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Abstract—Current technology trends indicate that power- and energy-efficiency will limit chip throughput in the future. Current solutions to these
problems, either in the way of programmable or fixed-function digital accelerators will soon reach their limits as microarchitectural overheads
are successively trimmed. A significant departure from current computing methods is required to carry forward computing advances beyond
digital accelerators. In this paper we describe how the energy-efficiency of a large class of problems can be improved by employing a hybrid of
the discrete and continuous models of computation instead of the ubiquitous, traditional discrete model of computation. We present preliminary
analysis of domains and benchmarks that can be accelerated with the new model. Analysis shows that machine learning, physics and up to
one-third of SPEC, RMS and Berkeley suite of applications can be accelerated with the new hybrid model.
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1 Introduction

D IGITAL accelerators are commonplace in computer systems
today either in the form of application-specific accelerators,

e.g., XML, Regular Expressions [6], or domain-specific accelerators
such as cryptographic or physics accelerators [16]. These accel-
erators are seen as a way to improve performance and energy-
efficiency of computing systems in the face of slowing VLSI
scaling [5]. In this paper, we investigate innovations which can
increase computational performance and energy efficiency in future
systems over and above those offered by digital accelerators. To
illustrate the limitations of current accelerator paradigms and make
a case for a new model we start with a broad “first principles”
characterization of computing (Section 2). We then discuss an
alternate computing model, a hybrid of discrete and continuous
computing models (HDCA), (Section 3) and its benefits (Section 4).
Our analyses indicate that system designers may benefit from
designing computational accelerator interfaces that can accom-
modate both discrete and continuous accelerators and methods
for switching seamlessly between the two models. We propose
returning to the classical hybrid computing paradigm [10] in the
context of modern technology and applications, perhaps with a
new hardware/software partitioning that fits current computing
requirements and capabilities.

2 Beyond Digital Accelerators

Computing can be explained as a three step process (Fig 1A). First
we devise an algorithm for solving a problem, then implement
the algorithm, and execute the implementation on inputs to obtain
outputs. In the digital computing paradigm (Fig 1B), digital algo-
rithms are devised and executed on devices that support the digital
abstraction. If the problem inputs are continuous quantities such
as distance, pressure etc., the inputs are approximated (discretized)
to their closest digital values which can result in approximate
outputs. In a typical digital computing setup, the original algorithm
is taken through several intermediate steps or transformations
through compilers, execution environments, microarchitecture etc.,
which introduce or remove overheads.

Application- and domain-specific accelerators are aimed at trim-
ming overheads during the execution step at the microarchitec-
ture level (Fig. 1C). Accelerators implement digital algorithms as
application-specific digital circuits thereby avoiding intermediate
translation and bookkeeping steps. For example, instead of emu-
lating a cryptographic algorithm with millions of basic operations
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such as adds and multiplies, a cryptographic accelerator executes it
using a one or few instructions [7]. Reducing the number of instruc-
tions and the associated bookkeeping reduces energy consumption
and improves efficiency. Looking forward, however, it is unclear
where further energy efficiency improvements will come from in
the accelerator computing paradigm. Relatively incremental bene-
fits are possible by trimming other parts of the computing stack
(such as overheads introduced during compilation, by refactoring
commonalities among accelerator implementations or virtualiza-
tion). But once these overheads are removed, what remains is just
the computation itself, and the only way to optimize further is to
change the algorithmic formulation or even better the computation
model1 underlying the algorithmic formulation.

3 Hybrid Discrete-Continuous Architectures (HDCA)

A fundamental source of inefficiency in computing today is that
many real-world continuous phenomenon2 are solved using the
digital computing model i.e., using digital numerical algorithms on
digital hardware and with discretized inputs. We attempt to rectify
this by providing accelerators that will allow continuous functions
to be directly evaluated in hardware (Fig. 1D).

To see the benefits of this approach consider the task of solving
a differential equation with known initial conditions to obtain
a multivariate function. Let us further say that this differential
equation does not have an analytical solution; a reasonable assump-
tion except for the simplest of differential equations. On a digital
computer this differential equation will be cast as a set of numerical
difference equation and evaluated through a series of discretized
computations. In contrast, in an implementation that supports the
continuous model, the differential equation can be directly solved
on a continuous functional unit without intermediate discretization
steps, thereby improving performance and energy significantly. It is
important to note that a discrete accelerator that is optimized for
solving numerical differential equations, e.g., through optimized
datapath layout or a single complex digital functional unit cannot
achieve the same performance as the continuous accelerator be-
cause the digital accelerator will still require time-stepping. If the
continuous accelerators are implemented using modern VLSI tech-
niques the latency of the single step operation can be much lower
than the multicycle latencies incurred with digital accelerators. In
prior work, speedups of about two orders of magnitude have been
reported between continuous and digital solutions for ODEs. [3].

