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ABSTRACT

In this paper, we describe for the first time, how Dynamic
Information Flow Tracking (DIFT) can be implemented for
heterogeneous designs that contain one or more on-chip ac-
celerators attached to a network-on-chip. We observe that
implementing DIFT for such systems requires holistic plat-
form level view, i.e., designing individual components in the
heterogeneous system to be capable of supporting DIFT
is necessary but not sufficient to correctly implement full-
system DIFT. Based on this observation we present a new
system architecture for implementing DIFT, and also de-
scribe wrappers that provide DIFT functionality for third-
party IP components. Results show that our implementa-
tion minimally impacts performance of programs that do
not utilize DIFT, and the price of security is constant for
modest amounts of tagging and then sub-linearly increases
with the amount of tagging.
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1. INTRODUCTION

Dynamic Information Flow Tracking (DIFT) is a valuable
system primitive that finds widespread use in security, pri-
vacy, and program analysis applications. For example, DIFT
has been used to ensure that private data does not leave a
smart phone, detect security attacks such as SQL injection
or buffer overflows or identify fault locations in programs
when they fail [1, 2]. To support DIFT in a computing sys-
tem each data item in a program is enhanced to include a
tag that identifies some property of that data item. Then
during program execution, as old data items are modified
the properties of their tags are also modified, or as new data
items are produced they get new property tags according
to some DIFT policy. The specific policy for creating and
propagating tags is based on how DIFT is used: in a privacy
application, for instance, data from the GPS receiver may
be tagged as confidential, and this data and derivatives may
be unsafe to leave the phone through any network interface.
The size of the tags used in DIFT can vary widely depend-
ing on the application, and range from 1-bit taint tags for
security to multi-byte object tags that specify data type or
object evanescence [3].

The central question we address in this paper is: What
SoC platform architecture will allow us to easily integrate
DIFT support?

The question of platform architecture for DIFT has not
been addressed previously. The main focus so far in the
DIFT research area has been how to enhance processor ar-
chitectures with DIFT [4, 5, 6, 7, 8]. In this paper we ask
how we can design the DIFT mechanism at the platform
level so that it is simple for third-party IP components, be
it accelerators, controllers or even special cores, to be easily
integrated in the SoC without intrusive changes. Towards
this goal, we provide a set of recommendations for platform
designers to implement DIFT as a general hardware service.

We will explain the capability we wish to provide with a
simple but realistic example. Let us say we want to build
a SoC with DIFT support. Assume that our SoC only has
a general-purpose core and a controller, say a DMA engine.
Let us also say that on this system the data and tags for
the data are stored in different locations in DRAM memory
(for efficiency reasons). If the DMA engine is unaware of the
separation of tags and data it will miss the tags associated
with the data during copies and thus break information flow
tracking. Clearly the DMA engine needs to be aware of the
tag storage mechanism, i.e., it should know how to compute
the address of the tags given the data address. Now, in our
simple SoC, instead of a DMA engine, let us say we had a
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compression accelerator (or any other computational accel-
erator that modifies the input data). In addition to being
aware of the tag storage, it should also be capable of propa-
gating the tags through the datapath within the accelerator.
In this paper, we show how to extend the platform archi-
tecture so that any SoC component can easily find the tags
stored in memory; the issue of tag propagation is orthogonal
and not described in this paper. However, as it will become
clear later in the paper for many common third-party IP
components, the implementation of tag propagation logic
is straightforward, or in some cases may not even require
modifications to the accelerator.

To easily integrate third-party IP components in a DIFT

aware platform we propose a new architecture called WHISK.

In our architecture the data and tags are stored separately in
memory to keep a low area overhead and improve flexibility.
The salient features of our architecture are (Figure 1):

(a) Implicit Addressing of Tags and Data: We propose
an architecture in which a NoC client on the SoC does not
have to know anything about the tag layout or storage. In-
stead of sending a pair of addresses to access a data and its
associated tag, which forces the clients to know the associa-
tion mechanism between data and tags, in WHISK we allow
clients to send only the data address and automatically re-
ceive or send the requested data along with its associate tag
in the same packet. This strategy lowers the complexity of
adapting DIFT to IP components since tags are automat-
ically and transparently accessed with data. Further since
the tag calculation is isolated from the clients, the system
supports flexible tag layout and storage in memory, allowing
DIFT to be easily customized for different applications.

