
1

Heavy Tails in Program Structure
Hiroshi Sasaki Fang-Hsiang Su Teruo Tanimoto† Simha Sethumadhavan

Department of Computer Science, Columbia University
{sasaki,mikefhsu,teruo,simha}@cs.columbia.edu

Abstract—Designing and optimizing computer systems require deep understanding of the underlying system behavior. Historically
many important observations that led to the development of essential hardware and software optimizations were driven by empirical
observations about program behavior. In this paper, we report an interesting property of program structures by viewing dynamic
program execution as a changing network. By analyzing the communication network created as a result of dynamic program execution,
we find that communication patterns follow heavy-tailed distributions. In other words, a few instructions have consumers that are orders
of magnitude larger than most instructions in a program. Surprisingly, these heavy-tailed distributions follow the iconic power law
previously seen in man-made and natural networks. We provide empirical measurements based on the SPEC CPU2006 benchmarks
to validate our findings as well as perform semantic analysis of the source code to reveal the causes of such behavior.

Index Terms—Program characterization, statistical distribution, empirical studies.
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1 INTRODUCTION

UNderstanding programs is fundamental to enhancing
computer performance. Empirical observations about

programs such as the “90-10” rule, presence of spatial and
temporal locality and biased branches have influenced de-
signs of computer systems. In this paper, we report a new
way to look at dynamic program execution that reveals a
surprising and undiscovered property.

We view dynamic program execution as a changing net-
work where the nodes of the network are static instructions
in a program and a directed edge appears whenever one
node produces a value for another. With this network view
we observe that communication among static instructions
in a program follows a heavy-tailed distribution: a small
number of static instructions (network nodes) in a program
communicate with a large number of instructions, while
most static instructions communicate only with a few in-
structions. Further, in the programs we study, we observe
that a large fraction of the heavy-tailed distributions follow
the power law distribution; some that do not obey power
law follow the closely related lognormal distribution.

What is the importance of this observation? Broadly
speaking, a heavy-tailed distribution indicates the presence
of events that rarely happen but dominate the process
described by the distribution [9]. For instance, heavy-tailed
latency distributions have been shown to impact the system
performance of the whole data center [3], and generated in-
terest in “tail-tolerant” techniques. Similarly our observation
about the presence of heavy tails in dynamic program struc-
tures may help us not only enhance the science of computer
architecture but also open up opportunities for new types
of computer architectures. In this paper we provide em-
pirical measurements to support the occurrences of power
laws in dynamic program structures and an examination
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of programs to understand why heavy-tailed distributions
occur.

2 PROGRAMS AS INFORMATION FLOW NETWORKS

Since program execution is essentially a collection of data
communications and computations performed through in-
structions, we can view them as an information flow net-
work. Once we view a program as a network, we can
perform link analysis. For instance, we can use centrality
measures to quantify the relative importances of each node
in the network (analogous to the importance of a person
within a social network), or determine how the communica-
tion volume is distributed across the nodes.

In our case, each vertex (or node) is a static instruction
at x86-64 ISA level∗, and each edge represents either control
or data dependency. We define a control dependence as a
connection between a source instruction and its immedi-
ate successive instruction. A data dependence is defined
as a producer-consumer relationship through registers or
memory. Specifically, when a source instruction writes to
register(s) and/or memory, and the following destination
instruction reads the value before it gets overwritten.

While many analyses can be performed on such net-
works, in this paper we focus on outdegrees of instructions
to understand how instructions influence the whole pro-
gram execution. Specifically, we study whether the distribu-
tion of the network fits the power law. A distribution obeys
a power law if it is drawn from a probability distribution
p(x) ∝ x−α. A power law distribution has two parameters:
the scaling factor α and the minimum value xmin. The
α controls how sharply the probability decreases, and the
xmin decides where the heavy tail of the distribution begins.

∗ Our analysis can be applied to other ISAs (e.g., ARM, MIPS etc) and
low level machine instructions (e.g., micro-operations or µops).
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(a) Register data dependency.
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(b) Memory data dependency.

Fig. 1: Outdegree-based log-log plot of the CCDF for
cactusADM’s communication networks. Both register and
memory networks follow the power law.

3 METHODOLOGY

We use the SPEC CPU2006 benchmark suite [6] with test
inputs for our analysis. All benchmarks are compiled by
GCC 4.6.3 with -O2 optimization flag. We dynamically
construct the network using Pin [8]. In order to understand
the difference of communication characteristics between
register and memory, we generate and analyze two sets
of networks per benchmark: one having only register de-
pendencies as data flow edges and the other having only
memory dependencies as data flow edges. Also, in order to
understand the pure program behavior, we construct the
network using only the instructions within the program
binary. In other words, all the nodes and edges that account
for other images (e.g., shared library) are not recorded.

