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This dissertation deals with one of the long-standing problems in Computer Archi-

tecture – the problem of memory disambiguation. Microprocessors typically reorder

memory instructions during execution to improve concurrency. Such microproces-

sors use hardware memory structures for memory disambiguation, known as Load-

Store Queues (LSQs), to ensure that memory instruction dependences are satisfied

even when the memory instructions execute out-of-order. A typical LSQ implemen-

tation (circa 2006) holds all in-flight memory instructions in a physically centralized

LSQ and performs a fully associative search on all buffered instructions to ensure

that memory dependences are satisfied. These LSQ implementations do not scale

because they use large, fully associative structures, which are known to be slow and

power hungry. The increasing trend towards distributed microarchitectures further

exacerbates these problems. As on-chip wire delays increase and high-performance

processors become necessarily distributed, centralized structures such as the LSQ

can limit scalability.
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This dissertation describes techniques to create scalable LSQs in both cen-

tralized and distributed microarchitectures. The problems and solutions described

in this thesis are motivated and validated by real system designs. The dissertation

starts with a description of the partitioned primary memory system of the TRIPS

processor, of which the LSQ is an important component, and then through a se-

ries of optimizations describes how the power, area, and centralization problems

of the LSQ can be solved with minor performance losses (if at all) even for large

number of in flight memory instructions. The four solutions described in this disser-

tation — partitioning, filtering, late binding and efficient overflow management —

enable power-, area-efficient, distributed and scalable LSQs, which in turn enable

aggressive large-window processors capable of simultaneously executing thousands

of instructions.

To mitigate the power problem, we replaced the power-hungry, fully associa-

tive search with a power-efficient hash table lookup using a simple address-based

Bloom filter. Bloom filters are probabilistic data structures used for testing set

membership and can be used to quickly check if an instruction with the same data

address is likely to be found in the LSQ without performing the associative search.

Bloom filters typically eliminate more than 80% of the associative searches and they

are highly effective because in most programs, it is uncommon for loads and stores

to have the same data address and be in execution simultaneously.

To rectify the area problem, we observe the fact that only a small fraction

of all memory instructions are dependent, that only such dependent instructions

need to be buffered in the LSQ, and that these instructions need to be in the LSQ

only for certain parts of the pipelined execution. We propose two mechanisms to

ix



exploit these observations. The first mechanism, area filtering, is a hardware mech-

anism that couples Bloom filters and dependence predictors to dynamically identify

and buffer only those instructions which are likely to be dependent. The second

mechanism, late binding, reduces the occupancy and hence size of the LSQ. Both of

these optimizations allows the number of LSQ slots to be reduced by up to one-half

compared to a traditional organization without any performance degradation.

Finally, we describe a new decentralized LSQ design for handling LSQ struc-

tural hazards in distributed microarchitectures. Decentralization of LSQs, and to

a large extent distributed microarchitectures with memory speculation, has proved

to be impractical because of the high performance penalties associated with the

mechanisms for dealing with hazards. To solve this problem, we applied classic

flow-control techniques from interconnection networks for handling resource con-

flicts. The first method, memory-side buffering, buffers the overflowing instructions

in a separate buffer near the LSQs. The second scheme, execution-side NACKing,

sends the overflowing instruction back to the issue window from which it is later

re-issued. The third scheme, network buffering, uses the buffers in the interconnec-

tion network between the execution units and memory to hold instructions when the

LSQ is full, and uses virtual channel flow control to avoid deadlocks. The network

buffering scheme is the most robust of all the overflow schemes and shows less than

1% performance degradation due to overflows for a subset of SPEC CPU 2000 and

EEMBC benchmarks on a cycle-accurate simulator that closely models the TRIPS

processor.

The techniques proposed in this dissertation are independent, architecture-

neutral and their cumulative benefits result in LSQs that can be partitioned at a

x



fine granularity and have low design complexity. Each of these partitions selectively

buffers only memory instructions with true dependences and can be closely cou-

pled with the execution units thus minimizing power, area, and latency. Such LSQ

designs with near-ideal characteristics are well suited for microarchitectures with

thousands of instructions in-flight and may enable even more aggressive microarchi-

tectures in the future.
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Chapter 1

Introduction

Computers have contributed profoundly to improvements in science and society

over the last 60 years. During this period, computer performance has increased an

astonishing trillion times from mere 35 operations per second on the ENIAC [31],

to 280 Tera operations on the fastest supercomputer at the time of this writing,

the IBM Blue Gene/L [1, 76]. These contributions have been possible due to the

ability to profitably manufacture smaller, faster, reliable transistors, and, perhaps

most importantly, the ability to effectively translate the raw transistor speed into

high performance for the end-user. Translating the power of fast transistors to more

powerful computers has been largely possible due to effective computer organizations

and sophisticated compilers.

Over these last 60 years, computer engineers and compiler writers have em-

ployed a number of techniques to achieve high performance. These techniques

broadly fall in two categories. The first set of techniques emphasizes improving

the speed at which each operation can be completed. The second set of techniques
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emphasizes performing many operations in parallel. A low-cost computer, the one

that completes many instructions in parallel at great speed, the Holy Grail for com-

puter designers, however, has been difficult to design.

Broadly speaking, two unsuccessful approaches have been taken to design

the elusive fast, highly parallel computer. The first approach relies on explicit par-

allelization. Usually in this model the programmer explicitly identifies regions of the

program that can execute concurrently. These parallelized programs are then run

on simple, fast processors to achieve high performance [1, 49]. While this approach

can achieve the simultaneous goals of speed and parallelism, in most cases, it is

simply not cost-effective. The task of identifying regions for concurrent execution

is onerous and error prone, and often requires many programmer hours even for the

simplest programs. Such a model for improving performance does not scale in terms

of time and total cost of ownership.

The second approach uses implicit parallelization. Implicitly parallel com-

puters rely on the compiler and/or the microarchitecture to extract the parallelism

“under the covers” without any support from the programmer. While dozens of

implicitly parallel computers have been built, they have been limited in their abil-

ity to extract parallelism [39, 74]. Often the goals of speed and parallelism are at

odds in computer design because the hardware infrastructure required to increase

the number of parallel operations typically slows down the operation and results in

higher power consumption [58]. For this reason, a significant component of these

implicitly parallel computers, the part that handles memory instructions – specifi-

cally the memory disambiguation hardware – has been especially difficult to scale

and is the topic of this thesis. Scalable solutions to this problem will clear one of

2



Program Order Possible Execution Orders

STORE 0xf00d, 0xcafe STORE 0xf00d, 0xcafe STORE 0xf00d, 0xcafe : LOAD 0xCOO1
LOAD X LOAD 0xcafe

Figure 1.1: Effect of ambiguous address on parallel instruction execution: If the
load is to different address than the store (right) the the load and store can execute
in parallel. Otherwise, they must execute serially (middle).

the last remaining hurdles towards massively parallel fast computers.

To date, one of the most highly parallel computers that is also capable of

high frequency operation is the TRIPS prototype built at The University of Texas

at Austin. In this thesis, we propose and evaluate solutions to the long-standing

problem of scalable memory disambiguation in the context of this processor. This

chapter begins by explaining the problem of memory disambiguation, then illustrates

how memory disambiguation has historically affected computer design, how it is

handled in current implicitly parallel systems, and concludes with an overview of

the scalable alternatives described in the thesis.

1.1 What is Memory Disambiguation?

Memory disambiguation is knowing with certainty that two memory instructions

will or will not access the same physical memory location. Consider the memory

instructions shown in Figure 1.1. The first instruction stores the value 0xf00d to the

memory location starting at address 0xcafe. The instruction that follows the store

instruction, a memory read or a load instruction, reads from an unknown location.

In other words, the load’s address is ambiguous.

Depending on the address of the load, two execution scenarios are possible.

3



If the load instruction is to a different address from the store instruction then load

and store instructions can execute independently of each other, for instance, in

parallel, and the program fragment can complete faster provided there are sufficient

resources. Otherwise, the load instruction must necessarily wait for the store to

write its value 0xf00d to location 0xcafe, before it can obtain the value from there.

Thus an ambiguous load can hinder the ability to execute instructions in parallel.

To disambiguate the load, or more generally the memory instructions, one

must know the data addresses that the memory instructions access. These ad-

dresses may be difficult to determine statically because of the ambiguities in the

programming language, or because of dynamic linking, or because of limitations in

the compilation framework or a combination of some or all of the above.

Figure 1.2 illustrates how ambiguity can arise even in simple programs on

a typical (but hypothetical) modern software-hardware system. If the first frag-

ment, “1”, the compiler typically cannot determine the memory location that the

pointer, p, points to because it depends on the runtime value of the function pa-

rameter cond which is usually difficult to determine without actually running the

program. Consequently, the code following the if/else construct cannot be statically

parallelized because of the ambiguous pointer. In the second fragment, “2”, if the

get buf function is dynamically linked from a library then the function cannot be

statically analyzed to determine if the return value of the function points to same

location as the locations pointed to be the names a or b. The ambiguity again

hinders parallelizing code following the function call.

Thus, several factors starting from the programming language leading all

the way down to the OS/Compiler make it impossible to mechanically, statically

4



% Code fragment 1:

1 void foo (bool cond) {

2 int *p;

3 int a,b;

4 if (cond)

5 p = &a;

6 else

7 p = &b;

8 *p++;

9 // some comptuation involving p, a and b

0 }

% Code fragment 2:

1 void bar (bool cond) {

2 int *p;

3 int a,b;

4 // get_buf is dynamically linked

5 p = get_buf(1);

6 // some computation involving p, a and b

7 //

8 }

Figure 1.2: Code sequence illustrating appearance of ambiguity
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and completely disambiguate memory addresses eventually hindering optimizations

for parallel execution. However, scientists over the last several decades have made

several innovations that side step the memory disambiguation problem. The next

section highlights some of the interesting innovations and efforts.

1.2 Memory Disambiguation: A Brief and Incomplete

History

The computers built in the 40s and 50s were simple von-Neumann machines that

executed instructions serially one at a time without spatial multiplexing or tempo-

ral overlap among the instructions. These simple microarchitectures did not need

memory disambiguation because their design guaranteed that all prior instructions

would have finished before the next one is fetched and executed. As microarchi-

tectures evolved from these simple, single instruction unpipelined machines to more

complex, but higher throughput, pipelined, multi-functional, out-of-order, data-flow

machines several innovations were required to handle memory dependences.

Early Adopters: The CDC6600 and the IBM 360/91 were two of the earliest

machines to have special hardware to support memory dependences [75, 11]. These

early processors did not have caches and hence stores to memory were long-latency

operations. Store buffers were implemented to enable the overlap of computation

with the completion of stores. To support correct execution, these machines required

a mechanism for forwarding the store values from the “stunt” or “data buffers” to

in flight loads.
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Early Avoiders: In the late 1960s, in a short span of time, three different groups

proposed a new model of execution known as the data-flow model [82]. Unlike

the von-Neumann model, in the data-flow model instructions execute as soon as

the input data for the instructions are available. The data-flow model removes the

needless instruction-at-a-time restriction of the von-Neumann model and could, in

theory, promote higher degree of parallel instruction completion.

To derive these benefits, however, the data-flow computers must overcome

difficulties with handling memory dependences using special data-flow programming

languages. A key feature of these languages is the absence of persistent storage —

the left hand side variable in an assignment statement is always assigned a new

name and copied over to a new memory location. This implementation allows the

compiler to determine data dependencies by simply matching up the names of the

variables. Consequently, ambiguities are impossible and the compiler, in theory, can

schedule the execution of instructions to maximize parallel execution.

The data-flow computers, however, have suffered from several practical prob-

lems. First the data-flow language requirement limits the software usable on these

computers; a large portion of software is written in von-Neumann style (sequential)

languages and hence cannot be utilized for these data-flow machines. Second, sup-

porting Input-Output operations is fundamentally impossible in a pure data-flow

model because Input-Output operations need to maintain persistent state. Third,

because of the lack of persistent storage in this model, for composite data structures

like arrays, even changing one part of the data structure required copying over the

entire data structure. To overcome the array-copying problem, MIT researchers,

invented special hardware and language structures known as I-structures [6]. How-
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ever, the size of the data structure was limited by the size of the I-structures, which

were in turn constrained by the VLSI technology and eventually restricted the scope

of the data-flow and the parallelism that can be exploited.

Thus, even though data-flow computers promised maximal parallelism, the

Achilles heel for these computers was memory and memory disambiguation. One

solution to the problem that has been investigated in detail has been to convert von-

Neumann languages into data-flow representations that can execute efficiently on a

processor. An analysis to establish the equivalence of pointers is an essential part of

this conversion. However, even with state-of-the-art pointer analysis, precise pointer

analysis is too slow and takes up too much memory for many but not all realistic

programs [35]. Furthermore, as explained in the previous section, in the presence

of dynamic loading, the problem of memory disambiguation becomes intractable in

the general case.

When memory was temporarily tamed: Unlike in the case of the data-flow

computers, language-based solutions have been useful and practical for some com-

puter organizations.

During the early 1970s, supercomputer companies manufactured an enhanced

von-Neumann style computer that could operate simultaneously on multiple data

items using only one instruction [43]. These instructions were known as vector in-

structions and the computers that used these instructions came to be known as

vector computers. To detect and encode vector operations from serial code, the

engineers for these machines invented sophisticated compiler analyses. One notable

invention was array dependence analysis, which allowed the compiler to determine

whether two array accesses in the loop body pointed to the same memory location.
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The results from this analysis are then used to parallelize loops and code the op-

erations inside a loop as vector operations. Array dependence analysis was largely

possible and simplified by the fact that FORTRAN, the preferred language for su-

percomputers, did not have any pointers. Unlike data-flow computers, the language

requirement worked in favor of the vector computers because FORTRAN happened

a popular computer language for scientific computing and therefore programs were

readily available. In the 80s, however, as newer languages like C/C++ became pop-

ular, programs written in these languages used pointers heavily, which diminished

the usefulness many previously useful compiler analysis including array dependence

analysis.

Modern Memory Dependence Hardware: In the 1980s, spurred by the ability

to include more transistors on a chip, microarchitects designed processors that could

be fit on one chip. The microprocessors, as these were called, became increasingly

sophisticated starting from simple in-order pipelines to very complex out-of-order

processors, to processors that could perform in hardware the code optimizations

previously performed by the compiler. The fundamental idea in several of these

machines was similar to early von-Neumann machines - a set of serially fetched

instructions were deposited into a structure known as the instruction window, and

then the instructions whose operands were ready were issued for execution. This ex-

ecution model allowed loads and stores to be reordered from the instruction window

and required memory disambiguation structures known as the Load-Store-Queues

(LSQs) to ensure correct execution. Patt et al. designed one of the earliest LSQs

for the High Performance Substrate processor proposed in 1985 [60].

As these processors evolved, and their ability to execute multiple instructions
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increased, so did the need for larger sized memory disambiguation hardware. The

size of the memory disambiguation hardware limits the number of in-flight memory

instructions and thus eventually limits the amount of (instruction-level) parallelism

that can be exploited. These LSQs became one of the primary structures inhibiting

the scaling of superscalar processors to larger processors, since they have typically

supported only a few tens of in-flight loads and stores due to power and complexity

limits.

In the early 2000s, these power and complexity limits in LSQs and other

structures led to an industry-wide shift to chip multiprocessors (CMPs) [74, 46]. At

the time of writing this dissertation, much of the current research is focusing on

CMPs in which the individual are processors smaller, lower power, and simpler, ef-

fectively reducing single-thread performance. This trend is reducing the instruction-

level parallelism that can be exploited, placing a higher burden on software and/or

programmers to use CMPs effectively. Historically, however, most programmers

have had difficulty parallelizing their applications. Additionally, compilers have had

limited success in automating parallelism for popular languages like C/C++, and

Java in part due to the difficulty with pointer analysis.

Alternatives to CMPs are tiled large-window microarchitectures that can

scale to thousands of in-flight instructions, using traditional languages and modest

and feasible compiler analysis. Memory disambiguation at this scale, however, has

been a key limitation for these types of architectures because of power, latency and

complexity limits.

Summary: Over the 40 years, since computer architects embarked on the quest for

higher degree of parallelism, memory disambiguation has posed several challenges.
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Architects have attempted to overcome the problem using language support, with

compiler analysis and recently using limited hardware support. However, as the need

for parallelism increases, and as older approaches lose favor because of economic

and technical reasons, the problem of memory disambiguation threatens to stall

historical performance improvements provided by computers over the past 60 years.

This dissertation makes contributions towards solving this important problem.

1.3 Thesis Contributions

The purpose of the LSQ is to allow in flight loads and stores to be re-ordered

if they are to different addresses and enforce dependencies when they are to the

same address. An ideal LSQ will selectively buffer the memory instructions with

true memory dependences irrespective of the ambiguity of the memory instructions,

buffer the dependent instructions for the minimum duration required to satisfy the

dependences, allow access to the buffered LSQ only for the dependent instructions

and allow the LSQs to be physically near the unit that produced the memory op-

eration. The first three requirements are important for reducing the size and power

consumed by the LSQ and the fourth frees the designer of constraining the location

of the LSQ.

A conventional LSQ, in direct contrast to the ideal LSQ, typically holds all

in-flight memory instructions in a physically centralized LSQ and performs a fully

associative search on all buffered instructions to ensure that memory dependencies

are satisfied. These LSQ implementations do not scale because they use large,

fully associative structures, which are known to be slow and power-hungry. The

increasing trend towards distributed microarchitectures further exacerbates these
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problems. As on-chip wire delays increase and high-performance processors become

necessarily distributed, centralized structures such as the LSQ can limit scalability.

This thesis makes four contributions that propose techniques to create LSQs

with near-ideal characteristics.

LSQ Late Binding: Traditional LSQs hold the memory instructions in the order

that they are fetched by allocating slots to instructions in the early stages of the

instruction execution pipeline. This allocation policy, while simplifying the LSQ

hardware, results in oversized LSQs because a memory instruction does make use of

the allocated slot until it is executed in the later stages of the pipeline. By delaying

the allocation until instruction execution, “late-binding”, the LSQ can have lower

occupancy and thus can be smaller. This optimization allows the number of LSQ

slots to be reduced by up to one-half with little or no performance degradation.

LSQ Overflow Management: LSQs for distributed architectures also need to

be distributed. In distributed LSQs, it is wasteful to maximally size each of the

LSQ partitions because only a fraction of the memory references will access a given

partition. If the partitions are not maximally sized, however, we need schemes to

deal with situations when too many instructions map to a distributed bank. Simply

stalling could lead to deadlocks; simply restarting can lead to severe performance

losses. We observe that in a distributed, large-window processor, LSQ banks can

be treated as clients on a micronetwork, with overflows handled using traditional

network flow-control techniques adapted to distributed processor microarchitectures.

These flow-control techniques allow LSQs to be constructed using a set of small

partitionable distributed banks with little or no performance losses.
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LSQ Access Filtering: To mitigate the power problem, we replaced the power-

hungry, fully associative search with a power-efficient hash table lookup using a

simple address-based Bloom filter. Bloom filters are probabilistic data structures

used for testing set membership and can be used to quickly check if an instruction

with the same data address is likely to be found in the LSQ without performing the

associative search. Bloom filters typically eliminate more than 70% of the associative

searches and are highly effective because in most programs, it is uncommon for loads

and stores to have the same data address and be in execution simultaneously.

LSQ Area Filtering: This technique uses a predictor to first learn about depen-

dent memory instructions during execution and then attempts to buffer only those

instructions in the LSQ. Correct execution is guaranteed by using a space-efficient

Bloom Filter for the independent instructions. This scheme has the potential to

reduce the size of the LSQ by 90%.

The key idea behind these contributions is to optimize the LSQ implemen-

tation for common program behavior. In many programs, although several loads

and stores in a program may be statically ambiguous only a few are dynamically

dependent on each other. This observation when combined with Bloom filter based

implementation provide an area and power efficient implementation alternative to

LSQs because they provide an efficient encoding of independent operations and thus

have the potential to create near-ideal LSQs.
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1.4 Thesis Roadmap

This thesis begins with an overview of the TRIPS processor, the TRIPS microar-

chitecture and then describes in detail the design of the TRIPS primary memory

system – a memory system partitioned to a greater degree than prior uniprocessor

memory systems – to set the stage for the discussion of LSQs for rest of the the-

sis. In Chapter 3, we discuss LSQ filtering optimizations. In Chapter 4, we discuss

late-binding and overflow management techniques for distributed LSQs. Chapter

5 discusses related work and is followed by concluding remarks and future work in

Chapter 6. The appendix includes LSQ extensions for TRIPS multiprocessors.
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Chapter 2

Background on the TRIPS

Primary Memory System

Despite the plethora of research papers on the individual components of the pri-

mary memory system, most prominently caches 1, I do not know of any research

publications that thoroughly describe the internals of the primary memory system

of a modern microprocessor. Without this information it is often difficult for the

non-specialist reader to understand the implications of individual memory system

optimizations. To address this problem, this chapter first describes the TRIPS pri-

mary memory system before describing the LSQ optimizations in the later chapters.

