show
the results using GCC (-O0 to -O3 optimizations) since the
results are consistent with those of LLVM.

Fig. 3 presents the results for all the programs compiled
with LLVM -O0. For the memory-based networks, the results
look very similar to that of -O3 optimization. On the other
hand, for the register networks, we can see that the distribu-
tions of -O3 optimization tend to have heavier tails. This is
somewhat expected as longer register lifetimes and aggressive
unrolling at this optimization level may increase the number
of consumers. Nevertheless, we observed that the distribution
of all the programs follow heavy tails for both memory- and
register-based networks. We have shown that the choice of the
compiler and its optimization level are not the root cause of
heavy-tailed distributions, as both LLVM and GCC generate
binaries with similar distributions that have heavy tails.



100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100
p
(x

)
bzip2
hmmer
libquantum
mcf
sjeng
milc
sphinx3

(a) SPEC with LLVM IR.

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

antlr
bloat
chart
fop

jython
luindex
pmd

(b) DaCapo with Java bytecode.

Fig. 4: Outdegree-based log-log plot of the CCDF of the
program networks for SPEC with LLVM IR network and
DaCapo with Java bytecode network. All the results follow
heavy-tailed distributions.

One thing we observed is that the compiler optimizations
have a moderate impact on the register-based networks when
the optimization level is increased from -O0. We hypothesize
that this is due to the fact that register-based networks are
impacted by the limited number of architectural registers, and
consequently the register allocation. On the other hand, for
memory-based networks the compiler optimization has less
impact. This can be partially due to the fact that memory-
based network only reflects true data dependencies among in-
structions. Also data dependencies tend to span across multiple
basic blocks which makes the compiler difficult to statically
analyze and optimize the code.

VI. ARE HEAVY TAILS DUE TO THE ISA?

As we have seen in the previous section that the register-
based networks are more susceptible to compiler optimiza-
tions, one might be interested in how the x86–64, a CISC ISA
with a relatively small number of architectural registers affect
the outdegree distributions. In order to investigate whether
heavy tails are due to these restrictions or not, we use the
compiler intermediate representation LLVM IR to construct
program networks. The LLVM IR is in SSA form where
the instructions communicate with each other through infinite
virtual registers. Thus it helps us understand the pure behavior
of the programs and answers if the x86–64 ISA, specifically
the register architecture, is the root cause of the heavy-tailed
distributions.

We implement a network generator based on lli, an
LLVM bitcode interpreter. We performed this analysis on
four programs from CortexSuite and seven programs from
SPEC CPU2006 (all the programs that ran correctly under the
infrastructure), compiled with LLVM -O0 to -O2. We only
present the results of SPEC with -O2 optimization; the results
with different optimization levels are similar with each other,
and the results of CortexSuite draw the same conclusion with
SPEC.

In addition, another ISA we exercise is the Java VM
architecture. The Java bytecode is a stack based instruction
set where every communication between Java instructions are

performed via the stack. This additional analysis is performed
to see how the fundamental nature of stack machines which
involves frequent pushing and popping affects the network
distributions. We implement a Java instruction recorder to con-
struct execution networks at the bytecode level. The analysis
is performed on seven single-threaded DaCapo benchmarks
(DaCapo–2006–10–MR2) [2].

The results of LLVM IR and Java bytecode are shown in
Figures 4(a) and 4(b), respectively. Again, we observe that
all the benchmarks from both set of networks follow heavy-
tailed distributions. This implies that the fact that heavy tails
are found in various networks is a more fundamental property
of program structures rather than an artifact of specific choices
of the compiler, the compiler optimizations and/or the ISA.

VII. ARE HEAVY TAILS DUE TO INPUTS?

Another angle of program execution we explore is using
different inputs for the same program. When considering
program inputs there are two aspects: size and variation.
Although these two are not completely independent, intuitively
we expect program size to have less impact on the distribution
of program networks. This is because the control path taken
by programs tends to remain similar with different input
sizes (e.g., imagine a loop count being varied). On the other
hand, input variation has a better chance of affecting program
networks because it is possible that completely different con-
trol paths can be exercised and result in different networks.
This can happen in large programs (i.e., real-world programs
opposed to computation kernels) which have complex control
flows.

