FANCI: Identification of Stealthy Malicious Logic Using
Boolean Functional Analysis

Adam Waksman Matthew Suozzo Simha Sethumadhavan

Computer Architecture and Security Technologies Lab
Department of Computer Science
Columbia University
New York, NY, USA
{waksman,simha}@-cs.columbia.edu
{ms4249}@columbia.edu

ABSTRACT psuedo-random number generator. Such backdoors can be ihserte

Hardware design today bears similarities to software design. Often €ither by third-party designers producing independent components

vendors buy and integrate code acquired from third-party organi- or by malicious insiders working for an otherwise benign company.

zations into their designs, especially in embedded/system-on-chip”S & C?]ncrete exqpqple, Kir? al. designed ahbackdoor that trig-
designs. Currently, there is no way to determine if third-party de- 9€'S When a specific rare value appears on the memorylpus [

signs have built-in backdoors that can compromise security after 'n. recent years, teghniques have peen proposed for. prqtgcting
deployment. e_lgaln_st hardwar_e d(_aS|gn back_doors, mclqdlng unus_ed circuit iden-
The key observation we use to approach this problem is that tification 5], vglldayon of design propertles at r_untlmé],[and
hardware backdoors incorporate logic that is nearly-unused, ";et:]mds fo: disabling backdoor triggers at runtirdeg]. fEﬁChh
stealthy. The wires used in stealthy backdoor circuits almost never Of these solutions provides protection against SOme o the hard-
influence the outputs of those circuits. Typically, they do so only ware backdoor attack space, and each of these techniques operates

when triggered using external inputs from an attacker. In this paper, &t 1€ast partially at runtime. Runtime techniques increase design
we present FANCI, a tool that flags suspicious wires, in a design, complexity, due to the added effort of modifying designs to include

which have the potential to be malicious. FANCI uses scalable, rur;tlrkne pdr%tectlonsb < and o ‘s is th
approximate, boolean functional analysis to detect these wires. Sy difierence between our work anc prior works Is that our

Our examination of the TrustHub hardware backdoor benchmark solution does not depend directly on validation and verification.
suite shows that FANCI is able to flag all suspicious paths in the This is extremely useful because validation and verification teams
benchmarks that are associated with backdoors. Unlike prior work a:jedpften Illarge (Iargerhevden than Qe3|gn te.ami). 3nd hard to trust.
in the area, FANCI is not hindered by incomplete test suite cover- Additionally, it can ? 1ar f'n practice to vetr)lfy |t<d|r -pa_rtthP.
age and thus is able to operate in practice without false negatives. We propose a solution for discovering backdoors in hardware

Furthermore, FANCI reports low false positive rates: less than 19 4€SIgns prior to fabrication using functional analysis. If backdoors
of wires are reported as suspicious in most cases. All TrustHub de-CaN be detected statically, then the design can be fixed or rejected

signs were analyzed in a day or less. We also analyze a backdoor-before itis taped-out and sent to market: Thg key insight pehind
ur work — one that has been observed in prior wos7] — is

free out-of-order microprocessor core to demonstrate applicability ©
beyond benchmarks. P PP y that backdoors are nearly always dormant (by design) and thus rely

on nearly-unused logic, by which we mean logic that almost never
determines the values of output wires. Itis desirable to design back-
1. INTRODUCTION doors with rare triggers to avoid unintentional exposure during de-
sign validation or other benign testing. In other words, triggers give
stealth and control to the adversary. Our goal istétically iden-

tify what we refer to asveakly-affecting inputs, which are input
wires that have the capability to serve as backdoor triggers.

We propose a metric calledntrol valueto identify nearly-unused
logic. This metric measures the degree of control that an input has
on the operation and outputs of a digital circuit. The gist of our
é’nethod is to approximate the truth table for each intermediate out-
put in a design as a function of any wire that can determine that
output. We then compute the influence of each input on the output.
We show that control value computations can be approximated ef-
ficiently and accurately for real circuits and that control value is a
useful measure for finding backdoors. We then present a tool called

FANCI—Functional Analysis for Nearly-unused Circuit Identifica-
This is the authors’ version of the work. It is posted here ynission of tion. FANCI reads in a hardware design and flags a set of wires that
ACM for your personal use, not for redistribution. The defug version appear suspicious. FANCI whitelists most of the design (usually
will appear in the Proceedings of CCS 2013. (c) 2013, ACM. more than 99%) and flags a few suspect wires to be code reviewed.

CCS 13, November 04-08, 2013, Berlin, Germany P)
Copyright 2013 ACM *#x+ *xxx, The intuition behind why FANCI works is that in a given de

Malicious backdoors and intentional security flaws in hardware
designs pose a significant threat to trusted compufing, 3]. This
threat is growing in seriousness due to the ever-increasing complex-
ity of hardware designs. A designer can hide a backdoor within a
hardware design by writing one or a few lines of code in a way
that slightly deviates from specification. For instance, a hardware
backdoor, when triggered, might turn off the page protections for a

sign module, there are typically very few (or even zero) wires with Algorithm 1 Flag Suspicious Wires in a Design
low enough control values to be capable of serving as a backdoor 1: for all modulesm do
trigger. Typically, a backdoor has more or less the following form: 2: for all gatesg in m do
a good circuit and a malicious circuit exist. The outputs of both 3 for all output wiresw of g do
feed into something semantically equivalent to a multiplexer. The 4: T < TruthTable(FaninTree))
multiplexer is controlled by an input that selects the output of the 5: V <+ Empty vector of control values
6
7
8

malicious circuit when triggered. For this general arrangement to for all columnscin T do
work, the control value for the control wire is made very low, and Compute control of (Section3.2)
FANCI detects such wires. Add controlg¢) to vectorV

o- e e

While we are not theoretically guaranteed to find all backdoors, 9: end for
our empirical results support that the types of circuits designers cre- 10: Compute heuristics fdr (Section3.3)
ate in the real world can be effectively analyzed using our tool. For 11: Denotew as suspicious or not suspicious
the backdoored circuits in the TrustHub benchmark suite, we were 12: end for

able to detect all backdoors with low false positive rates. We were 13: end for
also able to analyze a backdoor-free, out-of-order microprocesso 14: end for
core without obtaining false positives, indicating that FANCI does
not flag most commonly used circuits as backdoors. We argue that
applying FANCI to designs statically prior to applying runtime pro-

. We begin with a high-level overview of the algorithmic steps
tections can only bolster defenses and never weakens them. Lastly; canc) and then describe each step individually. Algorithm

?hurtmeth?]d half ps?ugo-ra?domtnelss built in to defeat adversariegyesqripes how suspicious wires are flagged within an untrusted de-
at may have knowledge ot our tools. sign. For each module and for each gate in the module, we examine

th Th? resé olf .thespatp.)eglil\(/)rg{znlzzd as TS”OWS' Wel f|r§t plrese.tnht Ol the outputs. When we refer to outputs we mean any wire that is the
rga:hmo e llir,]AN%CI o 'k e Sen .;;CCVEfOUtLanaKS'S ahgorl m output of any gate, not just the output pins of a chip or a module
and the way works In Sectl e further show thatour 0 design. Since we are looking at all wires (including inter-

‘%'90_”‘“”‘ S(.)lves a previously unsolved prc_)blem in backdoor det?C‘ nal ones), we do not unnecessarily bias our search for backdoor
tion in Section4. The results of our experiments are presented in activity.

