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Abstract

Modern chip multiprocessors (CMPs) are designed to
exploit both instruction-level parallelism (ILP) within pro-
cessors and thread-level parallelism (TLP) within and
across processors. However, the number of processors
and the granularity of each processor are fixed at de-
sign time. This paper evaluates a flexible architectural
approach, called Composable Lightweight Processors (or
CLPs), that allows simple, low-power cores to be aggre-
gated together dynamically, forming larger, more powerful
single-threaded processors without changing the applica-
tion binary. We evaluate one such design with 32 cores
called TFlex, which can be configured as 32 dual-issue pro-
cessors, or as a single 64-wide issue processor, or as any
point in between. Use of an Explicit Data Graph Execution
(EDGE) ISA enables the system to be fully composable, with
no monolithic structures spanning the cores. Simulation re-
sults show that CLPs achieve an average performance boost
of 42%, an average area-efficiency of 3.4x, and an average
power-efficiency of 2x over a fixed architecture on a spec-
trum of single-threaded applications. Results also show that
CLPs outperform a spectrum of fixed CMP architectures on
a set of multitasking workloads.

1 Introduction

Due to limitations on clock frequency scaling, most fu-
ture computer system performance gains will come from
power-efficient exploitation of concurrency. Consequently,
the computer industry has migrated toward chip multipro-
cessors (CMPs), in which the capability of the cores de-
pends on the target market. Some CMPs use a greater num-
ber of narrow-issue, in-order cores (Niagara [15]), while
others use a smaller number of out-of-order superscalar
cores with SMT support (IBM Power5 [29]). One disadvan-
tage of this approach for non-server domains is that enough
software threads must be found to utilize all of the proces-
sors. An additional disadvantage of this conventional CMP
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approach is its relative inflexibility. In a conventional de-
sign, the granularity (i.e., issue width) and number of pro-
cessors on each chip are fixed at design time, based on the
designers’ best analyses about the desired workload mix
and operating points. Any such fixed design point will result
in suboptimal operation as the number and type of available
threads change over time.

In this paper, we evaluate an alternative CMP design
called Composable Lightweight Processors (or CLPs) to
eliminate the problem of fixed-granularity processors. A
CLP consists of multiple simple, narrow-issue processor
cores that can be aggregated dynamically to form more
powerful single-threaded processors. Thus, the number and
size of the processors can be adjusted on the fly to provide
the target that best suits the software needs at any given
time. The same software thread can run transparently—
without modifications to the binary—on one core, two
cores, up to as many as 32 cores in the design that we
simulate. Low-level run-time software can decide how to
best balance thread throughput (TLP), single-thread perfor-
mance (ILP), and energy efficiency. Run-time software may
also grow or shrink processors to match the available ILP in
a thread to improve performance and power efficiency.

Figure 1 shows a high-level floorplan with three possi-
ble configurations of a CLP. The small squares on the left
of each floorplan represent a single processing core while
the squares on the right half show a banked L2 cache. If a
large number of threads are available, the system could run
32 threads, one on each core (Figure 1a). If high single-
thread performance is required and the thread has suffi-
cient ILP, the CLP could be configured to use an optimal
number of cores that maximizes performance (up to 32, as
shown in Figure 1c). To optimize for energy efficiency,
for example in a data center or in battery-operated mode,
the system could configure the CLP to run each thread at
its best energy-efficient point. Figure 1b shows an energy-
optimized CLP configuration running eight threads across a
range of processor granularities.

A fully composable processor shares no structures phys-
ically among the multiple processors. Instead, a CLP relies
on distributed microarchitectural protocols to provide the



P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

P P P P

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

P P

P P

P P

P

P

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

L2 L2 L2 L2

P

(a) 32 2-wide CLP config. (b) 8-processor CLP config. (c) One 64-wide CLP config.

Figure 1:Three dynamically assigned CLP configurations.

necessary fetch, execution, memory access/disambiguation,
and commit capabilities. Full composability is difficult in
conventional ISAs, since the atomic units are individual
instructions, which require that control decisions be made
too frequently to coordinate across a distributed processor.
Explicit data graph execution (EDGE) architectures, con-
versely, reduce the frequency of control decisions by em-
ploying block-based program execution and explicit intra-
block dataflow semantics, and have been shown to map well
to distributed microarchitectures [6]. The particular CLP
design that we evaluate, called TFlex, achieves the com-
posable capability by mapping large, structured instruction
blocks across participating cores differently depending on
the number of cores that are running a single thread.

This paper compares various configurations of the TFlex
CLP to a fixed-granularity TRIPS processor, which uses
the same ISA. The TFlex CLP microarchitecture allows the
dynamic aggregation of any number of cores–up to 32 for
each individual thread–to find the best configuration under
different operating targets: performance, area efficiency, or
energy efficiency. The performance, area, and power mod-
els are derived from and validated using the TRIPS hard-
ware. On a set of 26 benchmarks, including both high-
and low-ILP codes, results show that the best configurations
range from one to 32 dual-issue cores depending on oper-
ating targets and applications. The TFlex design achieves a
1.4x performance improvement, 3.4x performance/area im-
provement, and 2.0x performance2/Watt improvement over
the TRIPS processor. The TFlex CLP also shows improved
parallel flexibility with the throughput of multiprogrammed
workloads improving by up to 47% over the best fixed-CMP
organization.

