
1556-6056 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCA.2015.2403359, IEEE Computer Architecture Letters

1

Hardware Enforced Statistical Privacy
Matthew Maycock Simha Sethumadhavan

Computer Architecture and Security Technology Lab (CASTL)
Department of Computer Science
Columbia University, NY 10027

{mhm2159, simha}@columbia.edu
F

Abstract—The Internet of Things will result in users generating vast
quantities of data, some of it sensitive. Results from the statistical anal-
ysis of sensitive data across wide ranges of demographics will become
ever more useful to data analysts and their clients. The competing needs
of the two groups—data generators with their desire for privacy and
analysts with their desire for inferred statistics—will be met through the
use of statistical privacy techniques. The question, then, is how can we
ensure that the statistical methods are applied in a trustable manner?
In this paper we discuss some of the complications and consequences
of ensuring both trust and privacy through the immutability of hardware,
providing a desiderata for a hardware privacy platform.

Index Terms—Internet of Things, Privacy, Hardware Support, Privacy
Protection Unit

1 INTRODUCTION

Today many ordinary, day-to-day devices have embedded ra-
dios and computational capabilities that can either be remotely
controlled or operate autonomously. These devices collect,
process, store, and respond to the data collected from the world
around them. This general trend towards enabling connectivity
and autonomy of simple devices is often referred to as the
Internet of Things (IoT) in popular literature. With IoT, an
individual’s own devices interact not only with each other,
but also with third parties: device manufacturers, emergency
medical services, and mobile phone service providers, among
others. In these systems it is vital to balance users’ privacy
needs with business requirements. In this paper we discuss if
and how computer architects can help with addressing privacy
concerns in this interconnected (IoT) world.

The third parties in IoT may be trusted to different degrees.
Ideally we would like fully trusted third parties to get access
to the original data, provide degraded data to partially trusted
third parties, and completely deny data access to untrustwor-
thy parties. The mechanism for the first and the last use cases
is straightforward. Any mechanism for providing degraded
data to a partially trusted third party must guarantee that the
original data cannot be easily recovered from the degraded
data. This guarantee requires careful mathematical reasoning
and is the subject of many studies in the field of statistical
privacy. One particular theory proposed in 2006, ε-differential
privacy, offers a rigorous mathematical foundation and comes
with a simply stated privacy guarantee [1]. The idea is to add
noise in such a way that the (statistical) usefulness of results is
preserved while the ability to infer the value, or even presence
or absence, of an individual record is deterred.

What is the benefit of hardware support for ε-differential
privacy? The cost of applying differential privacy is not signif-
icant enough to warrant hardware support: the computation

. This work is supported through grant FA8750-10-2-0253 and the
Alfred P. Sloan Foundation. Opinions, findings, conclusions and rec-
ommendations expressed in this material are those of the authors and
may not reflect the views of the funding entities.

. Manuscript submitted: 09-Dec-2014. Manuscript accepted: 11-Jan-
2015. Final manuscript received: 16-Jan-2015

Flow of
Information

Trust

Smart Phone,
Service Provider, etc

Data CuratorData Generator

Citizen, Sensor, etc

Data Analyst

Online Retailer,
Policy Analyst, etc

Fig. 1. Trust & Information Relationships

amounts to a few memory accesses and arithmetic operations
to add noise at the end of a computation. Hardware immutabil-
ity can, however, provide more substantial privacy assurances
to developers and end users than software mechanisms can.
Like Trusted Platform Modules for security, we envision a
hardware Privacy Protection Unit (PPU) that mediates access
to sensitive sensor data and provides ISA abstractions to
enable easy development of privacy-aware systems. Providing
hardware based privacy mitigates any danger resulting from
coverage holes, which may arise due to the complexity of
software (interactions). Further, when combined with hardware
security mechanisms such as isolation and attestation, our
PPU abstractions can provide proofs of privacy that cannot
be achieved easily with purely software implementations. As a
first step towards privacy-aware systems with hardware-rooted
privacy, in this paper we describe the PPU architecture, discuss
desiderata for a hardware-rooted privacy policy enforcement
engine (§ 3.2.1), and discuss new ISA primitives (§ 3.2.2, 3.2.3)
that provide assurance that privacy has been correctly applied
in hardware, leaving quantitative evaluation to future work.