(b) Atomic transmission: While the data and tags are
stored separately in memory to keep a low area overhead,
they are transported together from memory through the in-
terconnect instead of being fetched separately as is done
in single processor DIFT implementations. This coupled
atomic transport decreases the complexity of adapting ac-
celerators to DIFT by avoiding subtle memory coherence
and consistency problems between tags and data.

(c) Pipelined transfer: In our WHISK NoC protocol we
send the data from/to memory one cycle after the tag. This
has three main benefits. First it reduces the area overhead
and design complexity since the data and tags can be sent on
the same interconnect. Second the tags are already available
at the clients when the data arrives at the client mitigating
or completely avoiding serialization latencies during DIFT
processing. Finally, since the tag and data use the same
interconnect, the tag can be arbitrarily large: it can be as
large as the data or if needed even larger by sending the tag
over multiple packets. This allows flexible implementations
of DIFT policies.

(d) Configurable, multi-granular caching: In DIFT appli-
cations, often large portions of nearby data items tend to
have the same tag properties. This property can be used to
reduce the area overhead of tags by representing common
properties for many addresses using one tag instead of one
tag per address. WHISK supports this multi-granular tag
optimization. Further, in WHISK we allow clients to cache
these tags to allow temporal reuse of tags to avoid latency
overhead of tag accesses. These caches are also implicitly
addressed with data.

(e) Standard wrapper for SoC clients: Finally, and per-
haps most importantly, we show how all of the above fea-
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Figure 1: Overview of WHISK: red regions denote tag ex-
tensions. The callout boxes describe functionality.

tures — implicit addressing, atomic transmission, pipelined
transfer and tag caching — can be built in a way that allows
these functions to be wrapped around existing clients in the
SoC with minimum changes to the NoC or the SoC mem-
ory architecture (Figure 2). Our wrappers also handle OS
interrupt processing. The wrappers are placed on the path
between the NoC and the clients.

To examine the practicality of WHISK we developed a
cycle accurate SoC in SystemC. We were able to integrate
different types of accelerators with DIFT into the system
(e.g., compression, cryptography). We were also able to
boot an embedded Operating System and run full appli-
cations. To test the utility of DIFT as a service we mea-
sure the impact of DIFT for different amounts of tagging
by varying the fraction of the program’s input data that
can be tagged, and the width of the tags. This is different
from prior works where overheads of DIFT were measured
for specific applications of DIFT such as buffer overflows.
Our experimental results with microbenchmarks show that
WHISK exhibits security-proportionality: the performance
overhead is relatively proportional to the amount of tag-
ging in the system. When running full software applications,
however, the performance overhead stays almost constant,
i.e., is less impacted by the amount of tagging, because the
cost of WHISK is amortized with microarchitectural opti-
mizations, and also because of tag aggregation and caching.
Finally, when active but not used, i.e., when the amount of
tagging is null, the overhead of WHISK is negligible.

2. BACKGROUND

There are generally two ways to store tags in DIF'T archi-
tectures.

Coupled scheme.
In the coupled scheme each data element is physically
stored with its associated tag [5, 6] and they are always



transmitted atomically throughout the system. This means
that the main memory, as well as all the components along
the memory chain, the system bus, processors datapaths,
caches and registers are all made wider to accommodate the
tag. Although this scheme seems to be the easiest solution in
terms of implementation complexity, it necessitates special
adaptations, as highlighted by Venkatramani et al.[7]. For
example, this scheme requires use of non-standard memory
bank sizes and modification to processor instructions to al-
low them to access and manipulate the tag bits. Further, tag
storage is wasted when tagging is not needed, and new pro-
cessor instructions are required to access and manipulate tag
bits independently (e.g. for initialization). Consequently the
area overhead can be tremendous especially given the need
for using large tags (from at least 8 bits [9] and up to 32
bits [10, 11]) as the coupled scheme adds a +3% overhead
for each additional tag bit (for a word-granularity policy).

Decoupled scheme.