2 Related Approaches

The goal of effectively adapting parallel resources to
varying number of threads is a long-standing one. The re-
cent Core Fusion [12] work is most similar to the CLP ap-
proach. Like CLPs, Core Fusion allows multiple dynami-
cally allocated processors to share a single contiguous in-
struction window. The advantage of Core Fusion is that it
exploits conventional RISC or CISC ISAs. Because of this

advantage, some structures (e.g. register renaming) must
be physically shared, limiting its scalability to 8-wide issue.
The TFlex CLP described in this paper shares no resources
physically, so it can scale up to 64-wide issue, but relies on
a non-standard EDGE ISA to achieve full composability.

WaveScalar [32], a tagged-token dynamic dataflow ar-
chitecture, provides the same capability of running single-
threaded applications on multiple processing elements
(PEs) or up to as many threads as the number of PEs, but
requires different distributed protocols and structures since
WaveScalar supports no explicit speculation.

Most other prior work uses eitherpartitioningor compo-
sition to provide adaptive parallel granularity [25]. Of the
prior work that employs composition–synthesizing a large
logical processor from smaller processing elements–most
uses independent sequencers with a non-contiguous instruc-
tion window. An early example is Multiscalar [31]. Later
Thread-Level Speculation designs employed processors in
a CMP [10, 16]. CLPs differ from such architectures in that
they employ a single logical point of control, i.e. a con-
tiguous instruction window, across the multiple processing
elements, which simplifies dependence tracking.

Instead of using a compositional approach to balance
ILP and TLP dynamically, Simultaneous Multithreading–
in which multiple threads share a single large, out-of-order
core–instead uses a partitioning approach [33]. The OS
achieves low-overhead, adaptive granularity by adjusting
the number of threads that are mapped to one processor.
The disadvantage is that the range of granularity is lim-
ited, since processors have limited issue width and threads
sharing the same core may cause significant interference, or
the aggressive processors may be overkill when only one
limited-concurrency thread is available.

Conjoined-core chip multiprocessing falls in between
composition and partitioning, with some structures shared
and others distributed [18]. Other approaches have pro-
vides statically exposed architectures that can be parti-
tioned. Compiling to distributed targets, as in RAW [34], an
important and early tiled architecture, allows staticallyvar-
ied degrees of composition. Decoupled Software pipelining
(DSWP) [21] uses the compiler to extract TLP from single-
threaded application loops. The Voltron compiler [35] can



futher extract parallelism from single-threaded applications
by exploiting both VLIW-style ILP and fine-grain TLP. In
statically exposed architectures, however, the application
must be recompiled for each new configuration.

Other work has focused on adapting individual structures
to balance performance and energy, rather than varying the
number of processors participating in running a thread [2].
This approach has been extended to dynamically resizing
the caches [1], issue window [8], load/store queue and regis-
ter file [22], and issue width [3]. Finally, single-ISA hetero-
geneous CMPs include a discrete number of fixed proces-
sors of different granularities that cannot be composed, but
which present a range of granularity options to the sched-
uler [17]. This approach increases design complexity and
limits the number of granularity options, but avoids adapta-
tion and composability overheads.

3 Instruction-Set Support for Composability

Creating larger logical microarchitectural structures
from smaller ones is the principal challenge for the design
of a composable architecture. Composing some structures,
such as register files and level-one data caches, is straight-
forward as these structures in each core can be treated as
address-interleaved banks of a larger aggregate structure.
Changing the mapping to conform to a change in the num-
ber of composed processors merely requires adjusting the
interleaving factor or function.

However, banking or distributing other structures re-
quired by a conventional instruction set architecture is less
straightforward. For example, operand bypass (even when
distributed) typically requires some form of broadcast, as
tracking the ALUs in which producers and consumers are
executing is difficult. Similarly, instruction fetch and com-
mit require a single point of synchronization to preserve
sequential execution semantics, including features such as
a centralized register rename table and load/store queues.
While some of these challenges can be solved by brute
force, supporting composition of a large number of process-
ing elements can benefit from instruction set support.

The TFlex architecture avoids the challenges of dis-
tributing individual instructions by using an Explicit Data
Graph Execution (EDGE) ISA designed specifically for a
distributed microarchitecture [6]. Although EDGE ISAs
were not originally designed for composability, their two
major distinguishing features align them well with the re-
quirements of CLPs.

First, EDGE ISAs encode programs as a sequence of
blocks which have atomic execution semantics. This block-
atomic model allows the control protocols for instruc-
tion fetch, completion, and commit to operate on large
blocks—128 instructions in the TRIPS ISA—instead of in-
dividual instructions. This amortization reduces the fre-

quency of control decisions, reduces the overheads of book-
keeping structures and makes the core-to-core latencies
tractable [25]. For example, since only one branch predic-
tion is made per block, a prediction in TRIPS is needed at
most once every eight cycles. This slack makes it possible
for one core to make a prediction and then send a message
to another core to make a subsequent prediction without sig-
nificantly reducing performance.