To study different input sizes, we analyze CortexSuite with
three inputs: small, medium and large. The results of
input size (CortexSuite) are not presented since the distri-
butions were nearly identical with different inputs as we
imagined. For input variation, we provide multiple test
inputs to gobmk and perlbench (the core Perl interpreter)
from SPEC CPU2006, analyze JVM 1.7.80 at the x86–64 ISA
level (as opposed to the Java bytecode level presented in the
previous section) with DaCapo programs as inputs, and also
V8 with eight JavaScript programs.

Fig. 5 presents the results for the study of input variation.
Overall, the output distributions are fairly consistent with dif-
ferent input variations. This can be seen that there is less vari-
ation compared to the results with previous CCDFs (Figures 1
to 4). Interestingly, the memory networks vary more than the
register networks; the register networks are nearly identical
with different inputs. For register networks, Fig. 5(e) shows
that the results of gobmk is an exception, but actually there
are two unique distributions where each of them contains two
inputs. These two input pairs have mutual actions with each
other; connect and connection_rot involve computing
connection distances, and capture and cutstone involve
reading the result and proposing edge moves. We believe
that this is an example of input variations exercising different
control paths.



100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100
p
(x

)
capture
connect
connection_rot
cutstone

(a) gobmk (memory).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

attrs
gv
makerand
pack
redef
ref
regmesg

(b) perlbench (memory).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

antlr
bloat
chart
fop

jython
luindex
pmd

(c) DaCapo (memory).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

crypto
deltablue
raytrace
regexp

richards
splay
earley-boyer
navier-stokes

(d) V8 (memory).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

capture
connect
connection_rot
cutstone

(e) gobmk (register).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100
p
(x

)
attrs
gv
makerand
pack
redef
ref
regmesg

(f) perlbench (register).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

antlr
bloat
chart
fop

jython
luindex
pmd

(g) DaCapo (register).

100 101 102 103

x (outdegree)

10-5

10-4

10-3

10-2

10-1

100

p
(x

)

crypto
deltablue
raytrace
regexp

richards
splay
earley-boyer
navier-stokes

(h) V8 (register).

Fig. 5: Outdegree-based log-log plot of the CCDF of the program networks for four benchmarks with different inputs. All the
results follow heavy-tailed distributions. The distributions are mostly resilient with inputs.

100 101 102 103

x (outdegree)

10-5
10-4
10-3
10-2
10-1
100

p
(x

)

[1] n: 84010

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [2] n: 34650

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [3] n: 13130

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [4] n: 9068

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [5] n: 11773

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [6] n: 13281

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [7] n: 12433

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [8] n: 8802

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [9] n: 10001

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100[10] n: 23183

(a) Memory data dependency.

100 101 102 103

x (outdegree)

10-5
10-4
10-3
10-2
10-1
100

p
(x

)

[1] n: 84010

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [2] n: 34634

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [3] n: 13130

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [4] n: 9068

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [5] n: 11773

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [6] n: 13281

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [7] n: 12433

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [8] n: 8802

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [9] n: 10001

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100[10] n: 23165

(b) Register data dependency.

Fig. 6: Outdegree-based log-log plot of the CCDF divided into 10 time series for xalancbmk’s communication networks.

100 101 102 103

x (outdegree)

10-5
10-4
10-3
10-2
10-1
100

p
(x

)

[1] n: 10738

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [2] n: 421

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [3] n: 420

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [4] n: 2902

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [5] n: 3516

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [6] n: 8960

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [7] n: 7768

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [8] n: 4912

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [9] n: 12615

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [10] n: 2364

(a) Memory data dependency.

100 101 102 103

x (outdegree)

10-5
10-4
10-3
10-2
10-1
100

p
(x

)

[1] n: 10791

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [2] n: 421

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [3] n: 383

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [4] n: 2683

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [5] n: 1787

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [6] n: 8960

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [7] n: 7768

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [8] n: 4912

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [9] n: 10350

100 101 102 103
10-5
10-4
10-3
10-2
10-1
100 [10] n: 2184

(b) Register data dependency.

Fig. 7: Outdegree-based log-log plot of the CCDF divided into 10 time series for calculix’s communication networks.

From Sections III to VII we have examined several key
factors that determine network characteristics to see if any of
them are the root causes of heavy-tailed distributions. None
of them appears to be the root cause. In the following two
sections we further investigate into the details of program
networks from two dimensions: time and space.