Not only is the continuous model power- and energy-efficient,

1. A computational model defines possible operations and their costs.
2. Computational functions that operate on continuous input variables.
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Fig. 1. A first principles illustration of different computing paradigms.

it may also be natural to use for engineering and scientific prob-
lems [11], [15]. Going back to the differential equation example in
the previous paragraph, in the continuous domain a differential
equation need not be cast as discrete numerical difference equa-
tions. Avoiding this discretization step is especially beneficial for
non-linear systems because, for these systems, choosing the right
numerical algorithm requires in-depth knowledge of not only the
problem being solved but also all of the subtleties that cause prob-
lems with convergence in the discrete domain. Thus, continuous
accelerators can improve productivity by bridging the semantic gap
between algorithm designers and execution environments.

Despite its benefits, the continuous model cannot stand on
its own because of the limitations of the technology that must
be used to implement it. While analog circuits can implement
continuous functions, reliable continuous storage is not feasible.
Further, analog computation tends to be error-prone and non-
reproducible. These limitations can be mitigated by combining the
digital and analog models (Fig. 1E). It is likely that error recti-
fication and reproducibility can be obtained with digital circuits.
Further discrete model may also be used to store and process
inputs or sequence through multiple operations. Extending discrete
and continuous aspects of the hardware substrate to all levels in
the system stack can help algorithm designers to partition their
workloads between the discrete and continuous domains, and
workaround the limitations of pure analog implementations.

4 What Applications can Benefit from HDCA?

In the 1960s, analog computers experienced a couple of decades
of rapid development [14]. Ultimately, with advances in fabrica-
tion and the development of design automation tools for digital
designs, the discrete computing model won out; but not before a
large class of mathematical models were understood in the analog
computing framework. Most notable among these are differential
equations (linear ordinary differential equations with constant or
varying coefficients, nonlinear ordinary differential equations, and

partial differential equations), algebraic matrix models (the solu-
tion of simultaneous equations, matrix inversion, vector/vector,
vector/matrix, and matrix/matrix operations) and the simulation
of a complex physical systems. In this section, we analyze how
these technologies can be leveraged in the context of HDCA.

4.1 HDCA for Approximate Algorithms

Learning Today, several application-specific analog VLSI systems
exist to solve a range of problems in learning algorithms. Most
notably, a significant amount of work has been done applying
analog VLSI to neural networks [12]. Recently Amant et al. used
an analog version of the neural predictor to improve the power
and performance of branch prediction [1]. Analog accelerators are
a good match for neural networks because continuous transistor
characteristics can be used to implement the sigmoid function
used for computing weights. Recent work has also proposed an
analog VLSI implementation of support vector machine learning
and classification [13] and pattern classification and sequence esti-
mation [2].

Interactive Applications A second application domain that maps
well to HDCA, but has to the best our knowledge received no
attention, is interactive applications, where the required precision
is set by what an end user can detect. It has been reported that
humans cannot visually detect inaccuracies within 3% in direct
vision and up to 20% for objects that are in the field of view
but not in direct vision [8]. Yeh et al. [16] developed a general-
purpose physics processor used to accelerate calculations for real-
time gaming by utilizing a low-precision digital architecture that
relies on the fact that visual inaccuracies cannot be detected. This
approach still suffers from using a discrete time stepping algorithm
to solve a continuous problem, however. For such problems, the
HDCA model with an analog accelerator is ideal since it ultimately
reduces to solving a set of differential equations.