Second, each EDGE instruction in a block explicitly en-
codes which dependent instructions should receive its re-
sult. In a distributed architecture, this encoding eliminates
the need for an operand broadcast bus, since a point-to-point
network can interpret the identifiers as coordinates of in-
struction placement. In a composable architecture, differ-
ently sized “logical” processors merely interpret the target
instructions’ coordinates differently for each composed pro-
cessor size.

4 Microarchitectural Support for Compos-
ability

A composable processor must allow its microarchitec-
tural structures to linearly increase (or decrease) in capacity
as participating cores are added (or removed). For exam-
ple, doubling the number of cores should double the num-
ber of useful load/store queue entries, the usable state in
the branch predictors, and the cache capacities. The CLP
microarchitecture partitions structures by address whenever
possible, and avoids physically centralized microarchitec-
tural structures completely.

This complete partitioning addresses some of the limita-
tions of the original TRIPS microarchitecture. Specifically,
the next-block predictor state and the number of data cache
banks were limited by the centralization of the predictor and
the load-store queue, respectively. Full composability ne-
cessitates distributing those structures as well, which pro-
vides higher overall performance than the TRIPS microar-
chitecture irrespective of the composable capabilities. How-
ever, those performance gains are a side benefit to the sig-
nificantly increased flexibility that composition provides.

The TFlex microarchitecture uses three distinct hash
functions for interleaving across three classes of structures.

Block starting address: The next-block predictor re-
sources (e.g., BTBs and local history tables) and the block
tag structures are partitioned based on the starting virtual
address of a particular block, which corresponds to the pro-
gram counter in a conventional architecture. Predicting con-
trol flow and fetching instructions in TFlex occurs at the
granularity of a block, rather than individual instructions.

Instruction ID within a block: A block contains up to
128 instructions, which are numbered in order. Instructions
are interleaved across the partitioned instruction windows
and instruction caches based on the instruction ID, theoret-
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Figure 2: TFlex Execution Stages: Execution of two successive blocks(A0, A1) and (B0,B1) from two different threads executing
simultaneously on a 16-core TFlex CLP with each thread running on 8 cores.

ically permitting up to 128 cores each holding one instruc-
tion from each block.

Data address: The load-store queue (LSQ) and data
caches are partitioned by data address from load/store in-
structions, and registers are interleaved based on the low-
order bits of the register number.

In addition, register names are interleaved across the reg-
ister files. However, because a single core must have 128
registers to support single-block execution, register fileca-
pacity goes unused when multiple cores are aggregated. Be-
cause interleaving is controlled by bit-level hash functions,
the number of cores that can be aggregated to form a logical
processor must be a power of two.

4.1 Overview of TFlex Operation

While a portion of each in-flight instruction block is as-
signed to each participating core, a block is assigned a sin-
gleowner core, based on a hash of the block address, which
is responsible for initiating fetching of the block and pre-
dicting the next block. Once the next-block address is pre-
dicted, the owner core sends that address to the core that
owns the next predicted block. Each owner core is also re-
sponsible for launching pipeline flushes of misspeculations
caused by its block, for detecting that its block is complete,
and for then committing it.

Figure 2 provides an overview of TFlex execution for the
lifetime of one block. It shows two threads running on eight
cores each. In the block fetch stage, the block owner ac-
cesses the I-cache tag for the current block and broadcasts
the fetch command to the I-cache banks in the participat-
ing cores (Figure 2a). In parallel, the owner core predicts
the next block address and sends a control message to the
next block owner to initiate fetch of the subsequent block
(Figure 2b). Up to eight blocks may be in flight for eight
participating cores. Upon receiving a fetch command from
a block owner, each core fetches its portion of the block
from its local I-cache, and dispatches fetched instructions

into the issue window. Instructions are executed in dataflow
order when they are ready (Figure 2c). When a block com-
pletes, the owner detects completion, and when it is notified
that it holds the oldest block, it launches the block commit
protocol, shown in Figure 2d. Figures 2e-h show the same
four stages of execution for the next block controlled by a
different owner; fetch, execution, and commit of the blocks
are pipelined and overlapped. Finally, the diagrams show
that two distinct programs can be run on non-overlapping
subsets of the cores.

4.2 Composable Instruction Fetch

In the TFlex microarchitecture, instructions are dis-
tributed across the private I-caches of all participating cores,
but fetches are initiated by each of the instruction block’s
owner core. The owner core manages the tags on a per-
block basis, and functions as a central registry for all oper-
ations of the blocks it owns. The cache tags for a block are
held exclusively in the block owner core. In a 32-core con-
figuration, each core caches four instructions from a 128-
instruction block.