Secyons.. Flnally, we discuss related work in Sectiérand con- For each output wire, we construct a functional truth table for
clusions in Sectiof. the corresponding inputs€. the cone of input wires that feed into

the given intermediate output, also called the fan-in tree). We then
2. THREAT MODEL iterate through each of the input columns of the truth tablEor

In our threat model, an independent hardware designer or third- €a¢h column, we hold all other columns fixed. For each possible
party intellectual property (IP) provider supplies us with a hardware "OW We check to see if the value of the column in question deter-
design. This design is soft IP, encoded as either hardware descripMines the output. Mathematically, there are two different logical
tion language (HDL, also sometimes referred to as RTL) source functions, the_functlon one gets f_ro_m f|X|ng_ the |nput_t9 digital zero
code, a gatelist or a netlist. Gatelists are produced by logic synthe-2nd the function one gets from fixing the input to digital one. We
sis, and netlists are produced by physical synthesis. In each case®'® computing the boolean difference between these two functions.

the design is a soft product that has not yet been sent to foundriesS @ result, for each input wire, we get a number between zero and
for physical manufacture. The provider is malicious and has in- € (inclusive) that represents the frgctlon of the rows that are in-
cluded hidden, malicious functionality that they are able to turn on fluénced or controlled based on the input column. Once we have
at an opportune time for them. The nature of the malicious payload 90n€ this for each input, we have a vector of these numbers. We
of the attack is not restricted. then apply heuristics (described in Secti®f) to these vectors to
Our goal as security engineers is to use non-runtime, validation- decide if the output wire is suspicious. _ _
and verification-independent, functional analysis to identify which Al of our analysis is done on a per-module basis. While a hard-
wires in a digital design could potentially be carrying backdoor sig- Ware backdoor can affect security of operations that happen in mul-
nals. We want to flag a small number of wires and be assured that!iPlé modulesi.e. the payload of the backdoor can be spread across
the malicious functionality is dependent on a subset of those sus-different modules, the actual trigger computation usually happens
picious wires. In other words, we need to avoid false negatives (a I" ©Nly one circuit within one module. The choice to analyze per-
false negative would mean a backdoor that we do not detect). module is practical but not mathematically necessary. As an added
False positives are also relevant. We must flag a small enoughPenefit, each module can be analyzed independently of each other,
set of wires that security engineers or code reviewers can evaluateVNich means in the future our tool could be parallelized for im-
all of the suspicious wires by inspecting code. In other words, we Proved scalability.) _)
must whitelist most of the design. We consider a wire to be a true B€fore getting into the further details of the algorithm and imple-
positive if it is part of combinational logic used in the triggering Mmentation, we provide some background and terminology regard-
of the backdoor. In other words, a true positive wire is part of the " digital wires and circuits.
circuit that produces malicious activity. 31 T inol
Our goal in this paper is detection, not correction. By detecting “* erminology _ _
a backdoor prior to fabrication and deployment, we at least know FANCI operates at the level of wires and gates, which are the ba-
that our provider is malicious before we apply compromised IP to Sic building blocks of digital hardware. In this section we define the
our designs. We can then blacklist that provider and get our IP from notion of dependency, control values and other relevant concepts in
a different source. We do not attempt automatic correction. terms of these building blocks for the understanding of the FANCI

1
3. THE FANCI ALGORITHM AND TOOL s?;rﬁ]bslz;tsioﬂ%”g;-\tg tv(\)/ggt is called zero-delay combinational logic

and weakly-affecting.
Table 1: A small example of an unaffecting input dependency.

Input C' has no influence over the output. Unaffecting Dependency:A dependency of a wire is unaffecting
[Input A | Input B || InputC || Output O] if it never determines the value of its dependent wire. An example
T T T) o_f thl_s is _shown m_TabI&. The truth table shown represents a small
1 1)) circuit with three inputs 4, B, C) and one output®). There are
eight possible cases, broken into four pairings. Within each pairing,
1 0 1 1 the value ofC' can be zero or one. However, that choice does not
1 0 0 1 matter, because the value of the outpuit fixed with respect t@'.
0 1 1 1 The truth table is equivalent to a circuit whebeis equal to the
0 1 0 1 logical XOR of A andB. Within each pair of rows, the set of values
0 0 1 0 _for Ois either_ all ones or all zeros. Thus, we say that th_e ifput
5 5) 0 is an unaffecting dependency of the dependent output@ire

Always-Affecting Dependency The opposite of unaffecting is
always-affecting. A dependency of a wire is always-affecting if
Table 2: An example of an always-affecting input dependency. the value of that dependency always influences the value of its de-

C influences the value of the outputD in every row. pendent wire. An example is shown in TallleThe circuit being
[Input A | InputB || InputC || Output O] represented is similar to the one from Tafileln this case, how-
1 1 1 1 ever, every pair of rows is affected by the value of the ingut

The truth table is equivalent to a circuit where the outpuis
computed as the logical XOR of all three of its inputs. In this case,
no matter what the values dgfandB are, the value of’ determines
the computed value of the output.

Weakly-Affecting Dependency Weakly-affecting dependencies
are the ones we care about the most in this paper. This is because
malicious backdoor triggers rely on weakly-affecting input depen-
dencies for the implementation of nearly useless logic.

A weakly-affecting dependency is a case where one input wire
affects an output but only very rarely. One example of this could
be a large comparator. Consider a circuit that compares a 64-bit
array of wires against the value Oxcafebeefcafebeef. Consiger on

) . defined reuits th d henwi of those 64 input wires, say the least significant bit. The output
cious circuitry was defined as circuits that are not used or otherwise ;.o takes on the value one only if all 64 input wires match the

activated during design verification tests. Our definition contrasts specified comparison value. This means that the least significant
in two key ways. First, we do not care about verification tests. Sec- iy oy matters if the 63 other bits already match. In that case, the
ond, we consider wires to be suspicious if they are aptlvated ra_rely least significant bit would make the difference between Oxcafebeef-
rather than never atall. In othe_r words, we are n_ot simply looking cafebeee and Oxcafebeefcafebeef and thus the difference betwee
for unused logic. We are looking for logic that is used rarely or 54 oyt of zero or one. However, in the otB& — 1 cases, that

in S|t|uat|on§ that have a low probability of being exercised during g5t significant bit is irrelevant. For example, it does not matter if
regular testing. the input is Oxaaaaaaaaaaaaaaaa or Oxaaaaaaaaaaaaaaalit Thus,

DependenceWe distinguish between two distinct dependence re- Of the2%® total input case pairs, there is only a single one in which

O| O|| O| Of| k| ||+
O| O|| | k|| O|Of|
O| || O| || Ol || O
O| || P O|| k| Ol O

tool and underlying algorithm.
Our goal is to identify suspicious circuits, and a suspicious cir-
cuit is one that is nearly unused. In prior related wdsk Buspi-

lations that can exist between wires. Thesephgsical dependence that input bit matters. Thus, it is a weakly-affecting dependency for
andvalue dependence. A wire w, is physically dependent on an- the output wire. _ .
other wirew; if the signal inw, receives signal from the wire; . In general, a wirev, has a weakly-affecting dependeney if in

In other words, there is a path of combinational logic connecting hearly all cases the value of; does not determine the valuew$.
w1 tows. Thus, the value thab, carries comes from computation I other words, for some threshold valae> 0 such that < 1,

that makes use of the value carried:dy. We can also think ofvs the control value ofv; onws is less thare.
as the output of a small circuit for which, is an input. Outputs If we consider the example from Secti@nof a backdoor where
are dependent on inputs. When we say thats dependent ooy, a comparator on the memory bus fires for one unique large data

we refer to physical dependencyadf is dependent om, , then we value on the bus, all of the input wires to that comparator are clear
sayw, is a dependency afi,. Thus, dependent and dependency €xamples of weakly-affecting dependencies for the output wire that
are dual notions A is a dependent oB when B is a dependency ~ serves as the backdoor trigger.

of A.

