
Reviving Instruction Set Randomization

Kanad Sinha
Columbia University

kanad@cs.columbia.edu

Vasileios P. Kemerlis
Brown University

vpk@cs.brown.edu

Simha Sethumadhavan
Columbia University

simha@cs.columbia.edu

Abstract—Instruction set randomization (ISR) was proposed
early in the last decade as a countermeasure against code
injection attacks. However, it is considered to have lost its
relevance; with the pervasiveness of code-reuse techniques in
modern attacks, code injection no longer remains a foundational
component in contemporary exploits.

This paper revisits the relevance of ISR in the current security
landscape. We show that prior ISR schemes are ineffective against
code injection, but can be made effective against code-reuse
attacks, and even counter state-of-the-art variants, such as “just-
in-time” ROP (JIT-ROP). Yet, certain key architectural features
are necessary for enabling these capabilities. We implement a
new ISR system, namely Polyglot, on a SPARC32-based Leon3
FPGA that runs Linux. We show that our system incurs a low
performance overhead (4.6% on a subset of SPEC CINT2006)
and defends against real-world (JIT-)ROP exploits, while still
supporting critical features like page sharing. Polyglot is also the
first ISR implementation to be applicable to the entire software
stack: from the bootloader to user applications.

I. INTRODUCTION

Instruction set randomization (ISR) was initially proposed

as a mitigation against code injection [1], [2]. ISR involves

randomizing the underlying instruction-set architecture (ISA)
of a CPU, giving the impression of a unique instruction set

to every program. For instance, the opcode 0xa may denote

the XOR instruction on one application, but may be invalid
on a different one (that executes on the same platform). This

prevents an attacker from using the same exploit on multiple
targets, as any injected (shell)code must adhere to the (unique)

ISA used by the vulnerable program to be effective. ISR

implementations typically “emulate” the random ISA using
encryption; code is encrypted at the binary level and decrypted

in-memory, before execution.

However, ISR has a major drawback that impedes its
widespread adoption: it is completely ineffective against code-

reuse attacks, which are the cornerstone of modern, real-world
exploits [3], [4]. This is because code-reuse attacks, as the term

implies, stitch together code pieces that are already present in

the address space of a running process. Additionally, once an
attacker has the means to overcome techniques like W⊕X, ISR

can be trivially bypassed as well. Hence, even as a defense

against code injection, ISR is no more effective than the
established techniques. In short, the previously-proposed ISR

schemes suffer from one, or more, of the following issues:

1 Unfavorable performance–security trade-offs. Since

program instructions are decrypted at runtime, the decryption

process falls squarely in the critical path of instruction execu-
tion and the associated latency is hard to amortize.

Fig. 1: High-level overview of Polyglot.

2 No self-protection. Most previous solutions are
software-based, they expose a large trusted computing base

(TCB), and can be easily turned off, as they execute at the

same privilege level with the component(s) they protect.

3 No support for shared libraries and page sharing.

ISR schemes that lack support for code sharing (inevitably)
result in large memory overheads [5].

4 Archaic threat model. Previous approaches do not
consider memory disclosure vulnerabilities as part of their

threat model. However, arbitrary memory-read capabilities are

integral to modern attacks and on par with the threat model(s)
of recent studies [6].

In this paper we propose Polyglot, a hardware-based ISR
scheme that concurrently addresses all the above concerns.

Polyglot not only improves the traditional security properties

of ISR, but also counters state-of-the-art code-reuse attacks,
which are a novel and more relevant target. We utilize strong

encryption (i.e., AES [7] and ECC [8]), successfully overcom-
ing the challenges of unattainable performance by removing

decryption from the critical path (using microarchitectural

optimizations); this grants our scheme additional properties
such as code secrecy. Unlike prior schemes, we encrypt at

the page, instead of application, granularity. This not only

enables richer diversification, but also allows us to support
page sharing and seamlessly apply ISR to system software

(OS, hypervisor, etc.). We are also the first to demonstrate how
ISR can be logically extended to operate from system boot

time, when the memory management unit (MMU), and hence

paging, is disabled; our implementation of ISR is available
from the very first instruction that the system executes.

21978-1-5386-3929-0/17/$31.00 c©2017 IEEE

Furthermore, we keep a small hardware TCB by limiting

our modifications to within the processor. Figure 1 provides an
overview of Polyglot. Binaries are encrypted page-wise, with

AES, while upon execution, the hardware memory controller
(with the help of the OS) decrypts the executing instructions

as they are transferred into the code cache, so that the program

remains encrypted in memory.

II. BACKGROUND AND MOTIVATION

In this section, we give a brief overview of previous work
on ISR, and claim that in the face of modern exploitation

techniques, ISR is completely ineffective. Subsequently, we

motivate a novel way in which ISR can become valuable again,
when combined with other protection mechanisms, albeit only

if strong encryption is employed.