With this fetch model, the fetch bandwidth and the I-
cache capacity of the participating cores scale linearly as
more cores are used. While this partitioned fetch model
amplifies fetch bandwidth, conventional microarchitectures
cannot use it because current designs require a centralized
analysis point of the fetch stream (for register renaming
and inum assignment) to preserve correct sequential seman-
tics. This constraint poses the largest challenge to compos-
able processors built with conventional ISAs. In contrast,
EDGE ISAs overcome these deficiencies by explicitly and
statically encoding the dependence order of the instructions
within a block; the dynamic total order among all execut-
ing instructions is obtained by concatenating the block or-
der and the statically encoded order within a block. Given
large block sizes, distributed fetching is feasible because in-
struction dependence relations are knowna priori.
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4.3 Composable Control-flow Prediction

Control-flow predictors are some of the most challeng-
ing structures to partition for composability, since the pre-
dictor state has traditionally been physically centralized to
facilitate few cycles between successive predictions. The
TFlex composable predictor treats the distributed predic-
tors in each composed core as a single logical predic-
tor, exploiting the block-atomic nature of the TRIPS ISA
to make this distributed approach tenable. Similar to the
TRIPS prototype microarchitecture, the TFlex control flow
predictor issues one next-block prediction for each 128-
instruction hyperblock—a predicated single entry, multiple
exit region—instead of one prediction per basic block.

Figure 3 illustrates the distributed next block predictor
consisting of eight main structures. Each core has a fully
functional block predictor and the predictors are identical
across all the cores. The block predictor can be divided
into two main components: the exit predictor, predicting
which branch will be taken out of the current block; and
the target predictor, which predicts the target address of the
next block. Each branch in a block contains threeexit bits
in its instruction, which are used to form histories insteadof
the traditional taken/not taken bits.

The exit predictor is an Alpha 21264-like tournament-
style hybrid predictor [13] and is composed of traditional
two-level local, global, and choice predictors that use local
and global block exit histories. The local as well as global
histories are updated speculatively after a prediction andre-
paired from backup history buffers on a misprediction. The
target address is predicted by first predicting the type of the
exit branch—a call, a return, a next sequential block, or a
regular branch—using the Btype predictor. The Btype pre-
dictor result selects one of those four possible next-block
targets, which are provided by a next-block adder (SEQ),
a Branch Target Buffer (BTB) to predict branch targets, a
Call Target Buffer (CTB) to predict call targets, and a Re-
turn Address Stack (RAS) to predict return targets.

Each of the major predictor structures is affected by the

composed nature of the microarchitecture. The local histo-
ries are trivially composable since, for a fixed composition,
the same block address will always map to the same core.
Local predictions do not lose any information even though
they are physically distributed. Similarly, the Btype, BTB
and CTB tables hold only the target addresses of the blocks
owned by that core. With this organization, the capacity
of the predictor increases as more cores are added, assum-
ing that block addresses tend to be distributed among cores
equally.

The global predictor is more complex because of the dis-
tributed history. When a predicted next-block address is
sent from the previous blocks’ owner to the owning core
of the predicted block, the global exit history is forwarded
along with the prediction. This forwarding enables each
prediction to be made with the current global history, with-
out additional latency beyond the already incurred point-to-
point latency to transmit the predicted next-block address
from core to core.

The component that is most difficult to distribute, the Re-
turn Address Stack (RAS), must be maintained as a single
logical stack across all the cores since it represents the pro-
gram call-stack. The TFlex microarchitecture uses the com-
posed entries to permit a deeper RAS. Instead of using ad-
dress interleaving, it sequentially partitions the RAS across
all the cores (e.g. a 32-entry stack for 2 cores would have
entries 0 to 15 in core 0 and 16 to 31 in core 1). The stacks
from the participating cores form a logically centralized but
physically distributed global stack. If the exit branch type
is predicted as a call, the corresponding return address is
pushed on to the RAS by sending a message to the core
holding the current RAS top. If the branch is predicted as a
return then the address on the stack is popped off by sending
a pop-request to the core holding the RAS top. Recovery
upon a misprediction is the responsibility of the mispredict-
ing owner, which rolls back the mis-speculated state and
sends the updated histories and RAS pointers to the next
owner core, as well as the corrected top-of-stack RAS in-
formation to the core that will hold the new RAS top.
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4.4 Composable Instruction Execution

Each instruction in an EDGE block is statically assigned
an identifier between 0 and 127 by the TRIPS compiler.
A block’s instructions are interleaved across the cores of a
composable processor using a mapping function. Changing
the mapping function when cores are added (or removed),
achieves composability of instruction execution. Figure 4a
shows the mechanism that the TFlex design uses to sup-
port dynamic issue across a variable number of composed
cores. Each instruction in an EDGE ISA block contains at
least one nine-bittarget field, which specifies the location
of the dependent instruction that will consume the produced
operand. Two of the nine bits specify which operand of the
destination instruction is targeted (left, right, or predicate),
and the other seven bits specify which of the 128 instruc-
tions is targeted. Figure 4a shows how the target bits are
interpreted in single-core mode, with instruction five target-
ing the left operand of instruction 127. In single-core mode,
all seven target identifier bits are used to index into a single
128-instruction buffer.