Value dependence means that there is functional dependence. A3-2 Computing Control Values
wire ws is value dependent om; if the digital value taken on by In this section, we discuss how to compute control values for the
ws changes depending on the valueuaf. Given thatw, is physi- dependencies of wires that are the outputs of circuits. The discus-
cally dependent ow, w1 potentially determines the value af, sion thus far has motivated why weakly-affecting dependencies are

but it is not guaranteed. For example, in the case of a circuit that stealthy wires of interest. They are necessary for the implemen-
always outputs digital one, the input values do not affect the out- tation of malicious backdoors. In other words, if the output of a
put at all. We break down value dependence into three relevantcircuit or gate is carrying a stealthy, malicious signal, then some or
types. These terms convey the notion of how much one wire af- all of its inputs are weakly-affecting. We compute control value to
fects or influences another. They arsaffecting, always-affecting quantify how weak or strong the degree of effect is.

Algorithm 2 Compute Control Value

Algorithm 3 Compute Approximate Control Value

1: count <0 1: numSamples < N (usually2'®)
2: ¢ + Columngw1) 2: n < number of inputs
3: T + TruthTable{:) 3: rowFraction +— "’”"%*pl“
4: for all Rowsr in T do 4: count < 0
5: 1z « Value ofw; forc =0 5: ¢ < Columngw;)
6: 1z < Value ofws forc =1 6: T < TruthTable(:)
7. if 9 # x1 then 7. for all Rowsr in T do
8: count++ 8: if rand() < rowFraction then
9: endif 9: xo + Value ofws forc =0
10: end for 10: x1 < Value ofws forc =1
11: result < 5222(71713) 11 if zo # x1 then
12: count++
13: end if
14: endif
Roughly speaking, the control value of an inpuit on an out- 15: end for

putws quantifies how much the truth table representing the com- 16 ;-csuit < count
putation ofws, is influenced by the column correspondingutg. i
Specifically, the control value is a number between zero and one

quantifying what fraction of the rows in the truth table for a cir- - . L
control values, these heuristics determine whether or not a wire is

cuit are directly influenced bw:. Note that this is independent . h to be fl dfori i F le h
of particular tests inputs that might be supplied during validation. suspicious enougn fo be flagged for Inspection. For example, hav-

Even with high quality test suites, most tests fail to exercise all of ing only one weakly-affecting wire or a wire that is only borderline

the internal circuits because input coverage and code coverage ar eakly.- afftehctltr!g .m'?hht not be su;ncllently sgsch(;ous.thhlhs might
not equivalent to internal state or value coverage. This provides € awire thatIs in the same modu'e as a backdoor but nas no re-
attackers with an obvious way to hide their backdoors. By oper- Ia}tlon to 't‘. Qr it could simply be a b_enlgn but_sllg_htly inefficient
ating statically and looking at the truth tables, we can observe the C:crf#'t' Tht's IIS V\Ilhy we tr;]eed hteu”St'CS for taking into account all
behaviors of every gate in the design. 0 G e conbro kV? utehs in the V'TC orh . tout h
The algorithm to compute the control valuewf onws. is pre- oing back fo the example Whete; 1S our output,w, has a
sented as Algorithn2. We note that in step 3, we do not actually vector ofn + 1 control values from its inputs«{; and then others),
construct the exponentially large truth table. We instead construct each between zero and one. Thm 1 numbers_ are th'e +1
the corresponding function, which is equivalent to a BDD. cpntrol valu_es from the dep_endenmeswj. In this sectlon,_ we
There is one further and necessary optimization we make. SinCedlscuss options for processing these vectors to make a distinction

the sizes of truth tables grow exponentially (with respect to the between suspicious and non-suspicious output wires.

number of input wires), computing control values deterministically Fo_r da smaltl blfjt r%al k()axalgple c;f what tn_efe vectc_)trhs tcan Ioc|>k I;_ke,
is exponentially hard. Thus, in our evaluation we approximate con- COMNSId€r a standard, backgdoor-iree muttiplexer with two sefection

trol values by only evaluating a constant-sized subset of the rows in bits that are used to select between four data inputs. This common

the truth table. We choose the subset of rows uniformly at random glrcwt (Iis d?p'Ctel?f'n Flgutr&._ Th? out%utéwﬂ?f thle Tultlpgl_(;:xersls

at runtime to make it impossible for attackers to know which rows ‘ependent on al four data inputs and bo'h Selection Dits. seman-

we will choose. This algorithm is depicted in Algoritten tically, the selection bits choose which of the four data values is
To take a simple example, suppose we have a wirghat is consumed. T .

dependent on an input wire, . Letw, haven other dependencies. . We can see mtumv_ely what th_e con_trol values ar_e_for_the_ SIX

From the set of possible values for thasavires €"-many), we input wires (computation for one input is shown explicitly in Fig-

choose a constant number, let us say for instance 10,000. Then fotr® 1). The situation is s_ymmetric for each of the f_our data wires
those 10,000 cases, we set to zero and then to one. For each of (4, B, C'andD). They directly control the output/ in the cases

the 10,000 cases, we see if changingchanges the value af when the selection bits are set appropriately. This occurs in one
I w c’hangesm ti’mes then the approximate control valueq;ﬁ fourth of the cases, and each of these data inputs has control value
on w22 is _m ' 0.25. This can also be confirmed by writing out the truth table and

10,000 * . L ;
The fact that we choose the inputs at random is important. Back- counting the rows. . .
The two selection bits have higher control values. A given se-

doors can be designed to evade known validation test suites. OnlyI tion bit ch betw w0 of the data val F o if
by choosing at random can we guarantee that the attacker will not ection bit chooses between two of the data values. For exampie, |
S1 = 1thensS; chooses betweeR andD. In that case5, matters

know what part of the truth table is going to be explored. . .) .
; o : ; f and only if B # D, which occurs in half of the cases. So the
hypoth hich t It : y ' curs |1
Our hypothesis, which is supported by our results in Seciion control values for the two selection bits are 0.50. The full vector of

is that choosing a constant, large number of inputs at random is trol val for th tout] contai o val ¢ h of
sufficient for the weak law of large numbers to take effect, resulting contro values for the outpul contains six values, one for each o
the six inputs. The values are:

in small statistical deviations and high quality approximations.

3.3 Heuristics for Identifying Backdoors from [0.25,0.25,0.25, 0.25, 0.50, 0.50]

Control Values Intuitively, this is a benign circuit, as we would expect. All of the
When we are finished computing approximate control values for inputs are in the middle of the spectrum (not close to zero and not
each input, we have a vector of values for each output of each gateclose to one) which is indicative of a common and efficient circuit.
in the design. In this section we describe the heuristics that we use Figure?2 depicts a malicious version of a multiplexer. There are
for making final decisions about wires in designs. Given a vector of 64 additional select bits. When those 64 bits match a specific 64-

sl s?

A Standard MUX

v
BiEcols s

The Truth Table

Isolate An Input

Hold Other Inputs
Fixed in Pairs

Control of Aon M
=8/32=0.25

Count Number of
Influenced Pairs

Figure 1: A standard 4-to-1 multiplexer. The output M takes on the value of one of the four data inputs 4, B, C, D) depending on

the values of the two selection bits§, S2).