VIII. ARE HEAVY TAILS PHASE DEPENDENT?

One possible hypothesis that explains heavy-tailed distribu-
tions when we focus on time is that few instructions executed
in initial execution phases generate read-only and heavily
used data that is consumed by a great number of following
instructions. In order to investigate this hypothesis, we present



a time series of the outdegree distributions of xalancbmk
and calculix from the SPEC CPU2006 benchmark suite.

We divide the execution of xalancbmk into 10 epochs
(each epoch corresponds to about 33M dynamic instructions)
and show each CCDF in Fig. 6. The subfigures represent
consecutive execution epochs from left to right. On top of each
figure, the number in the square bracket presents the i-th epoch
along with n, the number of vertices (i.e., static instructions) in
the network. The dependencies which cross the epoch bound-
ary are removed from the network, which means that each
subfigure contains only the producer-consumer relationships
within the epoch.

We can see from Fig. 6(a) that the scale of the first epoch
is different from the rest of the epochs. It has more number
of static instructions, and the maximum outdegree is an order
of magnitude higher. The distributions of the other epochs
are fairly similar with each other. Similar trend holds for
register data dependency as seen from Fig. 6(b). This supports
our hypothesis that the high outdegree instructions are indeed
executed in the first epoch, although what is more interesting
is the fact that the other computation phases of the execution
(i.e., epochs 2 to 10) still have heavy tails.

In Fig. 7 we show the results of calculix which have
different characteristics from that of xalancbmk. The figures
are similarly constructed where each epoch includes about
16M dynamic instructions. We can see that distributions have
high variations throughout the execution, and seems that the
initialization do not account for the highest outdegree instruc-
tions. Our hypothesis that the initialization is responsible for
heavy tails is not fully correct for some applications. Nonethe-
less, the distributions of all the epochs have heavy tails.
Interestingly, when we compare the distributions of memory
and register networks within the same epoch, the distributions
have high similarity. This implies that the communication
volume of memory and register are correlated with each other.

IX. ARE HEAVY TAILS FUNCTION DEPENDENT?

Instead of slicing programs by time next we examine
program networks at a code granularity. We explore whether
small components out of which programs are constructed
also follow heavy-tailed distributions, or instead those pieces
follow other distributions (e.g., random distribution) but end
up having heavy tails as a whole. This can be studied by
decomposing the program networks into smaller units and
analyze their outdegree distributions. In our case, we choose
function as a unit of program’s building blocks.

We extract functions which have more than 200 static in-
structions from SPEC CPU2006 (GCC with -O2) and analyze
whether each of them follows a heavy-tailed distribution or
not. We choose 200 as a threshold considering the statistical
nature of the procedure. Choosing 200 allows us to have
mostly consistent results: if the distribution follows power
law, it is a better fit than exponential distribution and can
be concluded as a heavy-tailed distribution. Similar with the
experiment shown in the previous section, the dependencies

H
ea

vy
 ta

ils
 [%

]

0

25

50

75

100

as
ta

r
bz

ip
2(

dr
ye

r.j
pg

)
bz

ip
2(

in
pu

t.p
ro

gr
am

)
go

bm
k(

ca
pt

ur
e)

go
bm

k(
co

nn
ec

t)
go

bm
k(

co
nn

ec
tio

n_
ro

t)
go

bm
k(

cu
ts

to
ne

)
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
(a

ttr
s)

pe
rlb

en
ch

(g
v)

pe
rlb

en
ch

(m
ak

er
an

d)
pe

rlb
en

ch
(p

ac
k)

pe
rlb

en
ch

(re
de

f)
pe

rlb
en

ch
(re

f)
pe

rlb
en

ch
(re

gm
es

g)
sj

en
g

xa
la

nc
bm

k
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
gr

om
ac

s
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3

Fig. 8: Percentage of functions with heavy tails.

which cross the function boundary are removed from the
network.

Fig. 8 presents the percentage of functions which follow
heavy-tailed distributions. Interestingly, the majority (72.2%
to 100%) of functions’ networks are heavy tails. Heavy-tailed
distributions not only exist at the program level but also at the
function level. Thus heavy tails appear to be fractal in both
time (execution phases) and space (functions).

