
1

Security Implications of Third-Party Accelerators

Lena E. Olson∗, Simha Sethumadhavan†, and Mark D. Hill∗
∗University of Wisconsin-Madison, lena,markhill@cs.wisc.edu

†Columbia University, simha@cs.columbia.edu

Abstract—Third-party accelerators offer system designers high performance and low energy without the market delay of in-house
development. However, complex third-party accelerators may include vulnerabilities due to design flaws or malicious intent that are hard
to expose during verification. Rather than react to each new vulnerability, it is better to proactively build defenses for classes of attacks.
To inspire future work on defenses, this paper develops a taxonomy of accelerator vulnerabilities. We consider the cross product of
threat types (confidentiality, integrity, and availability) with risk categories (configuration, computation, termination, accelerator memory
accesses, system memory accesses, microarchitecture/coherence, exceptions/interrupts, and power), as well as whether processes
can be vulnerable only if they use the offending accelerator (accelerator-scope threat) or even when running in the same system
(system-scope threat). Our taxonomy draws attention to a grave problem that needs immediate attention from computer architects.

F

1 INTRODUCTION

S PECIALIZED hardware accelerators achieve high perfor-
mance at low power and energy. Already, many systems

contain accelerators for tasks such as video processing or
graphics. With an increased market for accelerators, especially
in SoC designs, third parties will likely start contributing more
to accelerator development.

While the performance and energy benefits of accelerators
are fairly well understood, the impact of accelerators, partic-
ularly ones designed by third parties, on system security has
received less attention. Even so, several security vulnerabilities
have already been published for graphics processing units
(GPUs), a common class of accelerators. For example, Lee et
al. [13] show that GPUs from both NVIDIA and AMD do
not clear accelerator memory upon allocation, which allows
state from sensitive processes to persist and be read by other,
unrelated processes. This allows information leakage between
concurrently executing processes or from recently terminated
processes. A similar case is discussed by Di Pietro et al. [9].
Some GPU-based malware is designed to take advantage of
this uncleared internal memory [20].

These vulnerabilities occurred with non-malicious, in-house
development. With outsourced accelerator designs, these prob-
lems will likely worsen. It is difficult to ensure that first-
party, trusted designs are correct; completely ensuring safety
for IP from third-party sources may be harder for a number
of reasons, such as time-to-market pressure which makes code
reviews infeasible even with source code for the third-party IP.

Security vulnerabilities in accelerators can lead to problems
such as data leakage, memory corruption, system crashes, and
denial of service attacks. It is particularly worrisome that some
security vulnerabilities in accelerators affect processes that are
never run on the incorrect accelerator. For example, an acceler-
ator that is allowed to make unrestricted accesses to unified
system memory could abuse this by scanning for sensitive
data in memory or modifying OS structures. Or it could cause
reliability problems by performing wild writes, perhaps caused
by stale data stored in the translation lookaside buffer. A bad
accelerator could also degrade performance of other system
components by unnecessarily saturating shared resources such
as memory bandwidth.

Manuscript submitted: 17-Mar-2015. Manuscript accepted: 09-Jun-2015.
Final manuscript received: 11-Jun-2015.

How does one defend against accelerator vulnerabilities? A
first, reactive approach waits for an exploit to become known,
develops a fix in current or future hardware, and repeats for
each new exploit. A second, more proactive approach reflects
on potential vulnerabilities to seek to mitigate them at design
time, and then falls back on the reactive approach. In our
judgment, the proactive approach can be enhanced with a sys-
tematic taxonomy that can increase coverage of attack classes
considered and may inspire defenses that address multiple
attack classes.

To this end, we systematically analyze threats posed by the
inclusion of accelerators in SoC designs. We aim to make it eas-
ier for system designers to make informed, security-conscious
choices when integrating accelerators into their designs.

We discuss a number of possible risk categories which may
be present in accelerators, as well as their consequences. These
consequences can include potential leakage of sensitive infor-
mation, incorrect computation results, or reduced availability of
the accelerator or other system components. We also make the
point that accelerator vulnerabilities can be divided into two
classes: those that only affect applications running on the vul-
nerable accelerator, and those that can compromise the entire
system. The latter is particularly dangerous, because simply
refraining from running sensitive applications on potentially
vulnerable hardware is not sufficient to guarantee security.