Figure 4a also shows how the microarchitecture inter-
prets the target bits when running in a four-core configu-
ration. The four cores can hold a total of four instruction
blocks, but each block is striped across the four participat-
ing cores. Each core holds 32 instructions from each of the
four in-flight blocks. In this configuration, the microarchi-
tecture uses the two low-order bits from the target to deter-
mine which core is holding the target instruction, and the
remaining five bits to select one of the 32 instructions on
that core. The explicit dataflow target semantics of EDGE
ISAs make this operation simple compared to what would
be required in a RISC or CISC ISA where the dependences
are unknown until an instruction is fetched and analyzed.

The latency incurred in routing dependent operands from
core to core influences performance greatly. The TFlex
cores are connected by a two-dimensional mesh network;
bypassing an operand between adjacent cores incurs only a
single-cycle bubble as a control message is sent one cycle in
advance of the data message to wake up the target instruc-
tion. Figure 4b shows the datapath from the output of an
ALU in one core to the input of an ALU in an adjacent core
and illustrates cycle-by-cycle activities when the execution
result at core 0 is bypassed into core 1. Area estimates
for 65nm indicate a core-center to core-center distance of
1.5mm, corresponding to an optimally repeated wire delay
of 170ps. With a fast router that matches the wire delay, the
total path delay would be less than 350ps, enabling a one-
cycle inter-core hop latency to be supported at over 2.5GHz.

4.5 Composable Memory System

As with clustered microarchitectures [20, 24], L1 data
caches in a composable processor can be address partitioned
and distributed into each core. When running in one-core
mode, each thread can access only its own bank. When mul-
tiple cores are composed, the L1 cache becomes a cache-
line interleaved aggregate of all the participating L1 caches.
With each additional core, each running thread obtains more
L1 D-cache capacity and an additional memory port. The
cache bank accessed by a memory instruction is determined
by XORing the high and low portions of the virtual address
modulo the number of participating cores. All addresses
within a cache line will always map to the same bank in
a given configuration. When a core computes the effec-
tive address of a load, the address and the target(s) of the
load are routed to the appropriate cache bank, the lookup is
performed, and the result is directly forwarded to the core



Parameter Configuration

Instruction Supply Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle latency) with speculative
updates; Num. entries: Local: 64(L1) + 128(L2), Global: 512, Choice: 512, RAS: 16, CTB: 16, BTB: 128, Btype: 256.

Execution Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to two INT and one FP).
Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and 1-write port); 44-entry LSQ bank; 4MB de-

coupled S-NUCA L2 cache [14] (8-way set-associative, LRU-replacement); L2-hit latency varies from 5 cycles to 27 cycles
depending on memory address; average (unloaded) main memory latency is 150 cycles.

Simulation Execution-driven simulator validated to be within 7% of real system measurement
Hand-optimized
Benchmarks

3 kernels (conv, ct, genalg), 7 EEMBC benchmarks (a2time, autocore, basefp, bezier, dither, rspeed, tblook), 2 Versabench
(802.11b, 8b10b) [23]

Compiled 14 SPEC CPU benchmarks currently supported (8 Integer, 6 FP),
Benchmarks simulated with single simpoints of 100 million cycles [28].

Table 1:Single Core TFlex Microarchitecture Parameters

containing the target instruction of the load.
One of the microarchitectural challenges to support a

composable memory system is to handle memory disam-
biguation efficiently on a distributed substrate with a vari-
able number of cores. The TFlex microarchitecture relies
on load-store queues (LSQs) to disambiguate memory ac-
cesses dynamically. As more cores are aggregated to con-
struct a larger window, more entries in the LSQ are required
to track all in-flight memory instructions. Partitioning LSQ
banks by address and interleaving them with the same hash-
ing function as the data caches is a natural way to build a
large, distributed LSQ. However, unless each LSQ bank is
maximally sized for the worst case (the instruction window
size), a system must handle the situation when a particular
LSQ bank is full, and cannot slot an incoming memory re-
quest (called “LSQ overflow”). TFlex uses a low-overhead
mechanism proposed by Sethumadhavan et al. [27], specifi-
cally the NACK mechanism, to handle overflows efficiently.

4.6 Composable Instruction Commit

Cross-core commit overheads in TFlex are low, because
the TRIPS ISA requires that instructions within a block
are committed en masse. The commit process consumes
four phases. First, the block owner detects that a block is
complete when participating cores inform the owner core
that the block has emitted all of its outputs–stores, regis-
ter writes, and one branch. Second, when the block be-
comes the oldest one, the block owner sends out acom-
mit command on the control network to the participating
cores. Third, all distributed cores write their outputs to ar-
chitectural state, and when finished, respond withcommit
acknowledgmentsignals. Finally, the owner core broadcasts
a resource deallocation signal, indicating that the youngest
block owner can initiate its own fetch and overwrite the
committed block with a new block.

4.7 Coherence Management

For a level-two (L2) cache organization, we consider a
4MB shared design (shown in Figure 1) that contains 32
cache banks connected by a switched mesh network. To

maintain coherence among private L1 caches, the shared L2
cache uses a standard on-chip directory-based cache coher-
ence protocol with L1 sharing vectors stored in the L2 tag
arrays. The composition of the cores on the chip does not
affect how the coherence protocol is implemented. A shar-
ing status vector in the L2 tag keeps track of L1 coherence
by treating each L1 cache as an independent coherence unit.
When a composition changes–adding cores to some com-
posed processors and removing them from others–the L1
caches need not be flushed; the new interleaved mapping
for the composed L1 D-cache banks will result in misses, at
which point the underlying coherence mechanism forwards
the request to the lines stored in the old L1 cache banks,
invalidating them or forwarding a modified line.