4.2 HDCA for High Accuracy Applications

Even when high accuracy is required, many applications can
benefit from a analog accelerator coupled with a traditional digital
discrete core or accelerator. For example, traditional iterative meth-
ods used to solve a large class of problems are computationally
very expensive. In many of these applications, convergence (and
hence the time to completion) of the algorithm is determined by
a variety of factors including: how close the initial seed solution
approximates the desired solution, how much work is required to
set up successive iterations, how well the algorithm approximates
certain problem parameters to move the algorithm to the next itera-
tion, and the error tolerance for the final solution. Next we describe
how different facets of iterative applications can be improved with
the HDCA model.
Seeding A HDCA implementation can accelerate several critical
steps in high-accuracy applications without impacting the final
accuracy. For example, a continuous, and imprecise analog accel-
erator can be used to supply the seed solution to the iterative
algorithm to within a few percent significantly reducing the total
number of iterations [10], [3]. This is especially beneficial for non-
linear problems that may not converge unless they are started
sufficiently close to the true solution.
Boosting Similar to seeding, we suggest that intermediate steps in
a computation may also be sped up using the HDCA model. For
example, in sparse linear systems, a continuous analog accelerator
can be used to calculate key steps, such as the preconditioner in the
Conjugate Gradient Method to accelerate convergence. Similarly,
adaptive grid sizing can be accelerated using analog implementa-
tions. Having the continuous accelerator as part of the same die
as the discrete core makes it possible to use the analog accelerator
for much finer-grained computation. To the best of our knowledge,
we are first to suggest the broad applicability of boosting though
some prior work hints at the benefits of seeding techniques in the
context of earlier analog proposals [9], [4].

4.3 HDCA Coverage for Standard Benchmark Suites

To better understand how current and future (“killer”) applica-
tions map to the hybrid model, we examined the SPEC CFP2006
benchmark suite, Intel’s RMS suite, and the Berkeley Dwarfs suite.
Each benchmark and/or application domain was characterized
based on the underlying algorithms and computation. For each,
we determined if it maps well to the analog domain (e.g., differ-
ential equations/algebraic models), if it maps well to analog after
some problem transformation of the original problem (e.g., linear
programming), or if the problem simply does not map well to the
analog domain (e.g., table look-ups). Table 1 highlights our findings.

A number of the examined benchmarks fall under the Dense
Linear Algebra and Sparse Linear Algebra categories of the Berke-
ley Dwarfs: fluid dynamics (410.bwaves), quantum chemistry
(416.gamess and 465.tonto) and linear programming (450.soplex)
from CFP2006, support vector machines, quadratic programming,
and a number of partial differential equation applications from
Intel RMS. These applications consist solely of additions and
multiplications of a variable by a constant and can be imple-
mented efficiently in the analog domain. More general and efficient
implementations that utilizes analog integrators to solve for the
unknowns in the given system are also possible. This is in contrast
to a digital implementation, which typically requires some sort of
numerical algorithm (e.g., LU factorization) to perform the most
computationally intensive tasks in these benchmarks.

Spectral methods, such Intel RMS’s computational fluid dynam-
ics and cloth simulation, are dominated by additions and multipli-
cations (Fast-Fourier Transform) and also map well to the analog
domain. These operations are fast in both the digital and analog
domain, so the expected speedup of an analog implementation over

a digital implementation may be of little benefit. A significant chip
area advantage is expected from the analog implementation, how-
ever. For example, assuming 8-bit additions and multiplications,
a naivé digital implementation would require approximately 240
transistors for addition and 3000 transistors for multiplication. An
analog implementation can perform the same operations with far
fewer transistors resulting in lesser area and power.

Simulation of dynamic systems, N-body methods, Structured
and Unstructured Grids, require solving ordinary differential equa-
tions in some cases (e.g., applying the Barnes-Hut algorithm
to galaxy simulation), or more often a set of coupled partial-
differential equations which clearly map well to the continuous
model. The majority of the CFP2006 benchmark suite including:
molecular dynamics (435.gromacs, 444.namd), magneto hydrody-
namics (434.zeusmp), general relativity (436.cactusADM), fluid dy-
namics (437.leslie3d, 470.lbm), finite element methods (447.deal1II,
454.calculix), Maxwell’s E&M solver (459.GemsFDTD), quantum
crystallography (465.tonto), and weather modeling (481.wrf), falls
within this realm.

It is less clear how the remaining benchmarks in these three
suites and application domains map to the analog domain. Specif-
ically, ray tracing (453.povray) does not appear to be a good
fit for analog, and it is unclear if speech recognition is likely
to benefit from analog. Similarly, some of the Berkeley Dwarfs:
MapReduce, Combination Logic, and Finite State Machines do not
lend themselves to the analog computing model. For the remaining
Berkeley Dwarfs: Graph Traversal, Dynamic Programming, Back-
Track and Branch and Bound, and Graphical Models, the mapping
to the analog domain is entirely application-specific. For example,
if the intermediate calculations on nodes of the graph traversal
require calculations that are amenable to analog computing, then
the application maps well to analog; and if they do not, then the
application is unlikely to benefit from analog.