The rest of the paper is organized as follows: In Section 2
we provide background on statistical privacy. Section 3 dis-
cusses privacy facilitating features architects can provide. We
conclude in Section 4.

2 BACKGROUND

Figure 1 shows an abstract view of trust relationships in an
IoT ecosystem. IoT actors can be abstracted into three entities:
data generators—e.g. a heart rate sensor; data curators—mobile
phone vendors, third party entities, etc.; and one or more
data analysts with differing goals and authorizations to the
sensitive data. Statistical privacy measures are applied by the
data curator to prevent (some) data users from reconstructing



1556-6056 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCA.2015.2403359, IEEE Computer Architecture Letters

2

the original data from the generator. The trust relationships and
aims of the different actors are best explained with an example.

Consider the case of a mobile phone service provider that,
through sensors on both phones and other devices (e.g. blue-
tooth fitness tracker), has historical location and user habit
information for its customers. Such information can reveal
detailed personal information: which shops users visit (and
when) or even what activities usually precede shop visits (e.g.
smoothies after exercise). This information, combined with
demographic information available to the service provider, can
be used to build very accurate shopping and lifestyle profiles.

This information has many uses. For example, it could be
used by an online retailer to get very useful information on
where locals are looking for goods. If such a retailer desired
to provide same day delivery, such information could be used
to reduce delivery times, increasing the retailer’s competitive
edge against brick and mortar stores. The emergence of IoT
promises very fine-grained, precise information that will help
retailers optimize these tasks even further.

The above scenario involves subtle relationships that need
to balance trust and utility: if the mobile service provider
gives away information in a manner that betrays the public
trust, they may lose many customers (becoming less useful to
analysts, losing revenue streams on two fronts); if the provider
obfuscates the information too greatly the retailer will lose
interest. The provider needs to account for both the public’s
(customers’) privacy needs and the analyst’s (retailer’s) statis-
tical needs. In the rest of the section we will describe statistical
techniques for achieving these goals.

2.1 Differential Privacy

Let f be some computation on datasets, e.g. f returns mean
salary. The goal of differential privacy is to prevent analysts
from inferring the values, or even presence, of individual
records from the values f(D1) and f(D2) where D1 and D2

are neighboring datasets. Two datasets are neighbors if they
differ by the absence/presence of a single record.

In her seminal work [1], Dwork defines a noised (i.e. ran-
domized) mechanism Kf—parameterized on the computation
f—as being ε-differentially private if the addition or omission
of a single record is unlikely to change the result significantly.1

Dwork shows that adding double symmetric noise (i.e.
Laplacian) to a calculation yields an ε-differentially private
mechanism. The noise is centered with location zero and has
scale based on a privacy parameter and the computation. 2

We note that privacy measures such as these induce a trade-
off between integrity and confidentiality. Normally confiden-
tiality is binary property—either an entity can read the data or
it cannot. The privacy derived from noising sensitive informa-
tion turns this binary property into a continuous property: ad-
versarial access to information increases as privacy decreases.
For example, location data in the earlier mobile phone example
can be seen as confidential information; however as we lower
privacy the accuracy of locating the user increases and thus
becomes ‘less’ confidential.

1. Pr[Kf (D1) ∈ S] ≤ exp(ε) × Pr[Kf (D2) ∈ S] where S is any
given subset of the range of Kf and D1, D2 are neighboring datasets.

2. The scale is ∆f/ε. ε is the privacy parameter: smaller values yield
wider noise and thus greater privacy. ∆f is the maximum change of f
among neighboring data sets, e.g ∆f = 1 if f merely counts records.
Larger ∆f yields narrower noise and thus less privacy.

TABLE 1
Common Identity & Attribute Protection Schemes

Privacy
Method Summarization

k-anonymity Each generalized quasi-identifier’s equivalence
class has at least k elements.
Offers: Identity protection.

l-diversity Each generalized quasi-identifier’s equivalence
class has l “well-represented” values for each
sensitive attribute.
Offers: Identity protection and some attribute
protection that is still statistically vulnerable.

t-closeness Each generalized quasi-identifier’s equivalence
class’s sensitive attribute values are distributed
similarly to the overall table.
Offers: Identity protection along with reasonable
attribute protection.