5 Experimental Methodology

To explore the benefits of flexibility and composability,
we compare the composable TFlex architecture to the fixed
TRIPS architecture on single-threaded applications using
metrics of performance, area, and power. We then exam-
ine the overheads associated with distributed protocols for
fetch and commit. Finally, we employ a set of multipro-
grammed workloads to measure the benefits of composabil-
ity on throughput. These analyses use a validated cycle-
accurate simulator with a set of both compiler-generated
and hand-optimized benchmarks shown in Table 1. For the
TFlex configurations, the programs are scheduled assum-
ing a 32-core composable processor. Our experience shows
that performing instruction scheduling for a larger number
of cores and running it on fewer cores results in little per-
formance degradation.

Baseline: We chose the TRIPS processor as the base-
line to compare against TFlex for three reasons. First, be-
cause TRIPS and TFlex share the same ISA and software in-
frastructure, their microarchitectures are comparable with-
out needing to compensate for ISA and system level arti-
facts. Second, TRIPS is a natural baseline because, unlike
TFlex, TRIPS has limited options for supporting different
processing granularities. For instance, TRIPS can only be
configured either as an ILP engine supporting 1K in-flight
instructions, or in an SMT mode with four threads each with
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Figure 5:Relative performance (1/cycle count) for TRIPS normalizedto Intel Core2 Duo

maximum of 256 instructions per thread. We only compare
against the single-threaded mode of TRIPS. TFlex can in-
stead be configured for a range of granularities to adapt to
various operating targets when the need arises. Finally, hav-
ing access to the TRIPS hardware design and implemen-
tation provides a solid methodology for modeling TFlex,
giving us higher confidence in the performance, area, and
power estimates.

Baseline Validation: For TRIPS to be a satisfactory
baseline, it must achieve at least a reasonable level of per-
formance. To establish this baseline, we compare the per-
formance of the TRIPS hardware to that of an Intel Core2
Duo system on the suite of EEMBC, SPEC, and hand-
optimized benchmarks shown in Table 1. The Intel Core2
Duo measurements were taken on a Dell E520 system that
has a 2.1GHz Intel Core2 Duo processor with 2GB 533
MHz DDR2 SDRAM memory. The TRIPS system has
two TRIPS processors running at 366Mhz and 2GB DDR1
SDRAM memory running at 200 MHz. The C and Fortran
codes for Intel Core2 Duo were compiled using gcc 4.1.2
-O3, and the PAPI 3.5.0 library was used to collect perfor-
mance counter results [5]. For the TRIPS system, perfor-
mance counters also provided the precise cycle counts. All
experiments use only a single core in the Core2 and TRIPS
systems, and we use cycle counts as the metric for com-
paring performance, so that the results need not account for
differences in process technology, design methodology, and
size of the design team.

Figure 5 shows that on the hand-optimized benchmarks
TRIPS uniformly outperforms the Core2 and achieves an
average 2.7x speedup for applications run on one core
of both TRIPS and Core21. For the compiled bench-
marks, TRIPS is approximately 50% faster on average
than the Core2 on Versabench, LL kernels and EEMBC
benchmarks, 3% worse on SPEC FP and 57% worse on
SPEC INT. We expect higher compiler performance as the
TRIPS compiler (an academic research compiler) incorpo-
rates many optimizations found in production compilers.

Simulator Validation: The simulator used in this study
can model both the TRIPS hardware prototype and the

1For matrix multiplication, we use the optimized binary fromGoto-
BLAS [7, 9] for Intel Core2 Duo and we compare the FPC (FLOPS/cycle)
instead of cycle counts.

TFlex microarchitecture since they both use the same ISA,
and also have similar functional components such as on-
chip interconnection networks, caches, execution units, and
register files. The simulator was validated by simulating a
configuration similar to the TRIPS prototype hardware and
comparing the cycle counts against the actual hardware on a
set of EEMBC benchmarks and microbenchmarks extracted
from the SPEC 2000 suite. We observe that the cycle count
estimates from the simulator are within 7% of the hardware
cycle counts, less than the demonstrated performance gains.

6 TFlex vs. TRIPS Comparisons

Table 1 lists the microarchitectural parameters for a sin-
gle TFlex core used in the experiments. The sizes of the
structures in the core ensure that one core can execute and
atomically commit one EDGE block. Each core has a 128-
entry instruction window to accommodate all instructions in
a block, 128 registers, and an LSQ large enough to hold at
least 32 loads/stores. The sizes of the remaining structures,
including the I-cache, D-cache, and the branch predictor,
were sized to balance area overhead and performance. The
simulated baseline TRIPS microarchitecture matches that
described by Sankaralingam et al. [26], with the exception
that the L2 capacity of the simulated TRIPS processor is
4MB to allow a fair comparison with TFlex on the multi-
programming workloads.