The main contribution of our paper, a taxonomy of threat
space for accelerators, is general enough to cover classes of
vulnerabilities rather than forcing designers to consider each
possible threat individually, yet also allows threats to be clas-
sified based on what components of the system are affected
and what security properties they violate. Although we focus
on accelerators, many of the threats we discuss are relevant for
other types of third-party IP as well.

2 ACCELERATOR VS. CPU SECURITY

There are some practical security differences between accelera-
tors and CPUs. First, CPUs are generally designed by a trusted
first party; thus, validation and testing can be done in-house,
and the system designer has more assurances that validation
has been thorough. In contrast, accelerators may be designed
by a third party, and validating them while treating them as a
black box is more difficult.



2

Second, the operating system runs on CPUs, but generally
not on accelerators, which has implications for non-malicious
accelerators. The presence of the OS allows some security
protections to be implemented at the system level rather than in
hardware. An example is the way modern OSes clear memory
when it is allocated, which protects data from previously exe-
cuting processes. Without the OS to provide this protection for
internal memory in accelerators, we must consider providing it
elsewhere, such as in the hardware or at the process level.

There are a large range of accelerators, so there are excep-
tions to the above. For example, the Xeon Phi is designed by
a trusted first party and runs a version of Linux. Thus, some
entries in this taxonomy may not apply to every accelerator.

3 THREAT SPACE

We first draw a distinction between accelerators that are mali-
cious by design and those that are buggy, and between threats
that affect only the vulnerable accelerator and those that can
affect other components of the system.

3.1 Buggy vs. Malicious Accelerators
We classify accelerators with vulnerabilities into two types:
buggy and malicious. Any complex system is likely to have
bugs. Bugs occur even in well validated hardware [1], [3], [7],
[16], [19]. Buggy accelerators are designed with the intention
of being correct, secure accelerators. However, because they
are buggy, they have vulnerabilities that can be exploited by
unaffiliated parties such as malicious software.

Malicious accelerators are insecure by design: they contain
intentionally introduced flaws or are designed to break the
security of the host system they are integrated into. As such,
malicious accelerators are harder to defend against because the
designers can introduce new hardware to aid their exploits and
can put effort into hiding incorrect behavior from validation
techniques. For example, a malicious accelerator might require
a specific uncommon input (a trigger) before starting to behave
maliciously. One case where accelerators may contain malicious
hardware is when the designers are colluding with a govern-
ment or other body for purpose of surveillance, espionage, or
sabotage. There has been concern that hardware trojans might
exist in military chips [17].

From the viewpoint of an end user, the distinction between
buggy and malicious accelerators is pedantic. After all, end
users do not care about why their device is insecure, only that it
is insecure. However, as computer designers, addressing these
two different threats requires completely different approaches.
When addressing a security threat from an honest but buggy
device, IP integrators can assume a co-operative third-party IP
vendor who will not subvert safety nets meant to prevent bugs.
However, for malicious devices, any such safety net should be
able to withstand subversion from a malicious IP component.

3.2 Accelerator vs. System Scope
There is an important distinction between security threats that
are internal to the affected accelerator and thus only affect
applications running on that accelerator, and those that affect
other components of the system. An example of a threat at
accelerator scope is leakage of information between two processes
running concurrently on the same accelerator, as can be caused
by lack of protection to the accelerator’s internal memory. In
contrast, threats at system scope affect components of the system
beyond the compromised accelerator: they also affect correctly
implemented parts of the system. An example of a system scope

threat is an improper access to a sensitive address in system
memory, such as one belonging to the OS.

These two scopes of threats need to be handled differently.
It is easier to limit the damage caused by threats at accelerator
scope, because they can be avoided by simply not running sen-
sitive applications on untrusted hardware. However, in cases
where the designer must treat accelerators as black boxes, it is
very difficult to ensure security for applications running on the
untrusted accelerator, and sensitive applications may be unable
to benefit from acceleration on not fully trusted hardware.

In contrast to threats at accelerator scope, system scope
threats are dangerous even to processes that are never run on
the untrusted hardware. However, we expect that they can be
defended against by careful system design, since they result
from a lack of system protection from the accelerators. By plac-
ing safeguards such as checking that all interactions between
the accelerator and system state are valid, it is possible to limit
the damage a malicious accelerator can do to the system.