2.2 Other Forms of Privacy

Other forms of statistical privacy exist. We discuss three related
methods below (summarized in Table 1). First we require a
definition: a quasi-identifier is a set of attributes that collectively
identify an individual. Examples include the combination of
age, sex, and postal code, which when cross-referenced against
voter registration can identify an individual [6].
k-anonymity [7] requires that a published table, cleared

of explicit identifiers (names, social security numbers, etc),
generalize quasi-identifiers so that quasi-identifier equivalence
classes have at least k entries. The method offers identity
level privacy: we do not know which record corresponds to
a specific individual. The scheme, however, does not offer
attribute level privacy: if we know which equivalence class
contains individual X and every member of that class has the
same disease, then we know that X has the given disease.

To combat the above limitation of k-anonymity, and others
based on background information, Machanavajjhala, et al. [3]
instead propose the concept of l-diversity. l-diversity requires
that each class of individuals have a diverse set of values for
each sensitive attribute. For example, not only there should
be no class where every member has cancer but there should
not be classes where every member has either cancer or heart
disease—as then knowing that member X is from a demo-
graphic with a low incidence of heart disease allows us to infer
that X likely has cancer. There are many different ways to
measure and thus enforce l-diversity, such as requiring each
class to have at least at least l distinct values or the total
entropy of values in a class be at least log l.
l-diversity, while solving issues with k-anonymity, comes

with its own issues. As described by Li and Li [2], if a
disease only affects a small percent of the population but an
equivalence class highly represents those with the disease, then
a great deal of information can be gained. What t-closeness
proposes is limiting the distance (of distributions) between the
overall distribution of sensitive values in the overall table and
the distribution of sensitive values within equivalence classes.

3 PRIVACY & COMPUTER ARCHITECTURE

As computer architects, we examine how hardware support
can assist with statistical privacy. We consider the low-level but
general case that the data generators are sensors—an ambient
light sensor, a gyroscope, a compass, a GPS unit, even a
camera—and that the analysts are processes requesting access



1556-6056 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCA.2015.2403359, IEEE Computer Architecture Letters

3

to the sensitive data available from the sensors. We present a
platform that acts as what we have called a data curator, and
examine the following aspects related to statistical privacy: (1)
What are the benefits of hardware privacy support? (2) What
privacy services can be offered by hardware?

3.1 Benefits of Privacy Support
Common benefits for supporting a computation with hardware
are lower latency and energy. Another common benefit is trust
due to the immutability of hardware: software can easily be
corrupted and subverted, but validated hardware must be
physically corrupted in order to be subverted.

What are the benefits of hardware support for privacy? Noise
generation is computationally inexpensive—both in terms of
latency and energy efficiency since it is a single calculated value
added to a signal or computational result. We can, however,
use hardware to provide a robust, difficult to subvert privacy
platform with very little software support. Such a platform
could include features facilitating applications’ use of sensitive
data while assuring users that their data is not being misused.

3.2 Privacy Protection Platform
The privacy methods we have examined fall into two camps:
noising computational results (ε-differential privacy, etc) and
partitioning records according to a rule while generalizing
quasi-identifiers (k-anonymity, l-diversity, t-closeness, etc). The
latter methods are highly dependent on the data attributes and
general-purpose ISA support is likely to be infeasible.

Regarding noising, there are two possible methods: noising
at the source (a sensor), or at the sink (a computational use
within a program). Though these two options are related—in
fact, mathematically speaking, noising inputs is equivalent to
post-processing the noised output of the identity function—
they lead to very different system designs. Ny and Pappas [5]
discuss the trade-offs of applying ε-differential privacy in
these two ways in the context of application-specific dynamic
systems taking Kalman filters as an example. We explore these
options in a general-purpose SoC setting with emphasis on
programmability, forensics, and robustness.

Noising the data at the sinks requires information flow
tracking: sensitive data should be tainted and all operations
on tainted data should either be restricted (i.e. exfiltrating
tainted data should be disallowed), yield a tainted result, or
be a special detainting operation which should trigger policy
enforcement. Such a system would need to track all of the
different sources of tainted data requiring even a single byte
to carry around a large amount of metadata. The policy and
mechanism design is genuinely complicated in this case while
both the energy and performance overheads can be substantial.