X. WHY DO HEAVY TAILS EMERGE?

Following the results of the previous section, we develop
a mechanistic generative model that explains why programs
have heavy tails. The question we try to answer is the
following: if functions within a program have heavy tails, can
we demonstrate that typical composition of these functions
result in a heavy-tailed distribution? Developing a model that
tackles this question helps us understand the fractal nature of
heavy tails that exists at code granularity.

To appreciate the complexity of this question consider an
analogy of combining networks that are heavy tailed, let us
say that all these networks have one high outdegree node that
has the same cardinality. In this case, when the networks are
mixed, there are several nodes with the same outdegree; in
the extreme it is possible that the heavy tail can vanish even
when the combining networks have heavy tails. However, if the
combining networks have heavy tails of different outdegrees
it is possible that the mixture still has a heavy tail.

In order to understand what happens to programs in which
functions have heavy tails, our strategy is to divide-and-
conquer: we split programs into common basic structures
including loops, branches and sequences of function calls, and
combinations of these, to discuss how heavy tails can emerge
when each of these structures have a heavy-tailed distribution.
Instead of offering mathematical proofs (which are untenable
for complex compositions), we conduct Monte Carlo simu-
lations to computationally evaluate if most programs follow
heavy tails and/or power laws.

A. Generative Model Development

To simplify our model, we assume that there is no data
dependency between functions, and all functions follow power



main()

foo() x n

(a) Loop.

main()

bar()foo()

if else

(b) Branch.

main()

foo()

bar()

(c) Seq. calls.

main()

block1

foo()

block2

(d) Code and call.

Chain length n Avg. p-value Power laws [%] Heavy tails [%]

2 603 0.48 81 98
5 1357 0.44 79 99

10 2551 0.46 79 99
50 12948 0.34 62 100

(e) Power law and heavy tail analysis of synthesized functions.

Fig. 9: The four basic structures for the generative model and the analysis result of the synthesized functions.

laws. We first profile all real functions in SPEC CPU2006
compiled with GCC -O3 by collecting their instruction counts
and outdegrees distributions. Among over 11,000 functions
in SPEC CPU2006, we extract functions having more than
200 instructions and following power laws. There are more
than 2,700 functions left after the extraction. We use the
distributions of these functions to compose more complex
program structures with four general cases and test their
distributions.

B. Basic Structures

We discuss four basic program structures using functions
as building blocks, namely: loop, branch, sequential calls, and
the combination of code and function calls.

• Loop: function main iteratively invokes function foo for
n times (Fig. 9(a)). Invoking the same function for multiple
times has no impact on the outdegrees of the network. Thus,
if function foo aligns with a power law, its caller function
main also exhibits a power law.

• Branch: Fig. 9(b) gives an example of the branch structure,
an if-else statement, where one path executes function foo
and the other executes bar. If both functions follow power
laws, their caller main also follows a power law because
only one function is executed.

What if function main has a loop outside the if-else
statement? If the branch is 100% taken or not-taken during
the entire execution, main follows a power law as discussed
in the loop case. If both branches are taken during the
execution, we need to combine the outdegree distributions
of foo and bar, which will be discussed in the next case.
The probability of branch being taken does not change the
outdegree distribution of the function.

• Sequential Calls: a caller function delegates its computa-
tions into multiple callee functions in sequence. We assume
that functions foo and bar in Fig. 9(c) are two independent
power law distributions.

Since the distribution of the sum of two power law dis-
tributions is theoretically hard to conclude [15], we instead
synthesize functions and then analyze their outdegree dis-
tributions. We synthesize a function by randomly selecting
multiple functions from the function set of SPEC CPU2006
and integrate their outdegree distributions together.

• Combination of Code and Function Calls: the fourth
structure is a generalized case of the sequential call structure.

Instead of delegating all computations to its callee func-
tion(s), the caller function itself and its callees both perform
computations as Fig. 9(d) depicts. While function main
performs some computations in block1 and block2, it
calls another function foo in between the two blocks.

It is difficult to summarize the probability distribution of
main, because we lack a mathematical way for formaliz-
ing the relationship between block1, foo and block2.
However, if we disregard these relationships, i.e., assume
that block1, foo and block2 are independent, we can
sum up the outdegree distributions of the caller function and
its callee, which becomes the same case as sequential calls.