A. Previous ISR Schemes

Most prior ISR attempts are software based (see Table I),

and typically implement randomization using dynamic binary
instrumentation tools, such as Pin [13], or platform emulators,

like Bochs [14]. Obviously, an attacker can turn off, or subvert,
such components as they execute at the same privilege level

as the protected application. Apart from other practicality

issues, they also exhibit significant slowdowns [11] and were
demonstrated to be bypassable [15], [16], due to their use of

weak XOR-based encryption.

ASIST [12] sidesteps problems with performance and (the
lack of support for) shared libraries by providing hardware

support for ISR, and incorporates the best practices of most

of the previous techniques. ASIST allows two types of weak
encryption: XOR and transposition. The encryption keys are

unique to every process, and can be generated either at compile

time, in which case the application statically links with all its
dependencies, or at load time, where the pages are encrypted

dynamically. The latter mode allows shared libraries, but does
not allow sharing them between applications, thus incurring a

significant (space) overhead [5]. Absence of page sharing also

precludes the copy-on-write primitive, significantly increasing
the overhead of fork.

B. ISR against Code-Reuse Attacks

Code-reuse techniques are the attackers’ response to the in-

creased adoption of hardening mechanisms, like address space

layout randomization (ASLR) and non-executable memory
(NX), by commodity systems. The main idea behind code-

reuse is to construct the malicious payload by reusing in-
structions already present in the address space of a vulnerable

process [3]. This powerful technique gives the attacker the

same level of flexibility offered by arbitrary code injection,
without injecting any new code at all; the malicious payload

consists of just a sequence of gadget addresses intermixed with

any necessary data arguments.

ISR is fundamentally ineffective against code-reuse attacks

(CRAs), since attackers can construct their payload without

knowing how the instructions have been scrambled. One only
needs to know the location of the appropriate gadgets.

In the presence of various code-randomization

schemes [17], state-of-the-art CRAs have been evolved
to discover gadgets dynamically, at runtime, by scanning code

pages [6]. To prevent this, two conditions have to be met:

1 The host binary should differ from the attacker’s copy.

2 Code should not be readable.

These two conditions are sufficient, as an attacker can
neither scan binaries at the host, nor use their own copy in

conjunction with the diversified copy to mount a CRA. (Note
that this does not rule out data-only attacks [18].)

To this end, we propose combining ISR with a fine-grained
(code) randomization scheme to thwart state-of-the-art CRAs.

While the latter satisfies condition 1 an ideal ISR implemen-
tation can also indirectly prevent condition 2 by revealing

(ideally irreversible) encrypted text when code is read.

However, if ISR, plus diversification, is all that is needed,

can we just combine code randomization with any of the
previous ISR proposals? In other words, can we use weak

encryption to fulfill the above conditions? Unfortunately, en-

cryption schemes such as XOR and bit transposition can
be easily bypassed, even under the presence of fine-grained

diversification; during our preliminary experiments we were

able to leak keys for the two schemes easily, using entirely
architecture- and ABI-independent methods (due to the lack

of space we will refrain from elaborating more on the subject).
Hence, we argue that using stronger encryption, at low cost,

is pivotal in providing ISR-based protection.

III. SYSTEM ARCHITECTURE

In this section, we present Polyglot’s architectural design,
detailing our software and hardware modifications, and how

they inter-operate to achieve our goals.

A. Software

Binary Generation. To create an “ISRized” binary, we sym-
metrically encrypt a diversified version of it, at page granular-

ity, with randomly generated keys. (Note that only executable

sections are encrypted.) These key-to-address mappings are
then asymmetrically encrypted using the target processor’s

public key and packaged into the binary itself. Since code is

encrypted at a page granularity, the executable, and its required
shared libraries, possibly encrypted by different sources, are

able to interoperate. Lastly, asymmetric encryption ties the
binaries to their respective hosts.

Binary Execution. The dynamic loader and the OS are

responsible for extracting the encrypted keys from ISRized
binaries. In particular, the OS is in charge of them, during

its execution lifetime, and for setting up the process’ page

tables, as well as its own, in a format expected by the
hardware. (Note that our scheme allows code pages to exist

in plaintext if necessary.) Additionally, since we encrypt at
page-granularity, code sharing for shared libraries, as well as

for forked processes, is readily supported—i.e., by using the

same translation entry among the page tables of processes that
share a particular page (see Figure 2).

22 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

Proposal SW/HW
Based

Encryption Granularity
Shared

Libraries∗
Code

Sharing

Self-modifying

Code
Scope

Perf.

Overhead

Barrantes et al. [2] SW XOR Proc. � � � App. High

Kc et al. [1] SW XOR Proc. � � � App. High

Hu et al. [9] SW AES Proc. � � � App. High

Boyd et al. [10] SW XOR Proc. � � � App. Med.

Portokalidis et al. [11] SW XOR Proc. � � � App. Med.

Papadogiannakis et al. [12] HW XOR, Trans/on Proc., Kernel � � � App., Kernel Negl.

Polyglot HW AES, ECC Mem. page � � �
App., Kernel,

Bootloader
Low

TABLE I: Comparison of various ISR proposals. (∗Shared library support does not necessarily imply sharing them across
processes, unless code sharing is allowed.)