In addition to providing background, this chapter also documents the TRIPS

memory system implementation, which is novel and interesting for several reasons.

It is a fully partitioned, polymorphous memory system which supports sequential

memory semantics while supporting aggressive re-ordering of loads and stores and

1by some estimates nearly 2000 papers have been published: J.L. Baer, HPCA 2000 Keynote
Address
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simultaneously ensuring that none of the traditional memory system functions are

necessarily centralized. In addition, the TRIPS memory system is four times larger

than several contemporary designs. For instance, each TRIPS processor can manage

up to 64 outstanding misses to the memory system and handle four loads every cycle

while contemporary designs can handle four misses and handle two or fewer loads

every cycle.

The memory system must be fully partitioned to match the execution sub-

strate, which, in turn, is also partitioned to address the technology challenges posed

by increasing wire delays and power consumption. The memory system must be

polymorphous, i.e., support sequential, streaming and threaded workloads efficiently

without additional area requirements. It must also support sequential memory se-

mantics to allow the use traditional languages like C/C++ to program the TRIPS

processor. Allowing loads and stores to be aggressively re-ordered is critical for

achieving greater instruction execution overlap.

We hypothesized that the TRIPS memory system could be constructed in

a complexity-effective manner from independently accessible partitions that com-

municate using distributed protocols. Our prototype implementation validated this

hypothesis and showed that although new protocols were required, these protocols

were simple, and the time-to-design and verification complexity of the partitioned

memory system were comparable to a centralized implementation.

The rest of this chapter describes the details of the memory system. The

sections are organized as follows: Section 2.1 describes the motivation and archi-

tecture of the TRIPS processor. Section 2.2 provides an overview of the TRIPS

microarchitecture. Section 2.3 describes the primary memory system a number of
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important aspects of the memory system. We conclude this chapter with summary

of the TRIPS primary memory system.

2.1 TRIPS: Motivation and Architecture

Performance depends two factors: frequency, how fast an operation can be com-

pleted, and concurrency, the number of operations that can be completed in each

cycle. Towards the early part of this decade, increasing the frequency to improve

performance was becoming increasingly less viable because of the effects of growing

wire delays, power consumption, and the diminishing performance gains from deeper

pipelines [51, 56, 40, 36]. Consequently, processor designers were forced to shift to

exploiting concurrency to improve performance.

Traditional ISAs like RISC and CISC, and their conventional implementa-

tions, however, do not lend themselves profitably to concurrent implementations.

Traditional ISAs were invented for von-Neumann architectures which are inher-

ently sequential, and require a single sequencer which throttles parallelism at the

front-end of processor, starving the back-end (“Flynn Bottleneck”). Although spec-

ulative techniques like branch prediction can mitigate some of this, often artificially

introduced sequentiality by predicting and fetching across multiple branches, scal-

ing these speculative methods to thousands of instructions is still an open research

problem. In addition, conventional microarchitectures use many centralized struc-

tures, like register files, issue-windows, and load-store-queues which do not scale

with increasing number of in flight instructions [2].

The TRIPS designers invented the EDGE ISA and microarchitecture that

was more amenable to concurrent instruction execution in wire-delay dominated
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technologies [13, 66]. Explicit Data Graph Execution (EDGE) ISAs sequence through

blocks of instructions which are fetched and committed atomically i.e., a TRIPS

block can update architectural state only when all of its memory and register out-

puts have been generated. Unlike von-Neumann architectures, block atomic archi-

tectures sequence through groups of instructions thus mitigating the performance

impact of artificial instruction-level dependences.

The TRIPS compiler partitions the program into blocks of up to 128 in-

struction which are fetched, executed, and committed as atomic units [70, 50, 20].

Blocks may contain up to 32 load or store instructions. The hardware maps these

blocks onto a distributed microarchitecture which executes the instructions within

each block in dataflow order. Thus data-flow execution is facilitated by directly

encoding the producer-consumer dependences as part of the instruction. The hard-

ware also speculatively executes up to seven blocks so that eight blocks may be

executing simultaneously. Blocks that suffer control-flow or load-store dependence

mis-speculations are flushed and re-executed.

More details on the ISA, execution model and microarchitecture are de-

scribed in the TRIPS ISA specification, and dissertations of Nagarajan and Sankar-

alingam [52, 57, 65]. The rest of this section focuses mainly on the features of the

TRIPS ISA that are most relevant to the memory system.

Instruction types: The TRIPS architecture, like several commercial architec-

tures, supports byte (8-bit), half-word (16-bit), word (32-bit) and double-word (64-

bit) load and store instructions. These instructions can be used to load or store

integer, floating point or any arbitrary sized data type. Supporting one uniform

datum size could have simplified portions of the design (the LSQ and store merging
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Data Size Load Fraction Store Fraction

64-bit 0.58 0.70

32-bit 0.23 0.20

16-bit 0.03 0.03

8-bit 0.15 0.06

Table 2.1: Distribution of loads and stores of different sizes on the TRIPS for 20
SPEC benchmarks.

logic), but at the expense of extra instructions that would be needed compose un-

supported data types. For instance, if only doubleword memory instructions were

implemented, extra instructions would be need for extracting relevant bits for byte

accesses. On the other hand, if only byte sized memory instructions were allowed,

multiple memory accesses would increase the memory bandwidth. We decided to

support multiple data sizes because each data type comprises a significant fraction

of the memory instructions (see Table 2.1).

In addition to these different data types, the TRIPS ISA also supports differ-

ent types of memory attributes (mergeable/unmergeable, cacheable/uncacheable),

synchronization instructions (locks), and virtual memory. Load and store instruc-

tions to mergeable regions can be combined and issued as larger load and store

instructions to the memory system. Load and store instructions to uncacheable

regions bypass the cache before they are issued to the memory system. The merge-

ability and cacheability of loads and stores is implicitly determined by the addresses

they access, i.e., the attributes are applied en-masse to contiguous chunks of the

address space and enforced using the TLB.

The unmergeable and uncacheable attributes are used to provide synchro-

nization and streaming support. The unmergeable region is used to isolate lock
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instructions from being merged with regular load and store instructions in the crit-

ical sections, by marking the lock address space as unmergeable. Address segments

marked uncacheable are used to implement streaming operations and lock based

synchronization. Lock instructions should also be marked uncacheable because the

TRIPS implementation (not the ISA) does not support coherence between the L1

data caches across the multiple processors.

Load/Store Ordering: To determine the correct memory order and thus track

load store dependences in the partitioned primary memory system, the TRIPS pro-

cessor uses specially encoded program order tags called Load Store IDs (or LSIDs).

An LSID is a 5-bit field in a memory instruction. In most superscalar architectures,

the program order (or “age”) is determined dynamically in the fetch stage and hence

the LSID is not included in the instruction. In a completely partitioned microar-

chitecture like TRIPS however, the fetch mechanism is also partitioned and there

are multiple distributed fetch points co-operatively fetching instruction streams. In

such cases, without centralization, it is impossible to construct the total memory

age order from the partial memory age orderings observed at different fetch points;

hence LSIDs must be encoded as part of the instruction.

Consistency model: TRIPS implements a weak consistency model (similar to

Power 4 [78]) that enforces load/store dependences in a thread but relaxes all ex-

ecution orders and requires the programmer to insert memory barriers to realize

more strict consistency. Direct hardware support of more traditional and program-

mer friendly consistency models on TRIPS (like in other aggressive out-of-order

processors) can negatively impact performance if it is naively implemented. Con-
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sider, for instance, total store ordering (TSO). Among other requirements, TSO

requires that stores to different memory addresses commit in program order. To

support TSO on TRIPS, a store must be constrained to update memory only after

the previous store has committed. This requirement would restrict store commits to

one per cycle whereas a weaker model can enable simultaneous store commits from

all partitions. The slower deallocation of stores eventually leads to slower deal-

location of other processor resources resulting in performance losses. Appendix A

discusses implementation of traditional consistency models on the TRIPS processor.

Block Atomic Execution: To support block atomic execution, each TRIPS

block encodes the number of memory outputs (stores) for a block, and the LSIDs

of all outputs in the store-mask bit vector, in the block header. This information is

broadcast to all the memory system partitions when a new block is fetched. Each

block can have up to 32 memory instructions. Thus with eight inflight blocks, the

microarchitecture must support 256 inflight memory instructions.

2.2 TRIPS Microarchitecture Overview

TRIPS is a distributed microarchitecture that seeks scalability by partitioning its mi-

croarchitectural components such as execution units and cache banks. This section

gives a brief overview of the TRIPS microarchitecture as it pertains to distributed

LSQs and the microarchitectural networks addressed in this dissertation. Additional

details on the TRIPS core can be found in [66].

Figure 2.1 shows a diagram of a TRIPS processor composed of multiple

tiles connected via a set of microarchitectural networks (micronets). The given
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GT: global control

RT: register file (32 registers per tile)

IT:  instruction cache (16KB per tile)
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Figure 2.1: TRIPS tile organization and micronetworks relevant to the LSQ.

processor comprises five instruction cache tiles (ITs), four register file tiles (RTs),

sixteen execution tiles (ETs), four data cache tiles (DTs) and one global control tile

(GT). These tiles are connected via the operand network (OPN) that dynamically

routes operand-size items from producers to consumers in a 5×5 mesh. When a

block is fetched, its instructions are delivered to preallocated reservation stations

distributed throughout the ETs. Reservation stations remain allocated to the block

until the block is committed and a new block is fetched. Instructions fire when their

operands arrive and subsequently deliver their results to their consumers via the

OPN. Load and store instructions are delivered to the DTs via the OPN and load

results are returned to consumers via the OPN. OPN links consist of a single physical

channel but includes small FIFO buffers throughout the routers to increase network

capacity [33]. All of the routers employ simple on-off flow control with hold signals

to exert back pressure. This back pressure extends into network clients, such as the

execution units, which can then be forced to stall. The network and the ETs are

arranged such that dependent instructions in the same ET can be executed in back

to back cycles and dependent instruction in the neighboring ET can be executed

one cycle after the execution of the parent instruction.
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(a) TRIPS Processor Core (b) Data Tile Components
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Figure 2.2: Single core of the TRIPS SMT-CMP prototype and components of a s
ingle data tile

2.3 DT Microarchitecture Overview

The primary memory system (level-1) of the TRIPS processor prototype is made up

of four partitions, each called a Data Tile (DT). Each DT (Figure 2.2) is interleaved

at a cache-line granularity and includes an 8KB, 2-way associative cache bank (L1D),

a local copy of the load store queue (LSQ), a local copy of the data translation look-

aside buffers (TLB), a store-load dependence predictor (DPR), and miss-handling

unit (MHU). Each DT is connected to three different networks: the operand network

delivers loads and stores from the execution units to the DTs, the L2 network

(On-chip Network or OCN [32]) is used to access the L2 cache banks on load and

store misses and the status network (DSN) connects all the DTs and is used to

track stores arriving at the different DTs. The store arrival information is used to

determine when all block store outputs have been produced and also enable load-

store dependence prediction.

Using the structures and networks described above, each DT partition:
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• provides data to loads and stores

• performs address translation and protection with its DTLB bank

• handles cache misses with its MHU

• tracks load and store dependences with its LSQ

• performs load/store dependence prediction for aggressive load store issue with

DPR

• detects when all store outputs for a TRIPS block have been produced

• writes stores to caches/memory when they become non-speculative

• performs store merging on L1 store cache misses

The load and store instructions can be mapped onto any of the sixteen exe-

cution units on the TRIPS processor (Figure 2.2a.) The memory instructions issue

from the execution units when all their inputs are available, and are then delivered

to the DT through the operand network. This section provides an overview of the

basic steps involved in load and store processing in the DT and the pipelines that

implement the load/store processing steps. We also describe store tracking, the only

additional microarchitecture mechanism required for partitioning the primary mem-

ory system. We conclude this section with the method for dependence prediction

on the TRIPS processor.

2.3.1 Load Processing

The pipeline diagram in Figure 2.3 illustrates the different stages of load processing.

Every incoming load accesses (a) the TLB to perform address translation and check
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TLB DPR Cache LSQ Response

Miss X X X Report TLB Exception

Hit Hit X X Defer load until all prior stores are received

Hit Miss Hit Miss Forward data from cache

Hit Miss Miss X Forward data from L2 cache, issue cache fill request

Hit Miss Hit Hit Forward data from LSQ and cache

Table 2.2: Load Execution Scenarios. X represents “don’t care” state.

the protection attributes, (b) the dependence predictor (DPR) to check for possible

store dependences, (c) the LSQ to identify older matching uncommitted stores, and

(d) the cache tags to check for cache hits. Based on the responses (hit/miss) from the

four units, the control logic decides on the course of action for that load. Table 2.2

summarizes the possible load execution scenarios in the DT.

Load Hit: When the load hits in the cache, and only in the cache, the load reply

can be generated in two cycles. This best-case latency is likely to be the common

case for most loads. When a load hits both in the cache and the LSQ, the load

return value is formed by composing the values obtained from the LSQ and cache.

First, the load picks up any matching store bytes from the LSQ and then reads

the remaining bytes from the cache. This operation can take multiple cycles and is

called as store forwarding. Section 2.5 describes store forwarding in more detail.

DPR Hit: A load may arrive at the DT before an earlier store on which it depends.

Processing such a load right away will result in a dependence violation and a flush

leading to performance losses. To avoid this performance loss, the TRIPS processor

employs a simple dependence predictor that predicts whether the load processing
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should be deferred. If the DPR predicts a likely dependence the load waits in the

LSQ until all prior stores have arrived. After the arrival of all older stores, the load

is enabled from the LSQ, and allowed to access the cache and the LSQs to obtain

the most recent updated store value.

Figure 2.3 illustrates the stages involved involved in processing deferred loads.

When a load is deferred, the type, size, address and target of the load are stored in

the LSQ. Every cycle, the oldest deferred load checks if all prior stores for that load

have arrived. If the load is ready to be undeferred, then the load waits to read data

from the LSQ. If there is another load involved in store-forwarding the deferred load

waits until the store forwarding is complete. When the LSQ is free, the load is read

from the LSQ and the load is re-inserted into the pipeline as if the deferred load

was a new load. This simple optimization, simplifies the state machines required for

accessing the caches, LSQ, and different pipeline interlocks.

Load Miss: If the load misses in the cache, it is buffered in the Miss Status

Holding Registers (MSHRs) [47] and a read request is generated and sent to the L2.

When the data is returned from the L2, the loads in the MSHRs are enabled and

load processing resumes. Like deferred loads, missed loads also access the LSQ and

cache to pick up the most recent store values.

Figure 2.3 illustrates the stages involved in processing missed loads. In the

cycle after determining that load has missed in the cache, if there are no pending

memory requests, the load address is used to construct a miss request packet. As will

be explained later, several bookkeeping structures are also updated in this stage. In

the next stage, in the absence of store misses and cache spills, the load miss request

is sent out on the network. Upon a miss return, the data is accessed in a pipelined
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fashion as soon as the load data starts arriving from the memory. For each arriving

16-bytes of data (flit), loads dependent on that flit are woken up from the MSHRs

and the incoming data is also written to the cache. Just in the case of deferred loads,

the missed loads are also re-injected into the pipeline as if they are just arriving from

the execution units. This optimization greatly simplifies the handling of several

corner cases. For instance, without this optimization, loads that are woken up have

to interlock with the LSQ to check for stores to the missing address that arrived

while the load miss was being processed. In addition to the interlocks in the LSQ,

each pipeline stage has to be checked for matching stores, increasing the number of

bypasses significantly. Additional details of the miss-handling and interaction with

store miss handling are discussed in Section 2.6.

2.3.2 Store Processing

Store processing occurs in two phases. During the first phase, each incoming store is

buffered in the LSQ and the other DTs are notified about the store’s arrival. During

this phase each store checks for dependence violations; if any younger loads to the

same address as the store are in the load-store queue, then a violation is reported to

the control unit, which initiates recovery. The dependence predictor is also trained

to prevent such violations in the future.

When a block becomes non-speculative, the second phase of store processing

begins as illustrated in Figure 2.4. In this phase the oldest store is removed from the

LSQ, checked in the TLB, and the store value is written out to the cache/memory

system. If the store hits in the cache, the corresponding cache line is marked as

dirty. If the store misses in the cache, the store miss request is sent to the L2. We

28



Pick Store
to commit

Read
Store data
from LSQ

Access
cache
tags

LRU update

Write to
cache or
merge 
buffer

Store
Commit

Check for
hit or miss

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Figure 2.4: The ST Commit Pipeline

chose a write-back, write-noallocate policy to minimize the number of commit stalls.

2.3.3 Store Tracking

In the TRIPS execution model, a block can commit only after all of its store outputs

have been generated. When a store arrives at any DT, the store arrival information

is broadcasted to the other DTs through the Data Status Network (DSN). Each DT

then increments a local counter that counts the number of stores that have arrived

at the memory system. When all of the stores in a block have been received, the

DT that received the last store sends a message to the control tile indicating that

all memory outputs have been generated.

The DTs share information about the arrival of stores on the DSN. The DSN

network is a staged fully connected network with dedicated physical links between

the partitions. Each store packet on this network is ten bits wide – eight bits to

represent the age of the store and two bits for communication exception conditions.
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2.4 Memory-Side Dependence Processing

In the TRIPS implementation, the instruction window is partitioned across sixteen

execution units (Figure 2.2) and the dependent loads and stores can be mapped to

any of the execution units. A naive extension of conventional dependence processing

mechanisms [18] would hold back the load in the execution unit until the execution

of the dependent store. This strategy can increase the load latency as explained

below.

The latency of dependent loads can be broken down into four parts: (1) the

latency for the load to detect that the dependent store has executed, (2) the latency

for the load to be delivered from the execution unit to the DT, (3) the latency to

access the DT, and (4) the latency to deliver the value from the DT to the target of

the load. With execution side dependence processing, no overlap is possible between

any of the latencies, because the loads are issued only after the dependent stores

resolve and rest of the steps must be performed in order. However, memory side

dependence processing allows the overlap of steps (1) and (2).

2.5 LSQ Microarchitecture

The LSQ is critical for supporting aggressive memory ordering and is often consid-

ered to be one of the most complex structures in an out-of-order processor. This

section describes the design of the LSQ in the context of the partitioned TRIPS

microarchitecture.

The LSQ must support four major functions: (1) detect ordering violations

between loads and stores to the same address, (2) forward values from uncommit-
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ted stores to loads to same address, (3) buffer and wake up deferred loads, and

(4) buffer and commit store values to memory. All the above functions, except the

third, are also required of the LSQs in conventional architectures. The third func-

tionality is related to dependence prediction and is most efficiently implemented in

the DT/LSQs for TRIPS.

2.5.1 LSQ state

The TRIPS microarchitecture allows up to eight blocks to be in-flight simultane-

ously and each block can have a maximum of 32 memory instructions; therefore, a

maximum of 256 memory instructions in-flight. To accommodate the case when all

the memory instructions in a block map to the same DT bank, the LSQ is sized to

hold 256 memory instructions. The logical and physical organizations of the LSQ

are illustrated in Figure 2.5.

Each record in the LSQ holds: (1) the valid bit for the LSQ record, (2)

the type bit to distinguish load and stores, (3) the wait bit to mark a deferred

load, (4) the high order 37 bits of the virtual memory address to identify matching

instructions in the LSQ, (5) an 8-bit vector (byte enable) representing the bytes

accessed by the instruction; this is used to implement store forwarding efficiently,

(6) the target of the load (i.e. consumer for the load data), and (7) the 64-bit store

data value.

The valid, type and deferred bit (i.e. all the status bits) are constructed

using flip-flop arrays. The higher order 37 bits of the address are stored in the

address CAM (A-CAM) with one read, one write and one search port. The 8-bit

vector representing the bytes accessed or modified by the memory instruction are
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also stored in the byte-enable CAM (B-CAM) which has one write, one search but

no read ports. The A-CAM supports only full exact matches while the B-CAM can

identify partial matches. For load records, the load target (9 bits), the higher order

address bits (37 bits) and the bit vector (8 bits) are stored in the RAM. For store

records, the store data value is stored in the RAM. The RAM has two read ports

and one write port. The write port is used to store incoming instructions while one

of the read ports is used for committing store values, and the other is used for either

store forwarding or waking up deferred loads.