A Malicous MUX

al[ren 5 s lese[s, ||| m] ﬁ--...-|
I-II'--I 1] I-II---I I

The Truth Table

Isolate An Input

Hold Other Inputs
Fixed in Pairs

Controlof Aon M
=22 =0.25
265

Control of Sccon M
N
| - 265
Count Number of
Influenced Pairs

Figure 2: A malicious 4-to-1 multiplexer. The output M takes on the value of one of the four data inputs 4, B, C, D) depending on
the values of the two selection bits§:, S2). There are also 64 extra selection bits{(Ss, - - - Ses }) that only change the output if they
match a specific key.

bit key, then the output of the multiplexer is changed to a malicious Algorithm 4 Compute a Heuristic for an Output Wire

payload. In terms of the truth table, this affects only an exponen- 1: w « output wire

tially small fraction of the output rows. The vector of control values 2: h < heuristic function ¢.g., median)

we would get for the output/ would include 64 additional values 3: t « threshold (between zero and one)

for those 64 extra input wires. Each of those control values would 4: v(w) < vector of control values

be on the order o2~ . Intuitively, this is an suspicious circuit, as 5: result(w) « h(v(w))
6
7
8
9:

it is a textbook backdoor. We next discuss heuristics for interpret- 6: if result(w) < t then
ing these vectors. : return suspicious

From a large circuit or large design, we get a variety of these
control value vectors, one each per intermediate output within the
circuit. The guarantee we have about the distribution of control 10:
values is at least one or a few of them will be zero or nearly zero for
wires that belong to stealthy backdoor triggers. Thus, the vectors
will contain at least some small values. The practical question is
how to deal with these vectors and identify the output wires that
are truly suspect from ones that are benign. Toward this end, we
consider a few (but not all) different heuristics for evaluating these
vectors. The general description is shown in Algorithm

Median: The first option we consider is the median. In the case
of backdoor triggers, the wires on the critical paths of the trigger
generally have mostly unaffecting or very weakly-affecting depen-
dencies, such as in the example displayed in Figur&hus, the
median is often close to zero. The median can be an imperfect
metric when the data distribution is irregular, which does happen.
Using only the median (as we confirm in our evaluation), can result
in a few unnecessary false positives.

Mean: In addition to the median, we also consider the mean of
the control values. The mean is slightly more sensitive to outliers.
For example, if there are only a few dependencies, and one of them
is unaffecting, that is likely to get noticed.

Both: Since there are potential limitations with both median and

. else{result(w) > t}
return not suspicious
end if

mean, we also consider the option of using ba#h flagging wires
that have extreme values for both the mean and the median. We
set a threshold for both the median and the mean, and we flag a
wire as suspicious only if the median value is low and the mean
value is also low. This helps in some cases to slightly diminish
false positives. Details and comparisons are presented in Sé&ction
Triviality: One last heuristic we consider in our implementation
is one that we caltriviality. In terms of control values, this is a
weighted average of the values in the vector. We weight them by
how often they are the only wire influencing the output to deter-
mine how much an output is influenced overall by its inputs. The
purpose is to learn more about the output wire and less about the
individual inputs. For instance, in a circuit that XORs many inputs,
each input has a control value of 1.0, but it is never the case that one
input completely controls the output, and the triviality of the out-
putis only 0.5. Equivalently, this heuristic computes the fraction of
the rows in the truth table in which the dependent output wire has
the value zero (or symmetrically, the value one). In practice, we

can compute triviality directly in this way by looking only at the The second key difference between UCI and FANCI is that UCI
output column, which often allows for faster runtime than the other is deterministic and discrete-valued in its approach. Given a test
heuristics. suite, a wire is only flagged if it is completely unused, regardless
The name 'triviality’ refers to the fact that if the triviality value of its relations to other wires. In FANCI, we also catch nearly-
is zero or one then the circuit is completely trivial (always outputs unused wires, meaning wires that are not completely unused but
zero or always outputs one). This metric quantifies how function- which rarely alter output signals. For example, if a wire strongly
ally trivial the sub-circuit computing a specific output wire is. Note affects the value of a nearby wire (and thus is not quiescent) but
that this metric is not a simple function of the control values, as it ultimately has only a small impact on an output wire a few hops
makes use of correlations, but we went with it because it worked away, we will notice that. A wire that is part of a backdoor trigger
well in practice. The exact value for triviality can vary from runto might also do useful work in a different part of the circuit, and
run depending on which rows are randomly selected, but itis proba- we account for that. Another aspect of FANCI is that it takes into
bilistically likely to vary by only a very small amount. Empirically, = account the full vector of dependencies and uses heuristics to make
we did not see significant variance. Additionally, since triviality afinal decision. For example, if a wire affects two different outputs,
can be computed in this alternative way, it might be a good metric one in a reasonable way and one only rarely, FANCI can notice
for unusually large modules or if computational runtime becomes that. In the designs we tested, there were many always-affecting
relevant. dependency relationships that FANCI correctly did not flag. Those
For each metric, it is necessary to have a cut-off threshold for relationships could have been false positives in UCI.
what is suspicious and what is not. This value (between zero and To give a toy example, consider a double-inverter path, two in-
one) can be chosen eithampriori or after looking at the distrub- verters placed one after the other. This is a logical identify func-
tion of computed values. In practice, the latter often works better, tion, so it generates an always-affecting relationship that would be
as there are often natural breakpoints to choose as the thresholdflagged by UCI. However, as long as the output of the double-
Either way, the threshold is generally very smad, < .001. Var- inverter path is used, it would not be flagged by any of FANCI's
ious other heuristics and/or thresholds could be considered in thecurrent heuristics. This is a small example and could easily be
future to attempt to gain improvements in terms of false positive hard-coded for in a practical implementation of UCI. However, it
rates. serves as a microcosm of the difference between the deterministic
approach of UCI and the heuristic-based approach of FANCI.
Sturtonet al. introduced stealthy, malicious circuits as a way to
4. RELATIONTO STEALTHY, MALICIOUS evade UCI. FANCI detects SMCs, and we explain the intuition be-
CIRCUITS hind why that is. The basic idea behind SMCs is to use logic that
Prior 0 ur verk, UC) £ was the stateofhe-rt i analyzng ST e valies o plemedite wies ul tmatey does et
backdoors inserted during the design phase. The s'[ate-of-the-arl‘baSiC circuit building blocks — such as AND and OR gates — that

in design backdoor attacks is a class of attacks kno hy, can be used to implement stealthy hardware backdoors. Thus, any
malicious circuits (SMCs) B]. This class of attacks deterministi- small backdoor can be turned into an SMC and evade UCI. The

cally evades UCI and was a viable way to attack hardware designs . - !
prior to our work. As we will see, FANCI catches SMCs with high gﬂéiéi?é?nfcg])?ne of the simplest SMCs is the following (repro-

probability (approaching 1).

UCl is an analysis algorithm that looks at dataflow dependencies ~¢. ™ ¢~ 4, i, | b f Operation
in hardware designs and looks for completely unused intermediate 6 0 0 0| 0 0| Normal Operation
logic. Itis a form of dynamic validation; in terms of our terminol- 0 0 O 1|1 0] NormalOperation
ogy, they identify dependencies that are always-affecting depen- 0 0 1 0|0 O] NormalOperation
dencies for a given test suite. Given the inputs in the test suite, if 0O 0 1 1/1 1 Normal Operation
two wires always carry the same values as each other, thereisan g 1 o o0l 0 0 Normal Operation
identity relationship, and the internal logic is unneeded. If the test O 1 0 111 o Normal Operation
suites were exhaustive, then UCI would have significantly fewer 0 1 1 0|0 0] NormalOperation
false positives. However, given the incompleteness of standardval- g 1 1 1|1 1| Normal Operation
idation test suites, UCI has many false positives. For this reason, 1 0 0 0|0 0| Normal Operation
the Bluechip system was built to replace the removed logic with ex- 1 0 0 1|1 0| NormalOperation
ception handlers that invoke runtime simulation software whenever 1 0 1 0|0 0| NormalOperation
false positives are encountered. 1 0 1 1|1 1| NormalOperation