�������	
��

�������	
��

��	
��

�������	
��

��	
��

���

���	�����	��	
���	�

�������	
��

���	�����	��	
���	�

���	�����	��	
���	�

��	
��

���	�����	��	
���	�

Fig. 2: Page table modifications. The ISR PTE corresponds

to a page shared between processes A and B. PTD indicates
a page table descriptor, which is a pointer to the next level,

whereas PTE is the last-level translation.

Supporting ISR at the kernel level is achieved simply by

changing the kernel’s own page mapping(s) to an ISR-PTE

version. Overall, our modifications added ∼1100 LOC to the
Linux kernel (v3.8.1). Since paging is disabled at system boot,

we randomize the bootloader by encrypting the whole image
according to its layout in physical memory, so that encrypted

execution is enabled from the very first instruction. Care is

taken, however, to ensure that when the MMU is turned on,
and paging enabled, the respective keys match (i.e., before and

after enabling virtual addressing).

B. Hardware

Limiting the TCB to only the processor imposes numerous

challenges on our design. While previous work supports only
weakly-encrypted code, to avoid performance overheads, our

goal is particularly ambitious since we not only perform

symmetric AES decryption of code, but also asymmetric ECC
decryption of metadata (the latter operation can be orders of

magnitude slower than the former). Furthermore, since our
TCB is just the processor, we want code and keys to be

encrypted, at all times, while outside the chip. We achieve

this by modifying the instruction page fault and instruction
cache miss pathway as shown in Figure 4.

���	�����

����	�����	����� �� �	�����	����

��	
���! ��	
���!

"��	���#$���%�#"��	���#$���%�#&
%�#���	'��

"��	���#$���%�#
�# 	'��

(�$(�$)�)�

Fig. 3: ISR page fault handling flowchart.

1) Instruction Page Fault: To accommodate per-page en-

cryption, we introduce a new type of page table entry (PTE)

for randomized (i.e., ISR-encrypted) pages. Specifically, we
require that the corresponding PTEs contain the actual trans-

lation followed by the key for the respective page, as shown
in Figure 2. However, since ISR-PTEs become longer than a

word, and do not conform to a power-of-two alignment, they

break the conventional PTE fetching mechanism. We solve this
by extending the hardware page walk by another level—i.e.,

the penultimate level, which is part of the page tables, contains

the physical address of the actual entry. The hardware page
walk scheme is, hence, agnostic to how they are arranged in

memory (contiguous or discrete).

On a page fault, the origin of the fault (DTLB or ITLB)
determines whether a code or data page is expected (see

Figure 3). If the code faults, the table walk proceeds as usual

until an entry with the ISR type is encountered. The walk
mechanism procures encrypted entry, decrypts it to obtain

the page key and translation, which are then deposited into

a modified ITLB (step 2 in Figure 4). We add the requisite
ECC-163 and SHA-256 accelerators to the MMU to carry

out the decryption according to the Elliptic Curve Integrated
Encrypted Scheme (ECIES) [8].

On the other hand, if an ISR page is encountered on a

data page walk, then the key is ignored and the respective
translation is delivered (as is) to the DTLB. This effectively

allows data and code to exist inside the same page: code

accesses to a randomized page use decryption, while data
accesses to the same page fetch contents as is. This means that

2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 23

code can be treated as data (i.e., it can be read and written).

However, to allow for correct decryption, data and code must
either be aligned at cache block width, or, if they exist within

the same line, the data must be immutable.

2) Instruction Cache Miss: On an I-cache miss, as instruc-

tions are fetched from memory, they are decrypted using the
page’s key and stored, in plaintext, in the I-cache (Figure 4,

step 4). Henceforth, as long as an instruction is not evicted,

execution uses its decrypted form. D-cache miss handling
remains unaltered. The challenge, however, is that although

symmetric decryption is much faster than asymmetric decryp-

tion, instruction fetches are more common. This is the main
reason prior work opts for inexpensive encryption like XOR.

To overcome this, we use symmetric encryption in counter

mode [19]. In this mode, the actual decryption is performed

on a counter value, which is then XOR’ed with the actual data
to obtain the plaintext. We derive the counter from the lower

bits of memory addresses. Notably, since the counter can be
determined from the address itself, decryption and fetch can

commence simultaneously.

The Leon3 SPARC32 implementation has only split L1

caches. Hence, we place the AES decryption engine at the
I-cache/memory interface. For modern systems, with multiple

cache levels, we propose the decryption engine to be placed

at the cache/memory interface for energy and performance
reasons. Most importantly, since in such systems the memory

latency is much higher than the symmetric decryption latency,

the decryption cost can be masked completely.

This approach, however, opens the door to the following
attack. Assuming a shared L2 cache, suppose that a L2 block

is fetched as a response to a data (load) request. If the data is

also requested by the L1 I-cache, the block, which came in as
data without going through decryption, will be fed as is to the

L1 I-cache, thus completely bypassing ISR. The converse case,
on the other hand, would allow reading decrypted code as data.