C. Analysis on the Synthesized Functions

To evaluate the impact of the length of sequential function
chains, we test four lengths: 2, 5, 10 and 50. For each length,
we synthesize 100 test cases. To identify if the resulting
function chain follows a power law, we conduct the same 5,000
Monte Carlo simulations described in Section II. Resulting
functions are not heavy-tailed if the best fit distribution(s) with
the likelihood test contains exponential distribution.

The result is shown in Fig. 9(e). The table shows the average
number of nodes of the resulting networks n, the average
p-value, the ratio of resulting functions having power laws
and heavy tails. Over 99% of the synthesized functions with
different number of instructions have heavy tails and about
76% of them follow power laws. This result aligns with the
observations we have seen so far that most program structures
are indeed heavy tails, and our generative model convinces us
that the fractal nature of heavy tails is a fundamental property
of program execution.

XI. HEAVY TAILS IN SOURCE CODE

A natural question that arises at this point is: why do
functions follow power laws or have heavy tails? In this section
we perform a semantic analysis of real code to reveal what
program structures result in heavy-tailed distributions. For this
purpose, we discuss a simple matrix multiplication function
first and then two real functions from SPEC CPU2006.
A. Code Patterns for Heavy Tails

We first provide a simple but demonstrative example. We
implement a matrix multiplication in two programming lan-
guages, C and Java, and study the x86–64 ISA and Java
bytecode networks. The memory- and register-based networks
when compiled with GCC -O3 optimization, and also the Java
bytecode network all follow heavy-tailed distributions. For



1 long read_min(network_t *net) {
2 // net is a central data structure
3 ...
4 net->n_trips = t;
5 net->m_org = h;
6 net->n = (t+t+1);
7 net->m = (t+t+t+h);
8 ...
9 net->nodes = (node_t *)calloc(net->n + 1, sizeof(node_t));

10 net->dummy_arcs = (arc_t *)calloc(net->n, sizeof(arc_t));
11 net->arcs = (arc_t *)calloc(net->max_m, sizeof(arc_t));
12 ...
13 net->stop_nodes = net->nodes + net->n + 1;
14 net->stop_arcs = net->arcs + net->m;
15 net->stop_dummy = net->dummy_arcs + net->n;
16 ...
17 }

(a) The read_min function in mcf.
1 static void sendMTFValues(EState *s) {
2 ...
3 while (True) {
4 if (nGroups == 6 && 50 == ge-gs+1) {
5 define BZ_ITUR(nn) s->rfreq[bt][mtfv[gs+(nn)]]++
6
7 // The following code block unrolls a loop
8 // to update mtfv
9 BZ_ITUR(0); BZ_ITUR(1); ... BZ_ITUR(4);

10 BZ_ITUR(5); BZ_ITUR(6); ... BZ_ITUR(9);
11 ...
12 BZ_ITUR(45); BZ_ITUR(46); ... BZ_ITUR(49);
13 ...
14 }
15 ...
16 }

(b) The sendMTFValues function in bzip2.

Fig. 10: Relevant code from mcf and bzip2.

both programming languages, the source code that corresponds
to the highest outdegrees initializes the data arrays (i.e., the
instruction that stores the address of the arrays).

We next conduct a semantic analysis for two benchmarks,
namely mcf and bzip2 from SPEC CPU2006. We select
these programs considering their program sizes (in lines of
code) to understand and perform further analysis in a reason-
able amount of time.

• Mcf: Mcf has a central data structure net which records
the program state and is used by multiple steps across
the whole benchmark. Initializing the program state by
manipulating net between line 4 to line 15 in function
read_min account for the highest outdegree instructions
in the program.

• Bzip2: Bzip2 exhibits heavy tails where it has a unique
shape with a huge cliff (Fig. 1(a)). One potential reason
for this shape is explained with an example we show in
Fig. 10(b). The code is heavily unrolled using a macro
BZ_ITUR. It updates the mtfv array, which is a member
of the central data structure EState. This unrolling causes
multiple instructions having high outdegrees with the exact
same value, which breaks the regularity in its shape.