There are a few key differences between FANCI and UCI. The 1 1 0 0|1 1| MaliciousOperation
first is that FANCI does not require a validation test suite. This is 1 1 0 1|1 o0/ MaliciousOperation
valuable for two reasons. Today, third-party IP blocks often do not 1 1 1 0|1 1| MaliciousOperation
come with a validation test suite. Furthermore, if a validation suite 1 1 1 1|1 1| MaliciousOperation

is supplied, the malicious provider can change the validation test
suite to help the compromised hardware evade UCI. A common There are two normal input bits andio and two trigger bitg;
problem in validation and verification is that achieving good code andt,. In terms of the outpuf, this is a classic backdoor trigger.
coverage and good interface coverage does not mean good coverOnly when all of the trigger bits are set to one does the functionality
age of internal states and wires. Certain rare states may never gethange. In the other cases, the functionality is fixed, and the circuit
tested at all, which can lead to bugs in commercial designs and alsolooks like f is the AND ofi; andio. The use of the intermediate
offers ways for backdoor designers to evade detection, such as misvariableh, which is distinct fromf, makes it so that; andt, are
using ‘don't care’ states. FANCI tests all logic equally, regardless not truly quiescent. Thus, Sturton proved that UCI's defenses could
of whether or not it is an input interface, and so it is impossible for be evaded.

a portion of the logic to go untested. Can FANCI detect stealthy, malicious circuits? Observe that the

trigger wires —; andt, — are weakly-affecting for the outpyiti.e,

they only affect the value of during malicious operation, which

is a smaller fraction compared to normal operation. This fraction
diminishes as the number of trigger bits increases. Thus, for the
backdoors in this class of stealthy, malicious circuits, the trigger
inputs will have low control values and will be caught by FANCI
with high probability.

False Positive Rates for TrustHub Benchmarks
20%
18% = Mean N Median W Both Triviality
16%
14%

5. EVALUATION

For our implementation of FANCI, we developed a parser for

False Positives as a
Percentage of Total Wires
S
xR

gatelists that are compiled from the Verilog HDL, a popular lan- o% B __\Em e
guage for hardware design. The concepts and algorithms we apply Rs232 s15850 $35932 s38817
could be applied to VHDL or any other common HDL, as well as TrusHub Benchmark Group

to hand-written gatelists. Though our analysis is language agnos-
tic, we use Verilog for all evaluation purposes. We use benchmarks
from the TrustHub suite, a popular benchmark suite for work on
hardware backdoord.(]. TrustHub is a suite from an online com-
munity of hardware security researchers and includes a variety of
different types of backdoors, intended to be both stealthy and ef-
fective. For some of these benchmarks, the gatelists were provided.

For others, we acquired the gatelists from the Verilog source using . . .
the Synopsys logic synthesis tool, DC Compiler. analyzed regarding false positives. For our results, we categorize

From a given gatelist, our goal is to construct a circuit represen- (€ benchmarks into groups as they are categorized by TrustHub.
tation that can be used to calculate different types of dependencies.] N€S€ categories represent four different design types, containing
We treat multiple-bit wires as sets of independent wires. Gates that® Variety of backdoor triggering mechanisms. Each of the four
represent multiple basic logic functions — such as an AND-OR- 9roups contains a variety of backdoor_s manually included into a
INVERTER (AOIl) — are treated as functionally equivalent to their 91ven design. The RS232 group contains eleven benchmarks, rep-
basic elements. We treat memory elemeats (flip-flops) as their re_sentlng eleven different backdoors applied to a relatively small
logical equivalents. For example, a D-flip-flop is treated as an iden- third-party UART controller. The S35932 and S38417 groups each
tity function. We do this because exponential state-space explo- contain three benchmarks, containing backdoors built into two gatelists
ration is infeasible, and as such treating state machines as stateful?VN0S€ source and description are not provided. The S15850 group
rather than as their combinational counterparts, would be imprac- cONtains only one benchmark. The S38417 group contains the
tical. Since we track all internal wires (as opposed to only inputs '2rgest designs in terms of area and number of gates, while the
and outputs), we catch sequential backdoors by catching the com-RS232 benchmarks, as the smallest, mostly contain sequential trig-

Figure 3: False positive rates for the four different metrics and
for TrustHub benchmarks. The RS232 group — which is the
smallest — has about 8% false positives. The others have much
lower rates (less than 1%).

binational logic used during internal state recognition. gers. The s15850, s35932, and s38417 categories are qualitatively
different from RS232 and more similar to each other. We experi-
5.1 Results for Detecting Backdoors enced a decrease in false positive percentage for these larger de-

signs, which we attribute to the fact that the total number of false
positives did not vary significantly with respect to design size.
Additionally, the different benchmark categories achieve differ-
ing degrees of stealth (some are documented and others can be cal-
culated manually). The stealth is imply the probability that a back-
door will accidentally reveal itself on a random test input. Most
of the triggers in the RS232 category have a relatively high prob-
ability (i.e. low stealth) of going off randomly, as high as around
one in a million. In the other categories, the probabilities are lower,
ranging from one in several million to as low as around ori'ii.
The backdoors in the three low probability groups are the most re-
alistic, since they are stealthy enough to evade detection by normal
methods. The backdoors in the RS232 category go off with such
high probability that validation testing would have a good chance
of finding them. This is an aspect that made them more difficult to
distinguish and resulted in slightly more false positives. From what
we have empirically observed, the larger the design and the more
well-hidden the backdoor, the better FANCI performs in terms of

We evaluate the four heuristics presented in Secti@on the
TrustHub benchmarks. We perform one run on each désiith
215 = 32, 768 input cases (truth table row pairs), with the row pairs
chosen uniformly at random (without replacement).

The most important result is that we did not encounter false neg-
atives. For each benchmark and for each of the heuristics, we dis-
covered at least one suspicious wire from each backdoor, which
was enough for us to identify the functionality of the hidden back-
doors. Interestingly, different metrics can highlight different parts
of the backdoor. In general, the mean and median tend to highlight
backdoor payload wires and are more similar to each other than to
triviality. We hypothesize that this is because these payloads have
triggers or resulting values from triggers as their inputs. Thus, sev-
eral of the input wires have low control values, causing both the
mean and median to be small. On the other hand, triviality focuses
more on the output wire itself and as such tends to highlight back-
door trigger wires. Since these are wires that rarely toggle, their
truth tables tend to score very low for triviality. Using multiple keeping false positive rates low
metrics in concert can help out in code review by flagging more of ping P :

the wires associated with the backdoor and thus demarcating the Unsurprisingly (as shown in Flg_u_ﬁ), using the median by it-
self produced the most false positives on average. However, the
boundary of the backdoor more clearly.

Figure 3 shows the results for the 18 TrustHub benchmarks we dlffe_r_ence is not large. The T‘?“.”S“C that produc_ed the least f_alse
positives on average was triviality. All four metrics are effective
2If desirable, multiple runs could be performed to increase confi- nough for practical use. We also believe that other metrics could
dence. In practice, the same results tend to come up every time, bube considered in the future to achieve incremental improvements.
it cannot hurt. A promising result we discovered was that the percentage of false

Average Number of Suspicious Wires Detected in After that point, the results tend to converge and stay roughly the
same. This is essentially the weak law of large numbers kicking in,
and it allows FANCI to scale well. Note that due to randomness,
Mean \ Median H Both Triviality sometimes we flag more values using less inputs. This ends up not
affecting our results significantly, since the true positives tend to be
clustered in the design, so adding or removing one wire does not
make a large difference in code review. What we also learned from
varying the number of inputs is that there are two sources of false
positives. The first source is approximation. If we run only a few
inputs, we get extra false positives, and if we run more inputs we get
less false positives. The second source is from persistent positives,
=\m__ = i.e. weakly-affecting signals that are in the design for legitimate
T s ssom reasons. The first type disappears quickly as the number of inputs
TrustHub Benchmark Group gets large, which is why false positives due to approximation are
not a major concern.