The decoupled scheme consists in dedicating a portion of
memory to store tags separately from the data. Tags and
data are thus both in memory but in two separate regions.
The separation involves the use of an association algorithm
to find the associated tag of a data when reading or writing
this data. Some of the existing approaches [7, 12] store tags
as a bitmap in a protected area of applications’ virtual ad-
dress space and perform the association between data and
tags via a simple index calculation. Another type of decou-
pled scheme suggests that tags protect the whole address
space by the means of a multi-level page table [4, 13]. For
instance, code segments tend to share the same tag for dif-
ferent DIFT applications and as such may not need such a
fine tagging granularity. The first level of this table typically
covers the address space at page-level granularity: pages can
therefore be considered as fully tagged or untagged, or as
partially tagged. In the latter case, a second level in the tag
page table allows to protect a data page at a finer granularity
(e.g. word- or byte-level). Such multi-granular approaches
are able to accommodate flexible tagging requirements at
runtime, reducing the area overhead but still allowing fine
granularity when needed.

Discussion.

In prior implementations the complexity of the decou-
pled scheme comes mostly from the fact that data and tags
must be retrieved separately since they are stored in differ-
ent memory regions. The association algorithm is usually
implemented in the processor core, and generally involves
using additional TLBs for tags and tag caches for perfor-
mance improvements. A software/hardware mechanism is
also required to detect and process when tags have to be ag-
gregated: for example, when storing a tagged data element
in an untagged page for the first time, the tagging granu-
larity must be refined by creating a second level in the tag
page table for that particular data page.

Using a decoupled scheme also raises the possibility of in-
coherence and inconsistency between tag and data in multi-
cores. In proposals where tags are manipulated in the same
pipeline stage as data [4, 6] this issue is avoided by ensur-
ing that when writing or reading a data and its associated
tag, both are available in their respective cache and the op-
eration completes in one cycle. For proposals that perform
tag manipulation in different pipeline stages than the stage

reading/operating on data [7, 12|, this issue is more chal-
lenging but was addressed by Venkatramani et al. [7]. Note
that architectures implementing the coupled scheme are not
affected by coherence and consistency issues since data and
tags are always paired together in the system.

In general DIFT also requires system level support to pre-
serve tags when data leave memory. Crandall et al.[5] store
the tags in kernel memory when a data page is swapped out
on disk so that they can be restored when the data page is
swapped back in. Some software implementations [14, 15]
modify the file system so that when data is written to a file,
tags are stored as well.

DIFT in SoCs.

SoC design issues and requirements have never been con-
sidered in past DIFT proposals. Yet, such systems are spread-
ing, and there is strict emphasis on low cost and low design
complexity. In our approach, we accommodate these re-
quirements by adopting a hybrid scheme of the coupled and
decoupled schemes, where data and tags are transported to-
gether between memory and cores and then split just before
storage in memory. This hybrid scheme guarantees reading
and writing atomicity and thus consistency between data
and tags. And tagging granularity refinements are detected
at the earliest, by putting small hardware modules in front of
the clients. Further many of these changes can be wrapped
over existing clients enabling easy integration of security
functionality.

3. THE WHISK ARCHITECTURE

In this section we describe our DIFT architecture called
WHISK.

Tag storage.

WHISK uses a two-level table for tag storage in DRAM.
Both levels are indexed by physical memory address and re-
turn the tag associated with that address. The first level
is a linear array containing tags for each physical memory
page, indicating if the page is fully untagged, fully (uni-
formly) tagged, or partially tagged. The second level holds
tags for pages at word granularity, and can be allocated
on demand when a page becomes partially (non-uniformly)
tagged. The page table is statically allocated and guaran-
teed to be present in physical memory, which is realistic for
many embedded system-on-chip designs.

Hardware support for tag management.

In WHISK the mechanism for associating data with tags
is integrated in a small hardware module in front each net-
work client such as an accelerator or a memory controller
(See Figure 2). Conceptually, on a read operation from a
client, this module retrieves the requested data at the spec-
ified address, and the tag page table is accessed to find the
tag corresponding to the given address, before giving it back
the client that initiated the request. The same concept is
reversed for write operations: if the tags have already been
allocated they are updated by the hardware module other-
wise the modules issue an interrupt to the OS to allocate
tags.

Some clients may optionally include caching for page level
tags in the wrappers. These Page Table Caches (PTCs) re-
turn for a given memory access whether the containing page
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Figure 2: DIFT Wrapper

is fully untagged or tagged (along with the tag value), or
partially tagged. In the former two cases, the tags need
not be explicitly accessed since the tag property of the re-
quested data is already known. It is only for partially tagged
pages that tags might need to be fetched from memory. Such
caching can significantly reduce the traffic overhead. Since
the tags are present in the wrapper, in WHISK, the DIFT
module implicitly retrieves the tags when the data is ac-
cessed i.e., the clients are not able to identify the address
mapping between data and tags.