2.5.2 LSQ operations

LSQ Store Forwarding: Upon receiving a new memory instruction, the LSQ

decodes the age of the instruction to produce an index into the LSQ. The indexed

location stores the the address, the type and the target/value of the instruction.

Simultaneously, the CAMs are associatively searched with the address and byte

enables of the incoming instruction to identify all matching instructions.

The store-load forwarding operation is the most complicated operation in the

LSQ because the load may match an arbitrary number of stores and can forward

from up to eight distinct stores because of different sized LDs/STs. To handle this

case, the LSQ scans all the matching stores starting from the most recent store,

processing one matching store every cycle, either until the value of every load byte

has been obtained or until there are no matching stores to the unforwarded bytes.

Figure 2.6 illustrates an example of multiple forwarding where multiple stores

of different sizes match to an 8-byte load (Address 0x8000, Age 24). In the first

cycle, the CAMs are associatively searched and the stores 23, 22, 20, 18 and 17 are
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identified as matching stores. These matches are scanned starting from the most

recent store. In the first scan, byte 6 of the load is retrieved from store 23 and the

load byte is marked as forwarded. In the next scan, a new associative search identifies

the matching stores corresponding to the remaining unforwarded bytes. The search

now returns 22, 20, 18 and 17. Store 23 does not match because it produces byte

6 which was already forwarded to in cycle 1; at the end of the second scan, byte 0

from the store 22 is forwarded to the load. After the next three scans, bytes 4 and

5 are forwarded from 20, byte 7 is forwarded from 18 and byte 1 is forwarded from

17. At this point, there are no more matching stores to the remaining unforwarded

bytes (bytes 2 and 3) and therefore LSQ forwarding is terminated. The remaining

bytes are obtained from the cache. In this example, forwarding takes five cycles and

during this period, the LSQ is completely stalled and cannot accept new loads or

stores. Note that after the first associative search which searches both the address

and the byte enable CAM and the rest of the scans search only the byte enable

CAM which is eight-bits wide.

Dependence Violations: To detect dependence violations, the LSQ detects if

there are any matching, non-deferred, loads younger than store in program order

and if so, reports a violation to the control unit. To recover from the violation all

younger blocks starting from the load block that caused the violation are flushed

and re-executed. Forward progress is guaranteed by serially executing the block

that caused the violation.

Deferred load processing: A deferred load is marked by setting the wait bit in

the load’s LSQ record. Every cycle, the wakeup logic scans the deferred bits of the
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all the loads and selects the oldest deferred load for processing. In the next cycle,

the LSQ logic checks if all stores older than the selected load have arrived at the

DTs. If they have, then all the information about the deferred load – its address, the

byte-enables and the target of the load – is read from the LSQ RAM. The deferred

load then accesses the LSQ and cache as if it were a new load entering the DT for

the first time. When the load goes through the LSQ for the second time it picks up

values from matching stores.

Committed Store Processing: The LSQ buffers all stores until they can be

architecturally visible. When the global control sends a message to the DTs to

commit the stores, the stores are picked one-by-one in program order at each of

the DTs and committed to the L1 caches/miss buffers. Note that although, the

stores commit in program order at each partition, they can go out-of-order between

the partitions. When all the stores have been committed, the LSQ reports this

information to the global control logic so that the resources allocated for the block

can be freed across the processor.

2.5.3 Design Rationale

Multiple forwarding in the LSQ: Many superscalar processors avoid the com-

plex processing required for multiple forwarding by either simply flushing [39] or

replaying [78] the load when multiple matching stores are detected in the LSQ. This

strategy is not feasible in a block-atomic architecture like TRIPS because it can

lead to deadlocks. If there are partial matches within a block, the load will not

execute until the matching stores are drained, but the matching stores cannot be

drained because the load and its dependents may have to execute to produce the

34



block outputs.

Unified LSQ: Recently several processors have supported memory ordering using

separate load and store buffers to increase the bandwidth and decrease the power per

access. TRIPS, however, uses a unified LSQ because separate buffers will require

more than 32 bits for encoding the memory instructions. This is because imple-

menting separate LD and ST buffers requires that each memory instruction carry

two different types of age tags; one tag encoding the global age and a second tag

encoding the relative load/store ages. Alternatively, one can partition the TRIPS

LSQ in LQ/SQ with the instruction encoding fixed at 32 bits. This strategy is dis-

advantageous because it restricts the number of memory instructions in the block

and places hard restrictions on the number of loads and stores separately in block

due to the reduced number of bits available for both the tags.

Maximally sized LSQs: Although on average only one fourth of the total mem-

ory instructions are expected to reach any DT partition, the LSQ in each DT is

maximally sized. There are two microarchitectural reasons motivating maximally

sized LSQs:

1. Deadlock avoidance: If the LSQs are undersized then with speculative execu-

tion, younger memory instructions may arrive earlier than the older instruc-

tions and may take up all slots in the LSQ preventing the older instructions

from completing and eventually stalling forward progress.

2. Design Simplicity: When we started the project, it appeared to us that max-

imally sized conventional age-indexed LSQs would pose the least design risk
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because they were well-understood and straightforward to implement.

In research conducted after the prototype implementation, described in Chap-

ter 3, we have developed complexity-effective methods to safely reduce the LSQ size

without causing deadlocks.

2.6 Miss Handling Unit Microarchitecture

The Miss Handling Unit (MHU) plays a key role in sustaining high levels of memory

parallelism by managing multiple, outstanding L1D load and store misses. The

MHU sends L1D miss requests to the L2 cache via the On Chip Network (OCN)

– the chip data transfer fabric – and receives read data (for load misses) and write

acknowledgements (for store misses) from the L2 cache. While much of the TRIPS

MHU functionality is typical of out-of-order processors, the use of on-chip networks

imposes different correctness and performance requirements.

2.6.1 MHU State

Figure 2.7 illustrates the components of the MHU. The MHU in each DT contains

(1) sixteen MSHRs that hold information on each of the missed loads, (2) four 64-

byte fill buffers that hold cache lines returning from L2 (on the OCN) before it is

written to the L1D cache, (3) a four entry FIFO load request queue (LRQ) that

decouples fill buffer allocation from the load miss processing, (4) a 64-byte store

merge buffer that can coalesce multiple stores to the same cache line before sending

it to the L2, (5) a 64-byte store transmit buffer that is used as scratch storage for

holding the coalesced writes while the OCN packets are being created and sent, and
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(6) a 64-byte spill buffer that holds one cache-line worth of data and is used to

temporarily buffer cache spills before sending them out on the OCN.

2.6.2 MHU Operations

The MHU is capable of filtering redundant read requests (for load misses) and

coalescing smaller write updates (store misses) into larger chunks before sending

them out into the OCN. Both of these optimizations are critical to improving the

packet efficiency and utilization of the OCN.

Load Miss Processing: On a cache load miss, the MHU allocates an MSHR to

hold the information pertaining to the load. If there are no pending requests to the

same cache line, the load is placed in the LRQ . To avoid deadlock conditions, the

pipelines in the DT ensure that requests accepted in the DT can always be allocated

in the MSHRs and the LRQ. When a free fill buffer entry becomes available, and

the OCN port is available, a fill buffer is allocated for the transaction, the load is

removed from the request queue and a read request is sent on the OCN.

When a read reply returns on the OCN, the reply data is placed in the fill

buffer allocated for that transaction. As the data arrives from the OCN, the load(s)

corresponding to the missed data are identified in the MSHR, packaged as if it were

a load entering the DT for the first time and sent to access the caches and the LSQ.

Re-injecting the load as new loads significantly simplifies bypassing between stages

and correctness reasoning in the MHU.

Load Return: When a read reply returns on the OCN, the reply data is placed

in the fill buffer allocated for that transaction. For each requested cache line, the
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OCN reply consists of a header packet with the address, followed by four flits of

data, 128 bits each. Since the address of the flit arriving the next cycle is known a

cycle earlier (from the header), it is used to awaken pending loads in the MSHRs.

Thus the MHU can generate wakeup signals for loads that require data from the

flit arriving in the next cycle. All the pertinent load information is read from the

MSHRs, packaged as if it were a load entering the DT for the first time and used to

access the caches and the LSQ. If more than one load matches a flit, then one new

load can be inserted into the main load pipeline each cycle after wakeup. As the

missed loads are processed, the data flit corresponding to the load is written to the

cache. A fill can result in a spill from the cache and each DT contains a spill buffer

that temporarily holds the cache line until it can written to the memory system.

Store Coalescing: A OCN transaction requires one header flit and between one

and four data flits depending on the size of datum. To minimize the overhead of

header packets, the MHU attempts to create larger packets by coalescing multiple

stores misses to same cache line. This functionality is provided by the merge and

transmit buffers in the MHU. If the L1 store miss is to the same cache line as the

cache line currently in the store merge buffer, then the missed store updates the

merge buffer. If the store miss is to a different cache line, then the line in the merge

buffer is moved to the transmit buffer and the new store is allocated in the merge

buffer. Once a line is moved into the transmit buffer, the MHU logic scans and

packages the cache line into fewest possible flits.

MHU Coherence Policies: As the MHU handles both L1 load and store misses

concurrently, it needs to ensure coherency between load and store misses to the
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same address. The load misses and store updates to the same cache line can arrive

in three different orders at the MHU: 1) the store update arrives before the load

request to the same address, 2) the store update arrives after the load request, or

3) both the load request and store update arrive at the same time.

In case 1, instead of forwarding to the load from the merge buffers, the

merge buffers are flushed to the memory system. The load is then issued to the

memory system as usual. This strategy avoids building complex forwarding logic

between the merge buffer and the incoming load request for an uncommon execution

scenario. In case 2, the strategy adopted for case 1 will not work because the load

request may have already read the L2 caches and outside of the L1 none of the

structures have store-to-load forwarding capabilities. In this case, the store updates

the corresponding bytes of the matching fill buffer entry. When the load data arrives,

it ensures that the store update bytes are not overwritten. In case 3, the store update

is held back a cycle so that it becomes a write-after-read case as described in case 2.

2.6.3 Design Rationale

Why fill buffers? For deadlock-free operation, the MHU should not have any

resource dependences on the OCN. Namely, the MHU can never refuse to accept

incoming OCN replies while waiting for the OCN to accept new outgoing requests.

Fill buffers guarantee deadlock-free operation by providing support for decoupling

the OCN fills from rest of the MHU as they are always allocated prior to generation.

Another alternative is to directly fill from the OCN into the caches. This strategy

requires either a dedicated cache port for fills or mechanisms to premptively acquire

cache ports. The former is undesirable because of area constraints and latter because
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of the high complexity.

Why Load Request Queues? LRQ’s are used to improve the utilization of the

fill buffers and to avoid conservatively stalling on mergeable misses. For deadlock-

free operation, two slots have to be reserved in all MHU load handling structures,

so that loads already in the pipeline can be slotted. Pre-reserving two slots in the

fill buffers can be constraining because there are only four fill buffers. Providing

more fill buffers is expensive in terms of area and restricted by timing constraints.

To work around this problem, the fill buffer allocation is decoupled from the load

execution by using the request queues and pre-reserving slots in the request queue.

Pre-reserving slots is area-efficient and timing-efficient because the LRQ is smaller

than fill buffers (45 bits vs 512 bits).

Sizing of structures: The number of MHU entries was chosen so as to saturate

the link between the DTs and the OCN. For uninterrupted traffic on the link, the

MHU should have sufficient MSHRs to hold all incoming loads between the L1 miss

detection and L1 reply for a load. Assuming one load is issued every cycle in this

interval, and given that the average round trip for miss handling is 14 cycles, we

would need fourteen MSHRs. An additional two MSHRs are required for deadlock-

free operation, bringing the total number of MSHRs to sixteeen. If all of these loads

are to different cache lines, then a 16-entry fill buffer is required. However, to meet

cycle times and constraints of our ASIC methodology we restricted the number of fill

buffers to four. This is unlikely to be performance critical because load misses are

commonly clustered and contiguous; hence it is uncommon to have 16 back-to-back

loads to different cache lines at one DT partition.
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2.7 Physical Design Results

Each DT has an 8KB, 2-way set associative cache with 64 byte lines. The cache has

one read and one write port. Each LSQ bank contains 256 entries and consists of

CAM and RAM arrays. The CAM is physically constructed out of eight 32-entry

CAMs (one per block) and has a read, write and search port. The DTLB is a 16

entry, 48-bit wide CAM with two search ports (one load and one store), one read

port and one write port. The predictor is built using a single ported 1024-bit array.

Area: Figure 2.8 shows the DT floorplan after synthesis, timing and layout opti-

mizations. The design was implemented using IBMs 130nm ASIC process and the

DT measures 3.37mm × 1.188mm. The CAM is entirely synthesized from flip-flops

and occupies a large fraction of the DT area. A Custom CAM is likely to be smaller

than the synthesized CAM, but our design methodology did not support integration

of custom CAMs into the design flow.

Timing and Critical Paths: The design synthesized to 3.2ns under worst-case

process parameters and operating conditions. The top critical path is the detection

of store forwarding in the LSQ and the generation of signals for stalling the DT

pipelines during store forwarding. At a high level, this process involves generating

an eight-bit mask that encodes the blocks older than the load, ANDing with another

eight-bit mask that encodes blocks with matching stores, and then performing a

cumulative OR on the resulting 8-bit mask. This process takes up roughly 45%

of the cycle time. Then, the forwarding signal must be distributed to rest of DT

pipelines to stall conflicting operations. The high fanout on this signal contributes

significantly (27% of cycle time) to the total delay.
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The next most critical path is the logic for extracting and packaging store

misses to the L2. There are two components to the delay, the first involves the

actual extraction process and the second that is a stall signal that is asserted when

a multi-cycle OCN transaction has to be generated. For higher frequency imple-

mentations, adding an extra stage to the pipeline can eliminate the critical path,

without affecting performance because the store writes are unlikely to be critical

operations.

The third most critical path involves checking for coherence in the MHU

and performing coherence updates. The source of the problem is not the delay

associated with the coherence checks, but the late availability of the load address

that drives the coherence checks. Speculatively performing the coherence checks a

cycle earlier can result in false positives, which can complicate the design. Adding

another stage (for the uncommon case of a coherence violation) in the pipeline will

reduce performance by increasing the latency of missed loads.

2.8 Summary

The TRIPS microarchitecture includes a primary memory system that is fully par-

titioned and capable of supporting high levels of memory level parallelism. The

memory system is made up of four Data Tiles (DTs), partitioned by interleaving

based on addresses of the memory instructions. To support high levels of memory

level parallelism, the DT utilizes memory side dependence predictors, deep LSQs,

and an aggressive miss handling unit capable of supporting up to 16 outstanding load

misses per DT (64 per core). The design, implementation and verification required

21 person months. Our design experience suggests that the design complexity of
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the partitioned memory system is comparable with the complexity of a centralized

memory system.

A completely partitioned memory system like TRIPS provides a complexity-

effective way of increasing the capacity and bandwidth of the memory system by

simply increasing the number of partitions. For instance, eight loads/stores per

cycle can be supported on TRIPS with eight DTs. However, for such partitioning

to be beneficial and feasible (1) the memory instructions should be placed close to

the cache banks to which their addresses map, (2) the area and power overheads

from replicated structures like LSQs should be minimized, and (3) the mechanisms

used for communicating across the partitions should scale.

The TRIPS compiler team is currently investigating techniques for placing

the memory instructions closer to DTs by array alignment analysis and sophisticated

profile driven optimizations. In the following chapters, we describe solutions to area

and power overheads of the LSQs Efficient store-tracking mechanism for sixteen

or more partitions is a challenging problem and discussed more in future work.

Solutions to these problems are the last few remaining steps towards scalable and

completely distributed memory systems.
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Chapter 3

Late-Bound, Distributed LSQs

This chapter describes an LSQ design that provides significant area improve-

ments over conventional LSQ designs. Two new techniques are used in these LSQs:

unordered late binding, in which loads and stores allocate LSQ entries after they

issue, and lightweight overflow control, which enables good performance with un-

ordered LSQs that are divided into multiple small, address-interleaved partitions.

Late binding: Traditional LSQs allocate entries at fetch or dispatch time, and

deallocate them at commit. Thus, entries in a conventional LSQ are physically age-

ordered, a feature that LSQ designs exploit to provide their necessary functionality

efficiently. When an LSQ reaches capacity, the microarchitecture typically throttles

fetch until a load or store commits and is removed from the LSQ. Figure 3.1 shows

a simple six-stage pipeline diagram with nine memory instructions (loads and stores

labeled A through I) in different stages. As shown in Figure 3.1a, a conventional

eight-entry LSQ is full after H is dispatched, stalling the fetch of later instructions.
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Figure 3.1: High-Level Depiction of Ordered vs. Unordered LSQs.

Unordered, late-binding LSQs (ULB-LSQs) can reduce both the average oc-

cupancy time and average number of entries in use. ULB-LSQs achieve this re-

duction by allocating entries only when a load or store issues, instead of when it is

fetched, permitting a smaller, more efficient structure. Figure 3.1b shows the smaller

ULB-LSQ that must be sufficiently large only to capture the in-flight loads and stores

after they have issued. Figure 3.2 shows the potential savings of late-binding, issue-

time allocation. Using this approach, on the Alpha 21264 microarchitecture, only 32

or fewer memory instructions must be buffered in the LSQ for 99% of the execution

cycles, even though the original 21264 design had a combined LQ/SQ capacity of

64 entries. On the TRIPS architecture, for a synthetic benchmark that equally dis-

tributes memory references between the four partitions, the cumulative number of

physical LSQ entries required is 224 whereas the TRIPS prototype implementation

consists of 1024 physical entries.
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Figure 3.2: Potential for undersizing: In an Alpha 21264, for 99% of the execution
cycles across 18 SPEC2000 benchmarks, only 32 or fewer memory instructions are
in flight between execute and commit.

To achieve this reduction, however, the entries in an ULB-LSQ must be

unordered; loads and stores are allocated LSQ entries in their dynamic issue order

as opposed to the traditional in-order fetch sequence. Maintaining age order with

issue-time allocation would require a complex and power-inefficient compacting-

FIFO-like circuit [5]. We describe an ULB-LSQ design that requires only small

additional complexity while performing comparably to a traditional ordered LSQ.

To compensate for the lack of ordering, the UB-LSQs take a more direct

approach to determining the age by explicitly storing the age information of in-

structions in a seperate age CAM. The age CAM is a special type of CAM that

can output greater/lesser/equal results instead of just equality matches. Using this

age CAM, violation and commits can be supported in the ULB-LSQ with the same

latencies as in the traditional LSQs but forwarding from multiple stores incurs ad-
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ditional latencies. However, this additional latency does not increase performance

because for more than 99% of the loads match with one or fewer stores.

Low overhead overflow handling: A second advantage above and beyond the

reduced size is that ULB-LSQs lend themselves naturally to address partitioning,

enabling smaller banks that are indexed by address. However, smaller banks will

experience more overflows. In small-window superscalar processors, flushing the

pipeline on an ULB-LSQ overflow is an acceptable policy, since the ULB-LSQ can

be sized to save area and power over a conventional design while overflowing in-

frequently. However, ULB-LSQs can also provide efficient memory disambigua-

tion for large-window processors, in which thousands of instructions may be in

flight [66, 21, 71], by exploiting the ability to address interleave LSQ banks. The

late binding and unordered organization are both necessary to support an under-

sized, address-interleaved LSQ, since the mapping of loads and stores to LSQ banks

cannot be known at fetch/dispatch time.

In large-window designs, however, the probability of overflows grows, since

the global ULB-LSQ is divided into smaller interleaved partitions that are more

susceptible to overflows when the distribution of loads and stores to banks is unbal-

anced. Figure 3.1c shows how load imbalance for an address-interleaved ULB-LSQ

increases the likelihood of overflow. In the example, each of four address-interleaved

partitions holds one entry. Whereas instruction E could have been held in the cen-

tralized ULB-LSQ of Figure 3.1b, E conflicts in the banked example with instruction

B, which maps to the same partition.

As the banks are shrunk and the number of overflows increases, the conven-

tional techniques of throttling fetch or flushing the pipeline become too expensive.
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By incorporating techniques to handle overflows with low overhead, an ULB-LSQ

for a large-window design can consist of small partitions, resulting in low energy per

load or store, while still supporting high performance across a large-window proces-

sor. In a distributed, large-window processor, LSQ banks can be treated as clients

on a micronetwork, with overflows handled using traditional network flow-control

techniques adapted for a distributed processor microarchitecture. We evaluate three

such techniques in this chapter: instruction replay, skid buffers, and micronet virtual

channels. These three techniques correspond to buffering the overflowing memory

instructions at the execution units, or in extensions to the memory units, or in the

network connecting the execution units to the memory units. The buffering space

is much less expensive than the LSQ space since the buffered locations need not

be searched for memory conflicts, which mitigates the area and energy overheads

of large LSQs. To intuitively understand these schemes, one can imagine these

schemes to be similar the “load loops” proposed by Borch et al. [12] but applied to

the context of distributed architectures.