4 TAXONOMY OF THREATS

We classify security threats for accelerators based on the type
of threat they pose as well as what part of the accelerator they
affect, as will be summarized in Table 1 (accelerator scope) and
Table 2 (system scope).

4.1 Security Threat Types
Security threats can be broken into three types: those that vi-
olate confidentiality, integrity, and availability. Confidentiality
violations allow an attacker to discover privileged information;
an example is an attacker reading private keys. Integrity viola-
tions cause incorrect results, for example a computation return-
ing the wrong value. Availability violations prevent a resource
from being used; an example is making spurious requests to a
resource at such a high rate that legitimate requests cannot be
serviced. We consider both threats that make the vulnerable
accelerator unavailable and those that reduce availability of
other accelerators or the system in general.

4.2 Risk Categories
We break down threats into eight categories, briefly described
below. Just as modern pipelined processors fetch, decode, exe-
cute, access memory, and write back instructions, accelerators
have similar pieplined behavior. The risk categories basically
follow this sequence, with the exception of power, which is a
cross-cutting concern.

• Configuration refers to set up of the accelerator, such as
setting registers or giving parameters.

• Computation refers to the computations at the accelerator
that will produce results.

• Termination refers to accelerator state after execution
ends.

• Accelerator Memory Accesses refers to requests to memory
or cache internal to the accelerator.

• System Memory Accesses refers to requests to system main
memory.

• Microarchitectural Commands / Coherence Requests refers to
communications about microarchitectural system state
between the system and the accelerator, such as memory
coherence requests or TLB shootdowns.

• Exceptions / Interrupts refers to exceptions that are pro-
duced by the accelerator, or interrupts delivered to or
generated by the accelerator.

• Power refers to threats specifically relating to power
consumed by the accelerator.



3

TABLE 1
Threats at Accelerator Scope. These threats only affect processes running on the untrusted hardware. (x) indicates that a known exploit exists.

Confidentiality Integrity Availability
Configuration side-channel, kleptography kleptography, wrong output lock up accelerator
Computation side-channel, kleptography kleptography, wrong output lock up
Termination (x) fail to clear registers / mem-

ory / cache
stale data in registers / memory
/ cache

fail to release resources

Accelerator Memory Accesses (x) bad access bad access evict others from mem-
ory/caches

System Memory Accesses side-channel
Microarchitectural Commands /
Coherence Requests

inconsistent (stale) data

Exceptions / Interrupts potential timing side-channel extra exceptions/interrupts
Power (x) power analysis attacks excess heat causing unreliability excessive heat leading to damage

TABLE 2
Threats at System Scope. These threats can also affect processes which are never run on untrusted hardware.

Confidentiality Integrity Availability
Configuration incorrect registers (e.g. CR3) incorrect registers (e.g. CR3)
Termination stale translations stale translations fail to release resources
System Memory Accesses bad access bad access saturate bandwidth or shared

caches; cause swapping
Microarchitectural Commands /
Coherence Requests

snoop on coherence traffic (side-
channel); ignored invalidations

ignore invalidations excessive coherence requests /
ignored coherence requests

Exceptions / Interrupts extra exceptions/interrupts
Power high temperature affecting

nearby components
high temperatures destroying
nearby components

4.3 Detailed Threat Descriptions

We will briefly give examples of vulnerabilities for each of the
entries in the threat matrix shown in Tables 1 and 2. We separate
out threats at accelerator and system scope, because the risks of
each and the approaches to counter them are different. We do
not intend to exhaustively list all threats here; different types
of accelerators will be vulnerable to different types of threats.
We leave some entries blank, but this does not mean that it
is impossible for a vulnerability to exist there. However, these
tables can be taken as a starting point for considering possible
security implications of including an accelerator in the system.
For each threat, we indicate whether any exploits are known.

1) Configuration: Confidentiality Misconfiguration can lead
to insufficiently random numbers, wrong modes, or fewer
iterations than intended. Kleptography [4], [21], allows texts
to be encrypted in such a way that a secret big-brother key
can decrypt them. At system scope, a misconfigured CR3 (page
table base) register could lead to incorrect page permissions.

Integrity Misconfiguration can result in incorrect results,
due to bad initial state.

Availability Some devices may be misconfigured to be
undiscoverable by the host.

2) Computation: Confidentiality Side-channel attacks are
well known in CPU processors and caches [5], [6], [11]. They
are also possible with accelerators, and certain bugs or design
choices can make them easier.