We prevent this by tracking instruction and data blocks in all

shared caches, by adding a bit to each cache block indicating
whether it is instruction or data. This bit is set by tracking the

source of the miss, i.e., the instruction or data fetch. Cross-

sharing between the split caches is then forbidden, forcing line
flushes prior to cross accesses even in the shared levels.

3) MMU-less Execution: Enabling ISR when paging is
disabled, during bootstrap, follows the same process except

that the key is acquired not from a PTE, but directly from

a specific memory location. Design-wise, during this phase,
the I-cache changes still remain active, while the page walk

modifications are disabled.

C. Design Choice Implications

Encryption Algorithms. We use ECC, instead of RSA (i.e.,

the more popular asymmetric cipher), since ECC has shorter
key lengths and encryption/decryption latencies. Furthermore,

the use of counter mode block encryption guarantees that the

encrypted code is position dependent and prevents splicing
attacks (i.e., copying encrypted code and reusing it elsewhere).

Page Table. Page-level (encryption) granularity implies that

brute-forcing, or careful dictionary-like attacks on a particular
page, reveals nothing about the rest of the system.

Allowing Data Accesses to ISR Pages. Previously-proposed

systems that seek to disallow runtime code-scanning make

code pages execute-only. We could easily achieve the same
by faulting whenever data page walks encounter an ISR PTE.

However, this requires strict segregation between code and

data at the page granularity. Although a more secure option,
we considered this approach limiting in terms of convenience

of development, deployability, and practicality.

Syscall Interface. Our mmap variant is used by user appli-

cations to map encrypted pages into a process. This is a
weak link as it can be exploited by an attacker. Addition-

ally, the original mmap is still allowed to load unencrypted

code. While the former allowance was indispensable from a
practicality standpoint, the latter was necessary for the sake of

convenience; variants of our architecture can forbid it. Note

that introducing this system call does not make Polyglot more
vulnerable to the attack against ASIST that we outlined earlier.

Key Handling. This is one of the most crucial aspects of
any crypto-system design. In Polyglot, the symmetric keys are

included in the binary. Since these keys are asymmetrically
encrypted, Polyglot is safe even against binary code leaks,

when an attacker obtains the binary itself or the OS is

adversarial1. Another implicit assumption is that the private
key, specific to a chip, is irretrievable by the attacker. In

extreme cases, where the physical tampering of the chip is

a concern, the private key could be based on a physically
unclonable function [21] that is automatically destroyed if

anyone tries to tamper with it.

IV. SECURITY ANALYSIS

A. Effectiveness

Polyglot is basically meant to demonstrate that ISR is not
just a defense against code-injection, but can be an effective

countermeasure to code-reuse attacks as well. We discussed
its effectiveness in the former avatar in Section II. Here we

analyze its effectiveness against the latter. Since we rely on

static code diversification, we are limited by its robustness;
nevertheless, Polyglot is independent of it. We also assume

that the encryption used (e.g., AES, ECC) is strong enough to

be practically irreversible.

Given the above, static ROP is unattainable, as the code
memory differs from the attacker’s expectation of it. Further-

more, attempts for directly reading code memory, at runtime,

will also fail since the code is encrypted. Thus, Polyglot is
secure against direct (JIT-)ROP attacks.

However, since ISR does not modify the data layout, it is
susceptible to information disclosures through data. Conse-

quently, if the attacker were to leak function pointers, it is

possible to carry out whole-function reuse attacks, such as
ret2libc [22] and COOP [23], [24]. This is because although

1Note that an adversarial OS can mount additional types of attacks, such
as Iago attacks [20].

24 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

���

**+

���#$���%�#

���	�����

���#$���%�#

�

���

**+

����

�

,���-�

��� ����	�
���

,���-�

� ��

���

�� �	
���

����	���

*�����
�.��,�-%/&	
�#���$�� �

����
�.#,�-%/&	
���$�� �

�
��� ������
��� ����	�
���
�

�� �	
���

�
��� ������
��� ����	�
���
�

�� �	
���

�
��� ������
��� ����	�
���
�

Fig. 4: Hardware decryption in Polyglot. On page faults (left half), ISR PTE contents are brought into the ITLB. On a cache

miss (right half), a cache line is decrypted using the page key before dropping into I-cache.

we randomize the structure of functions, we do not change

their functionally. Data-space randomization [25], [26] and
virtual-table protection mechanisms [27], [28] may be effective

in this context. Note, however, that we do prevent some of

the recently-published, brute-force memory disclosure attacks.
Specifically, we prevent the attack proposed by Seibert et

al. [29], simply because our code is encrypted. Moreover, we
prevent BROP [30],since an attacker cannot disassemble our

code even when they leak the entire .text section.

B. Proof-of-Concept Exploit

The main benefit of ISR against CRAs is that gadget-
building attempts that rely on (arbitrary) memory disclosure

capabilities, for reading a process’ code, at runtime, will fail.
To assess the effectiveness of Polyglot against direct ROP/JOP

attacks, we retrofitted CVE-2013-6282 to Linux kernel v3.8.1.