These buffering approaches effectively stall processing of certain memory

instructions, which could potentially lead to deadlock. To avoid deadlocks, each

of the proposed techniques, partitions the in-flight memory operations into age-

ordered bins. For example, a window supporting up to 256 memory operations

in-flight might assign each consecutive 32 loads or stores to one bin, permitting

up to eight bins total. The oldest bin is the high-priority bin. The LSQ banks

handle loads or stores from the high-priority bin differently from low-priority bins

to guarantee forward progress. High-priority operations are either provided reserved

space in each LSQ bank, or, on a high-priority overflow, cause a rare pipeline flush
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followed by re-fetching of the high-priority operations and a temporary throttling

of subsequent operations.

The techniques presented in this chapter work well for both small and large-

window processors. For an Alpha 21264 microarchitecture with an 80-instruction

window, a 32-entry ULB-LSQ using a flush-on-overflow policy provides the same

performance as a 64-entry split LQ/SQ. For the 1,024-instruction window TRIPS

processor, four banks of 48 entries each–using virtual channel flow control to handle

overflows–provides the same performance as an idealized 1,024-entry LSQ.

The rest of this chapter is organized as follows: Section 3.1 re-visits the design

of traditional LSQ implementations and identifies the deficiencies of these organi-

zations. Section 3.2 describes the microarchitecture of the unordered, late-binding

LSQ. Section 3.3 describes techniques for handling overflows in unordered LSQ. Sec-

tion 3.4 measures the performance of the unordered LSQ for both superscalar and

TRIPS processors.

3.1 Re-visiting Traditional LSQ Organizations

Most LSQs designed to date have been age indexed, because age indexing supports

the physical sorting of instructions in the LSQ based on their age. The physical

ordering makes some of these operations simpler to support but is not fundamentally

required for any of the LSQ operations.

In an age-indexed LSQ, the address and value of an in-flight memory in-

struction is stored in an LSQ slot obtained by decoding the age of the memory

instruction. This organization results in a LSQ that is physically ordered; the rela-

tive ages of two instructions can be determined by examining the physical locations
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they occupy in the LSQ. For example, it is simple to determine that an instruction

at slot 5 is older than an instruction at slot 8 because slot 5 is physically “before”

slot 8. Additionally, this mechanism allows determining the relative order between

all instructions in the LSQ that satisfy some criterion (i.e. a matching address). For

example, if slots 25, 28 and 29 are occupied in the LSQ, linearly scanning the the

LSQ from position 29 will reveal the most recent older instruction first (28) and then

then next oldest (25) and so on. In some cases, circuit implementations exploit the

physical ordering to accelerate LSQ operations. To understand the design changes

that an unordered LSQ requires, it is instructive to examine how LSQ ordering

supports the three functions that the LSQ provides: committing speculative stores,

violation detection and forwarding from in flight stores to loads.

Commit: The LSQ buffers all stores to avoid potential write-after-write hazards

between stores to the same address that execute out-of-order. Additionally, the

stores cannot be written out until they are non-speculative. Once a store is deter-

mined to be non-speculative, the store address and value are written to the cache

using the age supplied from the ROB in the case of superscalars and using the store

arrival information and their ages which are available at each DT in the case of

TRIPS. With ordering, age-based indexed lookup is sufficient. Without ordering, a

search is necessary to find the oldest store to commit.

Violation Detection: The LSQ must report a violation when it detects that

a load following a store in program order, and to same address, executed before

the store. To support this operation, the LSQ buffers all in-flight memory data

addresses, and when a store arrives at the LSQ, checks for any issued loads younger
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Operation Search Input Output Num Sorting
matches Required

Forwarding ≥ LD age Older STs ≥ 1 Yes

Violation ≤ ST age Younger LDs ≥ 1 No

Commit == ROB age ST to commit 1 No

Table 3.1: LSQ operations and ordering requirements.

than and to the same address as the store. If there are any matching loads, a

violation is reported. For this operation, the LSQ need only determine the set of

younger load instructions. It does not require sorting among the multiple matching

loads based on their age. In ordered LSQ circuit implementation, the age of the

incoming instruction is decoded into a bit mask and all bits “before” the decoded

bit vector are set. In the case of store forwarding with multiple matches, the most

recent store and successive older stores can be accomplished by linearly scanning

the bit mask.

Store Forwarding: The LSQ must support forwarding from the uncommitted

buffered stores in the LSQ to in-flight loads that issue after the stores. When a

load arrives at the LSQ, it checks for older stores to the same address. If there

are matching stores, the LSQ ensures that the load obtains its value from the most

recent matching store preceding the load. To support this functionality when a load

matches multiple stores, the LSQ sorts the matching stores based on their ages and

processes the matching stores until all the load bytes have been obtained or until

there are no matching stores.

The age-indexing policy requires an LSQ that is sized large enough to hold

all in flight memory instructions (2age slots), which results in a physically ordered
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LSQ. The ability to sort through multiple matching instructions is especially useful

for forwarding values from multiple matching stores to a load, but a coarser age

comparison is sufficient for implementing the other LSQ operations (Table 3.1).

Additionally, the LSQ allocation policy is conservative. Even though the LSQ slots

are occupied only after the instructions execute they are allocated early, during

instruction dispatch. Traditional age-indexed LSQs are thus both over designed

in terms of functionality and over provisioned in terms of size. In addition, these

traditional LSQs are not suitable for partitioning because each partition should

have the ability to hold all memory instructions, which increases the size of the LSQ

unsustainably as in the case of the TRIPS LSQ.

3.2 An Unordered, Late-Binding LSQ Design

Late-Binding LSQs address the inefficiencies resulting from the “worst-case” de-

sign policies used in traditional LSQs. By allocating the memory instruction in the

LSQ at issue, the sizes of ULB-LSQs are comparatively reduced. Allocating mem-

ory instructions at issue requires a set of mechanisms different from allocation in

age-indexed LSQs. When a load or store instruction arrives at the ULB-LSQ the

hardware simply allocates an entry from a pool of free LSQ slots instead of indexing

by age. This allocation policy results in an LSQ that is physically unordered in which

the age of the instruction has no relation to the slot occupied by the instruction.

To compensate for the lack of ordering, the ULB-LSQs take a more di-

rect approach to determining the age by explicitly storing the age information in

a separate age CAM. The age CAM is a special type of CAM that can output

greater/lesser/equal results instead of just the equality matches. The LSQ functions
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that used the implicit age information in the age-indexed LSQ for implementing the

LSQ operations now use the explicit associative age CAM to determine younger and

older instructions. Figures 3.3 and 3.4 illustrates and contrasts the structures used

in the ULB-LSQ and traditional LSQ implementations, where M is the memory

instruction window size, and U is the ULB-LSQ size.

To support commiting of stores in a superscalar processor, the age CAM is

associatively searched with the age supplied by the ROB. The address and data

from the exact matching entry are read out from the CAM and RAM respectively,

and sent to the caches. This extra associative search is avoidable if the baseline

architecture holds the ULB-LSQ slot id allocated to the store in the ROB. On a

TRIPS like microarchitecture, the age CAM is searched the age of the store which

is obtained by searching the store arrival vector.

To support violation detection, when a store arrives it searches the address

CAM to identify matching loads, and searches the age CAM using the greater-than

operator to identify younger loads. The LSQ then performs a logical OR of the

results of the two searches. If any of the resulting bits is one then a violation is

flagged. Detecting violations is simpler in this LSQ compared to age-indexed LSQs,

since no generation of age masks is necessary.

Supporting forwarding is more involved because the ULB-LSQ does not have

the total order readily available. In the case of only one match, the loss of order

does not pose a problem; however when there are multiple matches, the matches

must logically be processed from most recent to the oldest. In the ULB-LSQ, on

multiple store matches, the age of each match is read out from the ULB-LSQ, one

per cycle, and decoded into a per-byte bit vector. Bytes to forward to the load
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replace bytes from other stores if the later-found store is more recent in program

order. This step reconstructs the physical ordering between the matches from the

ULB-LSQ, but may take multiple cycles to do so. Once the ordering is available,

store forwarding proceeds exactly as in an age-indexed LSQ. Thus, compared to

the age-indexed LSQ, which may already require multiple cycles to forward from

multiple stores, the ULB-LSQ requires additional cycles for creating the decoded

bit-vector. However, as we will show in the result section, these additional cycles

rarely affect performance because multiple store forwarding is uncommon in many

benchmarks.

In addition, ULB-LSQ must provide special mechanisms to handle overflows

and detect deadlocks. Overflows can result if the LSQ is sized smaller than the

maximum number of in flight instructions and if a in flight memory instruction

arrives at a full LSQ. Deadlocks can result when the oldest memory instruction

causes an overflow. When the oldest instruction overflows, it may not be possible

to slot the instruction into the LSQ because none of the younger instructions can

commit before the oldest instruction can be committed. But the oldest instruction

cannot be committed without being slotted into the LSQ. There are several solutions

from simple pipeline flushes, to invalidating older instructions, to more involved

forms of buffering. These solutions are discussed in the next section.

3.3 Handling LSQ Overflows

Prior solutions for dealing with overflows typically involved either fetch throttling

or pipeline flushing. Fetch throttling is a preventive stalling strategy in which the

map stage stalls when the number of unresolved loads or stores in flight is sufficient
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to fill the LSQ completely. For example, if the LSQ can hold N instructions, and

there are U unresolved instructions in the pipeline then LSQ must stall when there

are N − U instructions. While this is a reasonable strategy for single LSQ banks,

it is inefficient for partitioned LSQs. In partitioned LSQs, fetch throttling must

begin as soon as the number of unresolved in-flight memory instructions equals the

minimum available space in any of the partitions. For example, if each load queue

partition can hold N loads, and the fullest partition contains N −P loads, then the

fetch must stall as soon as P additional unresolved loads are put into flight. Since

this approach effectively results in the usable global LSQ size being equal that of a

single local partition, fetch throttling is a poor solution for distributed LSQs. The

second traditional solution to handle partition overflows is to flush all the speculative

instructions and restart execution after the non-speculative instructions commit.

This approach is is also unattractive because, as we show later in this section, while

flushing is acceptable for small window designs, flushing is too frequent for LSQ

partitions that are considerably smaller than the in-flight window.

Ideally, a distributed LSQ should be divided into equal-sized banks, where the

aggregate number of LSQ entries equals the average number of loads and stores in

flight, but which shows only minor performance losses over a maximally sized LSQ.

When a bank overflows, however, if the microarchitecture does not flush the pipeline

or throttle fetch, it must find someplace to buffer the load. We examine three

principal places to buffer these instructions: in the execution units, in extensions to

the memory units, or in the network connecting the execution units to the memory

units. The buffering space is much less expensive than the LSQ space since the

buffered locations need not be searched for memory conflicts, which mitigates the
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area and energy overheads of large LSQs. The penalty associated with these schemes

correspond to different “load loops” and changes as the time for load execution

changes [12].

These buffering approaches effectively stall processing of certain memory in-

structions, which could potentially lead to deadlock. However, memory instructions

can be formed into groups based on age, with all of the instructions in a group

having similar ages. In a microarchitecture that is block-oriented like TRIPS, the

memory instruction groups correspond to the instruction blocks. One block is non-

speculative, while multiple blocks can be speculative. By choosing to prioritize

the non-speculative instructions over the speculative instructions, our solutions can

reduce the circumstances for deadlocks and flushing. One possible design would

reserve LSQ entries for the non-speculative block, but our experiments indicated

that this approach did not provide any substantive performance benefits.

3.3.1 Issue Queue Buffering: Memory Instruction Retry

One common alternative to flushing the pipeline in conventional processors is to re-

play individual offending instructions, either by retracting the instruction back into

the issue window, or by logging the instruction in a retry buffer. In TRIPS retrying

means sending an offending instruction back to the ALU where it was issued and

storing it back into its designated reservation station. Since the reservation station

still holds the instruction and its operands, only a short negative-acknowledgement

(NACK) message needs to be sent back to the execution unit. The issue logic may

retry this instruction later according to a number of possible policies.

Figure 3.5a shows the basics of this technique applied to LSQ overflows.
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When a speculative instruction arrives at a full LSQ, the memory unit sends the

NACK back to that instructions execution unit. This policy ensures that speculative

instructions will not prevent a non-speculative instruction from reaching the LSQ.

If a non-speculative instruction arrives at a full LSQ, then the pipeline must be

flushed.

A range of policies are possible for determining when to reissue a NACKed

memory instruction. If the instruction reissues too soon (i.e. immediately upon

NACK), it can degrade performance by clogging the network, possibly requiring

multiple NACKs for the same instruction. Increased network traffic from NACKs

can also delay older non-speculative instructions from reaching the LSQ partition,

as well as general execution and instructions headed to other LSQ partitions. Al-

ternatively, the reservation stations can hold NACKed instructions until a fixed

amount of time has elapsed. Waiting requires a counter per NACKed instruction,

and may be either too long (incurring unnecessary latency) or too short (increas-

ing network contention). Instead, our approach triggers re-issue when the non-

speculative block commits, which has the desirable property that LSQ entries in the

overflowed partition are likely to have been freed. This mechanism has two minor

overheads, however: an additional state bit for every reservation station, to indicate

that the instruction is ready but waiting for a block to commit before reissuing; and

a control path to wake up NACKed instructions when the commit signal for the

non-speculative block arrives.
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3.3.2 Memory Buffering: Skid Buffers

A second overflow-handling technique is to store memory instructions waiting to

access the LSQ in a skid buffer located in the memory unit. As shown in Figure 3.5b,

the skid buffer is simple priority queue into which memory instructions can be

inserted and extracted. To avoid deadlock, our skid buffers only hold speculative

memory instructions. If an arriving speculative memory instruction finds the LSQ

full, it is inserted into the skid buffer. If the skid buffer is also full, the block is

flushed. Arriving non-speculative instructions are not placed in the skid buffer. If

they find the LSQ full, they trigger a flush.

When the non-speculative block commits and the next oldest block becomes

non-speculative, all of its instructions that are located in the skid buffer must be

extracted first and placed into the LSQ. If the LSQ fills up during this process, the

pipeline must be flushed. Like retry, the key to this approach is to prioritize the non-

speculative instructions and ensure that the speculative instructions do not impede

progress. Skid buffers can reduce the ALU and network contention associated with

NACK and instruction replay, but may result in more flushes if the skid buffer is

too small.

3.3.3 Network Buffering: Virtual Channel-Based Flow Control

A third approach to handle overflows is to use the buffers in the network that

transmits memory instructions from the execution to the memory units as temporary

storage for memory instructions when the LSQ is full. In this scheme, the operand

network is augmented to have two virtual channels (VCs): one for non-speculative

traffic and one for speculative traffic. When a speculative instruction is issued at
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an ALU, its operands and memory requests are transmitted on the lower priority

channel. When a speculative memory instruction reaches a full LSQ and cannot

enter, it remains in the network and asserts back pressure along the speculative

virtual channel. Non-speculative instructions use the higher priority virtual channel

for both operands and memory requests. A non-speculative memory instruction that

finds the LSQ full triggers a flush to avoid deadlock. Figure 3.5c shows a diagram

of this approach.

This virtual channel approach has a number of benefits. First, no new struc-

tures are required, so logic overhead is only minimally increased. Additional router

buffers are required to implement the second virtual channel, but our experiments

show that two-deep flit buffers for each virtual channel is sufficient. Second, no

additional ALU or network contention is induced by NACKs or instruction replays.

Third, the higher priority virtual channel allows non-speculative network traffic to

bypass speculative traffic. Thus non-speculative memory instructions are likely to

arrive at the LSQ before speculative memory instructions, which reduces the likeli-

hood of flushing.

Despite its conceptual elegance, this solution requires a number of changes

to the baseline network and execution engine. The baseline TRIPS implementa-

tion includes a number of pertinent features. It provides a single operand network

channel that uses on-off flow control to exert back-pressure. Each router contains

a four-entry FIFO to implement wormhole routing and the microarchitecture can

flush any in-flight instructions located in any tile or network router when the block

they belong to is flushed. Finally, all of the core tiles (execution, register file, data

cache) of the TRIPS processor connect to the operand network and will stall issue
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if they have a message to inject and the outgoing network FIFO is full.

Adjusting this network to support VCs requires several augmentations: (1)

an additional virtual channel in the operand network to separate speculative from

non-speculative network traffic, including the standard buffer capacity and control

logic needed by virtual channels, (2) virtualization of the pipeline registers, which

must stretch into the execution and register tiles to allow non-speculative instruc-

tions to proceed even if speculative instructions are stalling up the virtual network,

(3) issue logic in these tiles that selects non-speculative instructions over speculative

logic when the virtual network is congested, and (4) a means to promote specula-

tive instructions from the speculative virtual channel to the non-speculative channel

when its block becomes non-speculative.

The trickiest part of this design is the promotion of speculative network

packets to the non-speculative virtual channel when the previous non-speculative

block commits. The TRIPS microarchitecture already has a commit signal which

is distributed in a pipelined fashion to all of the execution units, memory units,

and routers. When the commit signal indicates that the non-speculative block has

committed, each router must nullify any remaining packets in the non-speculative

virtual channel and copy any packets belonging to the new non-speculative block

from the speculative VC to the non-speculative VC.

3.4 UB-LSQ and Overflow Handling Evaluation

We first evaluate the performance of the ULB-LSQ on a small-window superscalar,

a Alpha 21264-like processor, then measure the performance of the ULB-LSQ for

the partitioned TRIPS processor. For the Alpha-21264, we use pipeline flushing and
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for the TRIPS processor we report performance for pipeline flushing, memory skid

buffering, NACK scheme and Virtual channel flow control.

3.4.1 UB-LSQ Small-Window Performance Results

The performance of the ULB-LSQ depends on the number of entries in the LSQ,

which affects the number of LSQ overflows. Performance will also be affected by

the relative cost of each overflow and the additional penalty for multi-cycle store

forwarding (in the case of multiple address matches). We modeled the ULB-LSQ

in the sim-alpha [22] simulator and simulated single Simpoint [69] regions of 100M

for the 18 SPEC benchmarks compatible with our experimental infrastructure. The

compatible benchmarks are listed in Table 3.2.

In this set of experiments, ULB-LSQ overflows are handled by partially flush-

ing the pipeline and re-starting execution from the oldest unarrived memory in-

struction at the time of the overflow. The penalty of an overflow is 15 cycles, which

matches the cost of a branch misprediction. Table 3.2 summarizes the unordered

LSQ behavior and statistics. The first two columns show the average number of

memory instructions between the commit and execute stages for 95% and 99% of

the execution cycles. The next eight columns show the number of overflows per 1000

memory instructions, and the performance normalized against the Alpha, for ULB-

LSQ sizes ranging from 16 to 40 entries. The final column shows the percentage of

dynamic loads that forward from more than one store. From the table, for 14 of the

18 benchmarks, for 99% of the cycle time, there are 32 or fewer uncommitted but

executed memory instructions. This explains why a 32 entry ULB-LSQ does not

show any performance degradation for the benchmarks we examined.
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Benchmark Occupancy Flushes per 1K mem instr Normalized IPC Baseline % of LDs
%program cycles LSQ entries LSQ entries IPC matching 0 or 1
95% 99% 16 24 32 40 16 24 32 40 STs

164.gzip 7 22 6 4 3 1 1.00 1.00 1.00 1.00 1.60 99.95

175.vpr 14 21 10 2 0 0 0.93 1.00 1.00 1.00 0.87 99.72

177.mesa 8 14 8 0 0 0 0.05 1.00 1.00 1.00 1.16 99.8

178.galgel 24 24 463 88 0 0 0.04 0.56 1.00 1.00 2.70 100

179.art 35 43 651 131 33 11 0.76 0.91 1.00 1.00 0.63 99.95

183.equake 3 6 0 0 0 0 1.00 1.00 1.00 1.00 0.96 99.91

188.ammp 11 15 4 0 0 0 1.01 1.00 1.00 1.00 1.31 99.91

189.lucas 11 13 0 0 0 0 1.02 1.00 1.00 1.00 0.76 100

197.parser 10 17 4 0 0 0 1.00 1.00 1.00 1.00 1.17 99.84

252.eon 15 20 28 2 0 0 0.94 1.00 1.00 1.00 1.17 98.58

253.perlbmk 9 13 2 0 0 0 1.00 1.00 1.00 1.00 0.83 98.91

254.gap 6 12 0 0 0 0 1.00 1.00 1.00 1.00 1.11 99.92

256.bzip2 7 9 0 0 0 0 1.00 1.00 1.00 1.00 1.82 99.9

173.applu 22 25 2 1 0 0 0.99 1.00 1.00 1.00 0.62 100

181.mcf 51 51 360 251 171 98 1.01 1.01 1.01 1.01 0.20 99.92

176.gcc 31 32 28 22 2 1 0.99 1.00 1.00 1.00 1.21 99.88

171.swim 15 15 1 0 0 0 1.00 1.00 1.00 1.00 0.88 100

172.mgrid 19 35 23 10 4 2 1.07 1.00 0.99 1.00 0.87 99.98

Average 0.88 0.97 1.00 1.00 1.10 99.79

Table 3.2: Performance of an ULB-LSQ on an 80-window ROB machine.
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To isolate the performance effect of slower multiple forwarding, we increased

the latency of store forwarding in the baseline simulator without changing the

LQ/SQ size. In this experiment, if a load matches with N (N > 1) older stores,

then store forwarding takes an additional N cycles even if load does not have to get

its data from all N stores. The results showed no performance degradation for any

of the benchmarks because loads rarely need to get data from multiple stores. From

Table 3.2, the number of loads that have to forward from two or more stores is less

than 0.2% on the average.