The TFlex architecture also includes two microarchi-
tectural optimizations that could be applied to improve
the baseline performance of the TRIPS microarchitecture.
First, the bandwidth of the operand network is doubled to
reduce inter-ALU contention. Second, TFlex cores sup-
port limited dual issue–two integer instructions but only one
floating-point instruction issued per cycle–as opposed to the
single-issue execution tiles in TRIPS.

6.1 Performance Comparison

Figure 6 shows the performance of the TRIPS prototype
architecture and that of TFlex configurations ranging from
2 to 32 cores, normalized to the performance of a single
TFlex core. The 26 benchmarks on the x-axis are arranged
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Figure 6:Performance of different applications running on 2 to 32 cores on a CLP normalized to a single TFlex core

into categories of low and high IPC. On average, the 16-
core TFlex configuration performs best and shows a factor
of 3.5 speedup over a single TFlex core. When the proces-
sor is configured to the best performing number of cores
for each application (represented by the bar “BEST”), the
performance of TFlex increases an additional 13% and the
overall speedup over a single TFlex core reaches a factor of
four. These results indicate that, using the proposed exe-
cution model, sequential applications can be effectively run
across multiple cores to achieve substantial speedups.

On average, an eight-core TFlex processor, which has the
same area and issue width as the TRIPS processor, outper-
forms TRIPS by 19%, reflecting the benefits of additional
operand network bandwidth as well as twice the L1 cache
bandwidth stemming from fine-grained distribution of the
cache. Using the best per-application TFlex configuration
outperforms TRIPS by 42%, demonstrating that adapting
the processor granularity to the application granularity pro-
vides significant improvements in performance.

6.2 Area Comparison

We examine the area required for a TFlex processor and
the performance/area as a function of the number of cores.
The area of each microarchitectural component in a single
TFlex core was estimated from the post-synthesis netlist
(before final place-and-route) of the 130nm ASIC imple-
mentation of the TRIPS prototype. Table 2 presents the
area of different microarchitectural components in an 8-core
TFlex processor and a single core of a TRIPS processor.
A 130nm, 18mm x 18mm die can accommodate 8 TFlex
cores with 1.5MB of L2 cache. Assuming linear scaling, a
32-core TFlex array with 4MB of L2 cache would fit com-
fortably on a 12mm x 12mm die at 45nm.

Figure 7 plots the performance per area
(1/(cycles×mm2)) for the TRIPS processor and vari-
ous TFlex configurations, all normalized to a single TFlex
core. For most benchmarks, area efficiency peaks either
at one or two cores; beyond two cores (four-wide issue),
performance improvements scale at a slower rate than area
growth. Unlike conventional architectures, a composable
architecture can balance area efficiency versus peak per-

formance demand depending on various runtime factors
including the number of active threads.

6.3 Power Comparison

The TFlex power model is incorporated into the TFlex
simulator in a manner similar to Wattch [4], and is de-
rived from data obtained from the TRIPS design database
and hardware prototype. Because of uncertainty in scaling
power models across technologies and disparate architec-
tures, we limit the power comparisons to the 130nm tech-
nology of TRIPS and compare relative power consumption
of variations of the TFlex and TRIPS microarchitectures. In
the baseline TRIPS microarchitecture, we employ the mod-
els of Wattch to estimate power consumption in structures
such as L1 I- and D-caches, load store queues, branch pre-
dictor tables, register files, reservation stations, ALUs,L2
caches, and on-chip network routers. We use gate and par-
asitic capacitances from the TRIPS design database to esti-
mate the power consumption of the clock tree and latches.
We model combinational logic power using gate and para-
sitic capacitance from the TRIPS netlist and simulated ac-
tivity factor estimates. For leakage power, we use a simple
area-based model that results in leakage of 8-10% of total
power, a reasonable estimate for 130nm. The power model
for an individual TFlex core consists of components from
the TRIPS power model and clock tree power scaled by the
ratio of TRIPS to TFlex core latch counts.

We validated the TFlex power model by configuring the
multicore TFlex simulator as a single TRIPS processor and
comparing the power estimates to TRIPS prototype mea-
sured power. We used the TRIPS prototype parameters
of 130nm technology, 1.5V supply voltage, 366MHz pro-
cessor clock frequency, and 266MHz DDR1 SDRAM fre-
quency. On a collection of microbenchmarks used to high-
light power consumption of different structures, the TFlex
power model is within 10% of the measured TRIPS power.
The current comparison does not account for power reduc-
tion techniques such as clock gating, as the TRIPS proto-
type does not implement them. However, we expect the
trends and conclusions of the power efficiency of TFlex
to be applicable even if power management were to be in-



Structures 8 TFlex cores (16-issue) Single TRIPS core (16-issue)
Size Area Power Size Area Power