TrustHub Benchmarks

14

1]

12

10 4

I

2

Suspicious Wires Detected
-

mmmmmmmmmmy

o
|

Figure 4: These are the total number of suspicious wires de- 5.2 Runtime and Random Row Selection

Ler(;te: bgofae;ré?géhqdnfgazaggctg Fc))? &feb%cﬁdn(zg;:oe;s'gneog.z\g The runtime for FANCI is roughly proportional to the size of the
gl : found “5|g i . u Th Wh flth’ design under test in terms of number of total gates. In practice,

we always found at least one suspicious wiré. 1hus, €ach oTthe .o 1 ntime for a normal module ranges from less than an hour to

four methods is empirically effective. However, some turned up a couple of days using'® row pairs per approximate truth table.

ltﬁgi[]gﬁrz)?qﬁgsfeth;?e%ger critical paths, proving to be more The ru_ntime can be increase_d or de(_:reaseq by_ changing the num-
’ ber of inputs tested. In practice we did not find it necessary to de-
crease this number. Given the sizes of third-party IP components on
Percentage of True Positives as a Function the market, the runtime for FANCI_ sho_uld not be a major problem
of Number of Sampled Rows for real-world scenarios. Our runtime in terms of number of gates
1a0% scales similarly to many synthesis and analysis tools, since our tool
and other tools require the parsing of every gate in the design.

E- T o To be precise, the asymptotic runtime for a deterministic algo-
EE™ S rithm would be in the se®(nd2?) wheren is the number of gates
e 8 ——Rs232 (or nodes) and is the maximal degree of a nodes. the maximal
goé o | s15850 number of inputs on which an intermediate wire can depend. Us-
g3 s359%2 ing approximate truth tables reduces the asymptotic runtime to the
8 ——s3a7 setO(nd). Making the (usually true) assumption that the degree is
20% small and bounded, this reduces to the@ét), which represents
" linear runtime. The algorithm is trivially parallelizable, since the
2 6 LB 25 S12 1024 2048 409 8152 16384 32768 algorithm is in essence a massiee loop. Our initial implemen-
N“mb(f::fj‘;mg'el") Rows tation is sequential, but in the future it could be made parallel if
necessary.
Lastly, we do not do directed testing or targeting of specific rows
Figure 5: The trade-off between the number of inputs being in truth tables or specific inputs. We go with uniform randomness
used (.e. running time) and the percentage of true positives because any other method would be better for an attacker and worse
caught, normalized to the results for2'® inputs. Results are for us as the security engineers (assuming the attacker knows our

shown averaged over the four different metrics we used. The strategy).
x-axis is on a logarithmic scale.)) .
5.3 Discussion of False Positives

One lesson learned from our experiments is that false positives
positives diminished as we looked at larger designs (granted this istend to be consistent and are not greatly affected by the randomness
a small sample set). In other words, it appears that scaling up to of our sampling methods. We anticipate that the false positives we
larger designs does not greatly increase the total number of falseencounter in the future will bear similarities to each other, perhaps
positives {.e. the effort of code review). allowing for easier recognition. Some examples of potential false

Figure 4 shows how many wires are flagged as suspicious on positives could be the most significant bit of a large counter or an
average for each of the benchmark groups by each of the differ- input to an exception-recognition circuit. These circuits are seman-
ent metrics. Each of the four metrics worked well, though the tically similar to backdoors, because they react to one specific rare
mean turned up the most suspicious wires on average (at the costase. For example, consider a floating point divider that throws a
of slightly higher false positive rates). We see that all four metrics single exception, caused by a divide-by-zero error. Then for the
flag only a small number of critical wires, which means security data input representing the divisor, only the value zero invokes the
engineers are given a small and targeted set to inspect. For most oexception-handling logic. The exception-handling logic is nearly-
the benchmarks, FANCI whitelists more than 99% of the designs, unused.
making code review and inspection a feasible task. The existence of these circuits should not pose much of a prob-

We lastly test to see what happens as we increase and decreaskem, because counters and exceptions are easily recognizable in
the number of input rows we sample. The results are shown in code review. Nevertheless, as an attacker, one could be motivated
Figure5. We see that up to a certain point, the results improve. to include many such circuits to increase the false positive count.

The problem from an attacker’s point of view is that each of these ctrlQueue
false positives requires a costly circuit, and so building an entire 3500
design this way would be impractical. Additionally, these types of

circuits tend to have obvious architectural purposes, and so adding 3000}
thousands of them would be a dead giveaway in code review. For
example, including a large number of exception handlers that serve
no apparent purpose would be a source of concern during code in-
spection.

Our hypothesis was that in real designe.(designs that one
might buy as commercial IP), even malicious designers are forced
to follow common design conventions and design reasonably effi-
cient circuits. We believe that this is the reason we did not find a
significant number of false positives in any of the designs we ana-
lyzed. s001

A related and important property of our approach is that it be-
haves well with respect to common, reusable structures. In modern % -5 = 15 20
designs, much of the circuitry is spent on reusable components, Triviality value (logarithmic)
such as CAMs, RAMs, FIFOs, decoders, encoders, adders; regis
ters, etc. For some simple designs, such as adders and multipliersgigyre 6: A histogram of the triviality values for wires in a

not had issues with false positives for these common types of struc-qccur at around 1, Land 1, which is common. There are no
tures. When identifying suspicious wires, we look for outliers. In - major outliers. X-axis values are shown on a logarithmic scale,

these standard structures, there tend to be no outliers due to symmestarting at one and getting smaller going to the right. Inlaid in

try. Consider a CAM with 32-bit data entries. For each entry, there the ypper right is the sum of all 56 FabScalar modules.

is a 32-bit data comparator, which includes some very low control

value dependencies (on the orderﬁ&). However, each of the

comparators is identical (or nearly identical), leaving no outliers as we saw in the example of a multiplexer. For this module, there

to serve as false positives. Additionally, the nature of the structure are no suspicious outliers, with all of the values being more than

should make it obvious in code review how many such wires should 0.01 (and less than 0.99). We did not see any noticeable outliers,

exist (often a power of two or otherwise documented number). and our thresholds are typically less than 0.001. More data from
FabScalar is included in the Appendix.

K
1%
=}
S

2000

1500

Number of Distinct Wires

=
o
=3
=]

5.4 Out-of-Order Processor Case Study 55 S ity Di . d Limitati
In order to study FANCI on a larger and backdoor-free design, ~° ecurity Discussion an imitations

we use the FabScalar microprocessor core generation 1dpl [We briefly discuss some of the security properties discussed in

FabScalar is an HDL code generator that produces processor coredNis paper and their limitations.

given a set of parameters. The core we choose to use is a moderately-FANCI relies on the assumption that backdoors use weakly-affecting

sized, out-of-order core with four execution units and does not con- wires. This is valid in practice because they need to be stealthy. The

tain backdoors. more well-hidden the backdoor is, the more likely it is to be caught
The core we analyze has a total of 56 modules. The modules by FANCI because more well-hidden backdoors have lower control

contain about 1900 distinct wires on average, with the largest mod- values. It is provablféthat for a fixed-length combinational circuit

ule containing slightly over 39,000 distinct wires. This largest one path, achieving a given level of stealth requires a correspondingly

is abnormally large for a single module containing primarily com- low control value for one or more of the inputs. On the other hand,

binational logic. However, as this is an auto-generated design, it the less well-hidden it is, the more likely it is to evade FANCI but

is understandable. If it were being hand-written, it most likely be caught during testing. We would call such an attaEkeguent-

would be broken into smaller, coherent pieces. While the overall Action Backdoor, where the idea is to put the backdoor in plain

design is larger than any of the modules from the TrustHub suite, sight. Standard validation testing and FANCI are highly comple-

and larger than typical third-party IP components, many of the in- mentary.

dividual modules are on average around the same size as modules FANCI does not remove the need for standard code inspection/re-

in the TrustHub suite. view practices. Consider as an example an attack where a malicious
We were able to analyze each of the 56 modules in FabScalardesigner includes hundreds of backdoor-like circuits. Each of these

using2'® row pair samples per truth table, except for two of the ab- circuits could turn on given a variety of rare triggers, with only one

normally large modules where we had to approximate more coarselyof them having a useful malicious payload. Thus, FANCI would

The two largest modules are outliers and took several days to pro-flag all of them, mostly generating false positives. We would call

cess, even using more coarse-grained approximation. These couldhis type of attaclalse Positive Flooding. However, in addition to

more easily be analyzed in a commercial setting on a compute clus-the area bloat this would cause, it would be obvious in basic code

ter. Additionally, many software optimizations (including paral- inspection that this was not a reasonable design. FANCI specifi-

lelization) could be applied prior to commercialization. cally targets small, well-hidden backdoors, which are the type that
As expected, we did not detect false positives in the benign Fab- are able to evade testing and code inspection.