Power

This section examines the dynamic power consumption of an ULB-LSQ against the

Alpha LQ/SQ organization. The ULB-LSQ design holds 32 memory operations,

while the Alpha has a separate 32-entry LQ and SQ. Although the size of the ULB-

LSQ is smaller, each memory operation has to access the same number of address

CAM entries in both designs because the Alpha has a partitioned LQ/SQ. Even so,

the ULB-LSQ will have higher dynamic power per access because of the additional

accesses to the age CAM.

To measure the increase in power per access, we assumed that the LSQ power

is approximately equal to the power consumed by the CAM and the RAM. Thus,

the power-per-access of the Alpha LQ or SQ will be purely from the address CAM

(Paddr) and the RAM (Pram), while the power consumed by the ULB-LSQ will be

the power from the address CAM, the age CAM (Page) and the RAM. Since the

ULB-LSQ and Alpha have the same number of entries, their sizes will be the same.

Thus the power increase will be (Page + Paddr + Pram)/(Paddr + Pram).
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We synthesized the design using IBM’s 130nm ASIC methodology with the

frequency set at 450MHz, and verified that the age CAM will fit in the same cycle

time as the address CAM. Even though the delay of the age CAM was approximately

20% more than the address CAM, the delay was still not long enough to be on the

critical path. Thus, assuming that the LB-CAMs can be run at the same clock

frequency as the traditional LQ/SQ, the power increase is simply the ratio of the

capacitances. From our synthesis, the capacitance of the address CAM (32x40b, 1

search, 1 read and 1 write port) was 144.5pF (Paddr) while the capacitance of the

age CAM was 12.86pF (Page). Thus the power overhead over a traditional LSQ is

roughly 8% even after neglecting the power due to the RAM.

Implementation Complexity

The ULB-LSQ design differs from a traditional LSQ in the following ways: (1) the

entries are managed as a free list, (2) multiple store forwarding requires additional

control logic to scan through matching entries, and (3) the LSQ must detect and

react to overflows. These differences are not a significant source of complexity

because many existing microarchitectural structures implement similar functionality.

For example, MSHRs and the physical register files are managed as free lists. The

scanning logic has been implemented in traditional LSQs which do not flush on

multiple matches. Overflow is flagged when there are no free LSQ entries, and is

simple to implement. Furthermore, the ULB-LSQ does not require any modifications

to the load/store pipeline even for handling the case of variable latency matches.

The LSQ operations are pipelined in the exact same way as the age-ordered LSQ

implementation in the POWER4 [74].
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Supporting Processor Optimizations

Although we have described only the basic functions of the ULB-LSQ it can also

be used to support processor optimizations like rolling flushes, and split data and

addresses.

Rolling flushes, i.e., early misprediction detection and recovery, can reduce

branch misprediction latency. To support rolling flushes it must be possible to

identify all instructions younger than the flushed instruction. This operation is

similar to violation detection and can be accomplished by using the age CAM.

Unless flushes are common, the ordering port on the age CAM can be shared with

the logic for implementing flushes.

Memory instructions are sometimes split into separate address and data in-

structions to reduce the number of load dependence violations. The split instructions

are likely to arrive at the LSQ at different times. When a new instruction arrives,

the ULB-LSQ has to identify the slot allocated for the instruction that has already

arrived and, if it finds one, use the same slot for the arrived instruction. This oper-

ation is similar to the commit processing and can be accomplished by searching the

age CAM based on the age of the arriving instruction.

These results showed that for small-window processors like the Alpha 21264,

even with simplistic overflow handling mechanisms, the queue sizes can be reduced

by half without affecting performance.

3.4.2 Large-window Performance Results

We implemented the UB-LSQ and the flow control mechanisms on a simulator that

closely models the TRIPS prototype processor which has been validated to be within
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Parameter Configuration

Overview Out-of-order execution with up to 1024 instructions in-
flight, Up to 256 memory instructions can be simultane-
ously in flight. Up to 4 stores can be committed every
cycle.

Instruction Sup-
ply

Partitioned 32KB I-cache 1-cycle hit. Local/Gshare Tour-
nament predictor (10K bits, 3 cycle latency) with specu-
lative updates; Local: 512(L1) + 1024(L2), Global: 4096,
Choice: 4096, RAS: 128, BTB: 2048.

Data Supply 4-bank cache-line interleaved DL1 (8KB/bank, 2-way as-
soc, writeback, write-around 2-cycle hit) with one read and
one write port per bank to different addresses. Up to 16
outstanding misses per bank to up to four cache lines, 2MB
L2, 8 way assoc, LRU, writeback, write-allocate, average
(unloaded) L2 hit latency is 15 cycles, Average (unloaded)
main memory latency is 127 cycles. Best case load-to-use
latency is 5 cycles. Store forwarding latency is variable,
minimum penalty is 1 cycle.

Interconnection
Network

The banks are arranged in 5x5 grid connected by mesh
network. Each router uses round-robin arbitration. There
are four buffers in each direction per router and 25 routers.
The hop latency is 1-cycle.

Simulation Execution-driven simulator validated to be within 11% of
RTL design. 28 EEMBC benchmarks, 12 SPEC bench-
marks simulated with single simpoints of 100M

Table 3.3: Relevant aspects of the TRIPS microarchitecture

11% of the RTL for the TRIPS prototype processor. The microarchitectural param-

eters most relevant to the experiments are summarized in Table 3.3.

For each benchmark, we normalize the performance (measured in cycle counts)

to a configuration with maximally sized, 256-entry LSQ partitions that never over-

flow. For these experiments, we used skid buffer sizes that are sized slightly larger

than the expected number of instructions at each partition; for a 256 instruction

window, each partition will likely get 64 instructions. If the partition was sized to be
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72 entries then it could absorb most of the overflows. The number of skid buffers was

sized to (72 - LSQ partition size). For the virtual channel scheme, we divided the

four operand network buffers in the baseline equally between the two channels. Thus

two buffers are provided for the speculative and non-speculative virtual channels for

the VC scheme. We present results for 28 EEMBC benchmarks (all except cjpeg

and djpeg) and 12 SPEC CPU 2000 (ammp, applu, art, bzip2, crafty, equake, gap,

gzip, mesa, mgrid, swim and wupwise) benchmarks with Minnespec [45] medium

sized reduced inputs. The other benchmarks are not currently supported in our

infrastructure.

For four 48-entry LSQs and thus a total LSQ size of 192 entries (25% un-

dersized), the flush scheme results in average performance loss of 6% for EEMBC

benchmarks (Figure 3.6) and 11% for SPEC benchmarks (Figure 3.7). The worst-

case slowdowns are much higher: 180% for idct and 206% for mgrid. These results

support the perspective that traditional flow-control mechanisms are inadequate for

distributed load-store queues. The VC mechanism is the most robust with 2% av-

erage performance degradation and less than 20% performance degradation in the

worst case. As expected, the skid buffer scheme performs better than the NACK

scheme because it avoids network network congestion from the NACKed packets, at

the cost of extra area.

For six of the SPEC and EEMBC benchmarks, the memory accesses are un-

evenly distributed and cause LSQ overflows that reduce performance significantly.

For instance, Figure 3.8 shows a frequently executed code sequence in idct in the

EEMBC suite. The innermost loop contains two reads and two writes to two dif-

ferent arrays and the code generated by the compiler aligns both arrays to 256-byte
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boundaries. Since the arrays are accessed by same indices, all four accesses map

to the same bank. This problem is exacerbated by the aggressive loop unrolling

of the TRIPS compiler. The accesses could in theory be distributed by aligning

the arrays differently, but aligning data structures to minimize bank conflicts is a

difficult compiler problem.

Another common code sequence that causes uneven distributions is frequent

use of static scalar variables. In general, static scalar variables cannot be register

allocated (precise exceptions, consistency requirements etc.) and remain allocated

to one bank for the lifetime of a program. Repeated use of static variables causes

imbalances; for instance, if a static file pointer that is repeatedly accessed on memory

file writes. Even XOR-based indexing functions cannot reduce overflows in this case.

These two cases demonstrate that imbalances in partitioned memory systems cannot

be easily detected and optimized for by the compiler and that low overhead hardware

mechanisms are essential for managing LSQ overflows.

Power

Two mechanisms improve the power efficiency in large-window processor LSQs:

address partitioning and late-binding. First, partitioning the LSQ by addresses

naturally reduces the number of entries arriving at each memory partition. Second,

late-binding reduces the number of entries in each partition by reducing occupancy.

However, the additional power may be expended in the network routers because

of the flow control schemes. Wang et al. [80] show a 20% increase in power for

a four fold area increase when implementing virtual channels. The power increase

primarily comes from having four times as many buffers for implementing the virtual
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channels. In our scheme we do not increase the number of buffers. We simply

divide the number of buffers equally between the virtual channels. Hence we do not

expect significant overheads from the network, but without a real implementation

of a VC router it is difficult to measure the power overheads. Factoring out the

network measurements, the 48-entry UB-LSQ implementation would be at least

four times more power-efficient, both in terms of static and dynamic power. In the

next chapter we discuss methods to reduce the power even further and report more

detailed measurements.

Area

Among the three overflow handling mechanisms, the NACK mechanism is the most

area efficient if the issue window is designed to hold instructions until explicit deal-

location. On the TRIPS processor, the NACK scheme requires cumulative storage

of 1024 bits to identify the NACK’ed instructions (one bit for every instruction in

the instruction window) and changes to the issue logic to select and re-issue the

NACK’ed instructions. The VC mechanism is next best in terms of area efficiency.

The area overheads of the VCs are due to the additional storage required for pipeline

priority registers in the execution units to avoid deadlocks and the combinational

logic in routers to deal with promotion. The VC scheme does not require any ad-

ditional router buffers since the speculative channels divide the number of buffers

in the baseline. The skid buffer scheme requires the largest amount of storage, al-

though most of the structure can be implemented as RAMs. A 24-entry skid buffer

supplementing a 40-entry LSQ increases the size of each LSQ partition by 4%. Over-

all, using best scheme to support a 1024 instruction window – the VC mechanism –
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as shown in Table 5.4, the area after optimizations is 80% smaller compared to the

fully replicated LSQs at each LSQ partition.

Implementation Complexity

The VC scheme requires the most changes to the baseline design as it requires

virtualization of not only the network routers but also the execution units that feed

the router. For instance, when the low priority channel in the network is backed up,

the issue logic must supply the network with a high priority instruction even though

it may be in the middle of processing a low priority instruction. The NACK scheme

comes second or third depending on the baseline architecture – if the baseline holds

the instructions in the issue queues until commit, implementing NACK is as simple

as setting a bit in a return packet and routing it back to the source instead of the

destination. However, if instructions are immediately deallocated upon execution

from the windows, NACK may be considerably more complex. The skid buffer

solution is probably the simplest of all the solutions: it requires some form of priority

logic for selecting the oldest instructions, mechanisms for handling invalidations in

the skid buffer and arbitration for the LSQ between instructions in the skid buffer

and new instructions coming into the LSQ partition. Despite the changes required

for the schemes described here, the mechanisms are feasible and operations required

have been implemented in other parts of the processor.

3.5 Summary

In this chapter we discussed two techniques for improving the area of the LSQ.

We showed that these techniques are effective for both small and large window
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processors like TRIPS.

By performing late binding and allocating LSQ entries only at instruction

issue, designers can reduce the occupancy and resultant size of the load/store queues.

This reduction requires that the queues be unordered. While the unordered property

requires some extra overhead, such as saving the CAM index in the ROB or searching

for the load or store age at commit, the design is not intrinsically more complex,

and can achieve performance equivalent to an ordered LSQ, but with less area and

power.

However, the most promising aspect of the ULB-LSQ approach is its par-

titionability, which was the original impetus for this line of research. Address-

interleaved LSQ banks should be both late-bound and unordered; the ULB-LSQ

design naturally permits the LSQ to be divided into banks, provided that a mech-

anism exists to handle the resultant increase in bank overflows. We observed that,

for distributed microarchitectures that use routed micronetworks to communicate

control, instructions, and data, that we could embed classic network flow-control

solutions into the processor micronetworks to handle these overflows. We evaluate

three such overflow control handling schemes in the context of the TRIPS microar-

chitecture. The best of these schemes (virtual micronet channels) enables a scalable,

distributed, load/store queue, requiring four banks of only 48 entries each to support

a 1024-instruction window – a 78% reduction in number of LSQ entries compared

to the TRIPS processor.
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realLow_1 = &realData_1[l_1];

imagLow_1 = &imagData_1[l_1];

realHi_1 = &realData_1[i_1];

imagHi_1 = &imagData_1[i_1];

:

:

realData_1[l_1] = *realHi_1 - tRealData_1;

imagData_1[l_1] = *imagHi_1 - tImagData_1;

realData_1[i_1] += tRealData_1;

imagData_1[i_1] += tImagData_1;

Figure 3.8: Code snippet from idct benchmark.
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Chapter 4

LSQ Filtering Optimizations

A disadvantage with the LSQ implementations described so far (and many conven-

tional LSQs) is that the detection of memory ordering violations and dependence

handling requires frequent searches of considerable state. In a simple LSQ imple-

mentation, every in-flight memory instruction is stored in the LSQ. Thus, even with

partitioning, as the number of instructions in-flight increases, so does the number

of entries that must be searched in the LSQ to guarantee correct memory ordering.

Both the access latency and the power requirements of LSQ searches scale roughly

linearly with increases in the amount of state as the LSQ is typically implemented

using a CAM structure [3].

The technique evaluated in this chapter to overcome these LSQ scalability

limits is approximate hardware hashing. We implement low-overhead hash tables

with Bloom filters [10], a structure in which a load or a store address is hashed to

a single bit. If the bit is already set, there is a likely, but not a certain address

match with another load or store. If the bit is unset there cannot be an address

80



match with another load or store. We use Bloom filters to evaluate the following

LSQ improvements:

• Search filtering: Each load and store indexes into a location in the Bloom filter

(BF) upon execution. If the indexed bit is set in the BF, a possible match has

occurred, and the LSQ must be searched. If the indexed bit is clear, the bit is

then set in the BF, but the LSQ need not be searched. However, all memory

operations must still be allocated in the LSQ.

• Partitioned search filtering: Multiple BFs each guard a different bank of a

banked LSQ. When a load or store is executed, all the BFs are indexed in

parallel. LSQ searches occur only in the banks where the indexed bit in the

BF is set. This policy enables a banked CAM structure which reduces both

the number of LSQ searches and the number of banks that must be searched.

• Load state filtering: A predictor examines each load upon execution and pre-

dicts if a store to the same address is likely to be encountered during the

lifetime of the load. If so, the load is stored in the ULB-LSQ. If the prediction

is otherwise, the load address is hashed in a load BF and is not kept in any

LSQ. When stores execute, they check the load BF, and if a match occurs,

a dependence violation may have occurred and the machine must perform

recovery.

With these schemes, we show that the area required for LSQs can be reduced

and, more importantly, that the power and latency for maintaining sequential mem-

ory semantics can be significantly reduced. This, in turn alleviates a significant

scalability bottleneck to higher-performance architectures requiring large LSQs.
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Figure 4.1: Percentage of matching load instructions for the Alpha ISA

The rest of this chapter is organized as follows: Section 4.1 examines LSQ

optimization opportunities by identifying the common case behavior. Section 4.2 de-

scribes and reports the performance of the search filtering techniques. Section 4.2.2

describes partitioned search filtering for TRIPS. Section 4.4, describes load state

filtering. We conclude this chapter in Section 4.5.

4.1 LSQ Optimization Opportunities

Current-generation LSQs check all memory references for forwarding or ordering

violations, since they are unable to diffentiate memory operations that are likely

to require special handling from others that do not. Only a fraction of memory

operations match others in the LSQs, however, so treating all memory operations

as worst case is unnecessarily pessimistic.

To explore a range of in-flight instruction pressures and ISAs on the LSQs,

we simulate three processor configurations. The first, called Perfect EDGE (PE),

is intended to emulate an aggressive EDGE microarchitecture–assuming that other

emerging bottlenecks are solved–to better stress the LSQs in our experiments. In
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Figure 4.2: Percentage of matching load instructions for the EDGE ISA
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particular, the Perfect EDGE configuration assumes perfect (oracle) load-store de-

pendence prediction and branch prediction. The second, called Low ILP (LILP),

is an Alpha 21264-like implementation with realistic microarchitecture assumptions

to support window sizes larger than the Alpha 21264. The third, called High ILP

(HILP) is the Alpha 21264 architecture simulated with perfect microarchitecture

speculation (like PE).

The Alpha-21264 ISA results also follow similar trends and the results are

presented in the Figures 4.1(a) and 4.1(b). For the LILP configuration, 512-instruction

window sees 3% matching memory instructions. This rate remains essentially flat

until the 4096-instruction window, at which point the matching instructions spike to

nearly 8%. The HILP configuration, which has a much higher effective utilization of

the issue window, has matching instructions exceeding 22% for a 512-entry window,

which slowly grow to roughly 26% for an 8192-entry window.

The results of the PE experiments are presented in Figure 4.2. The results

show that the matching rates are even lower for the EDGE ISA that the superscalar

because of fewer fills and spills to the stack, which is in turn due to increased number

of registers and the direct communication of operands within a block in the EDGE

ISA.

Two results are notable from the data presented in this section. First, while

the matching rates are close to two orders of magnitude greater than current archi-

tectures, three-quarters of the addresses in these enormous windows are not match-

ing, indicating the potential for a four-fold reduction in the LSQ size. Second, the

growth in matching instructions from 1K to 8K instruction windows is small, hinting

that there may be room for further instruction window growth before the matching
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Benchmark 8 Blocks 16 Blocks 32 Blocks

168.wupwise 9.71% 12.63% 14.23%

171.swim 2.85% 3.41% 3.45%

173.applu 2.24% 3.26% 4.48%

175.vpr.place 3.80% 4.74% 4.98%

175.vpr.route 0.20% 0.22% 0.76%

179.art 10.08% 10.09% 10.10%

181.mcf 0.36% 0.40% 0.48%

183.equake 2.12% 3.44% 3.65%

197.parser 0.63% 0.81% 1.10%

256.bzip2 1.62% 2.20% 2.39%

301.apsi 7.32% 8.99% 10.23%

SPEC Average 3.72% 4.56% 5.08%

a a2time01 1.90% 2.14% 2.70%

a aifftr01 40.49% 41.24% 42.09%

a aifirf01 4.84% 5.44% 5.97%

a aiifft01 43.42% 44.23% 45.15%

a basefp01 3.35% 3.89% 4.20%

a bitmnp01 19.37% 19.40% 37.16%

a cacheb01 36.64% 41.34% 41.66%

a canrdr01 6.45% 6.60% 6.99%

a idctrn01 2.04% 4.95% 6.57%

a iirflt01 18.14% 19.49% 20.67%

a matrix01 18.68% 20.79% 22.98%

a pntrch01 0.61% 1.09% 1.96%

a puwmod01 8.50% 8.62% 8.93%

a rspeed01 3.61% 3.82% 4.50%

a tblook01 1.44% 1.69% 2.23%

a ttsprk01 4.61% 4.78% 5.26%

c cjpeg 10.19% 11.25% 13.05%

c djpeg 11.07% 11.18% 11.81%

n ospf 2.14% 2.16% 2.23%

n pktflow 5.13% 10.05% 10.28%

n routelookup 2.57% 2.71% 2.77%

o bezier01 1.34% 1.36% 1.40%

o dither01 0.77% 0.78% 0.79%

o rotate01 7.07% 7.09% 7.14%

o text01 1.81% 2.98% 3.30%

t autcor00 0.67% 0.88% 1.33%

t conven00 27.65% 39.68% 42.73%

t fbital00 0.05% 0.06% 0.10%

t fft00 0.22% 0.23% 0.24%

t viterb00 0.16% 1.62% 17.08%

EEMBC Average 9.50% 10.72% 12.44%

Table 4.1: Percentage of Loads communicating with In flight Stores with EDGE
ISA, Perfect Speculation
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rate increases appreciably. Of course if the window is infinite, the matching rate

will be close to 100%.