The three examples shown in this section report the exis-
tence of a central data structure of a function (matrix multi-
plication) and programs (mcf and bzip2). These structures
are accessed throughout the execution of the program, and
instructions that generate the base address and read-only
values in these structures have a great number of consumers.
Although this finding is not enough to explain the causes of
heavy tails, it reveals why high outdegree instructions exist to
some extent. Further investigation is left for future work.

TABLE I: Clustering results based on the distribution similar-
ity of the memory networks of SPEC CPU2006 benchmarks
compiled with GCC -O0 and -O3.

Cluster ID GCC -O0 GCC -O3

1

bzip2(dryer.jpg)
bzip2(input.program)
perlbench(makerand)
leslie3d, bwaves
hmmer, sjeng, milc
gobmk gobmk
perlbench(attrs, gv, pack) perlbench(attrs, gv, pack)
perlbench(redef, ref, regmesg) perlbench(redef, ref, regmesg)
omnetpp, xalancbmk omnetpp, xalancbmk
h264ref, cactusADM h264ref, cactusADM
calculix, gromacs, namd calculix, gromacs, namd
povray, soplex, sphinx3 povray, soplex, sphinx3

2 mcf mcf

3 libquantum
astar astar

4 N/A libquantum, leslie3d
bzip2(input.program)

5 N/A bwaves

6 N/A
bzip2(dryer.jpg)
perlbench(makerand)
hmmer, sjeng, milc

XII. ARE HEAVY TAILS UNIQUE PHENOMENON?
We have verified throughout the paper that program social

networks follow heavy-tailed distributions. Will this obser-
vation lead to new advances? This is a difficult question to
answer where we provide indirect evidence in the affirmative.
One approach to expand on new observations is to perform
workload characterization for better understanding of the
system behavior. Therefore if the characterization results are
different from prior studies, then there is a high chance of
building new optimizations based on the dependence skew
concept. To evaluate whether the observation is already sub-
sumed by prior work, we perform cluster analysis based on
dependence skew property. If the obtained clusters are different
then it is likely that program social networks and dependence
skew offer a new lens to view program execution that can lead
to new advances.

A. Clustering on Distribution Distance

In this paper we use the outdegree distributions for cluster-
ing. We cluster the programs such that the more similar the
shape of programs’ outdegree distributions (i.e., CCDF) are,
the higher opportunity they are in the same cluster. Because
each benchmark has different ranges of outdegrees and nodes
(i.e., static instruction counts), we need to normalize them to
represent the shapes with relative values. First, we normalize
the outdegrees of each benchmark with range [0, 1] and
separate this range such as when generating a histogram into
n bins, where we use 10 bins in this paper. Then for each
bin, instead of using the absolute value of nodes, we use how
many percentage of nodes each bin contains, whose value is
also between [0, 1]. We finally compute the Euclidean distance
between programs via their normalized outdegree distributions
and discover program clusters. We use the hierarchical cluster-
ing analysis to group programs in an agglomerative way [10].

B. Program Cluster Analysis

We cluster the memory-based program social networks of
SPEC CPU2006 benchmarks compiled using GCC with -O0



a
st

a
r

b
zi

p
2
(d

ry
e
r.

jp
g
)

b
zi

p
2
(i

n
p
u
t.

p
ro

g
ra

m
)

g
o
b
m

k(
ca

p
tu

re
)

g
o
b
m

k(
co

n
n
e
ct

)
g
o
b
m

k(
co

n
n
e
ct

io
n
_r

o
t)

g
o
b
m

k(
cu

ts
to

n
e
)

h
2
6
4
re

f
h
m

m
e
r

lib
q
u
a
n
tu

m
m

cf
o
m

n
e
tp

p
p
e
rl

b
e
n
ch

(a
tt

rs
)

p
e
rl

b
e
n
ch

(g
v
)

p
e
rl

b
e
n
ch

(m
a
ke

ra
n
d
)

p
e
rl

b
e
n
ch

(p
a
ck

)
p
e
rl

b
e
n
ch

(r
e
d
e
f)

p
e
rl

b
e
n
ch

(r
e
f)

p
e
rl

b
e
n
ch

(r
e
g
m

e
sg

)
sj

e
n
g

x
a
la

n
cb

m
k

b
w

a
v
e
s

ca
ct

u
sA

D
M

ca
lc

u
lix

g
ro

m
a
cs

le
sl

ie
3
d

m
ilc

n
a
m

d
p
o
v
ra

y
so

p
le

x
sp

h
in

x
3

astar
bzip2(dryer.jpg)