In WHISK the communication interface is widened with
an extra two-bit field which encodes three possible com-
mands. The NONE command instructs the memory to return
or to expect only the data. The WITH command instructs
the memory to return or expect a cache line along with its
associated tag. The ONLY command instructs the memory
to return the tags associated to a certain cache line. Since
in most cases data is expected to be in fully tagged or un-
tagged pages, a large majority of read or write operations
should cause only one memory access by using a NONE com-
mand and packets will not need to be extended with tags.
This strategy reduces the traffic overhead on the intercon-
nect and the number of memory accesses, lowering both the
energy consumption and the performance overhead.

Software support for tag management.

There are three mandatory tasks that the OS has to per-
form. The first task is to allocate the tag page table, usually
during the system boot. The second task is to configure the
different PTCs of the system, namely the register that holds
the base address of the tag page table. The last task con-
cerns writes to untagged pages: in this case, the OS must
provide a exception/interruption handler to process those
requests, by creating on-demand a second level in the tag
page table.

IP Integration in WHISK.

From an implementation standpoint, WHISK introduces
wrappers in front of NoC clients (IP blocks), which provide
two functions. First, the wrapper abstracts away the decou-
pled nature of the tags by acting as a serializer /deserializer
for write/read operations. Second, by hosting a PTC, the
wrapper is able to obviate page table accesses when tags are
known (using the NONE command), and also to recognize, at
the earliest point, when a page refinement is required.

Tag propagation and tagging policies.

Tag management provides the infrastructure for manag-
ing tags; another important part of DIFT deals with the tag
propagation, that is how cores and accelerators compute and
propagate tags through their internal storage location, and
the policies for such propagation. While WHISK does not
focus on that second part, WHISK is compatible with exist-
ing mechanisms [16]. Our design is rather agnostic to those
propagation policies as long as data and tags are conceptu-

Parameter Specification

LO/L1 instruction cache 16KB/64KB, 4-way set as-
sociative

LO/L1 data cache 64KB/512KB, 4-way set
associative

Cache block size 64 bytes

LO/L1 latency 10 cycles

Interconnect width/latency | 32 bits/7 cycles

Coherence protocol MESI-like directory-based

Memory latency 150 cycles

Figure 3: Architectural and design parameters for the
WHISK prototype

ally read or written atomically in their PTCs by the clients
which the wrappers strive to provide.

4. WHISK IMPLEMENTATION

4.1 Hardware system
We modified SoCLib [17], an open-source library of hard-

ware simulation models described in SystemC to model WHISK.

We chose this prototyping framework for its ability to rapidly
modify the simulation models to perform design space explo-
ration compared to a classic RTL description, its fast simula-
tion speed and its cycle-accurate bit-accurate characteristic
which provides a similar feedback as a RTL implementation
in terms of performance measurement.

Our baseline hardware system is based on three hardware
accelerators and a single MIPS processor (with CPI of 1).
This processor does not perform virtual memory manage-
ment and is equipped with a two-level write-back cache sys-
tem. Table 3 summarizes the main architectural and design
parameters of our prototype. The processor is modified to
implement a simple logical-OR based tagging propagation
policy and its interface, from core to cache, is extended with
a tag field. The tag caches are 1/8 the size of their match-
ing instruction/data caches. For instance, the tag-data L1
cache is a 4-way set-associative cache which counts 32 sets,
while the size of the cache block depends on the tag width:
16 bits if the width of tags is 1 bit (1-bit for every word of
the 64-byte data block) up to 64 bytes if the width of tags
is 32 bits (1 word tag for every data word). The PTCs are
64 entries, 2-way set associative. The data and tags can be
stored in different memory banks, therefore allowing data
and tag requests to be concurrently scheduled by the mem-
ory controller in back to back cycles.