4.2 Search Filtering

This section describes techniques to avoid searches for memory instructions that do

not match, then reduce the LSQ power consumption and latency for instructions

that do match. The first technique uses a Bloom filter predictor (BFP) to eliminate

unnecessary LSQ searches for operations that do not match other operations in

the LSQ. We then apply BFPs to separate LSQ partitions, reducing the number

of partitions that must be searched when the BFP predicts that an LSQ search is

necessary. Finally, we discuss other applications of BFPs to partitioned primary

memory systems.

86



4.2.1 BFP Design for Filtering LSQ Searches

The Bloom Filter Predictor (BFP) used for filtering LSQ searches maintains an ap-

proximate and heavily encoded record–as proposed by Bloom [10]–of the addresses

of all in-flight memory instructions (Figure 4.3). Instead of storing complete ad-

dresses and employing associative searches like an LSQ, a BFP hashes each address

to some location. In one possible implementation, each hash bucket is a single bit,

which an memory instruction sets when it is loaded into the BFP and clears when

it is removed. Every in-flight memory address that has been loaded into the LSQ

is encoded into the BFP. If a new hashed address finds a zero, it means that the

address matches no other instruction in the LSQ, so the LSQ does not need to be

searched. The instruction sets the bit to 1 and writes it back. If a 1 is found by an

address hashing into the BFP, it means either that the instruction matches another

in the LSQ or a hash collision (a false positive) has occurred. In either case, the

LSQ must be searched. The BFP is fast because it is simply a RAM array with a

small amount of state for each hash bucket.

The BFP evaluated in this section uses two Bloom filters: one for load ad-

dresses and other for store addresses, each of which has its own hash function and N

locations. An issuing memory instruction computes its hash and then accesses the

predictor of the opposite type (e.g. loads access the store table and vice versa). To

detect multiprocessor read ordering violations, one can implement another Bloom

filter with invalidation addresses is also checked by loads.
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Deallocating BFP Entries

A bit set by a particular instruction should be unset when the instruction retires,

lest the BFP gradually fill up and become useless. But if multiple addresses collide,

unsetting the bits when one of the instructions retires will lead to incorrect execution,

since a subsequent instruction to the same address might avoid searching the LSQ

even though a match was already in flight. There are several solutions to this

problem.

Counters: One solution uses up/down counters in each hash location instead of

single bits. The counters track the number of instructions hashing into a particular

location. Upon instruction execution the counter at the indexed location is incre-

mented by one and upon commit the counter is decremented by one. The counters

can either be made sufficiently large so as not to overflow, or they can take some

other corrective action using one of the techniques described below when they over-

flow. The use of counter based Bloom filters was previously proposed by Fan et

al. [23].

Flash clear: An alternative approach to using up/down counters, is to clear all

of the bits in the predictor when there are no memory instructions are in flight and

hence it is safe to reset all the bits. This can be accomplished during branch mispre-

dictions or when certain parts of bloom filter are allocated to groups of instructions.

The flash clearing method has the advantage of requiring less area and complexity

than the counters, but has the disadvantage of increasing the false positive rate.

Encoding the instructions in each basic block into a Bloom filter and flash clearing

when a basic block commits can improve the decrease the false positive rate.
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Hash Functions

To maximize the benefits of search filtering, the number of false positives must

be minimized. The number of false positives depends on the quality of the hash

function, the method used for unsetting the bits, and the size of the BFP tables.

The BFP table must be sized larger than the number of in-flight memory operations,

since the probability of a false positive is proportional to the fraction of set bits in

the table.

There are two aspects that determine the efficacy of a hash function: (1) the

delay through the hash function and (2) the probability of a collision in the hash

table. Since the hash function is serialized with the BFP and then the LSQ search

(if it is needed), we explored only two hash functions that were fast to compute,

with zero or one level of logic, respectively. The first hash function, H0, uses lower

order bits of the address to index into the hash table, incurring zero delay for hash

function computation. The second hash function, H1, uses profiled heuristics to

generate an index using the bits in the physical address that were most random on

a per-benchmark basis. H1 incurs a delay of one gate level of logic (a 2-input XOR

gate). To determine H1 for each benchmark, we populated a matrix by XORing

each pair of bits of the address and adding the result to the appropriate position in

the matrix. We then chose the bits that generated the most even number of zeros

and ones, assuming that they were the most random.

BFP Results

Table 4.2 presents a sensitivity analysis of the BFP false positives for a range of

parameters, including varied predictor sizes ranging from one to four times the
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Configuration Alpha 21264 LILP HILP
BFP Size 32 64 128 128 256 512 128 256 512

Hash Type Clearing Method

H0 Counter 5.7 2.6 1.6 8.4 2.8 2.0 15.0 8.8 4.3

H1 Counter 3.9 2.3 1.4 5.7 3.3 2.0 10.1 6.1 4.2

H0 Flash 59.9 53.3 49.2 30.2 28.6 25.9 n/a

H1 Flash 54.0 49.7 42.2 27.2 23.9 20.4 n/a

Expected False Positives 2.8 1.6 1.0 5.7 3.2 1.7 9.6 5.3 2.8

Table 4.2: Percentage of False Positives for Various ILP Configurations and BFP Sizes
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size of each load and store queue, the two hash functions H0 and H1, flash and

counter clearing, and the three microarchitectural configurations: the Alpha 21264,

the HILP and the LILP configurations. The flash clearing results are not applicable

to HILP because they rely on branch mispredictions, and HILP assumes a perfect

predictor. As a lower bound, we include the expected number of false positives that

would result, given the number of memory instructions in flight for each benchmark,

assuming uniform hash functions1. The rate of false positives is averaged across the

19 benchmarks we used from the SPECCPU2000 suite. Results for the TRIPS

configuration are presented in the subsequent section.

As expected, the table shows that the number of false positives decreases

as the size of the BFP tables increase simply because of the reduced probability

of conflicts. Flash clearing increases the number of false positives significantly over

count clearing. However, the count clearing works quite effectively, especially using

the H1 hash function, showing less than a 2% false positive increase over the prob-

abilistic lower bound. This result indicates that moderately sized BFPs are able

to differentiate between the majority of matching addresses and those that have no

match in flight. Furthermore, the lookup delay of all table sizes is less than one

8FO4 clock cycle at a 90nm technology. The power required to access the predictor

tables is negligible compared to the associative lookup as the predictor tables are

comparatively small, direct mapped RAM structures.
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Figure 4.4: Partitioned Search Filtering: Each LSQ bank has a BFP associated with
it (see far left)

4.2.2 Partitioned BFP Search Filtering

The previous section described the use of BFPs to prevent most non-matching ad-

dresses from expensive LSQ searches. In this section, we describe a BFP organiza-

tion that extends the prior scheme to reduce the cost of matching address searches

appreciably. A distributed BFP (or DBFP), shown in Figure 4.4, is coupled with

1Using probabilistic analysis the number of load (store) false positives assuming a uniform hash
function can be estimated as:

∑
i
ti × (1 − (1 −

1

n
)i), where ti is the number of store (load) searches

occurring when there are i unique address in-flight loads(stores) and n is the load (store) BFP size.
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Figure 4.5: Partitioned State Filtering for Banked LSQs and BFPs

a physically partitioned but logically centralized (in terms of ordering logic) LSQ.

One DBFP bank is coupled with each LSQ bank, and each DBFP bank contains

only the hashed state of those memory operations in its LSQ bank. Depending on

the implementation of the LSQs and the partitioning strategy, some extra logic may

be required to achieve correct memory operation ordering across the partitions.

Memory instructions are stored in the LSQ just as in previous sections, but

an operation is hashed into the BFP bank associated with the physical LSQ bank
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into which it is entered instead of a larger centralized BFP as in the previous section.

Before being hashed into the BFP bank, however, the address’ hash is computed

and used to lookup in all DBFP banks, which are accessed in parallel. Any bank

that incurs a BFP “hit” (the counter is non-zero) indicates that its LSQ bank must

be associatively searched. All banks finding address matches raise their match lines

and the correct ordering of the operation is then computed by the ordering logic.

Depending on the LSQ implementation, the banking of the LSQ may have

latency advantages over a more physically centralized structure. However, the power

savings will be significant in a large-window machine if only a subset of the banks

must be searched consistently. Figure 4.5 presents a cumulative distribution function

of the number of banks that are searched on each BFP hit for both the HILP

and LILP configurations, varying the number of LSQ banks from 4 to 16. The

cumulative DBFP size was held at 512 entries for the different banking schemes.

The results show that a DBFP can reduce the number of entries searched on a BFP

hit appreciably; For the LILP configuration, 60% to 80% of the accesses result in

the searching of only one bank. For the HILP configuration, 80% of the searches

use four or fewer banks.

In high-ILP wider issue machines, as the number of simultaneously executing

memory instructions increases, both the LSQs and the BFPs will need to be highly

multiported. This section discusses organizations that still use a logically central-

ized, age-indexed LSQ, but exploits BFPs to facilitate a disambiguation hardware

organization that matches the bandwidth of the primary memory system.

The port requirements on the BFPs can be trivially reduced by banking

them, using part of the memory address as an index, to select one of the BFP

banks, that will hold only memory instructions mapped to its bank. Banking the
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Figure 4.6: Replication of BFPs and LSQs to match L1D bandwidth

BFPs lends itself naturally to a partitioned primary memory system where the L1

data caches (L1D) are also address interleaved, as shown in Figure 4.6a. In this

organization, a portion of the DBFP guarding each physical LSQ bank is associated

with each L1D bank. Upon an access to the L1D cache, its DBFP banks generate

a bitmask which indicates the LSQ banks that need to be searched. If the memory

operation hits in none of the DBFP banks (the common case), then the LSQ search

can be avoided.

Even with distributed replicated BFPs, each memory instruction must still

be sent and allocated in the LSQ. As long as simultaneously executing memory

instructions must are targeted into different banks of the LSQ, no contention occurs.

95



However, if the LSQ is to support parallel multi-banked accesses, extra circuitry

must deal with buffering and collisions, increasing complexity. One simple solution

to the problem is to replicate the banked LSQs as well. As with the DBFPs each

replicated LSQ can be coupled with the statically address interleaved DL1 banks

(Figure 4.6b), thus permitting all operations to complete locally at each partition.

This scheme will also facilitate high bandwidth, low latency commit of stores to

the L1D (assuming weak ordering is provided). Thus, replicated LSQs provide a

complexity-effective solution but increase the area requirements significantly. In the

next section we turn to schemes to reduce LSQ area, with the long-term goal being

to reduce area sufficiently that completely replicated or distributed solutions become

feasible.

4.3 TRIPS Bloom Filter Optimizations

Three mechanisms are necessary to achieve high power efficiency in large-window

processor LSQs: address partitioning, late binding and associative search filtering.

First, partitioning the LSQ by addresses naturally divides the number of entries

arriving at each memory partition. Second, late binding reduces the number of

entries in each partition by reducing occupancy. Finally, Bloom filtering reduces

the number of memory instructions performing associative searches.

The Bloom filters for the TRIPS study use 8 32-bit registers, one for each

in-flight block. The filters associated with each block are cleared when the block

commits or is flushed – a form of flash clearing. As shown in Table 4.3, nearly

70-80% of the memory instructions (both loads and stores) can be prevented from

performing associative searches in the TRIPS processor by using Bloom filtering.
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Benchmarks Average LSQ Activity Factor
VC SKID NACK

40 48 40 48 40 48

SPEC .21 .21 .27 .30 .30 .31
EEMBC .26 .27 .38 .39 .38 .39

Table 4.3: Fraction of loads performing associative searches

Using Bloom filters, however, incurs additional some additional power for

reading and updating the filters for every memory instruction. Using the 130nm

ASIC synthesis methodology described in the Alpha evaluation section, the capac-

itance of the 48-entry TRIPS LSQ was computed to be 322pF. The capacitance of

the Bloom filter was 64pF. With the activity reduction of 80% the effective capac-

itance of the combination is 120pF which roughly is the capacitance of a 12-entry,

40-bit unfiltered CAM.

4.4 State Filtering

Increasing instruction window sizes lead to a corresponding increase in the number of

in-flight memory instructions, making it progressively less power- and area-efficient

to enforce sequential memory semantics. A future processor with an 8K instruction

window would need to hold, on average, between two and three thousand in-flight

memory operations. Any two in-flight memory instructions to the same address

(matching instructions) must be buffered for detection of ordering violations and

forwarding of store values. However, as previously shown in Figure 4.2, a small

fraction of the addresses in flight are typically matching. An ideal LSQ organization

would buffer only in-flight matching instructions, permitting reductions in the LSQ
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area, latency, and power. Buffering fewer operations in the LSQ facilitates efficient

implementation of partitioned, address-indexed schemes that are a better match for

future communication-dominated technologies.

In-flight store addresses and values must be buffered regardless of their in-

terleaving with loads, since their values must only be written back to the memory

system upon commit. The schemes presented in this section therefore attempt to

reduce only the number of loads contained in the LSQs, by attempting to buffer

only matching loads. .

Figure 4.7 shows one possible scheme to reduce the loads that must be saved

in the LSQ. An address match predictor (AMP) predicts whether a load is likely to

match a store. If a load is predicted not to match, it is hashed into a structure called
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an exclusive Bloom filter (EBF), which contains an approximate hardware hash of

all in-flight loads not contained in the LSQ. If the load is predicted to match, it

is placed into the LSQ, which may be guarded by an inclusive Bloom filter for

efficient accessing, as described in the previous section. Issued stores check the LSQ

as usual, but they also search the EBF. A store hashing to a set bit in the EBF

indicates either a false positive hit, or a possible memory ordering violation due to

incorrect hashing into the EBF by the AMP. Since the two cannot be differentiated,

the processor must take corrective action, possibly culminating in a pipeline flush.

Like the Bloom filter organization for search filtering, we take advantage of

block-atomic ISA to improve state filtering. In our implementation, the EBF is

partitioned by blocks to reduce the effect of false positives. A load predicted to

match by the AMP is slotted in the EBF of the block the load belongs to. When

a block commits all the entries in the EBF are cleared. When a store searches the

EBF it searches the EBFs of blocks that are younger than the store or at least as

old as the store. This organization can potentially reduce the false positives from

aliasing from older blocks.

We use another optmization to avoid false positives from stores that are

older than the loads but in the same block. We augument each entry in the EBF to

indicate the age of the last load instruction that updated a particular EBF entry.

When a store checks the EBF if the age of the store is greater than the load then

no violation is flagged. As an additional storage optimization, instead of storing the

full five bits for age, we store only approximate age information to save space. From

our experiments most benchmarks 3-bit age tags perform as well as full 5-bit age

tags. With 3 bits, a value of 000 indicates no load and 001 indicates a load between
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0 and 7. Rest of the loads are grouped in fours and tagged with successively higher

age-tags.

The AMP is a simple 1-bit table that is indexed by address. On a violation,

the AMP table is trained with the address of the store (the address of the load is

unavailable because it has been hashed). If the AMP uses the same hash function

as EBF, then by training the AMP with the store address will ensure that any loads

that are likely to cause false positives or violations will be directed to the LSQ the

next time they arrive. If the AMP is never reset, over time, all the AMP bits will

be 1, and the AMP will lose it’s ability to filter loads. To avoid this, the AMP is

periodically reset. The reset interval is programmable.

Tables 4.4, 4.5 4.6 summarize the results of state filtering. The tables show

the slowdowns with respect to maximally sized LSQs for a 32 and 24 entry LSQs

with state filtering optimization, for five hand optimized benchmarks, six SPEC

INT benchmarks and eight SPEC FP benchmarks. For each of these benchmarks,

the table also shows the performance of an undersized, unordered LSQ with NACK

replay scheme to handle overflows. For the state filtering scheme, the loads were

filtered using 64 bits EBF per block and an AMP of 64 bits per partition. For all

benchmarks except vector add (vadd), 3 bits were used to represent the age tag.

The results indicate that for the hand coded benchmarks and for almost all

of the SPEC benchmarks, a 32 entry LSQ with state filtering performs as well as

a 48 entry LSQ with the NACK scheme. Furthermore, for the hand optimized and

SPEC INT benchmarks a 24 entry LSQ performs as well as a maximally sized LSQ.

These results can be attributed to lower LSQ pressure because of fewer in flight

memory operations for SPEC INT benchmarks and the benefits of state filtering.
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Benchmark LSQ NACK LSQ % lds Replay Flushes Age Hash
48 40 32 SF 24 filtered per ld LSQ EBF bits type

conv 1 1.08 2.27 1 97% 0 0 2 3 xor

ct 1 0.98 0.96 0.98 92% 0.1 0 3 3 high

genalg 1 1 1 1 41% 0.01 0 1 3 xor

matrix 1 1 1.03 1 79% 0 0 0 3 xor

vadd 1.05 3.51 5.01 1.03 99% 0.04 27 0 4 low

Average 1.01 1.514 2.054 1.002 82% 0.03

Table 4.4: Performance of a 24 entry LSQ with state filtering optimization for hand optimized benchmarks. The
slowdowns are with respect to a maximally sized LSQ. The results show that 24 entry LSQ with state filtering
performs as well as a 48 entry LSQ with NACK scheme.
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Benchmark LSQ %lds Replay Flushes per KI
NACK 32 SF 24 filtered per ld LSQ EBF

vpr 1 1.01 50% 0 0 0.3

gzip 1.07 1.04 39% 0.02 0.07 0.15

bzip2 1 1 16% 0 0 0.01

crafty 1 1.02 25% 0 0.02 0.11

vortex 1 1 40% 0 0.06 0.02

perlbmk 1 1 47% 0 0 0.04

Average 1.01 1.01 36% 0.00 0.03 0.10

Table 4.5: Performance of a 24 entry LSQ with state filtering optimization for SPEC
INT benchmarks. The slowdowns are with respect to a maximally sized LSQ.The
results show that 24 entry LSQ with state filtering performs as well as a 32 entry
LSQ with NACK scheme.

Benchmark LSQ NACK LSQ %lds Replay Flushes per KI
48 32 SF 32 filtered per ld LSQ EBF

apsi 1.03 1.29 1.37 4% 0.24 0.17 0.08

mesa 1.01 1.02 1.07 36% 0.01 0.03 0.21

swim 0.99 1.84 1 99% 0 0 0

applu 1 1.07 1.03 32% 0.05 0 0.15

mgrid 2.75 3.25 1.04 79% 0.01 0.01 0.04

equake 1.05 1.23 1.05 39% 0.04 0.06 0.05

wupwise 1 1 1 34% 0 0 0.01

sixtrack 1 1.01 1.05 44% 0.01 0 0.14

Average 1.23 1.46 1.08 46% 0.04 0.03 0.08

Table 4.6: Performance of a 32 entry LSQ with state filtering optimization for SPEC
FP benchmarks. The slowdowns are with respect to a maximally sized LSQ. The
results show that 24 entry LSQ with state filtering performs better than a 48 entry
LSQ with NACK scheme.
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For the remaining benchmarks, better hash functions can increase the benefits of

filtering.

A key constraint in state filtering is to ensure that the state added to imple-

ment filtering (EBF and AMP) is not larger than the state saved in the LSQ. The

state savings EBF and AMP for 32-entry LSQ with 5-bits of age is roughly 160 bytes

acorss four partitions. The state savings for a 24-entry LSQ with 3-bits for the age

tag is roughly 1.2KB across four LSQ partitions. While the program characteristics

indicate that only few loads or stores have dependences, the hardware mechanisms

are severely stunted without quality hash functions. Either better hash functions or

compiler support will be needed to reduce the size of the LSQ further.

4.5 Summary

In this chapter, we proposed a range of schemes that use approximate hardware

hashing with Bloom filters to improve LSQ scalability. These schemes fall into two

broad categories (see Figure 4.8): search filtering, reducing the number of expensive

associative LSQ searches, and state filtering, in which some memory instructions are

allocated into the LSQs and others are encoded in the Bloom filters.