We apply a standard statistical testing procedure to
verify if the degree distributions align with power laws [2].
This procedure has three steps: (1) estimate the parameters
(α and xmin) of the power law model by the commonly
used Hill estimator; (2) perform a goodness-of-fit statistical
test to obtain a p-value; (3) compare the power law against
other distributions∗ via a likelihood ratio test to see which
distribution(s) is a better alternative than the power law.

Step 2 is a Monte Carlo procedure which synthesizes
testing datasets by the estimated α and xmin. We fit each
synthetic dataset to its own power law model and count
what fraction of the time the model is a poorer fit (i.e.,
the model from our empirical dataset is a better fit). This
fraction becomes our p-value. We use the p-value as a
measure of the hypothesis we are trying to verify but not to
confirm a null model we would like to reject. Hence higher
values are better. We compare our empirical dataset with
5,000 synthetic datasets. If the p-value ≥ 0.1, we consider
the power law is a plausible fit. Otherwise, we conduct step
3 to see which alternative distributions are better.

4 RESULTS ON PROGRAM STRUCTURE

Fig. 1 represents the complementary cumulative distribu-
tion function (CCDF) of cactusADM benchmark from the
SPEC CPU2006 suite on doubly logarithmic axes, where x
represents the outdegree and p(x) represents the comple-
mentary cumulative probability. When we take the loga-
rithm of the probability distribution p(x) of the power law

∗ Lognormal and exponential distributions. Interested readers are re-
ferred to the relevant papers [1, 2].
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(b) Memory data dependency.

Fig. 2: Outdegree-based log-log plot of the CCDF for
sjeng’s communication networks. Both register and mem-
ory networks do not follow the power law (p < 0.1).

TABLE 1: Basic parameters of the outdegree distributions
of the register and memory networks (n is the number of
nodes, α is the scaling parameter and p is the p-value –
statistically significant values are denoted in bold).

Benchmark(input) n Register Memory
α xmin p α xmin p

Int

astar 5674 3.17 3 0.90 2.72 1 0.28
bzip2(dryer.jpg) 7999 2.99 2 0.08 2.69 1 0.43
bzip2(input.program) 7378 2.98 2 0.04 2.69 1 0.43
gobmk(capture) 14757 2.98 2 0.78 2.64 1 0.00
gobmk(connect) 19176 2.94 2 0.13 2.51 16 0.22
gobmk(connection rot) 16500 3.01 2 0.84 2.65 1 0.00
gobmk(cutstone) 18423 2.93 2 0.88 2.67 1 0.00
h264ref 27450 3.18 2 0.95 2.94 1 0.68
hmmer 5627 3.49 2 0.28 2.92 3 0.71
libquantum 3041 3.42 2 0.00 2.95 1 0.26
mcf 1737 2.74 2 0.04 2.75 1 0.70
omnetpp 17787 2.76 2 0.00 2.50 6 0.82
perlbench(attrs) 43554 2.91 2 0.08 2.24 3 0.27
perlbench(gv) 37151 2.91 2 0.06 2.21 4 0.59
perlbench(makerand) 15619 3.32 4 0.18 2.45 3 0.61
perlbench(pack) 60844 2.52 10 0.48 2.27 10 0.32
perlbench(redef) 25552 2.99 2 0.05 2.37 3 0.71
perlbench(ref) 30492 2.93 2 0.12 2.24 4 0.09
perlbench(regmesg) 41263 2.94 2 0.07 2.25 4 0.73
sjeng 9213 3.03 2 0.05 2.52 1 0.03
xalancbmk 113373 2.93 2 0.00 2.63 3 0.65

FP

bwaves 5043 3.71 2 0.20 2.68 1 0.18
cactusADM 28795 2.50 8 0.98 2.65 5 0.88
calculix 34803 3.41 3 0.00 2.93 1 0.12
gromacs 23156 3.35 2 0.11 2.96 1 0.29
leslie3d 15360 3.65 2 0.61 2.86 1 1.00
milc 8359 2.93 2 0.08 2.90 1 0.32
namd 16078 3.20 2 0.00 2.92 1 0.81
povray 37128 3.01 2 0.01 2.57 3 0.34
soplex 21687 3.73 4 0.03 2.89 1 0.31
sphinx3 15000 3.37 2 0.70 2.90 4 0.83