Next, we ported the respective exploit [31] to the SPARC
architecture (the original exploit did not use ROP; it used

the return-to-user technique [?], which relies on forcing the

kernel to execute shellcode placed in user space), and verified
that it works as expected on the vanilla kernel. We tested the

exploit when the same kernel is statically randomized (using
a simple scheme that entails function permutation [32] and

NOP insertion [?]), and, as expected, it failed, as the respective

ROP payload relied on pre-computed gadget addresses, none
of which remained correct.

As there are no publicly-available JIT-ROP exploits for the
SPARC architecture, we retrofitted an arbitrary read-and-write

vulnerability in the debugfs pseudo-filesystem [33], reach-

able by user mode. Next, we modified the previous exploit to
abuse this vulnerability and disclose the locations of required

gadgets by reading the (randomized) kernel .text section.

Armed with that information, the payload of the previously-
failing exploit is adjusted accordingly. We first tested with ISR

disabled, to verify that JIT-ROP works as expected, and indeed
bypasses the static randomization scheme(s). Then, we enabled

ISR and tried the modified exploit again. This attempt failed,

as the code could not be read. We also verified encrypted
memory contents using a hardware debugger.

V. EVALUATION

To evaluate Polyglot, we implemented our design on a

Xilinx Virtex5-based XUPV5-LX110T FPGA board. Our im-

plementation is based on the SPARC32-based Leon3 package,
and our setup has 256MB of RAM, a portion of which is

used as a RAM disk (ramfs). On the software side, we
used Linux v3.8.1 and uClibc v0.9.33.2. The core utilities

were provided through BusyBox v1.23.2. Our system ran with

encrypted versions of all the above modules, as well as an
encrypted bootloader. For hardware, we used the default Leon3

configuration, sporting an in-order SPARC32 core with no

speculation or branch-prediction. Lastly, we use a 64-entry
ITLB and a 4-way 32kB I-cache.

It should be noted that even though we run regular work-

loads on our prototype, the FPGA platform’s properties differ
from a regular computer in ways that affect our results ad-

versely. Given that TLB and cache misses are the main sources
of overhead, overhead reductions are bound to be significant, if

structures comparable to those found in contemporary systems

are used.2 Additionally, decryption latency in our case is larger
than the latency of memory fetches, while this is not the case

for regular systems—our prototype’s AES implementation

takes 22 cycles to decrypt, while memory fetch, in modern
computers, takes about an order of magnitude longer [35].

A. Performance

SPEC. We ran the integer benchmarks of the SPEC CPU2006
benchmark suite [36]. Due to memory limitations on the

board, we could only run test inputs and were unable to run

all the benchmarks. Note that SPEC benchmarks have been
shown to be redundant in metrics (i.e., I-cache and ITLB

misses) that are exactly relevant to us [37], and to the extent

of our experiments, our results corroborated those findings.
Accordingly, perl should predictably have similar results as

go, while astar should be similar to sjeng. Hence, of the
SPECint programs, only xalanc’s behavior remains unknown.

2For example, ARM Cortex A-15 typically has multi-level caches, and
corresponding TLBs, for each level—i.e., a split 32-entry, fully associative
L1, and a 512-entry, 4-way unified L2 [34].

2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 25

 0

 5

 10

 15

 20

 25

 30

 35

 40

bzip2
gcc

m
cf

gobm
k

hm
m

er

libquantum

h264ref

om
netpp

sjeng
GeoM

ean

R
un

tim
e

ov
er

he
ad

 (
%

ag
e)

SPEC

Plain ISR
ISR + Func
ISR + NOP

-5

 0

 5

 10

 15

 20

 25

 30

syscall

read
write

stat
open/close

fork+execve

fork+/bin/sh

fork+exit

R
un

tim
e

ov
er

he
ad

 (
%

ag
e)

LMBench

Plain ISR
ISR + Func
ISR + NOP

Fig. 5: Performance overhead for SPEC and LMBench.

Results are presented in Figure 5-a. We evaluate Polyglot
with three configurations: without randomization, and with

function permutation and NOP insertion; in the former, the
order of functions in the final binary is randomized, while in

the latter, we insert up to 8 NOPs at function entries and after

every call site, preceded by a jump to bypass the NOP-sled.
Given that we are sensitive to code-misses, these choices are

significant (the former does not add to the code size, while the

latter does). From the observed data, we see that ISR incurs
an overhead of 4.6%. gcc performs particularly badly with an

overhead of 24.9%, which was a result of an inordinately high

rate of ITLB misses (7,376.15 /sec, versus 115.34 /sec for the
rest). In fact, if we neglect gcc, the rest of the benchmarks

have a mean overhead of 2.38%.
For the randomization schemes, function permutation does

better, with an overhead of 5.3%, while NOP insertion is more
expensive: 7.4%. Again, gcc was the only outlier with 6%

increase in overhead, suffering 15,450 ITLB misses/sec. A

similar trend is seen with the NOP insertion scheme. Note
though that the NOP-randomized binaries themselves exhibit a

mean overhead of 1.8%. Based on the above observations, we

recommend using in-place code-randomization techniques [4]
in Polyglot that do not substantially add to code size. With

better code-caching support, however, this might be moot.