The search filtering results show that by placing a 4-KB Bloom filter in front

of an age-indexed, centralized queue, 73% of all memory references can be prevented

from searching the LSQ, including the 95% of all references that do not actually have

a match in the LSQ. By banking the age-indexed structure and shielding each bank

with its own Bloom filter, a small subset of banks are searched on each memory

access; for a 1024-entry LSQ, only 12 entries needed to be searched on average. We

also proposed placing Bloom filters near partitioned cache banks, preventing a slow,
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centralized LSQ lookup in the common case of no conflict.

For state filtering, we coupled an address match predictor with a Bloom filter

to place only predicted dependent operations into the LSQs, encoding everything

else in a Bloom filter and intiating recovery when a memory operation finds its

hashed bit set in the Bloom filter. With this scheme the number of entries in the

LSQ can be reduced further but our results indicate that the LSQ area savings are

offset by the increase in predictor area. With better hash functions state filtering

can perhaps be made more profitable.
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Chapter 5

Related Work

In this chapter, we will describe the evolution of LSQs and then qualitatively and

quantitatively differentiate the optimizations described in this dissertation with re-

cently proposed LSQ optimization. We conclude with a review of related work on

other aspects of the primary memory system.

5.1 Historical Background on Memory Disambiguation

Initially, simple sequential machines executed one instruction at a time and did not

require hardware for enforcing the correct ordering of loads and stores. With the

advent of speculative, out-of-order issue architectures, the buffering and ordering

of in-flight memory operations became necessary and commonplace. However, the

functions embodied in modern LSQ structures are the result of a series of innovations

much older as described in this chapter.

Store Buffers: In early processors without caches, stores were long-latency

operations. Store buffers were implemented to enable the overlap of computation
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with the completion of the stores. Early examples were the stunt box in the CDC

6600 [75] and the store data buffers in the IBM 360/91 [11]. More modern architec-

tures separated the functionality of the store buffers into pre-completion and post-

commit buffers. The pre-completion buffers, now commonly called store queues,

hold speculatively issued stores that have not yet committed. Post-commit buffers

are a memory system optimization that increases write bandwidth through write

aggregation. Both types of buffers, however, must ensure that store forwarding oc-

curs; when later load to the matching address are issued, they receive the value of

the store and not a stale value from the memory system. Both types of store buffers

must also ensure that two stores to matching addresses are written to memory in

program order.

Load Buffers: Load buffers were initially proposed to temporarily hold

loads while older stores were completing, enabling later non-memory operations

to proceed [60]. Later, more aggressive out-of-order processors–such as IBM’s

Power4 [74] and Alpha 21264 [19]–permitted loads to access the data cache spec-

ulatively, even with older stores waiting to issue. The load queues then became

a structure used for detecting dependence violations, and would initiate a pipeline

flush if one of the older stores turned out to match (have the same address as) the

speculative load. Processors such as the Alpha 21264 and Power4 also used the load

queue to enforce the memory consistency model, preventing two matching loads

from issuing out of order in case a remote store was issued between them.

As window sizes increased, the probability that matching memory operations

would be in-flight increased, as did the chance that they would issue in the incorrect

order, resulting in frequent pipeline flushes. Memory dependence predictors were
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developed to address this problem, allowing loads that were unlikely to match older

stores to issue speculatively, but deferring loads that had often matched in-flight

stores in the past.

Dependence predictors have been an active area of research since the late

part of the last decade. Early work on dependence predictors by Moshovos and Sohi,

and Henson et al. identified the potential of memory speculation for out-of-order

processors and proposed solutions that worked well for small window processors.

Moshovos and Sohi proposed a predictor that identified recurring RAW memory

violations using a couple of a CAM tables one each for the Store PC and the Load

PC [55]. Hesson et al. proposed a scheme where loads that caused violation were

marked using reserved bits in the instruction encoding and stored the store barrier

cache. When any marked load was inflight the memory execution was completely

serialized in their design irrespective of matching addresses. [37].

Two papers, one in 1998 and other in 1999, have had great influence on de-

pendence prediction research. Chrysos and Emer described the store sets predictor

which identified sets of matching loads and stores and made dependent loads wait on

particular dependent stores [18]. Yoaz et al. used a much simpler but very effective

predictor based on distance between dependent loads and stores to improve perfor-

mance [84]. Several researchers have built upon both of the designs. Notably, Sha,

Martin and Roth enhanced the store sets predictor with path based information and

proposed training on both violations and forwardings [68]. Similarly, Subramanium

and Loh extended the distance predictor with partial tags and confidence estimates

to improve its accuracy even further [73].

The dependence predictor used for state filtering is a very coarse filtering
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Figure 5.1: A simplified LSQ datapath

dependence predictor that makes history based predictions on the granularity of

blocks. This is the first block based dependence predictor. We envision this predictor

being used as a pre-filter to filter out references to the concurrent work on counting

dependence predictors.

5.2 Age-Indexed LSQs

The majority of LSQ designs so far have been age indexed, in which memory op-

erations are physically ordered by age i.e. memory instructions are slotted into a

specific row in the CAM and the RAM based on the LSIDs. The age indexed queues

are managed as circular buffers and use fully associative search on the entire queue

contents to enforce dependences. Although fully associative structures are expensive

in terms of latency and power, age indexing permits simpler circuitry for allocating

entries, determining conflicts, committing stores in program order, and quick partial

flushes triggered by mis-speculations because the instructions are physically ordered

by age.

Dynamically scheduled processors, such as those described by Intel [17],
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IBM [24], AMD [42] and Sun [59], use age-indexed LSQs. An LSQ slot is reserved

for each memory instruction at decode time, which it fills upon issue. To reduce

the occurrence of pipeline stalls due to full LSQs, the queue sizes are designed to

hold a significant fraction of all in-flight instructions (two-thirds to four-fifths). For

example, to support the 80-entry re-order buffer in the Alpha 21264, the load and

store buffers can hold 32 entries each. Similarly, on the Intel Pentium 4, the maxi-

mum number of in-flight instructions is 128, the load buffer size is 48, and the store

buffer size is 32.

Additional information of specific aspects of the age-indexed LSQs are de-

scribed the following patents: Justification and design of an unified LSQ over sep-

arate LSQ are presented in US patent numbers 5832297 from Sun, Store-to-load

forwarding is described in detail by several designers from IBM and Intel in patent

numbers 6141747, 6021485, 5931957 and 6301654.

Ponomarev et al. [61] proposed an age-indexed but segmented LSQ, in which

a fully associative LSQ is broken into banks through which requests are pipelined,

accessing one bank per cycle. This strategy ultimately saves little power or latency,

since all entries must be searched in the common case of no match, and an operation

must wait until a number of cycles equal to the number of banks has elapsed to

determine that there were no conflicts. This scheme lends itself to efficient pipelining

of LSQ searches for faster clock rates, but not necessarily higher performance.

5.3 Address-indexed LSQs

To reduce the state that must be searched for matches, partitioning of LSQs is de-

sirable. Address-indexed LSQs logically break the centralized, fully associative LSQ
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Figure 5.2: Address-indexed LSQ datapath

into a set-associative structure. As shown in Figure 5.2, a portion of an memory

instruction’s address chooses the LSQ set, and then only the entries in that set

are searched for a match. While this does reduce the number of entries that are

searched, address-indexed organizations suffer from two major drawbacks. First,

address-partitioned LSQs can have frequent overflows (since set conflicts are pos-

sible), resulting in more flushes than an age-indexed LSQ. Second, ordering and

partial flushing become more difficult in an address-indexed LSQ because instruc-

tions to be flushed may exist in different sets. For the same reason, in-order commit

of stores to memory is also more expensive.

To mitigate the conflict problem, sets can be made larger, in which case the

latency, power, and partitioning advantages diminish. Alternatively, the sets can

be made more numerous, in which case the LSQ may requiring more area than a

pure centralized design and the average utilization of the entries will be low. Thus,

even though address-indexed LSQs can support sets residing in separate banks with

localized ordering logic (enabling de-centralized LSQs), they incur both performance

and complexity penalties.

A number of proposed or implemented designs have used address-indexed
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LSQs to facilitate partitioning. The Itanium-1 microarchitecture uses a violation

detection table called an ALAT [41], which is a 32-entry, 2-way set associative

structure. Because conflicts can overflow a set in an address-partitioned LSQ, more

entries can reduce the probability of conflicts; the ALAT can hold 32 entries, even

though a maximum of 20 memory instructions can be in-flight. The Itanium-2

microarchitecture [53] implements a 32 entry fully associative structure reducing

the probability of conflicts even more.

Both the IA-64 [29] compiler and the Memory Conflict Buffer paper [26]

emphasize static disambiguation analysis to store only instructions whose addresses

either have a true dependence or cannot be statically disambiguated, thus reducing

the size of the hardware ALAT or MCB structures. An IA-64 study on dependence

analysis [83], however, concedes that relying completely on static analysis is ineffec-

tive for programs that cannot tolerate the compile-time analysis cost (e.g. JITs) or

non-native binaries for which source access is not available, and that static analysis

is much less effective for many pointer-intensive codes. Static analysis can play a

role but cannot address LSQ scaling issues comprehensively.

Finally, the MultiScalar processor proposed an address-indexed disambigua-

tion table called the Address Resolution Buffer (ARB) [25]. When an ARB entry

overflows (an ARB set has too many memory addresses), the MultiScalar stages are

squashed and the processor rolls back. The MultiScalar compiler writers focused

strongly on minimizing the probability of conflict in the ARB, trying to reduce the

number of subsequent squashes.
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5.4 Recently Proposed LSQ Organizations

An LSQ fulfills three necessary functions: (1) it forwards store values to later loads

when their addresses match, (2) it detects load misspeculations, if a load issued with

older unresolved stores in flight that were later found to match the load’s address,

and (3) it acts as a store buffer that is used to commit stores to memory upon

retirement.

Recent work (see Figure 5.3) has proposed separating some or all of the three

LSQ functions into separate structures, to accelerate some of the individual struc-

tures. This approach results in increased complexity, and occasional area increases

due to redundant information held in multiple structures, but the potential power

savings, and in some cases, the access latency improvements, are considerable. In

this paper, we propose a LSQ organization that provides all the benefits of functional

decomposition without the increased complexity of the other mechanisms.

Functionally Decomposed LSQs: The LSQ typically supports 1) for-

warding from stores to later loads 2) commitment of speculative stores to memory

and 3) detection of load misspeculations. Recent work has proposed breaking all

three LSQ functions into separate structures, to accelerate some of the individual

structures. This approach results in increased complexity, and occasional area in-

creases due to redundant information held in multiple structures, but the potential

power savings are considerable. Both Baugh and Zilles [8] and Roth [64] take this

approach. For the speculative forwarding, both papers propose a small, fast, cen-

tralized, unordered, fully associative forwarding buffer, and both papers propose a

non-associative FIFO for buffering and committing stores. The papers differ on the

misspeculation detection function: Baugh and Zilles use a centralized, addressed-
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indexed structure, whereas Roth uses enhancements of a load re-execution proposed

by Cain and Lipasti [14]. Cain and Lipasti’s paper proposed eliminating the mis-

speculation detection structure (i.e. the load queue) by having loads save their

value in the reorder buffer and compare the values at commit time to detect mis-

speculations.

Torres et al. [77] propose a distributed, unordered, address-interleaved store-

load forwarding buffer but a centralized, age-ordered store queue for speculation

checking and commit. While the distributed store forwarding buffers increase for-

warding bandwidth, the centralization of the other two structures forces all loads

and stores to be routed to a central place for verification and commit, hampering

scalability.

Stone et. al. [72] suggest using a set associative cache for forwarding, a non

associative FIFO for commit and an address-indexed timestamp table for checking

speculation. The timestamp table never produces false negatives but may produce

false positives due to address aliases and conservative handling of partial flushes.

As with most address-indexed LSQs, such designs have to be oversized for good

performance. For instance, the authors use a 8K entry, 8bit wide timestamp table

and a 80bit wide, 512 set, 2way forwarding cache even though there can be only 1K

instructions in-flight at any time.

Sha et al. [67] extend Roth’s scheme by using a modified dependence predic-

tor to match loads with the precise store buffer slots from which they are likely to

receive forwarded data. This solution completely eliminates the associative store for-

warding buffer but instead requires large multi-ported dependence/delay predictors

(approximately 16KB combined), thus effectively improving power at the expense
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of area. These functionally decomposed schemes save power and in some cases en-

ergy, but still rely on centralized structures that will be challenging to partition

effectively.

Hierarchical LSQs: Other work has looked at reducing LSQ delay and

power by building hierarchy into the memory disambiguation hardware. While

effective, these techniques add complexity and do not directly lend themselves to

facilitating distributed memory disambiguation.

Akkary et al. [4] propose two-level store buffers which are both centralized,

fully associative and age ordered. Stores are first entered in the L1 store buffer,

and when it overflows they are moved to the L2 store buffer. Both buffers support

forwarding and speculation checking but stores commit from the second level buffer.

This scheme reduces power, but still requires a worst-case sized L2 and uses area-

inefficient CAMs.

Gandhi et al. [27] propose an area-efficient disambiguation hierarchy by divid-

ing operations into two categories on a long-latency L2 cache miss. Stores dependent

on the L2 miss bypass the store queue and are allowed to speculatively update the

L1-D cache, whereas independent memory operands go to a non-associative FIFO.

The dependent cache updates are discarded when the memory operations depen-

dent on the L2 cache miss are re-executed. It is unclear that this technique will be

effective for distributed, high-ILP cores that attempt to tolerate many L2 misses

concurrently.

Finally, Cristal et al. [21] are investigating a complete set of mechanisms for

kilo-instruction processors, an interesting approach that will likely exploit high ILP

and tolerate long L2 memory latencies. They advocate a combination of hierarchical
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techniques to make their centralized LSQ power and area scalable to future large

windows.

Distributed age-indexed LSQs: Research proposals for clustered archi-

tectures [85, 7] employ multiple partitions of an age-indexed LSQ, but instead of

reserving a slot in each of the LSQ partitions, they use memory bank predictors [9]

to predict a target bank and reserve a slot there. If the bank prediction is low-

confidence, slots are reserved in all banks. While this approach is better than

conservatively reserving a slot in each partition, it still wastes space because of

conservative dispatch allocation.

Miscellaneous: Jaleel et al. point out that blindly scaling the larger window

LSQs can be detrimental to performance due to the increase in the number of replay

traps [44]. In their study on a scaled Alpha-21264 core, such traps can occur when

load instructions violate the consistency model, when load needs to partially obtain

the data from the LSQ and the cache, when a load miss cannot be serviced because

of structural hazards and when a load instruction executes prematurely. TRIPS

avoids these traps and does not suffer from the performance losses described in [44].

In particular, TRIPS avoids load-load traps with weak memory ordering, wrong-size

traps by supporting partial forwarding in LSQ, and load-miss traps by using larger

MSHRs. Like the Alpha, TRIPS also uses a dependence predictor to reduce the

number of load-store replay traps which occur when a load instruction is executed

prematurely.

Garg, Rashid and Huang propose another mechanism for eliminating asso-

ciative LQ/SQs [28]. In the first phase of two-phase processing, loads and stores

speculatively obtain their value from a L0 cache. In the second phase, the memory
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Figure 5.3: LSQ Related Work.

instructions are re-executed in program order, without any speculation, and access

the regular L1 cache. Any difference in the load values between the two phases

results in corrective action. This mechanism, while eliminating the CAM, requires

a 16KB L0 cache and an age-ordered queue for holding the values read during the

first phase.

Table 5.4 summarizes the ROB size, the area of the LSQ before and after

the optimizations, the size of the supporting structures required by several of the

recently proposed optimizations (but which may be already be present in the design

for performance reasons), and finally the ratio of total area required for memory

disambiguation, before and after the optimizations. We computed the area of the

memory structures, in bytes of storage, assuming the CAM cell area to be three

times larger than the RAM cell. We also assumed 40-bit addresses and 64-bit data,
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Unoptimized Optimized Unoptimized
Scheme ROB Size Depth Storage Depth CAM RAM Storage Supporting :optimized

(KB) Width Width (KB) Structures Ratio
LQ SQ LQ SQ LQ SQ LQ SQ LQ SQ LQ SQ (KB)

SVW - NLQ 512 128 64 1.00 1 128 64 0 12 92 64 1.44 0.78 1 1.61
SQIP 512 128 64 1.00 1 128 64 0 0 92 64 1.44 0.5 23.5 12.72
Garg et al. 512 64 48 0.50 0.75 64 48 0 0 92 0 0.72 0 16 13.38
NoSQ 128 40 24 0.31 0.375 40 0 0 0 92 0 0.45 0 11 16.65
FnF 512 128 64 1.00 1 128 0 0 0 92 0 1.44 0 23.75 12.59
Stone et al. 1024 N/A N/A 18 N/A
LateBinding-Alpha 80 32 32 0.25 0.5 32 12 92 0.5 0.0625 0.75
LateBinding-TRIPS 1024 1024 16 192 12 92 3 0.25 0.20

Table 5.1: Area for LSQ and supporting structures for recent related work

117



and that all the unoptimized designs had 12-bit partial addresses in CAMs and rest

of the address bits in the RAMs. The depth of the queues, however, is different

for each of these structures. The table shows that the proposed schemes add area

overhead between factors of 1.5 to 16.5. When discounting the dependence predictor,

the area overheads are between factors of 1.5 and 13.

In contrast to all of the above schemes, the design proposed in this paper uses

late binding to reduce the area and latency without any additional state outside of

the LSQ. Dynamic power reduction, however, requires additional state in the form

of address-based Bloom filters described in Chapter 4. These structures take up only

few hundreds of bytes and can even be further reduced by optimizations suggested

by Castro et al. [15].

Other researchers have also applied issue-time binding, explicitly or implic-

itly, to improve the efficiency of microarchitectural structures. Monreal et al. use

late allocation to reduce the number of physical registers [54]. The effectiveness of

some LSQ optimizations like address-based bloom filters or the small associative

forwarding buffers [8, 64, 77] can also be explained in part by late allocation.

118



Chapter 6

Conclusions

6.1 Contributions and Impact

6.1.1 Memory Disambiguation Research

For more than a decade now, computer architects have proposed designs that at-

tempt to improve performance by dynamically extracting parallelism from a large

pool of in-flight instructions. The Achilles heel for most of these proposals has

been the design of the memory disambiguation hardware, also known as a load-

store-queue (LSQ), which ensure that sequential memory semantics are satisfied.

Conventional approaches to LSQ designs do not scale with increasing number of in-

flight instructions because they use associative memories, which are power-hungry,

large and slow. This dissertation described new LSQ organization techniques that

will scale to large instruction windows by minimizing use of associative memories.

We have published two papers on this topic: the first paper described the problems

with scaling LSQs and proposed optimizations for scaling centralized LSQs, and was
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presented at the 36th International Symposium of Microarchitecture in 2003 (MI-

CRO 2003). The second paper is on design and scalability of distributed LSQs was

presented at the 40th International Symposium on Computer Architecture (ISCA

2007).

Centralized LSQs: Our MICRO 2003 paper was one of the first academic

papers to articulate the difficulties associated with scaling LSQs. In addition to

framing the problem, the paper made three key contributions:

1. I observed that even when a large number of memory instructions were simul-

taneously in-flight, only a small fraction of these memory instructions were

to the same address (matching addresses). However, LSQ designs treated all

memory operations equally and hence were under-optimized for the common

case, which led to power and area problems.

2. To mitigate this power problem, I proposed using simple address-based Bloom

filters. Bloom filters replace the power-hungry, fully associative search with

a power-efficient hash table lookup in the common case; associative search

occurs only when a matching instruction is likely to be found in the LSQ. The

Bloom filter is constructed by hashing the data address of every executing

load and store into a single bit. Then, when a load or store executes, it checks

the Bloom filter by hashing its own data address. If the bit at the hashed

location is not set, then there cannot any other instruction to the same data

address in the LSQ and thereby making the associative search unnecessary.

As we predicted in our paper, Bloom filters have enjoyed wide applicability

with architects in recent days. They have been applied to several structures

outside of LSQ with very high impact.
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3. To mitigate the area problem, we proposed a technique in which the LSQ is

sized to hold only instructions that are likely to have matching addresses, and

the instructions that are unlikely to match are summarized in a Bloom filter. If

an instruction is incorrectly slotted into the Bloom filter, then a pipeline flush

is initiated. Although the initial results were affected by the low accuracy of

dependence predictors and false positives in the Bloom Filter other researchers

have built upon these techniques/observations and showed significant LSQ

area savings but added numerous dependence predictors which diminished the

benefits of LSQ area reduction. In follow on work I invented new dependence

predictors that are very area efficient and improve this accuracy significantly

and thus make state filtering profitable.