We implement three accelerators: DMA, AES crypto-
graphic accelerator and LZSS compression accelerator. When
configured, these accelerators perform transfers to and from
memory by repeating the two following operations as many
times as required: a burst read (the size of a cache line, to
avoid taking over the memory controller for too long) from
memory into an internal buffer, and a burst write of the
output back to memory. For the DMA and AES accelera-
tors we assume that the output has the same tag as input.
For the LZSS accelerator, when tagged symbols cannot be
compressed, they are let unmodified in the input along with
their tag. When a sequence of symbols can be compressed
(i.e., matched with a identical sequence of symbols already
encountered and still in the dictionary), the resulting out-
put (i.e., 2 symbols to indicate the offset of the matching
pattern and the length of this pattern) are tagged if at least



one of the input symbols is tagged.

4.2 Operating system

We use MutekH [18], a open-source exokernel-based op-
erating system. In this operating system, software applica-
tions are compiled with the kernel and run in kernel land,
using a POSIX thread library. MutekH is extensible and al-
lows an easy development of new kernel modules to perform
design space exploration.

We add a tag module to MutekH to manage our decoupled
tagging scheme. This module, which has an approximative
size of 700 SLOC, provides an API mainly for:

e Building the initial tag page table. Such table covers
the physical memory address space, which is set as
completely untagged, at page-level granularity.

e Configuring and enabling the different PTCs of the
system, by providing them with the root address of
the tag page table.

e Maintaining the tag page table, that is tagging regions
of memory, either at page-level granularity or at word-
level granularity after performing page refinements.

The code of this new module is mostly self-contained and
there are only three locations in MutekH’s core where we in-
sert function calls to that module. At system boot, we add
a call to the tag page table creation to enable the WHISK
architecture. When creating a new application, the mem-
ory area used to save the context of the processor in case
of interrupts/exception is set as a partially tagged region,
to avoid facing an infinite loop of exceptions when possibly
saving a tagged register into it for the first time. And finally,
we add an exception/interrupt handler to manage page re-
finement requests at runtime, either coming from the pro-
cessor or accelerators’ PTCs. All of this code can actually
be implemented in a dedicated hardware unit to minimize
OS dependency even further.

5. EVALUATION

Our goals are two-fold. First we aim to show that, when
active but not in use, our security infrastructure has unno-
ticeable impact on the system’s performance. Second, when
in use, we seek to characterize its impact according to the
amount of tagging. We define this property as “security-
proportionality” and interpret the amount of tagging as the
combination between the percentage of tagged input data
that is supplied to a benchmark and the width of the tags (1,
8, 16 or 32 bits). It is theoretically expected that impact to
be higher when the amount of tagging increases since more
of the security infrastructure will be used. This approach
for measuring is different from prior approaches where one
or few uses of DIFT is used to characterize the overheads.

For this evaluation, we use three sets of benchmarks. Since
our work primarily focuses on heterogeneous systems, the
first set includes microbenchmarks to evaluate the security
proportionality of WHISK between hardware accelerators
and memory. These benchmarks make use of three accel-
erators chosen to represent a range of existing accelerators
in terms of internal organization and access patterns. The
first accelerator is a simple DMA transfer engine; the sec-
ond accelerator implements an AES engine, which is basi-
cally based on the DMA engine but adds a non-negligible

processing latency; finally, the third accelerator is a LZSS
compression engine, which adds the characteristic of being
stateful across transactions. The second set of benchmarks is
composed of software applications. We choose multimedia-
oriented and very data intensive applications to emulate a
typical workload in some embedded systems. The multime-
dia software applications are: JPEG encoder (cjpeg), MP3
player (minimad), Xvid decoder and encoder (xvid_dec and
xvid_enc). We make the working sets of the two latter ap-
plications vary by using different image sizes (QCIF and
CIF). Finally we include a software application that com-
bines accelerators and general purpose cores to study the
performance/security tradeoffs.

The tagging status of the inputs is configurable. Given
that the input data span across many pages, it is possible
to define the ratio of those pages that are set as partially
tagged (i.e., tagged at the granularity of words), and within
those pages, the ratio of words that are tagged (i.e., with a
tag different than 0).

5.1 Microbenchmark Results

Figure 4a shows the performance overhead induced by
WHISK when the input data to each of the benchmarks is
completely untagged at page-level granularity. The overhead
for DMA, AES and LZSS is respectively 7.25%, 3.5% and
4% and is constant whatever the width of the tagging. DMA
has the biggest overhead since this accelerator does not per-
form any internal processing which, in the case of AES and
LZSS, helps hiding part of the overhead of WHISK.