(ln p(x) = α lnx + constant), it implies that the distribution
follows a straight line on a log-log plot. We can see from
Figures 1(a) and 1(b) that the outdegrees of both register
and memory networks have heavy-tailed distributions. This
means that the majority of instructions have a small number
of outdegrees (i.e., consumers) whereas a small fraction of
instructions have a large number of outdegrees. Also, the
shape of the curve tells us that it is clearly not a random dis-
tribution. Moreover it suggests that the distribution might
follow the power law. In fact, by performing the analysis
described in §3, we find that both the networks obey the
power law (p-value of 0.98 and 0.88) with their parameters
of {α, xmin} as {2.50, 8} and {2.65, 5}, respectively.

Fig. 2 shows the result of sjeng which is a counter
example where neither of the register and memory networks
follows the power law. Both curves have convex shapes
which is qualitatively different from the shapes seen in
Fig. 1. We investigate these two observations in more detail
in the next section.
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(a) Register data dependency.
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(b) Memory data dependency.

Fig. 3: Outdegree-based log-log plot of the CCDF divided into 10 time series for cactusADM’s communication networks.

TABLE 1 presents a summary of the results (α and xmin,
along with the p-value) from the fitting of a power law to
each of the network. Among 21 unique benchmarks we
examined, only one benchmark (sjeng) does not follow
power law for either register- or memory-based communi-
cation; further 18 of the 21 benchmarks follow power law for
the memory-based network, while 12 of the 21 benchmarks
do not follow power law for register-based networks. Be-
cause of the compiler’s register allocation mechanism we
would expect only short-lived communication; hence the
presence of power law in register networks is surprising.
For register networks that do not obey the power law,
we find that a closely related heavy-tailed distribution, the
lognormal distribution offers a better fit for six of them:
milc, namd, perlbench(attrs), povray, sjeng and
xalancbmk.

5 CAUSES OF HEAVY TAILS

To uncover the reasons that the SPEC benchmarks exhibit
power law distribution, we conduct two preliminary analy-
ses in this section.

5.1 Network Evolution

One possible hypothesis that explains a small number
of high outdegree instructions in program structures is
that few instructions account for initializing read-only and
heavily used data. In order to investigate this hypothesis,
we present a time series of the outdegree distribution of
cactusADM. We divide the execution of the program into
10 epochs (each epoch has ≈ 900M dynamic instructions)
and show the log-log plot of each CCDF p(x) in Fig. 3. The
subfigures represent consecutive execution epochs from left
to right. On top of each figure, the number in the square
bracket presents the i-th epoch along with n, the number
of vertices in the network. The dependencies which cross
the epoch boundary are removed from the network, which
means that each subfigure contains only the producer-
consumer relationships within the epoch.

We can see from Fig. 3(a) that the scale of the first
epoch is different from the rest of the epochs. It has more
number of instructions, and the maximum outdegree is an
order of magnitude higher. Similar trend holds for memory
data dependency as seen from Fig. 3(b). This supports
our hypothesis that the high outdegree instructions are

1 template <class eobj>
2 inline i32 largesolidarray <eobj>::add(const eobj& e)
3 {
4 ...
5 ep[elemqu] = e;
6 i32 elemcell = freecellholder.get();
7 dccellar.ep[elemcell] = elemqu;
8 rccellar.ep[elemqu] = elemcell;
9 // elemqu, a member of largesoliadarray is updated

10 elemqu++;
11
12 return elemcell;
13 }

(a) A writer method in the largesolidarray class.

1 void regmngobj::createregions(i32 regionl)
2 {
3 ...
4 // rarp is a largesolidarray object
5 // elemqu is read to decide when to terminate the loop
6 for (i=0; i<rarp.elemqu; i++)
7 rarp[i]->flredefine=true;
8 ...
9 for (i=0; i<rarp.elemqu; i++)

10 rarp[i]->fillnum=regfillnum;
11 }

(b) A reader method in the regmngobj class.

Fig. 4: A writer-reader example in astar.

indeed executed in the first epoch, although what is more
interesting is the fact that the other computation phases of
the execution (i.e., epochs 2 to 10) still follow the power
law. This might indicate that the power law distribution
is a fundamental property in program structures. We leave
further investigation for future work.

5.2 Code Patterns for Power Laws
We conduct a semantic analysis for two benchmarks,
namely astar and sjeng. We select these two benchmarks
because both the register and memory networks follow
power law for astar while those for sjeng do not. Further,
their small program sizes (Lines of Code) reduce the burden
of understanding source code to perform the analysis.