Kernel. To evaluate the slowdown caused by the encryption

of the kernel, we run the LMBench kernel test suite [38] with
the same set of variants. We measure the null system call

as well as a few other (critical) ones: read, write, stat,

open/close. Importantly, we also measure process creation

latency with fork+{execve, /bin/sh, exit}. Figure 5-b

shows the overhead of encrypted (ISR) over native. We notice
similar trends, with overheads for plain ISR being the lowest

(0-16%), and ISR+NOP exhibiting the highest cost (4-30%).

B. FPGA Implementation Results

Our modifications to the base Leon3 implementation in-

creased LUT usage from 13,986 to 49,724, a significant

portion of which was taken up by the cryptoblocks (approx.
17k LUTs) and the ITLB key storage table (approx. 12k

LUTs). Since we did not optimize the accelerators for this
particular design, we believe that there is plenty of space for

improvement (both in terms of area and performance). For

instance, instead of using two separate AES-128 accelerators
to decrypt a 256B cache-block, we could merge them to a

single accelerator, since they share the same key and have al-

most identical counters. Furthermore, our modifications to the
Leon3 distribution synthesizes at the same clock frequency.

VI. RELATED WORK

We covered prior ISR work in Section II. In this section,

we survey other hardware- and software-based protection
schemes, relevant to Polyglot.

• Code Diversification. This line of work seeks to prevent

CRAs through diversification. More specifically, this flavor of

defenses randomize each instance of a binary, or execution, so
that the attacker has only a probabilistic chance of succeeding

in finding the necessary gadgets. ASLR [39] and many finer-

granularity variants of it [17] were proposed towards this end.
The common weakness in this class of defenses is that the

randomization is static, and relies on the fact that information
about a particular instance (of it) cannot be leaked. It has,

however, been shown that attacks based on memory disclo-

sure [6], [23], [29], [30] can dynamically harvest gadgets,
thereby disproving this assumption.

Recent defenses against the above can be mainly divided
into three categories:

1 Execute-only Memory. Works in this area [40]–[43]
prevent dynamic code memory scanning by making code pages

execute-only. Just this measure, however, is not good enough

since code pointers can be harvested from data pages as
well [44], [45]. Besides, this class of defenses does not support

intermingling data and code.

2 Code-pointer Hiding. Memory disclosures can be miti-

gated by preventing the leakage of code pointers, direct (e.g.,
branch targets) or indirect (i.e., function pointers, return ad-

dresses), in the first place. Previous work in this category [5],

[24], [42], [46] achieved this via a level of hidden or monitored
indirection and/or encoding.

26 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

3 Gadget Invalidation. Such schemes dynamically modify

the program’s structure (actively or reactively) so that by the
time the (harvested) gadgets are employed they are no longer

available [44], [47], [48].

Polyglot broadly falls into category 1 . While previous

proposals actively disallowed reading code, essentially enforc-
ing a no-read property on code pages, we allow code reads

while obfuscating readable code. This, in turn, allows us to

intermingle code and data, unlike other proposals. We also
show our work to be seamlessly applicable to higher-privileged

system software. Lastly, none of the previous schemes offers

the degree of protection against static binary leaks that we do.

• Isolated Execution. These technologies provide a secure,

opaque compartment for programs to execute, without the risk
of being spied on by other entities, even those executing at a

higher privilege level. First introduced in XOM [49], a slew of

software [50], [51] and hardware [52]–[54] based techniques
have since been proposed; Intel’s SGX [55] is an example of

the latter category.

In particular, the latter category seeks to provide integrity

and confidentiality of both code and data, even in the presence

of a malicious operating system. The idea is to achieve security
by encrypting code and data outside the TCB (typically the

processor), while providing isolation within. Some schemes
include memory within their TCB, and simply decrypt the

sensitive code at load time, while guaranteeing its integrity

thereafter. Others decrypt instructions as they stream into the
processor. Although used in other contexts [56]–[58], as far as

we know, we are the first to employ symmetric encryption in

counter mode in order to mask the instruction-decryption over-
head. Additionally, isolation techniques cannot cleanly support

shared libraries, due to their strict threat model, requiring
extensive changes to software. Design changes further need

to ensure the proper modularization of secure components lest

the attacker gains entry into a compartment. In brief, we avoid
the complexities of the larger problem isolation targets, and,

thus, are able to provide a more lightweight solution.

VII. CONCLUSION

In this paper, we present the design of Polyglot, a hardware-

based ISR scheme, which eschews weak cryptography (used
by previous ISR proposals) by employing AES and ECC at

the (memory) page granularity. We also developed micro-

architectural optimizations to reduce performance overheads
typically associated with hardware implementations of these

cryptographic algorithms. Our solution enables page sharing

between applications and strong encryption with low per-
formance overheads. Furthermore, we allow instructions to

be encrypted right from system boot. Most importantly, we
show how Polyglot can counter state-of-the-art ROP attacks,

which ISR was traditionally considered ineffectual against.