bzip2(input.program)
gobmk(capture)
gobmk(connect)

gobmk(connection_rot)
gobmk(cutstone)

h264ref
hmmer

libquantum
mcf

omnetpp
perlbench(attrs)

perlbench(gv)
perlbench(makerand)

perlbench(pack)
perlbench(redef)

perlbench(ref)
perlbench(regmesg)

sjeng
xalancbmk

bwaves
cactusADM

calculix
gromacs
leslie3d

milc
namd

povray
soplex

sphinx3

Fig. 11: Heatmaps based on the distribution similarity between
the memory network of SPEC CPU2006. Blue (left) and green
(right) represent the results of -O0 and -O3, respectively.

and -O3 optimizations. The clustering result is shown in
TABLE I and the similarities are shown as heatmaps in Fig. 11.
In the figure, the blue (left half) and the green (right half) areas
represent the -O0 and -O3 optimizations, respectively. Within
each area the color density represents the similarity between
a pair of benchmarks: the darker the higher the similarity.

While there is no significant difference in program clusters
among the two optimization levels, e.g., the majority of the
benchmarks in cluster ID 1 are clustered in the same group
for both levels, there are few differences that can be observed.
For instance we have seen in Section V that aggressive
compiler optimization generates more variations in the outde-
gree distributions, which we believe is the cause of different
cluster counts (three vs. six). Among all the benchmarks, mcf
and astar show relatively higher inconsistency with other
benchmarks for both optimization levels which can be seen
from the light color in the figure. Additionally, libquantum
for -O0 and bwaves for -O3 present dissimilarities.

C. Discussion of Program Clustering

Prior studies use microarchitecture dependent and indepen-
dent features to cluster programs to explore which programs
are similar with each other [8, 12]. In this paper, we have
clustered the programs based on a new property of program
structures, the dependence skew. Here we compare our results
with that of Phansalkar et al. [12]. They also cluster SPEC
CPU2006 benchmarks using both microarchitecture dependent
features (e.g., L2 cache misses per instruction) and indepen-
dent features (e.g., number of branches per instruction) to
characterize programs. Our clustering analysis shares both
similar and dissimilar results with them, which are briefly
summarized as follows.

• Similarities: under both clustering techniques, mcf exhibits
distinct characteristics from other benchmarks. Additionally,
both clustering techniques show that the characteristics of
most benchmarks do not vary significantly given different
input sets (also observed in Section VII).

• Differences: while astar seems to share common features
with other benchmarks according to Phansalkar et al.’s
study, this benchmark is one of the two that have different
characteristics with others under the outdegree distribution
based clustering. On the contrary, xalancbmk has high
similarity with other benchmarks according to the outdegree
distribution based clustering, while it is reported to be distant
from other benchmarks with theirs.

Analyzing the reasons behind the scene given these two
types of clustering can be a challenging task. However, it
seems that the proposed outdegree distribution based technique
can provide researchers with a new and different view of
programs from the existing feature-based clustering. This may
open up new optimization opportunities in various aspects
including performance, reliability and security.

XIII. RELATED WORK

There exist few studies which explored the communications
between instructions by focusing on different metrics from
our work. Franklin et al. found that the degrees of use of
register instances (or the number of dynamic consumers as
opposed to static consumers in our work) are mostly bounded
to zero, one or two, which helped them design the distributed
register file for multiscalar [5]. Eeckhout et al. statistically
studied this characteristic and showed that the distributions of
the degrees of use of register instances follow power laws [4].
They modeled the register traffic of programs with the power
law function and used it to perform architecture design space
exploration.

The degree of use of register instances is a metric which
can be extracted from our network view and is indeed of in-
terest. Instead of studying the metric, however, we focused on
outdegrees, where the characterization performed in our paper
is much broader. In addition to various controlled experiments
we also study memory traffic and observe the presence of
heavy tails. We note that studying the memory traffic is not a
straightforward extension. The use of dynamic traces to study
the distribution (as performed in prior work) can be limiting
because of the size of the traces, where the novel network
representation allows us to overcome this problem.