Astar: the astar algorithm searches for the path with the
minimum cost (distance) from a start node to an end node
on a map. Given a start node, the algorithm iteratively finds
the set of next intermediate nodes having the lowest cost to
reach the end node.

Astar passes a small number of central data struc-
tures that hold the configuration data across the whole
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1 void make(move_s moves[], int i) {
2 // update board for a white pawn’s move
3 if (board[from] == wpawn) {
4 if (promoted) {
5 board[target] = promoted;
6 board[from] = npiece;
7 ...
8 }
9 if (ep) {

10 board[target] = wpawn;
11 board[from] = npiece;
12 ...
13 }
14 ...
15 }
16 // statements for other chess pieces follow
17 }

(a) Multiple writes in the make function.

1 void gen(move_s moves[]) {
2 for (...) { // for each chess piece on the board
3 // pieces holds the location of each chess piece
4 i = pieces[j];
5
6 switch (board[i]) {
7 case (wpawn): // white pawn
8 // check the destination square by reading board
9 if (board[from+12] == npiece) { ... }

10 ...
11 case (wknight): // white knight
12 ...
13 }
14 }

(b) Multiple reads in the gen function.

Fig. 5: A writer-reader example in sjeng.

application. Concretely, the information in few data struc-
tures such as largesolidarray in Fig. 4(a) is propa-
gated through the whole benchmark. This object stores
the information that is directly used in search such as the
regions on the map. Such data structures are read by mul-
tiple functions once it is updated. We observe this type of
producer-consumer communication in the memory network
across multiple functions. Fig. 4(a) shows an example at
line 10 where elemqu, a member of largesolidarray
which contains its size, gets updated. Whenever a method
traverses largesolidarray, this value is referenced. A
reader example in createregions is shown at line 6 in
Fig. 4(b).

The program structure responsible for high outdegree
instructions for register network is different from that of
memory network. A representative pattern in astar is that
a base address of an object is written to a register and
successive instructions access members of this object. A
power law distribution results as the object size increases
and the number of reads increases. Since the register values
are typically short-lived, we believe that this is a common
pattern that accounts for the existence of high outdegree
instructions in register networks.

Sjeng: sjeng is a program that plays chess games. Simi-
lar to astar, sjeng also has a central data structure board,
which is an integer array that represents a chessboard.
However, there are two notable differences between sjeng
and astar: (1) board is a global array and its elements can
be accessed via direct addressing where the base address
is known at compile time and (2) board continuously gets
updated throughout program execution.

Because of the first difference, frequent accesses to
board and its base address does not involve register access.
This is the major reason why the register network does not
even have a few instructions with very high outdegrees as
shown in Fig. 2(a), as opposed to astar.

The second difference gives us a hint where the trun-
cated shape we see in Fig. 2(b) comes from. The code
in Fig. 5(a) shows an example of writers to board. The
function make is called for every move of the chess piece.
For each move, board is written by different instructions
from different conditions, e.g., which chess piece to move,
which player is making a move, etc. The code starting from
line 5 and 10 in Fig. 5(a) is an example. These writers
have high volumes of consumers because every time the
algorithm searches for the best move, function gen loops
through chess pieces on the chessboard where each loop
involves the read of board. An example reader is shown at
line 9 in Fig. 5(b). Because of these “too many” writers with
high outdegrees, the memory network of sjeng does not
follow the power law.

6 RELATED WORK

Power laws have been observed in many man-made and
naturally occurring phenomenon from a distribution of in-
comes to a distribution of word frequencies to a study of
sizes of living things [9]. In computer systems, phenomena
such as the structure of the Internet [5], the distribution
of file sizes [4], and the distribution of latencies in a data
center [3] have been modeled by heavy-tailed distributions.
Software engineering researchers have observed power laws
in references to Java classes or shared libraries in Unix
distributions [7]. Our work is the first to report power
laws in dynamic program structure, which is relevant to
computer architects.

7 CONCLUSIONS

Meaningful and useful program characterizations are al-
ways beneficial to design efficient computer systems. With
this in mind, in this paper we characterized program struc-
tures with the help of a new way of viewing dynamic pro-
gram execution. We modeled the communication between
instructions as information flow networks, and analyzed the
distribution of its outdegrees. We have found that the com-
munication networks of the SPEC CPU2006 benchmarks we
evaluated follow the heavy-tailed distribution, where the
majority of them follow the power law distribution.
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