These features have not been achieved in any prior ISR
implementation, and, therefore, provide a promising primitive.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our colleagues, and
other members, of the Computer Architecture and Security

Technologies Lab (CASTL) at Columbia University, especially

Vasilis Pappas, Chester Rebeiro, and Angelos D. Keromytis,
for their valuable feedback. This work was supported by grants

FA 87501020253 (DARPA), CCF/TC 1054844 (NSF), and
N00014-15-1-2173 (ONR), a gift from Bloomberg, and the

Alfred P. Sloan Foundation.

REFERENCES

[1] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering Code-
Injection Attacks With Instruction-Set Randomization,” in Proc. of CCS,
pp. 272–280, 2003.

[2] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi, “Randomized Instruction Set Emulation to Disrupt Binary Code
Injection Attacks,” in Proc. of CCS, pp. 281–289, 2003.

[3] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86),” in Proc. of ACM CCS,
pp. 552–61, 2007.

[4] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
Gadgets: Hindering Return-Oriented Programming Using In-place Code
Randomization,” in Proc. of IEEE S&P, pp. 601–615, 2012.

[5] M. Backes and S. Nürnberger, “Oxymoron: Making Fine-Grained Mem-
ory Randomization Practical by Allowing Code Sharing,” in Proc. of

USENIX SEC, pp. 433–447, 2014.
[6] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-

R. Sadeghi, “Just-In-Time Code Reuse: On the Effectiveness of Fine-
Grained Address Space Layout Randomization,” in Proc. of IEEE S&P,
pp. 574–588, 2013.

[7] “FIBS 197, Advanced Encryption Standard (AES),” tech. rep., National
Institute of Standards and Technology, 2001.

[8] V. G. Martínez, F. H. Álvarez, L. H. Encinas, and C. S. Ávila, “A
Comparison of the Standardized Versions of ECIES,” in Proc. of IEEE

IAS, pp. 1–4, 2010.
[9] W. Hu, J. Hiser, D. Williams, A. Filipi, J. W. Davidson, D. Evans,

J. C. Knight, A. Nguyen-Tuong, and J. Rowanhill, “Secure and Prac-
tical Defense Against Code-injection Attacks Using Software Dynamic
Translation,” in Proc. of VEE, pp. 2–12, 2006.

[10] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis, and V. Prevelakis,
“On the General Applicability of Instruction-Set Randomization,” IEEE

Trans. Dependable Sec. Comput., vol. 7, pp. 255–270, October 2010.
[11] G. Portokalidis and A. D. Keromytis, “Fast and Practical Instruction-Set

Randomization for Commodity Systems,” in Proc. of ACSAC, pp. 41–48,
2010.

[12] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis,
“ASIST: Architectural Support for Instruction Set Randomization,” in
Proc. of ACM CCS, pp. 981–992, 2013.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” in Proc. of

ACM PLDI, pp. 190–200, 2005.
[14] K. P. Lawton, “Bochs: A Portable PC Emulator for Unix/X,” Linux

Journal, vol. 1996, no. 29es, 1996.
[15] A. N. Sovarel, D. Evans, and N. Paul, “Where’s the FEEB? The

Effectiveness of Instruction Set Randomization,” in Proc. of USENIX

SEC, pp. 145–160, 2005.
[16] Y. Weiss and E. G. Barrantes, “Known/Chosen Key Attacks against

Software Instruction Set Randomization,” in Proc. of ACSAC, pp. 349–
360, 2006.

[17] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
Software Diversity,” in Proc. of IEEE S&P, pp. 276–291, 2014.

[18] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-
Data Attacks Are Realistic Threats,” in Proc. of USENIX Sec, pp. 177–
192, 2005.

[19] M. Dworkin, “Recommendations for Block Cipher Modes of Operation:
Methods and Techniques,” tech. rep., National Institute of Standards and
Technology, 2001.

2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 27

[20] S. Checkoway and H. Shacham, “Iago Attacks: Why the System Call
API is a Bad Untrusted RPC Interface,” in Proc. of ACM ASPLOS,
pp. 253–264, 2013.

[21] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon Physical
Random Functions,” in Proc. of ACM CCS, pp. 148–160, 2002.

[22] S. Designer, “Getting around non-executable stack (and fix).” http://
seclists.org/bugtraq/1997/Aug/63, August 1997.

[23] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications,” in Proc. of

IEEE S&P, pp. 745–762, 2015.
[24] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,

A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s a TRaP:
Table Randomization and Protection Against Function-Reuse Attacks,”
in Proc. of ACM CCS, pp. 243–255, 2015.