Noising at the source, however, requires minimal changes to
the hardware and software. An off-chip unit that sits between
the sensors and the processor can mediate access to sensitive
sensor data and control how noised data is supplied to the
processor. The off-chip unit, which we call the privacy protec-
tion unit (PPU), can provide data at different privacy levels
to processes based on a policy set by a trusted executive. The
trusted executive can be much simpler to implement than a
sink enforcement policy due to centralized policy enforcement.

Figure 2 gives an overview of our privacy additions. In the
figure, the PPU accepts two different types of requests: policy
management requests from the trusted executive and sensor
read requests from processes. Sensor read requests are used

to access sensitive data in a controlled manner. Requests first
arrive at an access mediation unit which acts as a gate-keeper,
ensuring that only allowed requests are processed. Next the
PPU reads from the appropriate sensor, passing the value on
to the noise addition and budget control unit, which validates
that the request is within budget and appropriately noises the
result. Finally, the access and noise logging unit logs both the
noise and the access, providing a record of privacy. All of these
steps are configured through policy management requests sent
by the trusted executive.

Each component is capable of raising an exception; addi-
tionally, policy management requests can raise exceptions. The
access mediation unit raises an exception when the request is
disallowed by the PPU policy. The noise addition and budget-
ing control unit can raise an exception when the requested level
of privacy is either invalid (≤ 0) or greater than the remaining
budget. The access and noise logging unit raises its exception
when one of the logs fills up. Finally, policy management
requests can cause exceptions if the request contains illegal
policy programming or is malformed in some fashion.

We now describe the primary components of the PPU.

3.2.1 Policy Enforcement
The policy enforcement engine can be a fixed function unit
supporting a single policy (for embedded IoT devices) or a
programmable/configurable unit to allow a range of policies.
Irrespective of these choices the policy enforcement engine has
to be resilient to intentional or unintentional privacy attacks. In
this section we describe one attack and derive the desiderata
for the policy enforcement engine.

A collusion attack. A system with repeated querying must
consider the problem of collusion among entities spread among
different user accounts, different applications across the same
or several user accounts, or even the same application run-
ning as several different processes. For example, assume that
location is meant to be kept private and, within a relatively
short period of time, n applications—possibly on the same
user account, possibly not—query the GPS unit with a modest
amount of privacy. Then, these n applications can average their
results to get a result whose privacy is less than modest. This
breach results from the fact that the noise can be averaged out.

Budgeting solution. Limiting users, groups, applications, or
even the entire system—or non-colluding categories thereof—
to privacy budgets can alleviate the above privacy breach. In
the parlance of ε-differential privacy, the budget can be the
total sum of ε values of executed queries on related sources. As
explained by Dwork [1] the privacy expenditure of multiple ε-
differentially private queries is at worst additive in the privacy
parameter, making this an acceptable solution. Such budgeting
solutions have been used in privacy-aware querying systems
at the software level [4].

The privacy budget can be system wide, source specific, or
anything in between and allocated for a programmable dura-
tion of time. However, holistic system-wide notions of privacy
are desirable since if two sensors yield related information,
then queries to one must affect the privacy budget of the other.
For instance, location information can be obtained via GPS, wi-
fi strength, or cell tower information. An additional require-
ment is that the policy enforcement engine should support re-
plenishment, i.e. how, over time, is the privacy budget restored,
if at all? Several policies are possible: the replenishment may be
based on elapsed time, sensor information such as location, or
some other arbitrary policy from the executive. A full system



1556-6056 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LCA.2015.2403359, IEEE Computer Architecture Letters

4

SoCPPU

S
e

n
s
o

rs

Noising and

Budget Control

Unit

Access

Mediation

UnitSensor

Read 

REQ Access

Exception

Sensor

Read

Unit

Budget 

Exception

Access and

Noise Logging

Unit

Log 

Exception

Noised

Sensor

Return

Policy

Mgmt.

REQ

Access

Programming

Noise & Budget

Programming
Access & Noise

Log Management

Exception

or

Success

Policy 

Enforcement Unit

PRIVACY 
PROTECTION

UNIT (PPU)

Fig. 2. Privacy Platform Overview

design along with an implementation is essential to understand
the relations between the sensor uses, budgets, and utility.