Scalar core. To garner further intuition for how our heuristics look

for wires in benign hardware, we construct a histogram of a typi-

cal FabScalar module (shown in Figue In this example, there

are two major spikes df, 1 and+. The reason for the presence of

spikes is that semantically similar wires tend to have similar values, *We leave out the full proof as it is out of scope for this venue.

e Functional analysis only applies to designs or discrete representa-
tions of designs. Functional analysis alone does not protect against
backdoors inserted physically into a device by a malicious foundry,

unless a functional representation can be reverse engineered fronal. [9] and discussed in Sectich The three key differences be-
the device via decapping, which is not easy. We would call these tween our work and theirs: 1) our detection technique is exclu-
types of attack$’hysical or Parametric Backdoors. Functional sively design-time, 2) we do not rely on a validation suite to iden-
analysis is one piece of hardware security and must exist as part oftify suspicious circuits, and 3) we provide a continuous measure of
the larger security scope, which includes validation, code inspec- suspiciousness as opposed to a binary metric used by Hieks
tion and foundry-level techniques in addition to runtime methods Also in the area of runtime techniques, Waksman and Sethumad-
Our approach also works well against sequential backdoors buthavan designedrustNet [6], a methodology for integrating prop-
with limitations. Sequential backdoors are trigged not by one com- erty checkers into hardware designs that can ensure that a wide ar-
binational input but by a stream of small inputs over time. In other ray of properties are upheld at runtime. Waksman and Sethumadha-
words, they are triggered by the combination of an input and a van also developed a technique for disabling digital hardware back-
specific internal state. Hypothetically, a sequential backdoor that doors at runtime, which identifies possible trigger sources and pre-
makes use of an extremely large and contrivedly deep state ma-vents backdoor triggers from reaching malicious logidg]. Their
chine might be able to evade detection or at least made detectionwork identifies the notion of a trigger as a rare signal that does not
more difficult. We would call an attack of this typePathological fire during validation testing. Our work with FANCI is comple-
Pipeline Backdoor. The idea is that by stretching out the backdoor mentary to that prior work, in part because it lessens the burden of
trigger computation over a long stretch of logic, it makes the con- trust on validation teams.
trol value data more noisy and potentially more difficult to interpret. There has also been prior work in related areas of hardware supply-
For example, if an input needs to determine an ultimate output with chain security, including the detection of physical backdoors added
2% probability, this can be done with two sequential components, during fabrication 13, 14, 15, 16] and detecting actively running
each with a probability oz of turning on. The control value backdoors 17, 18]. This work generally assumes a trusted design,
from beginning to end will still bezg%, but there will be many in- called a _golden model, which we and others endeavor to make more
termediate control values, and the overall metrics might not be as Of a reality. _ . _
clean. This is one of the many cases where we find that FANCl is The concept of influence of input variables over truth_tables and
complementary to standard validation practices. While basic testsPoolean functions has been approached from a theoretical perspec-
would be likely to catch an extremely large backdoor, FANCI is five at least as far back as 198B9]. As far as we know, we are
more likely to catch small, well-hidden backdoors. As we can see the first to apply these concepts to hardware security. Our work
in Table3, practical backdoors tend to have relatively small critical does notrely on formal verification or require manual inspection or
path lengths, and none of the backdoors we have encountered havénderstanding of the inner-workings of designs.
used deep pipelining. In the table, we use path length (in number of
gates) as a proxy for the depth and size of a backdoor trigger com-7. CONCLUSIONS
putation. These results could be interpreted as merely commentary The ability to identify and understand hardware backdoors at de-
on the specific types of backdoors that benchmark designers choosgijgn time using static analysis mitigates the dangers of integrat-
to build, or they could be interpreted as broadly representative of ing third-party intellectual property components into hardware. We
the way attackers build malicious circuits. Without a wider array presented a concept calleshtrol value, which describes how wires
of benchmarks, we cannot say for certain. However, it appear's tha within a design affect other wires. Using the idea of control value,
the crucial part of a backdoor — even a relatively complex backdoor e developed a methodology for identifying suspicious wires that
— tends to be composed of only a few gates, and this is good for have the capability to carry backdoor trigger signals. Specifically,
security engineers. we look at the influence wires have over intermediate outputs within
a circuit and identify those wires that have an abnormally low de-
gree of influence. Our method is scalable and approximate; to
Table 3: Average Length of Backdoor Critical Paths in achieve our goals, we build truth tables of intermediate outputs in
TrustHub Benchmarks the circuit of interest and compute the control value by randomly
sampling rows in the truth table. Using a tool we developed, called
FANCI, we examined 18 TrustHub benchmarks. We were able to

| TrustHub Benchmark Group Average Backdoor Path Length

RS232 4.9 identify triggers in each of these benchmarks, obtaining low false
$15850 5.0 positives rates (flagging less than 10 wires per design on average)
s$35932 4.4 in the process.

s38417 4.0 FANCI is the first tool for checking the security of third-party

soft IP and regular hardware designs prior to fabrication. Similar
to software static analysis tools, we envision FANCI being used as
a first line of defense for enhancing hardware security. It is com-
6. RELATED WORK plementary to runtime techniques for protecting against hardware
Hardware design backdoor detection, identification, categoriza- attacks and also to standard testing practices. Additionally, it has
tion and protection are areas that have recently grown in interest.fewer trust requirements as compared with previously existing run-
Hardware designs have been demonstrated to be highly vulnera-time detection/protection techniques. While our tool is not theoret-
ble [1, 4]. Reeseet al. evaluated how lightweight and stealthy ically guaranteed to find all backdoors, it is likely that backdoors
one can make practical backdooi®]. In recent years, there has that evade FANCI have to break the digital abstraction or have to
been work both in design-time and in-the-field or runtime protec- be non-stealthy and thus detectable through normal means. Our
tion schemes. experimental results support the claim that this methodology could
Hickset al. proposed a runtime method for averting backdobfs[be applied to real-world designs today. As designs get more com-
This method has been shown to detect backdoors, thus raising theplex and time to market shrinks, tools like FANCI that can target
bar for the cleverness of hardware attacks. However, it is also vul- backdoors prior to fabrication are critical to the development of
nerable to sophisticated attacks, as demonstrated by Stueton trustworthy systems.

10

ArchMapTable ComplexALU CtrlALU

14000 350
12000 300
10000 % 250

8000

6000

Number of Distinct Wires
Number of Distinct Wires

40
4000 100

20 2000 50

- -
° -20 ° -5 20 ° -5 -15 -20

—10 = ~10 = -10
Triviality Value (logarithmic) Triviality Value (logarithmic) Triviality Value (logarithmic)
DecodePISA Dispatch AgenLSU

250 250

Q S
3 S
N
S
s

B8
8
Number of Distinct Wires
8
8
Number of Distinct Wi

Number of Distinct Wires

a
&
@
g

-10 - ~10 = =) p
Triviality Value (logarithmic) Triviality Value (logarithmic) Triviality Value (logarithmic)

Figure 7: Histograms of the triviality values from three of the modules in the FabScalar core design we used. The y-axis shows the
number of wires in each category, and the x-axis shows a logarithmigcale of the triviality values for the wires. Triviality scales from
one to zero (going left to right), so the logarithmic values scale frorzero to negative infinity.