The origin of this 7.25% overhead is mainly due to write
operations from the accelerator. Read operations are fairly
transparent: data packets coming from memory are directly
transmitted to the accelerator without any buffering in the
wrapper; there are a couple of cycles to start this transmis-
sion within the tag wrapper but they are negligible compared
to the memory latency (about 320 cycles for read operations
at the accelerator). For write operations however, buffering
data bursts coming from the accelerator is mandatory. If the
targeted memory page is fully untagged (which is always the
case for this baseline evaluation) and one of the word pro-
duced by the accelerator is tagged, then the wrapper must
interrupt the OS in order to request a page refinement and
switch the targeted page to word-granularity. It would be
too late to detect this need for refinement on the fly while
transmitting the write burst to memory. In our implemen-
tation, buffering write operations takes about 20 cycles: 16
cycles to buffer the 16 words that compose a write burst,
and a few extra cycles to drive the few FSMs inside the
wrapper. Those 20 cycles are a non-negligible impact on
performance because the latency to memory is smaller for
write operations (about 60 cycles from the point of view of
accelerators) than for read operations. When the memory
controller receives a write operation, the operation is ac-
knowledged immediately to the initiator core, making the
actual write to memory only a "hidden” post-latency to the
operation.

The Figures 4b.,4c,4d,4e show the results of the second
set of experiments, when the ratios of tagging are progres-
sively raised to a fully tagged input. In those experiments,
only the ratio of partially tagged pages is increased, from
5% of partially tagged up to 100%, and all the words within
those pages are tagged (the percentage of tagged words does
not impact the results). Unsurprisingly the cost of security
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Figure 4: Security proportionality for hardware accelerators

increases along with the amount of tagging. The result-
ing overheads are higher than for software applications be-
cause there is no caching within the tag wrappers, which
means the tags have to be transmitted along each request
targeting a partially tagged page (both for read or write op-
erations). This property also explains why the overhead is
clearly higher when using 32-bit wide tag, since in such case,
the memory accesses are doubled in size (16 bytes of data
concatenated with 16 bytes of tags). The cost of refinement
requests to the main OS is also not negligible especially when
the percentage of partially tagged input pages is high (about
3000 cycles for processing a page refinement request by the
08).

For this set of experiments, we added an optimization to
the tag wrappers which lowered the overhead by several per-
cents. The idea was to pipeline write operations as often as
possible, that is to start sending the data written by the
accelerator to memory without buffering them in the tag
wrapper. As previously explained, although non-buffering
is impossible when the output memory location is tagged at
page-level granularity, it is possible when the output page
is marked as partially tagged, because then, the wrapper
can leverage the fact no refinement request will be needed
(the refinement has already been performed before). Typ-
ically, when 100% of the input is tagged, then 1.5% of the
output write operations needs to be buffered because a page
refinement is expected, but the 98.5% of the remaining write
operations can be pipelined without buffering.

We also run another experiment using all the microbench-
marks simultaneously. In this third experiment, the three
accelerators are instructed with transfers at the same time,
in order to test how the WHISK architecture is able to
support a higher load. Since AES is the benchmark that
takes the longest time, we loop the two others five times
so all of them finish approximately at the same time, and
the infrastructure endures a constant load across the length
of the simulation. Figure 4f shows the resulting perfor-
mance overheads for different tagging ratios. We observe

that those overheads are smaller than for the previous exper-
iments when each benchmarks are tested separately. This
phenomenon can be explained by the fact that we do not
reinitialize the output pages between the five runs of DMA
and LZSS, so after the first run, the output pages are already
set as partially tagged pages which avoids further costly re-
finement requests and thus lowers the overhead.

5.2 Software Application Results

Figure 5a shows the baseline performance overhead of
WHISK. We observe the overhead to be quite negligible,
namely in the range of 0% and 3.75%, and is stable regard-
less of the width of tagging. This overhead comes mainly
from the accesses to the tag page table by the PTCs of
the system (in the processor and in the memory controller).
Processing smaller data working-sets, cjpeg and minimad
have the lowest overhead which means fewer accesses from
the PTCs, while the four versions of xvid_dec and xvid_enc
have a bigger overhead since they all process bigger data
working-sets.

In the case when WHISK is completely inactive, that is
the tag page table is not built at boot-time nor the PTCs of
the system are initialized, then there is no performance over-
head for software applications (the microbenchmarks still
slightly suffer from the tag wrappers latency as mentioned
earlier).