XIV. CONCLUSIONS

A potent program characterization technique can help im-
prove the efficiency of computer systems. In this paper, we
propose a new way to characterize programs by viewing
them as social networks. By modeling static instructions
as vertices and communications between them as edges we
analyzed the outdegree distributions in programs. Based on
empirical analysis with multiple benchmarks, compilers and
their optimizations, languages, and inputs, we observe that



most programs’ outdegree distributions have heavy tails and
are highly skewed. We also developed a generative model to
explain why programs exhibit heavy tails.

Ultimately the usefulness of this observation depends on
how it is utilized by designers of computer systems. There is
some evidence that the heavy tails property is unique because
the clusters it forms are distinct from prior studies and thus it
might lead to new architectural techniques. The broader idea
of network analysis on program structures may lead to even
more exciting opportunities.

ACKNOWLEDGEMENTS

The work was partially supported by grant N00014-15-
1-2173, and gifts from Bloomberg and an Alfred P. Sloan
Research Fellowship.

REFERENCES

[1] J. Alstott, E. Bullmore, and D. Plenz, “Powerlaw: a Python package for
analysis of heavy-tailed distributions,” PloS one, vol. 9, no. 1, Jan. 2014.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovi c, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The DaCapo benchmarks: Java benchmarking development and analy-
sis,” in OOPSLA ’06, Oct. 2006, pp. 169–190.

[3] A. Clauset, C. R. Shalizi, and M. Newman, “Power-law distributions in
empirical data,” SIAM review, vol. 51, no. 4, pp. 661–703, Nov. 2009.

[4] L. Eeckhout and K. De Bosschere, “Hybrid analytical-statistical model-
ing for efficiently exploring architecture and workload design spaces,”
in PACT ’01, Sep. 2001, pp. 25–34.

[5] M. Franklin and G. S. Sohi, “Register traffic analysis for streamlining
inter-operation communication in fine-grain parallel processors,” in
MICRO-25, Dec. 1992, pp. 236–245.

[6] J. Gray, “Google Chrome: the making of a cross-platform browser,”
Linux Journal, vol. 2009, no. 185, Sep. 2009.

[7] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM CAN,
vol. 34, no. 4, pp. 1–17, Sep. 2006.

[8] K. Hoste and L. Eeckhout, “Comparing benchmarks using key
microarchitecture-independent characteristics,” in IISWC ’06, Oct. 2006,
pp. 83–92.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in PLDI ’05, Jun.
2005, pp. 190–200.

[10] O. Maimon and L. Rokach, Eds., The data mining and knowledge
discovery handbook, 2005.

[11] M. Owens, “Embedding an SQL database with SQLite,” Linux Journal,
vol. 2003, no. 110, pp. 2–2, Jun. 2003.

[12] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy
and application balance in the SPEC CPU2006 benchmark suite,” in
ISCA ’07, Jun. 2007, pp. 412–421.

[13] H. Sasaki, F.-H. Su, T. Tanimoto, and S. Sethumadhavan, “Heavy tails in
program structure,” IEEE Computer Architecture Letters, vol. 16, no. 1,
pp. 34–37, May 2016.

[14] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia,
and M. B. Taylor, “CortexSuite: a synthetic brain benchmark suite,” in
IISWC ’14, Oct. 2014, pp. 76–79.

[15] C. Wilke, S. Altmeyer, and T. Martinetz, “Large-scale evolution and
extinction in a hierarchically structured environment,” in Artificial Life
VI, 1998, pp. 266–272.


	Introduction
	Methodology
	Heavy Tails in Program Structure
	Are Heavy Tails Due to Excluding Shared Libraries?
	Are Heavy Tails Due to Compilation?
	Are Heavy Tails Due to the ISA?
	Are Heavy Tails Due to Inputs?
	Are Heavy Tails Phase Dependent?
	Are Heavy Tails Function Dependent?
	Why Do Heavy Tails Emerge?
	Generative Model Development
	Basic Structures
	Analysis on the Synthesized Functions

	Heavy Tails in Source Code
	Code Patterns for Heavy Tails

	Are Heavy Tails Unique Phenomenon?
	Clustering on Distribution Distance
	Program Cluster Analysis
	Discussion of Program Clustering

	Related Work
	Conclusions
	References