Integrity Accelerators may produce the wrong results of
computations. We expect that this will be uncommon, as non-
malicious computation errors should usually be caught by
validation. However, with a large state space and a compli-
cated accelerator, there is a higher chance of undetected buggy
or malicious behavior. furthermore, as shown by the famous
Pentium FDIV bug [16], bugs causing incorrect execution can
occur even in the presence of validation.

Availability A bug that causes the accelerator to get stuck in
a loop or to hang (similar to Halt and Catch Fire (HCF) bugs [3],
[7], [19]) will make the accelerator unavailable.

3) Termination: Confidentiality After program termination,
information leakage can occur if internal memories, registers,
or other state is not cleared. A known example of this for
GPU texture memory exists [9], [13]. In addition, stale address
translations could lead to vulnerabilities such as bad system
memory accesses.

Integrity Stale address translations or other internal state
can lead to incorrect results for computations.

Availability Failure to release accelerator resources pre-
vents other processes from running.

4) Accelerator Memory Accesses: Confidentiality An accel-
erator that allows one process running on the accelerator to
access accelerator memory owned by another process running
on the accelerator can leak information. Di Pietro et al. [9] have
demonstrated this exploit on certain GPUs, where kernels of
the two processes are interleaved.

Integrity Similarly, an accelerator allowing concurrently ex-
ecuting processes to write to one another’s accelerator memory
may have correctness errors.

Availability If multiple processes are running concurrently
and one is allowed to dominate accelerator resources, the other
may suffer from degraded performance. For example, if one
process can evict all cache entries belonging to the other, the
victim will suffer performance penalties.

5) System Memory Accesses: Confidentiality An accelerator
that can make unrestricted physical memory accesses can read
data at addresses unrelated to processes it is running, including
operating system memory. This allows reading sensitive data,
which can be exfiltrated by writing it to other locations in
system memory.

Integrity Similarly, an accelerator can corrupt memory for
other running processes, as well as getting incorrect results in
computation, by reading and writing to incorrect addresses.
Again, this includes the operating system.

Availability An accelerator that permits a high bandwidth
of requests to system memory can slow down requests from
other system components; for example, an accelerator that
erroneously treats some memory accesses as uncacheable.



4

6) Microarchitectural Commands / Coherence Requests: Confi-
dentiality An accelerator in a system with a snoopy coherence
protocol, where accelerators see coherence requests even for
blocks that they do not have access to, could use this infor-
mation in a side-channel attack, enabling information leakage.
Ignoring invalidations or TLB shootdowns can also allow stale
translations/blocks to be accessed.

Integrity Stale translations or invalid block accesses, as well
as other coherence bugs, can lead to wrong computation results.
Malicious coherence requests could cause data corruption in
unrelated processes.

Availability Ignored or very slow coherence responses can
make the system unresponsive.

7) Power Confidentiality The power consumed by the accel-
erator can be used for side-channel attacks, i.e. power analysis
attacks [2], [12]. Examples of this type are prevalent, and
include attacks against accelerators for AES [14].

Integrity An accelerator may operate at too high power
and temperature, for example by switching many transistors at
once. High temperature negatively affects reliability and may
lead to incorrect computation. This is true not only of the
affected accelerator, but also other nearby system components.

Availability An accelerator operating at higher than ex-
pected power/temperature can cause overheating in other ac-
celerators or system components, preventing them from run-
ning or, in the worst case, causing physical damage.

5 IMPLICATIONS

Some papers provide solutions, while others—like this one—
articulate problem spaces to inspire the work of others. To this
end, this taxonomy aims to provide a framework to allow accel-
erator and system designers to carefully consider the security
implications of their design choices. We do not—and believe
cannot—prove our taxonomy exhaustive, as it does not appear
possible to exclude threat classes that one has not thought of
(e.g., software researchers might not have considered exploit-
ing coherence to impede availability). Nevertheless, there are
several ways this taxonomy can be beneficial.

First, developing a taxonomy can provide a small start
toward an accelerator security standard. Currently, the National
Institute of Standards and Technology (NIST) publishes the
Federal Information Processing Standard (FIPS) for crypto-
graphic modules: FIPS 140-2 [10]. This standard allows certi-
fication of cryptographic modules at one of four levels, de-
pending on the protections provided. Although FIPS 140-2 is
not exhaustive and does not cover all potential attacks, the
certification does provide useful information about the security
of cryptographic modules. This taxonomy makes a first step
toward developing a similar standard.