In the second set of experiments, we vary the ratios of
tagged input, from 5% to 100% of input pages set as tagged.
In Figures 5b,5¢,5d,5¢e, we see that the performance overhead
is fairly constant with respect to the examined benchmark
application and the width of tags. It is only when 100% of
the input pages are set as tagged that the overhead stops
being constant for most of the benchmark applications and
increases. We explain this behavior first by the number of
refinement requests that needs to be performed (when writ-
ing tagged output words for the first time in fully untagged
output pages), and most of all by misses in the tag caches
which are 1/8 smaller than their data counterparts.
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In a third experiment, we vary the size of the PTCs to ob-
serve their impact on an application which accesses common
tagged data on both the CPU and accelerators. We simu-
late an application which performs a hardware accelerated
video encoding while simultaneously performing a JPEG im-
age compression on the CPU, then combine both output
buffers into a compressed buffer using a hardware acceler-
ated compressor, and finally compute the SHA-512 hash of
the compressed buffer using the CPU. Figure 5f shows the
performance impact at various PTC sizes for input buffer
sizes of 8, 32, and 64 pages.

6. RELATED WORK

While there has been a lot of work on DIFT at the pro-
cessor architecture level there is no work at the platform
level. Our work addresses this gap. Our work makes it eas-
ier to build secure embedded systems which are seriously
threatened today.

In 2004, Suh et al.[4] proposed one of the first hardware
DIFT architectures for addressing software attacks. In their
architecture, the tag is a taint bit that can be applied to
memory elements as small as bytes. Within the processor,
the propagation policy distinguishes four categories of in-
structions providing simple rules for each one (e.g., for a
computation-copy instruction, the taint of the result receives
the taint of the operand). Whenever a tainted data is used
as an execution address, which is likely to characterize a
memory corruption attack, the processor raises a security
exception. In order to circumvent the overhead of tagging
every byte of memory, they introduced a multi-granularity
policy: a page table structure allows to tag data blocks as
large as entire pages or quadwords or words with only one
taint bit. It is only upon the first write operation on a data
smaller than the granularity of the page it belongs to, that
the OS refines the tagging granularity for this page. Their
mechanism relies on TLBs to be extended in order to cache
the tag type of memory pages. Finally, to avoid extending
each processor cache block with tag bits, they introduced

separate tag caches.

The same year, Crandall et al.[5] proposed Minos also
addressing software attacks. Their approach is quite similar
to Suh et al.[4] with a noticeable exception that they did not
try to reduce the memory overhead induced by the tag bit,
arguing that Moore’s law could easily absorb the overhead
overtime. In this design, the memory, the common data bus
and the whole memory chain of the processor (i.e., from
caches to registers) are thus extended with tag bits at the
granularity of word.

Mostly based on both these approaches, the DIFT con-
cept has subsequently been adapted following different axis,
but the main focus has been toward less intrusive hardware
implementations and more flexible propagation policies.

Raksha [6] was the first approach targeting flexibility. The
implementation mostly resembles the previous hardware DIFT
architectures, but it supports up to four programmable, in-
dependent and concurrent security policies each with its own
set of rules for propagation and checks. The software is able
to control each policy by using pre-existing rules or defin-
ing custom rules for each class of instructions. The flexibility
provided by this scheme allows to detect various type of soft-
ware attacks, from high-level attacks (e.g., SQL injection)
to low-level attacks (e.g., memory corruption and format
strings).

Flexitaint [7] is another approach mostly targeting flex-
ibility, but also aiming to reduce the hardware impact on
out-of-order processor architectures. Instead of placing the
taint tag propagation logic along with the regular computa-
tion, they introduce an additional stage at the back-end of
the pipeline leaving the other stages mostly unmodified. In
this new stage, the propagation computation is either per-
formed by software customizable rules or fixed-rules. Taints
are stored as a packed array in a protected area of the virtual
address space of each program. This organization avoids the
need to modify the memory chain as well as the bus and al-
lows a full compatibility with conventional OS mechanisms
(e.g., disk swapping, copy-on-write, etc.), but an additional



Name Year | Tag Tag management Multiprocessor Accelerator sup- | Target
| width/Granularity port

Suh/DIFT [4] 2004 | 1/byte decoupled (page- | Implicit MP sup- | No Non- and control
table) port data attacks