Distributed LSQs: As on-chip wire delays increase, and high-performance

processors necessarily become more partitioned, centralized structures like the LSQ

can severely limit scalability. In work published in ISCA 2007, I proposed schemes

to partition and distribute the LSQs. The two key requirements of efficient, parti-

tionable LSQs are 1)they should support late binding and 2) they should support

low-overhead mechanisms for dealing with LSQ overflows.

1. Late binding: Conventional LSQs reserve a slot in the LSQ as soon as a

memory instruction is decoded. Employing the same approach for distributed

LSQs will result in a slot being wastefully reserved in all the partitions even

though the instruction will go only to one partition. One solution to this

problem is to delay allocation until the partition is known. However, delaying

allocation, i.e., late binding requires new LSQ organizations and algorithm

that have traditionally been considered difficult to implement. I noted that the
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implementation is complex only if all execution possibilities are treated equally.

Implementation can thus be simplified by optimizing only the common case

since 99% of accesses consist of a load forwarding from one or fewer stores. Our

measurements showed no performance degradation from increasing the delay

of the uncommon case. An added benefit of late binding is the reduction in the

size of the LSQ. Late allocation reduces the occupancy of the LSQ, resulting

in a smaller LSQ.

2. Overflow handling: In distributed LSQs, it is wasteful to maximally size

each of the partitions because only a fraction of the memory references will

access a given partition. If the partitions are not maximally sized, however,

we need schemes to deal with situations when a memory instruction arrives at

a full LSQ. Simply stalling could lead to deadlocks because the LSQ is allo-

cated out-of-order; simply flushing the pipeline can lead to severe performance

losses. To solve this problem, we proposed three low-overhead mechanisms for

handling overflows. The first method buffers the overflowed instructions in a

separate buffer near the LSQs. The second NACKs the overflowing instruction

and sends it back to the issue window from which it is re-tried later. The third

scheme, the most novel of the three, uses the buffers in the interconnection

network between the execution units and memory to buffer instructions, and

it uses virtual channels to avoid deadlocks. The network-buffering scheme is

the most robust of all the schemes for large instruction windows.

For nearly a decade now, the lack of robust, low-overhead overflow schemes

has been a severe impediment to distributing the LSQ and hence to completely

distributed microarchitectures; I believe that the techniques presented in this this
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dissertation provide a solution to this problem and will likely scale to very large

window processors.

6.1.2 TRIPS System Design Experience

For the TRIPS prototype chip, I was the lead designer of the primary memory system

and I was involved in the design and verification of the SDRAM controller. The

processor core is built from five tiles and the primary memory system was composed

of tiles called Data tiles or DTs. As a tile owner, I was responsible for the initial

specification, RTL entry for large portions, timing closure and floorplanning. Robert

McDonald, the chief engineer on the project, was involved in all aspects of the design,

wrote some RTL and was the verification lead on the primary system. The DT is

considered one of the most complex of all tiles because of the number of components

and interaction between the components. The SDRAM controller was considered

the mostly likely to break because of IBMs documentation of the component was

sketchy. Disciplined design and sophisticated verification has ensured that both

these components are bug free.

The TRIPS primary memory system posed a significant challenge because it

had to match the bandwidth of the execution core, and it had to support high levels

of memory parallelism and re-ordering (256 in-flight memory instructions). Grow-

ing on-chip wire delays and the scale of this problem necessitated a fully partitioned

memory system. To match the bandwidth requirements, the primary memory sys-

tem is partitioned into four independently accessible partitions, the DTs, which are

interleaved based on the addresses of the memory instructions. To support high

memory parallelism, the DT uses memory-side dependence predictors, deep LSQs,

123



and an aggressive miss-handling unit capable of supporting up to 16 outstanding

load misses per DT (64 per core). These capacities are much higher than the state-

of-the-art in high performance processors To the best of my knowledge, the TRIPS

processor is the first processor to feature a fully partitioned memory system that is

capable of maintaining sequential memory semantics in which none of the memory

functions are necessarily centralized. Also, I believe that paper in the International

Conference on Computer Design, ICCD 2006, is the first paper to provide an in-

depth description of the pipelines in a complex memory system and how they work

together.

SDRAM controller: I worked with Changkyu Kim to integrate and verify

the SDRAM memory controller. Since the SDRAM controller works at a different

clock frequency than the main chip, we used custom synchronizers for moving across

the clock domains. I was closely involved in the design and was the verification lead

for this component. I designed and wrote a sophisticated random test generator,

which was successful at catching various integration bugs and exposing rare corner

cases in the design.

6.2 Looking Back

At the time of the publication of the initial TRIPS study, one of the major concerns

was the feasibility of implementing the primary memory system. If anecdotal evi-

dence can be believed, even less ambitious primary memory systems of commercial

processors had proved to be very challenging. At the time I started working on

the project in Spring 2003, however, I was unaware of the complexities and had my

VLSI design experience was limited to graduate class work. The research and pro-
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totyping that followed over the next three years has proved very valuable because it

not only provided design experience and validated many of our initial research ideas

but also opened up new avenues of research. In this section, I will re-visit upon

some important design decisions.

Our design philosophy was to go with the least risky design option which

was often arrived at after discussing design time, area, performance impact and

robustness and crispness of the solution. I aim to illustrate this process using a

discussion of two of the biggest intellectual and verification challenges, and using a

performance optimization as case studies. I will discuss the complexity of pipelin-

ing to obtain maximum throughput within the tiles, the distributed protocol to

communicate between the tiles and the dependence predictor.

Pipelining: Contrary to conventional wisdom, the design effort involved

in setting up the pipeline control logic and optimizing it for peak throughput was

much greater than the design of any of the separate sub-structures (like the LSQ)

and probably even surpassed all of them together. This problem was complicated

because of the area constraints, bypasses, the number of possible execution scenarios,

and the number of distinct pipelines.

Area was at a premium in the TRIPS prototype design (and will continue

to be so even in the future “billion transistor era” because of power and limited

chip real estate). To save area we often shared costly resources in the data tile (like

the LSQ register file) and sometimes even cheaper resources like pipeline latches

between exclusive pipelines. While these optimizations saved area, they increased

the intellectual and verification complexity of the design. The reason behind sharing

pipeline latches (although their area overhead was low) was to minimize the number
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of separate structures that had to be controlled on pipeline stall conditions and

flushes. Such a design style is likely to be useful when goal is to minimize the fanout

and the signal propagation delay to achieve competitive clock frequencies.

Another source of complication with the pipelining was the bypassing of

intermediate values in the pipeline (say from a store to a load to the same address).

Since we had seven distinct pipelines in the DT accomplishing different operations,

supporting several types of instructions ((un)cacheable, (un)mergeable, locks etc.)

and handling different data types, each bypass stage required very careful planning.

Correctly handling exceptions and deallocating pipeline state was another source of

bugs in the early implementation stages. We did not find simpler ways to implement

these functions; however, the current implementation is unlikely to diminish the

scalability because we do not foresee the individual pipeline stages and the bypasses

growing significantly.

Distributed Protocol: We went through multiple iterations of the dis-

tributed protocol used for communicating between the DTs before settling on the

all-to-all DT protocol in the prototype. The main complications in designing this

protocol were from interactions of local/ remote store arrival messages across dif-

ferent tiles with block commits and block flushes which flowed across tiles from the

GT, combined with the processing required for the reissue of dependent loads (which

were based on the store arrivals from local/remote tiles), and ensuring all of this

happened with predictable latencies. Despite these complexities, the key factor that

greatly simplified the design of this protocol was the meticulous specification and

enforcement of interfaces between the different tiles from early on in the project.

Details of the networks and interfaces are described in Nagarajan’s thesis [57].
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An undesirable feature of the current implementation is the all-to-all com-

munication between the different DTs. This method for completion detection is

unlikely to scale as the number of partitions increases. An alternative (that we

considered seriously for the prototype) is to compute the store completion in a dis-

tributed manner. Basically, each tile, every cycle, will exchange with its nearest

neighbor the last store prior to which all stores had arrived. This solution is similar

to the distributed leader election problem, where the leader is the store information.

For the interested reader, Erik Reeber has formally verified the nearest-neighbor

protocol and details of this protocol can be found in his dissertation [63]. Though

completely distributed by construction, the disadvantage of this is solution is its poor

performance robustness because the completion latency depends heavily on the ar-

rival order of the stores. Thus, we traded performance robustness for an unscalable

design because we feared that the unpredictable latencies may have complicate code

optimization and compiler development for the hardware. However, such scalable

distributed protocols and their performance robustness are an important avenue for

future research in scalable distributed architectures.

Dependence Predictor: While the prototype implementation satisfied the

bandwidth and latency requirements of the aggressive execution core, one aspect of

the design that can be optimized further is the dependence predictor. We imple-

mented a simple 1-bit dependence predictor that waited for all prior stores to arrive

before a deferred load could be woken up. Even this simple predictor improves

performance over aggressive execution by nearly 17% on SPEC and EEMBC bench-

marks, but more performance improvements are likely with advanced predictors.

The reason to go with the simplest possible predictor was in part because of proto-
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type design schedule constraints. The TRIPS tool chain was developed in parallel

with the hardware prototype and thus optimized TRIPS binaries were not available

until very late in the prototyping phase (2005). Without real TRIPS binaries and

exact quantitative measurements based on those binaries it was difficult to justify

more sophisticated predictors and additional schedule delays they would incur. In

fact, our design philosophy was not to inadvertently decrease performance because of

false positives from the dependence predictor. To minimize such performance slow-

downs we made the two aspects of the dependence predictor configurable. First,

the dependence predictor can be completely turned off if the programmer suspects

slowdowns due to false aliases or if (s)he wants to minimize the effects of depen-

dence predictor for controlled measurements of new optimizations. Second, if the

dependence predictor is on, the number of cycles between clearing the dependence

predictor is configurable. Contrary to most designs, the dependence predictor is

cleared based on number of blocks rather than number of cycles to make the per-

formance more predictable across runs.

ISA improvements: Minor ISA extensions that could be included in the

next revision of the EDGE ISA include instructions that flush specific addresses

(lines) from the L1 caches to improve speed DMA transfers and vector load and

store instructions to improve to reduce the load store queue size even further.

6.3 Looking Forward

Towards Ideal LSQs: In this thesis we proposed four techniques to improve LSQs.

Table 6.1 summarizes these techniques. Search filtering mechanism achieves eight-

ninths of its possible potential. Better hash functions may help achieve the remaining
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Ideal LSQ Characteristic Optimization Potential Achieved Current Limitations Possible Solutions

Only dependent instructions
are bufferred

State Filtering 3/9ths STs are not filtered,
False positives

Speculative store commit,
Better hash functions

Only dependent instructions
access the LSQ

Search Filtering 8/9ths Matching instructions
are checked, False pos-
itives

Better hash functions

Instructions remain in the
LSQ only for as long as they
are needed to satisfy depen-
dences

Late binding Unknown Instructions are held
until block commit

Early release of loads: Poli-
cies include release of loads
after all prior stores have ar-
rived and after forwarding

Distribution Flow Control Yes Complexity Simpler protocols

Table 6.1: Towards Ideal LSQs
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potential. Late binding reduces the size of the LSQ to half of the age-ordered LSQ;

additionally, early release of LSQ entries can decrease the LSQ even further. State

filtering achieves only one third of its possible potential but can be improved with

better hash functions. Finally, the LSQ distribution can be implemented in a com-

plexity effective manner with simpler protocols. In addition to these optimizations,

some interesting related questions are discussed below.

An Alternative to LSQs: Load-Store Queues are used to satisfy depen-

dencies between speculative memory instructions in a single thread of execution.

Cache coherence ensures that memory dependences are satisfied across different

threads. An interesting question is if both mechanisms can be combined together.

Researchers have proposed speculative versioning caches (SVC) [79] to solve this

problem in the context of a hardware cache coherent system. The disadvantages

of the SVC proposal are 1) high bookkeeping overheads in maintaining versions of

data in the caches and 2) complexity of the multi-step version management algo-

rithm. I believe that an in-place versioning system possibly designed using data

compression is an promising alternative that needs to be explored further. Such a

memory system can also be used to support hardware transactional memory quite

effectively.

A question on Design Complexity: During my proposal examination,

Dr. Joel Emer, asked me to compare the complexity of LSQ design proposed in

this thesis against a traditional LSQ. I have pondered if this question can be quan-

titatively answered. Complexity is usually only intuitively perceived and there are

different flavors of complexity like performance complexity, circuit complexity, ver-

ification complexity and physical design complexity. Of all the above complexities,
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I think verification complexity closely matches the microarchitects intuitive per-

ception of complexity and taken together with physical design complexity mostly

determines the time-to-market. Measuring these complexities and co-relating with

user studies may prove to be an interesting exercise that can scientifically aid de-

signers pick a good choice and also help them communicate their designs better.

Universal Memory Systems: Due to increased application diversity, the

type of memory system that best suits an application today widely varies. Some ap-

plications require hardware coherent shared memory for high performance, others

work better with streaming memory model, and yet others need emerging trans-

actional memory models. A truly polymorphous memory system will support for

all these three types of models without significant additional area than any of the

individual designs and at no or little additional design complexity. Some design

issues need to solved to overcome before such a memory system can be created:

How should the caches be configured and sized? What should be the organization

of the routed network for optimal performance in these three modes? For instance,

should we have a wide network for DMA transfers or can we use a narrower network?

How do we ensure quality of service when certain cores in the CMP are dedicated

to streaming applications and certain other cores are dedicated for general purpose

applications? Answers to these questions will lead to an energy-efficient memory

system that can work well across multiple domains.
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Appendix A

Multiprocessor Extensions

The TRIPS processor differs considerably from conventional processors because it

utilizes block-atomic execution and implements a large instruction window. The

purpose of this chapter is to examine the TRIPS consistency model and investigate

the interaction between block-atomic execution model and parallel programming.

In particular, we are interested in answering the following questions: Does block-

atomic execution offer new opportunities to simplify parallel programming? Can

block-atomic execution improve the performance of parallel programs? Can block-

atomic execution simplify implementation of memory consistency in hardware? How

do all these optimizations interact with LSQs?

A.1 Sequential Consistency on TRIPS

Sequential consistency requires that all operations in a single thread execute in

program order. This follows directly from Lamport’s definition of sequential consis-

tency [48]:
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“A system is sequentially consistent if the result of any execution is the same

as if the operations of all the processors were executed in some sequential order,

and the operations of each individual processor appear in this sequence in the order

specified by its program.”

At first glance, a sequentially consistent memory may seem conceptually at

odds with block-atomic execution model because, irrespective of the program order

of reads and writes, the reads from a block will always reach the memory system

before the writes from that block can be entered into the memory system. If the

other threads see the reordering of reads and writes within the block, then sequential

consistency violations may result.

The key to achieving a sequentially consistent memory with block atomic

execution is to make reordered reads and writes from one thread invisible to the

other threads if the readwrite sets of the threads conflict. Once a violation is sus-

pected, if all but one of the threads is throttled, then the other threads cannot see

the reordering, and the resulting execution is same as if the memory was updated se-

quentially. Normal block-atomic execution can resume once the violation conditions

are handled.

To implement sequential consistency based on the above principle, two mech-

anisms are required: one for detecting violations across threads and another for

throttling and resuming execution. Violations can be detected by comparing the

read-write sets of the threads either during the commit processing stage of block ex-

ecution (late detection) or just before the blocks are committed (in-time detection)

or as and when memory instructions reach the primary cache tiles (early detection).

To recover from violations, either all blocks subsequent to the violating blocks can
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be squashed or selective reexecution can be used to save some of the speculative

work. The timing of the operations is illustrated in Figure A.1.

Before discussing each of these mechanisms, it may be useful to list out some

execution scenarios that can result in sequential consistency violations and use these

to guide the design of the detection algorithms. Here are some of the cases (assuming

MESI protocol):

1. If any two loads in a block are reordered, and the younger (program order)

load reads from a cache line in any state other than modified or exclusive, then

other threads may have cached copies and the other threads may observe the

reordering of loads if they happen to read the cache line.

2. If two stores within a block are reordered, and either of the stores is to

shared/invalid lines, then there is danger of other threads observing the re-

ordering through the out-of-order invalidate/request messages.

3. If a load and store within a block are reordered and either one of these oper-

ations accesses cache lines accessed by other threads, then the reordering can

be indirectly observed.

A.2 Early Detection Mechanism

1. As and when loads and stores reach a cache bank, other cache banks re notified

of their arrival. Based on the arrival time stamp, the operations that reached

the cache banks out-of-order can be identified.

2. If a reordered load reads a cache block in “shared” state then all of the other
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copies of the cache block are marked “possibly inconsistent”. The cache blocks

is returned to shared state when the block with the reordered load commits.

3. Stores speculatively fetch cache block write permissions when they reach the

cache banks. In addition, if a store executes out-of-order then its cache block

address is held locally in table at each cache bank.

4. When a load reads a cache line marked as “possibly inconsistent” or when a

store attempts to fetch write permissions held by a different thread, a sequen-

tial consistency violation may have occurred and recovery should be initiated.

5. On violations, the thread that observed the out-of-order effect is rolled back

to the last block boundary and all side-effects on the memory system due to

that thread should be undone (e.g. “possibly inconsistent” markings)

Early detection scheme requires little additional hardware support over the

baseline TRIPS model; even the functionality for “possibly inconsistent” markings

can be emulated by maintaining a table at each processor that holds the addresses

of reordered shared cache blocks instead of modifying the cache coherence protocol.

However, the system-wide broadcast of reordered loads may be problematic for per-

formance. Also, write invalidations from misspeculated blocks may pose additional

difficulties in achieving high performance. The next scheme tries to workaround

these problems.

A.3 In-time Detection Mechanism

1. As and when loads and stores reach a cache bank, other cache banks re notified

of their arrival. Based on the arrival time stamp, the operations that reached
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the cache banks out-of-order can be identified. This step is same as Early

detection.

2. All the reordered load addresses are encoded in to a Bloom filter(BF); all the

reordered store addresses are encoded into another Bloom filter.

3. After the block is determined to be non-speculative, the BFs are broadcast to

all processors. Commit begins after all processors ack the broadcast.

4. If some thread’s load or store BF matches the broadcast BF value, then the

thread re-starts execution from the violating block.

Notes: A global arbiter must provide special mechanisms to ensure forward

progress when two threads continuously conflict. This scheme avoids costly the

per-load broadcast message and replaces it with a BF thus possibly reducing the

performance losses due to network congestion. But false positive matches in the

BF’s may negatively impact performance. Also, the store commits are held up until

all processors ack the BF broadcast. This can potentially reduce the performance

due to slower de-allocation of blocks. The next algorithm tries to minimize these

performance losses.

A.4 Late Detection Mechanism

The late detection algorithm is same as in-time detection until step (3). The dif-

ference is to allow commits (updates to memory) to speculatively proceed before

all the acks come back from the other processors. The recovery mechanism is more

involved than the other detection algorithms; in addition to rolling back the execu-

tion of the conflicting blocks, the memory updates of one of the conflicting blocks
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have to be undone. This can be accomplished by either using a log to hold the old

values or a combination of logs and inplace multi version memory. This scheme is

the most complex of all mechanisms but is likely to be the best performing among

the three schemes.

A.5 Related Work

In 1997, Hill recommended that hardware should present a simple and easy to under-

stand memory interface for the programmer and that microarchitectural techniques

should be utilized to mitigate any performance losses due to the simple interface

definition [38]. Most of the community agrees that this simple intuitive model is

Sequential Consistency. Of course, there is no empirical studies to back this belief.

A user study may be needed to ascertain the benefits of sequential consistency over

other consistency models like linearizability and serializability.

After Hill’s position paper, Ranganathan et al. and Gnaidy et al. proposed

and evaluated microarchitectural innovations to implement SC effectively [62, 30].

Both of these studies used aggressive microarchitectural configurations for that time,

a 64-entry instruction window processor, and showed that performance of the pro-

grammer friendly SC model aided by speculation can match the performance of

the RC models. The implementation in this chapter is different for the original

implementations which used history files, and additionally the scale of the TRIPS

microarchitecture requires different kind of speculative mechanisms than the ones

proposed in the earlier schemes. Recently Wenisch et al. and Ceze et al., have pro-

posed mechanisms to implement SC efficiently by using early and in-time detection

mechanisms respectively for superscalar and TLS architectures [81, 16]. We arrived
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at these ideas independently and simultaneously. In addition our work is the first

to define SC-like consistency for Block-atomic architectures.

TCC vs Proposed Mechanisms: In TCC-style transactional memory [34],

consistency is defined only at transaction boundaries The model we are attempting

to implement is much stronger compared to TCC because we attempt to define

consistency on a per-instruction basis.
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Figure A.1: Three Block SC Implementations
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