While a surprisingly large number of these benchmarks and
application domains map well to the analog domain, it is important
to note that both accuracy limitations and chip area constraints
pose limitations on any analog implementation. For instance, if
the problem requires a relative error of less than 1% or requires
a large number integrations, then a direct analog implementation
that operates on the entire problem set at once may not be practical.
In many instances these issues can be alleviated, e.g., splitting a
large mesh into a series of sub-meshes and performing calculation
on the sub-meshes sequentially; or utilizing a hybrid analog/digital
approach to have the analog rapidly calculate the solution at non-
critical points in the system and using digital parts to accurately
calculate solutions to the reduced “critical” system. Ultimately, the
most interesting applications for an analog accelerator will likely
fall within the hybrid discrete/continuous framework such as
using the analog accelerator solving the equivalent linear program
in the Branch-and-Bound method for integer programming, or
calculation of particle interactions at each node in the Barnes-Hut
algorithm for N-body simulation.

5 Related Work

The idea of combining analog and digital computers was popular
in the 1970s [10], [11], [14]. The idea fell out of favor because of
superior performance of digital computers. We believe that are two
major reasons to reconsider hybrid computing going forward. First,
the last decade has seen the emergence of several new applications
that can greatly benefit from the HDCA model including games
and learning. Second, higher levels of VLSI integration allow ana-
log and digital components to be used in tandem while switching
between them at finer granularities.



TABLE 1
Applications from three benchmark suites and their suitability for HDCA.

Maps to Analog
Benchmark Suite Domain/Example
410.bwaves, 437.leslie3d, 470.lbm CFP2006 Fluid Dynamics
416.gamess, 465.tonto CFP2006 Quantum Chemistry
Cloth, Face simulation Intel RMS PDE
450.soplex CFP 2006 Linear Programming
Support Vector Machine Intel RMS
Quadratic Programming Intel RMS
Spectral Methods Berkeley Dwarfs PDE/FFT
N-body Methods,Structured & Unstructured Grids Berkeley Dwarfs Dynamic Systems simulation, PDE
435.gromacs, 444.namd CFP 2006 Molecular Dynamics
434.zeusmp CFP 2006 Magneto Hydrodynamics
436.cactusADM CFP 2006 General Relativity
454.calculix, 447.deal1II CFP 2006 Finite Element Methods
459.GemsFDTD CFP 2006 Maxwell’s equations
465.tonto CFP 2006 Quantum Cystallographgy
481.wrf CFP 2006 Weather Modeling

Type of Mapping is Problem Dependent
Benchmark Suite Domain/Example
Graph Traversal Berkeley Dwarfs Decision Trees/Natural Language Processing
Dynammic Programming Berkeley Dwarfs Traveling Salesman
Back-Track and Branch and Bound Berkeley Dwarfs Integer Programming/Network Simplex
Graphical Models Berkeley Dwarfs Hidden Markov Models/Nueral Networks

No Mapping to Analog
Benchmark Suite Domain/Example
453.povray CFP 2006 Image Ray-Tracing
482.sphinx3 CFP 2006 Speech Recognition
MapReduce Berkeley Dwarfs Monte-Carlo simulation
Combination Logic Berkeley Dwarfs Hashing
Finite State Machines Berkeley Dwarfs Video Compression/Text processing

6 Conclusions
In this paper we pointed out the inefficiencies in digital accelerators
and studied the benefits of combining discrete and continuous
computing models. We suggested that an implementation of a
continuous model of computation using analog accelerators can
improve the energy-efficiency for a number of problems. Our anal-
ysis shows that several current and emerging workloads such as
physics processing and data mining tasks use differential equations
extensively and can be solved efficiently using HDCA accelerators.
These domains do not have stringent accuracy requirements, which
is important because analog implementations of continuous oper-
ations are likely to have low noise immunity and consequently
lower accuracy than their pure digital counterparts.

The applicability of continuous accelerators, of course, can go
beyond these approximate computing domains. When high accu-
racy is required, an analog circuit can be used to produce a low
precision initial guess that a digital computer can refine to quickly
get a high-precision final answer. This computing trick, and other
“refinement techniques we have developed, can be applied to about
one-third of the benchmarks in the SPEC CFP2006, Intel RMS, and
the Berkeley Dwarfs suite. Much exciting works remains to be done
in this area, including development of analog microarchitectures,
programmable interfaces between analog and digital components,
and understanding overheads of switching between discrete and
continuous domains.
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