[25] S. Bhatkar and R. Sekar, “Data Space Randomization,” in Proc. of

DIMVA, pp. 1–22, 2008.
[26] P. Chen, J. Xu, Z. Lin, D. Xu, B. Mao, and P. Liu, “A Practical

Approach for Adaptive Data Structure Layout Randomization,” in Proc.

of ESORICS, pp. 69–89, 2015.
[27] R. G. K. Dimitar Bounov and S. Lerner, “Protecting C++ Dynamic

Dispatch Through VTable Interleaving,” in Proc. of NDSS, 2016.
[28] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding, and C. Song,

“VTrust: Regaining Trust on Virtual Calls,” in Proc. of NDSS, 2016.
[29] J. Seibert, H. Okhravi, and E. Söderström, “Information Leaks Without

Memory Disclosures: Remote Side Channel Attacks on Diversified
Code,” in Proc. of CCS, pp. 54–65, 2014.

[30] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking Blind,” in Proc. of IEEE S&P, pp. 227–242, 2014.

[31] Exploit Database, “EBD-31574,” February 2014.
[32] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient Techniques for

Comprehensive Protection from Memory Error Exploits,” in Proc. of

USENIX Sec, pp. 255–270, 2005.
[33] J. Corbet, “An updated guide to debugfs.” https://lwn.net/Articles/

334546/, May 2009.
[34] “Cortex-A15 Technical Reference Manual,” tech. rep., ARM, 2011.
[35] D. Levinthal, “Performance Analysis Guide for Intel R© CoreTM i7

Processor and Intel R© CoreTM 5500 processors,” tech. rep., Intel Corpo-
ration.

[36] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH

Comput. Archit. News, vol. 34, pp. 1–17, September 2006.
[37] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of Redundancy and

Application Balance in the SPEC CPU2006 Benchmark Suite,” in Proc.

of ISCA, pp. 412–423, 2007.
[38] L. McVoy and C. Staelin, “lmbench: Portable Tools for Performance

Analysis,” in Proc. of USENIX ATC, pp. 279–294, 1996.
[39] PaX Team, “address space layout randomization.” https://pax.grsecurity.

net/docs/aslr.txt, March 2003.
[40] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,

“You Can Run but You Can’T Read: Preventing Disclosure Exploits in
Executable Code,” in Proc. of ACM CCS, pp. 1342–1353, 2014.

[41] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the Contents of
Userspace Memory in the Face of Disclosure Vulnerabilities,” in Proc.

of ACM CODASPY, pp. 325–336, 2015.

[42] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical Code Randomization
Resilient to Memory Disclosure,” in Proc. of IEEE S&P, pp. 763–780,
2015.

[43] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and
A.-R. Sadeghi, “Leakage-Resilient Layout Randomization for Mobile
Devices,” in Proc. of NDSS, 2016.

[44] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code Randomization Resilient to (Just-In-Time) Return-
Oriented Programming,” in Proc. of NDSS, 2015.

[45] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, M. Negro,
M. Qunaibit, and A.-R. Sadeghi, “Losing Control: On the Effectiveness
of Control-Flow Integrity Under Stack Attacks,” in Proc. of ACM CCS,
pp. 952–963, 2015.

[46] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-
Guard: Stopping Address Space Leakage for Code Reuse Attacks,” in
Proc. of ACM CCS, pp. 280–291, 2015.

[47] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte: Thwarting
Memory Disclosure Attacks Using Destructive Code Reads,” in Proc.

of ACM CCS, pp. 256–267, 2015.
[48] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely

Rerandomization for Mitigating Memory Disclosures,” in Proc. of ACM

CCS, pp. 268–279, 2015.
[49] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and

M. Horowitz, “Architectural Support for Copy and Tamper Resistant
Software,” in Proc. of ACM ASPLOS, pp. 168–177, 2000.

[50] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An Execution Infrastructure for TCB Minimization,” in Proc.

of EuroSys, pp. 315–328, 2008.
[51] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,

“TrustVisor: Efficient TCB Reduction and Attestation,” in Proc. of IEEE

S&P, pp. 143–158, 2010.
[52] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:

Architecture for Tamper-evident and Tamper-resistant Processing,” in
Proc. of ACM ICS, pp. 160–171, 2003.

[53] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for Protecting Critical Secrets in Microprocessors,” in
Proc. of ISCA, pp. 2–13, 2005.

[54] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh,
and R. Riley, “Iso-X: A Flexible Architecture for Hardware-Managed
Isolated Execution,” in Proc. of IEEE MICRO, pp. 190–202, 2014.

[55] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions and
Software Model for Isolated Execution,” in Proc. of HASP, 2013.

[56] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, “Efficient
Memory Integrity Verification and Encryption for Secure Processors,” in
Proc. of IEEE MICRO, pp. 339–350, 2003.

[57] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High
Efficiency Counter Mode Security Architecture via Prediction and
Precomputation,” in Proc. of ISCA, pp. 12–24, 2005.

[58] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin, “Im-
proving Cost, Performance, and Security of Memory Encryption and
Authentication,” in Proc. of ISCA, pp. 179–190, 2006.

28 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