Importantly, we note that these are privacy policy decisions,
not security policy decisions—if a trusted process (i.e. one with
a significantly sized budget) publishes results or is poorly
programmed and leaks information, then these are important
but separate issues from what we address here.

3.2.2 Assurance of Noise

It is desirable for users to be assured that their privacy needs
are being met. Towards this goal we propose a hardware
structure to provide assurance of noise. To do so, the PPU
maintains a hardware unit with a buffer of recently calculated
noise values. If, given the observed distribution, the likelihood
of the desired distribution was sufficiently small, the access
and noise logging unit could raise a log exception.

If queries only add noise from the same class of distribution,
either with the same or different parameterizations, then the
system can translate noise values to their canonically param-
eterized distribution values—i.e. the normal distribution with
µ = 0, σ = 1 in the case of Gaussian noise. Comparing these
observed values against the desired distribution allows the
system to provide assurance of noise across different queries,
requiring only one buffer for each class of noise distribution.

3.2.3 Assurance of Access

In addition to the above, the platform could provide assurance
that a user or application accessed certain data with a given
privacy level. Just as modern operating systems come with
“task managers” and “activity monitors,” an assurance of
access unit could provide data for a user friendly privacy
manager. Taken together with an assurance of noise unit, this
could be a very powerful tool: if privacy breaks down for some
reason—i.e. noise is not properly distributed—then users will
be able to inspect whether certain apps took advantage of the
situation and decide if such apps constitute malware.

Assurance of access inherently requires logging and is thus
vulnerable to denial of service attacks. Imagine that a user
accesses a piece of data with relatively low privacy (i.e. large ε),
but then other users—or even the same user—access that data
and other data with a great deal of privacy (i.e. small ε). If
each access is logged as an individual event and there is only
room for a fixed number of events, then the original access
may be overwritten. Virtual memory like solutions or clever
logging techniques would be necessary to avoid such pitfalls
in the implementation of an assurance of access mechanism.

The above two assurance mechanisms, taken together with
security techniques such as trusted platform modules, can form

a proof of privacy. That is to say, the assurances, accompanied
with proof of their authenticity, themselves become proofs in
the cryptographic sense.

4 CONCLUSIONS

The emergence of IoT brings about important privacy ques-
tions. Computer architects typically optimize for the common
case and the demand to balance privacy with business needs in
the IoT is likely to be a fairly common use case. Thus, in this
paper we examined the feasibility and benefits of hardware
support for privacy in IoT devices. Our study has revealed
new ISA primitives for privacy, viz., instructions that not only
provide privacy aware access to sensors but also verify privacy
ands its use within the system. We described an implemen-
tation in which the privacy control is performed as soon as
sensitive data is acquired and before any further processing
of the data. In addition to reducing the risk of sensitive data
exposure, such systems are also much easier to implement than
systems that enforce privacy upon exfiltration to non-privacy
aware (hardware or software) components. We discussed the
nuances of policy enforcement for our privacy protection unit
with one specific policy example. Based on this initial study
we conclude that much interesting work remains to be done in
terms of hardware support for privacy. Specifically full system
prototypes are necessary to understand the utility of hardware
supported differential privacy in real-world use cases.

REFERENCES

[1] C. Dwork. Differential privacy. In 33rd International Colloquium on
Automata, Languages and Programming, part II (ICALP 2006), volume
4052 of Lecture Notes in Computer Science, pages 1–12, Venice, Italy,
July 2006. Springer Verlag.

[2] N. Li and T. Li. t-closeness: Privacy beyond k-anonymity and l-
diversity. In In Proc. of IEEE 23rd Int’l Conf. on Data Engineering
(ICDE ’07), 2007.

[3] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl.
Discov. Data, 1(1), March 2007.

[4] F. McSherry. Privacy integrated queries. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management
of Data (SIGMOD). Association for Computing Machinery, Inc.,
June 2009. For more information, visit the project page:
http://research.microsoft.com/PINQ.

[5] J. L. Ny and G. J. Pappas. Differentially private filtering. In CDC,
pages 3398–3403. IEEE, 2012.

[6] L. Sweeney. Computational Disclosure Control: A Primer on Data Pri-
vacy Protection. PhD thesis, Massachusetts Institute of Technology,
2001. AAI0803469.

[7] L. Sweeney. K-anonymity: A model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10(5):557–570, October 2002.