Minos [5] 2004 | 1/word coupled Implicit MP sup- | No Control data at-

port tacks
RIFLE [19] 2004 | unspecified unspecified No No Information leak-
age
Raksha [6] 2007 | 4/word coupled Implicit MP sup- | No High- and low-
port level attacks

Flexitaint [7] 2008 | 1-2/word decoupled (virtual | MP support No Unspecified
memory)

SHIFT [12] 2008 | 1/byte-quadword decoupled (virtual | No No High- and low-
memory) level attacks

Kannan/Coprocessor [13] | 2009 | 4/word decoupled (page- | No No Same as Raksha
table)

Deng/FPGA [20] 2010 | 1-8/word decoupled (page- | No No Flexible security
table) policies

SIFT [21] 2011 | unspecified (1) unspecified No MP support No Unspecified  (at-

tacks)

WHISK 2013 | 1-32/word decoupled (page- | Yes Yes Heterogeneous

table) systems

Figure 6: Summary of previous works

L1 cache is introduced within the processor to cache taints.

Two other approaches leverage existing processor archi-
tecture features to alleviate the implementation of DIFT.
SIFT [21] dedicates one spare thread of a SMT processor to
perform taint propagation and checks, and generates DIFT
instructions at the commit stage of the pipeline to feed this
new security thread. SHIFT [12] uses the speculative exe-
cution and deferred exceptions mechanisms which exist in
some processor architectures (e.g., Itanium).

Another effort to avoid modifications to the design of pro-
cessors has been made by Kannan et al[13]. They pro-
pose an off core coprocessor for DIFT (based on Raksha [6])
thus completely decoupling the DIFT functionality (taint-
ing state - registers and caches -, propagation and checks)
from the regular computation of the processor. To improve
flexibility, Deng et al.[20] suggested that such a coprocessor
should be implemented on an on-chip reconfigurable fabric,
tightly coupled with the main processing core. With re-
spect to those off-core architecture, Kannan [22] proposed a
mechanism for such a decoupled approach to keep the proper
order of memory accesses.

Unlike the previous approaches, RIFLE [19] focuses on
the detection of information leakage. This architecture is
composed of two steps. First, an original program is trans-
formed using a binary translation mechanism. This transla-
tion has two goals: converting all implicit flows to explicit
flows, and changing the ISA used by the program from the
regular ISA to an information-flow security ISA (i.e., adding
taint management). Second, the translated program runs on
a processor architecture that supports a conventional imple-
mentation of DIFT.

Table 6 presents a summary of those architecture-level
approaches.

Another direction has been explored, to implement DIFT
in hardware, at a level lower than the architectural level.
Tiwari et al. [8] propose GLIFT, an approach for tracking
information-flow at gate-level. GLIFT shows how to gen-
erate shadow flow tracking logic for each simple gate in a
design, and eventually suggests composition rules between
gates to handle more complex structures.In the same scope,
Li et al. [23] describe a new hardware description language,
named Caisson, which allows to construct information-flow

secure designs. Then using existing synthesis tools, the re-
sulting secure design is competitive with a equivalent inse-
cure design and significantly better than a GLIFT-enhanced
design. Both approaches covers tag propagation not man-
agement.

Table 6 presents a summary of previously described ap-
proaches to DIFT. No previously proposed designs cover
seamless integration for SoC based designs.

7. CONCLUSION

Past research has studied the implementation of DIFT in
a few contexts (i.e., uniprocessor and homogeneous multi-
processor), under several forms (e.g., integrated to the com-
putational path of processors or part of external dedicated
cores) and addressing different aspects (e.g., performance
overhead improvements, less intrusive approaches, better
flexibility). However, the integration of third party IP blocks
like accelerators and controllers in a DIFT architecture had
never been considered before, although the use of heteroge-
neous SoCs is widespread and growing.

In this paper, we presented WHISK, a DIFT architec-
ture which relies on a new tag management layout to bet-
ter accommodate the integration of hardware accelerators.
WHISK adopts a decoupled tag storage, where tags are split
from data in memory, but data and tags always travel cou-
pled on-chip. Those architectural choices allow to keep both
a low area overhead concerning the tag storage and a low
complexity to adapt cores for DIFT by guaranteeing the
atomicity of data with their associated tag and easing the
access to tags by cores. These changes allow DIFT to be
used as a transparent system security primitive for hetero-
geneous systems.
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