ACKNOWLEDGEMENTS APPENDIX

We thank anonymous reviewers and members of the Computer Ar-In Figure7, we include some example histograms of the triviality
chitecture and Security Technologies Lab (CASTL) at Columbia values we found for wires in six of the modules from FabScalar, the
University for their feedback on this work. This work was sup- benign microprocessor core that we tested with FANCI. In a normal
ported by grants FA 99500910389 (AFOSR), FA 865011C7190 design, most of the wires have values that are not extremely small,
(DARPA), FA 87501020253 (DARPA), CCF/TC 1054844 (NSF) with values betweer% and% being very common. To make the
and gifts from Microsoft Research, WindRiver Corp, Xilinx and results easier to read, we have combined the values between zero
Synopsys Inc. This work is also supported through an Alfred P. and% with the values betweeé and one. For example, 0.1 and
Sloan Foundation Fellowship and the Department of Defense ND- 0.9 are plotted together, as are 0.7 and 0.3. Semantically, we care
SEG Fellowship. Opinions, findings, conclusions and recommen- about the distance fror, so this is the easiest way to understand
dations expressed in this material are those of the authors and dahe data.
not necessarily reflect the views of the US Government or commer- To take the example of the DecodePISA module, which experi-
cial entities. enced slightly lower triviality values than the other example mod-
ules, it turns out that most of the lower values belong to higher or-
der bits of a 128-bit output packet called DecodedPacket0. Without
knowing the intention of the original designer, it seems likely that
these upper order bits are not always being used efficiently. How-
ever, the control values are not so low as to merit real suspicion.
In addition to serving as a security method, these types of observa-
tions may also be useful for regular debugging and optimization by
trusted designers.

As we can see in the histograms, the vast majority of wires are
bunched up on the left side, having relatively normal values (closer
to % then to the extremes of zero or one). In FabScalar, we rarely
see wires with values even less thain'®, which is still a rela-
tively benign value (corresponding to roughly a one in one thousand
chance of a certain behavior occurring). We can also see that while
the values are mostly close 5' = 1, the actual distributions
vary from module to module. This is to be expected, as module
designs are complex, and it is rare for two different modules to be
exactly the same.

11

References

(1]

(2]

(3]

(4]

(3]

[6] Adam Waksman and Simha Sethumadhavan. Tamper Evident

Sally Adee. The Hunt for the Kill Switch.|EEE Spectrum
Magazine, 45(5):34—-39, 2008.

Marianne Swanson, Nadya Bartol, and Rama Moorthy. Pi-
loting Supply Chain Risk Management Practices for Federal
Information Systems. INational Institute of Sandards and
Technology, page 1, 2010.

United Stated Department of Defenséigh Performance Mi-
crochip Supply, February 2005.

Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier,
Weihang Jiang, and Yuanyuan Zhou. Designing and Im-
plementing Malicious Hardware. IliProceedings of the

1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats, pages 5:1-5:8, Berkeley, CA, USA, 2008. USENIX
Association.

Matthew Hicks, Samuel T. King, Milo M. K. Martin, and
Jonathan M. Smith. Overcoming an Untrusted Computing
Base: Detecting and Removing Malicious Hardware Auto-
matically. In Proceedings of the 31st IEEE Symposium on
Security and Privacy, pages 159-172, 2010.

Microprocessors. IRroceedings of the 31st IEEE Symposium
on Security and Privacy, pages 173-188, Oakland, California,
2010.

[7] Adam Waksman and Simha Sethumadhavan. Silencing Hard-

[8] Adam Waksman, Julianna Eum, and Simha Sethumadhavan.

(9]

(10]

[11]

(12]

(13]

ware Backdoors. IfProceedings of the 2011 IEEE Sympo-
sium on Security and Privacy, pages 49-63, Oakland, Cali-
fornia, 2011.

Practical, Lightweight Secure Inclusion of Third-Party Intel-
lectual Property. IlDesign and Test, |EEE, pages 8-16, 2013.

Cynthia Sturton, Matthew Hicks, David Wagner, and
Samuel T. King. Defeating UCI: Building Stealthy and Mali-
cious Hardware. liProceedings of the 2011 |EEE Symposium

on Security and Privacy, SP '11, pages 64—77, Washington,
DC, USA, 2011. IEEE Computer Society.

Mohammad Tehranipoor, Ramesh Karri, Farinaz Koushanfar,
and Miodrag Potkonjak. TrustHulbttp://trust-hub.org

Niket K. Choudhary, Salil V. Wadhavkar, Tanmay A. Shah,
Hiran Mayukh, Jayneel Gandhi, Brandon H. Dwiel, Sandeep
Navada, Hashem H. Najaf-abadi, and Eric Rotenberg. Fab-
scalar: Composing Synthesizable RTL Designs of Arbitrary
Cores within a Canonical Superscalar TemplateComputer
Architecture (ISCA), 2011 38th Annual International Sympo-
siumon, pages 11-22. IEEE, 2011.

Trey Reece, Daniel Limbrick, Xiaowen Wang, Bradley Kid-
die, and William Robinson. Stealth Assessment of Hardware
Trojans in a Microcontroller. IfProceedings of the 2012 In-
ternational Conference on Computer Design, pages 139-142,
2012.

Sheng Wei, Kai Li, Farinaz Koushanfar, and Miodrag Potkon-
jak. Provably Complete Hardware Trojan Detection Using
Test Point Insertion. IProceedings of the International Con-
ference on Computer-Aided Design, ICCAD 12, pages 569—
576, New York, NY, USA, 2012. ACM.

12

[14]

[15]

[16]

[17]

(18]

[19]

Dakshi Agrawal, Selguk Baktir, Deniz Karakoyunlu, Pankaj
Rohatgi, and Berk Sunar. Trojan Detection using IC Finger-
printing. In1EEE Symposium on Security and Privacy, pages
296-310, 2007.

Mainak Banga, Maheshwar Chandrasekar, Lei Fang, and
Michael S. Hsiao. Guided Test Generation for Isolation and
Detection of Embedded Trojans in ICS. GLSVLS '08:
Proceedings of the 18th ACM Great Lakes symposium on
VLY, pages 363-366, New York, NY, USA, 2008. ACM.

Jie Li and J. Lach. At-Speed Delay Characterization for IC
Authentication and Trojan Horse Detection. Hardware-
Oriented Security and Trust, 2008. HOST 2008. |EEE Inter-
national Workshop on, pages 8—14, June 2008.

Mainak Banga and Michael S. Hsiao. A Region Based
Approach for the Identification of Hardware Trojans. In
Hardware-Oriented Security and Trust, 2008. HOST 2008.
|EEE International \Workshop on, pages 4047, June 2008.

Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquel-
lic. New Design Strategy for Improving Hardware Trojan De-
tection and Reducing Trojan Activation Time. Hardware-
Oriented Security and Trust, 2009. HOST ' 09. |EEE Interna-
tional Workshop on, pages 66 —73, 2009.

Jeff Kahn, Gil Kalai, and Nathan Linial. The Influence of
Variables on Boolean Functions (Extended Abstract). pages
68-80, 1988.

http://trust-hub.org

	Introduction
	Threat Model
	The FANCI Algorithm and Tool
	Terminology
	Computing Control Values
	Heuristics for Identifying Backdoors from Control Values

	Relation to Stealthy, Malicious Circuits
	Evaluation
	Results for Detecting Backdoors
	Runtime and Random Row Selection
	Discussion of False Positives
	Out-of-Order Processor Case Study
	Security Discussion and Limitations

	Related Work
	Conclusions