Second, the framework we describe allows designers to
consider entire classes of potential attacks rather than focusing
on vulnerabilities one at a time, and then only once an exploit
is discovered. We provide a means of proactively designing
defenses, which we hope will lead to fewer vulnerabilities in
shipped hardware. Designers will be able to think systemati-
cally about threats and defend against them through providing
abilities and policies for techniques such as hardware resetting
accelerators, monitoring system activity for signs of malicious
behavior [8], [15], [18], designing safe interfaces to shared
system resources such as memory and cache hierarchies, etc.
In addition, the taxonomy and the distinction between internal
and system threats allows application and OS developers to
systematically evaluate the risks of running sensitive or critical
applications on not fully trusted accelerators.

Third, this taxonomy aids in assessing safety and security
in a world where, unfortunately, hardware is not guaranteed
to be perfect. Instead, recognizing that hardware may be ex-
ploitably buggy or even malicious allows us to design defenses
and bound the damage that the hardware may do, without
requiring that the hardware be flawless.

ACKNOWLEDGMENTS

This work is supported through grants FA8750-10-2-0253,
FA8650-11-C-7190, NSF 1054844 and the Alfred P. Sloan Foun-
dation. Opinions, findings, conclusions and recommendations
expressed in this material are those of the authors and may not
reflect the views of the funding entities. The authors thank Eric
Sedlar, Dan Gibson, Multifacet, and UW-Madison Computer
Architecture Affiliates for valuable feedback.

REFERENCES

[1] Intel Xeon Processor E5 Family: Specification Update, Jan. 2014.
[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM

sidechannel(s),” in CHES 2002.
[3] A. D. Balsa, “The Cyrix 6x86 coma bug,”

http://gwyn.tux.org/%7Ebalsa/linux/cyrix/p11.html, Nov.
1997.

[4] M. Bellare, K. Paterson, and P. Rogaway, “Security of symmetric
encryption against mass surveillance,” Cryptology ePrint Archive,
Report 2014/438, 2014.

[5] R. Callan, A. Zaji, and M. Prvulovic, “A practical methodology
for measuring the side-channel signal available to the attacker for
instruction-level events,” in MICRO 47, Dec. 2014.

[6] J. Chen and G. Venkataramani, “CC-Hunter: Uncovering covert
timing channels on shared processor hardware,” in MICRO 47,
Dec. 2014.

[7] R. R. Collins, “The Pentium F00F bug,” Doctor Dobb’s Journal of
Software Tools, vol. 23, no. 5, pp. 62, 64–66, May 1998.

[8] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware
detection with performance counters.”

[9] R. Di Pietro, F. Lombardi, and A. Villani, “CUDA leaks: Informa-
tion leakage in GPU architectures,” arXiv:1305.7383v2, 2013.

[10] P. FIPS, “140-2: Security requirements for cryptographic modules,”
National Institute of Standards and Technology, 2001.

[11] P. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in CRYPTO ’96.

[12] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO ’99.

[13] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered on
your browser by exploiting GPU vulnerabilities,” in SP 2014.

[14] S. B. Örs, F. Gürkaynak, E. Oswald, and B. Preneel, “Power-
analysis attack on an ASIC AES implementation,” in ITCC 2004.

[15] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware-aware processors: A framework for efficient
online malware detection,” in HPCA 21, Feb. 2015.

[16] D. Price, “Pentium FDIV flaw-lessons learned,” IEEE Micro,
vol. 15, no. 2, pp. 86–88, Apr. 1995.

[17] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning
discovers backdoor in military chip,” in CHES 2012.

[18] A. Tang, S. Sethumadhavan, and S. Stolfo, “Unsupervised
anomaly-based malware detection using hardware features.”

[19] G. Wheeler, “Undocumented M6800 instructions,” BYTE Magazine,
vol. 2, no. 12, pp. 46–47, Dec. 1977.

[20] x0r1, “jellyfish,” https://github.com/x0r1/jellyfish, 2015.
[21] A. Young and M. Yung, Malicious Cryptography: Exposing Cryptovi-

rology. John Wiley & Sons, 2004.