Fetch 66K-bit predictor, 80K-bit predictor,
(Block Predictor, I-cache) 64KB I-cache 10.9 1.66 80KB I-cache 7.7 0.99
Register Files 1024 entries 6.5 0.02 512 entries 3.0 0.02
Execution resources 1K-entry issue window 1K-entry issue window
(issue window, ALUs) 16-INT ALU, 8-FP ALU 23.6 2.24 16-INT ALU, 16-FP ALU 39.4 2.07
L1 D-cache subsystem 64KB D-cache 32KB D-cache
(D-cache, LSQ, MSHR) 352-entry LSQ 27.8 0.45 1024-entry LSQ 33.4 0.44
Routers 7.0 0.25 11.0 0.33
L2 Caches, DIMM/IO N/A 3.34 N/A 3.34
Clock Tree, Leakage N/A 13.52 N/A 16.95

Total 75.8 24.5 94.5 28.4

Table 2:Area (mm2) and power estimates (watt) for eight-core TFlex and single-core TRIPS microarchitectures.
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Figure 7:Performance per unit area for different applications running on 2 to 32 cores on TFlex CLP normalized to single-core TFlex.

cluded.
Power Modeling Results: Table 2 shows the average

power consumed across all the benchmarks on TRIPS and
an eight-core TFlex processor, as well as a breakdown
of the power into categories of fetch, execution, L1 data
cache, routers, L2 cache, DRAM/IO, clock tree, and leak-
age. The power dissipated in the individual categories is
relatively small because the clock tree power in all these cat-
egories has been reported separately. Figure 8 shows power
efficiency measured in performance2/Watt for the various
TFlex configurations and the TRIPS configuration, for each
of the benchmarks and normalized to a single-core TFlex
processor. The most power-efficient TFlex configuration
ranges from four to 32, with eight cores (16-wide issue)
being the best overall fixed configuration. The flexibility to
choose the best composition on a per-application basis pro-
duces an average improvement of 22% over any fixed TFlex
system. The power efficiency of a fixed 8-core TFlex sys-
tem is about 64% better than a fixed TRIPS system. Al-
though both have the same execution bandwidth, TRIPS
has twice the number of power-hungry floating-point units,
which are unused in many cycles. Fine-grained clock gating
of these FPUs could improve the relative power efficiency
of the TRIPS baseline.

6.4 Overhead Evaluation of Distributed Protocols

While the previous sections established the overall
benefits of a scalable and composable architecture, this
section examines the overheads associated with the dis-
tributed control protocols, including distributed instruction

fetch/commit. When a single-threaded application runs on
multiple cores, traditional architectures will require careful
coordination among cores to maintain the sequential seman-
tics of the instruction stream, especially at in-order pipeline
stages such as fetch and commit. This coordination over-
head can be significantly reduced if the unit of coordination
is done at much larger granularity than individual instruc-
tions, such as a 128-instruction EDGE block.

Distributed Fetch: The distributed fetch protocol, in-
cluding passing control from one core to another, includes
six components with varying latencies, as shown in Fig-
ure 9a. The first three components incur a constant and
total latency of seven cycles for a block, except for the
one-core configuration which lacks speculation and thus
incurs no prediction latency. Control hand-off and fetch
command distribution are two latencies that both increase
with the number of cores due to longer communication dis-
tances. Dispatch latency is the time to fetch from the I-
cache into the instruction window, which varies depending
on the number of instructions dispatched at each core.

Figure 9a shows that the overall fetch latency depends
on the number of cores and is a balance between the vari-
able overheads of control hand-off, fetch distribution, and
dispatch. The largest increase comes from broadcasting the
fetch command over the multi-hop network to all partici-
pating cores, which dominates when 16 or more cores are
aggregated. Conversely, the effective dispatch bandwidth
increases linearly with the number of cores, and the time
to dispatch becomes a very small fraction of the overall la-
tency at 16 or more cores.

Distributed Commit: Figure 9b shows the latency of
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(a) Latency breakdown in distributed fetch
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Figure 9:Coordination overheads at (a) Fetch and (b) Commit

the two principal components of commit: updating archi-
tectural state and handshaking across multiple cores. The
commit handshake latency is the unique overhead to support
atomic commit of blocks on a distributed execution sub-
strate. The handshaking overhead increases with the num-
ber of cores because the control messages must travel longer
distances. However, as the number of cores increases, the
time to update architectural state decreases because the in-
crease in register file and data cache bandwidth enables
more of the commit to be performed concurrently.

Summary: While these latencies can be significant, they
will not affect performance if they are not on the critical
path. To quantify the performance impact of the coordina-
tion overheads of fetch and commit, we simulated an archi-
tecture in which all of the distributed handshaking occurs
instantaneously. We observed that the performance degra-
dation was less than 2% for the largest composition (32
cores), indicating that the overheads of distributed fetchand
commit can be amortized by a block-structured ISA.

7 Comparison with Chip-Multiprocessors

To ascertain the flexibility benefits of CLPs, we mea-
sured the performance of multi-programming workloads on
both the TFlex design and fixed-granularity CMPs. To iso-
late the contributions of composability to flexibility, we
modeled the fixed-granularity CMP by configuring a 32-
core TFlex system to use fixed numbers of logical proces-

sors composed of equal numbers of cores (an experiment
labeled “CMP-4” is a TFlex configuration that has eight
composed processors with four cores each). The TFlex sim-
ulator models inter-processor contention for the shared L2
cache and main memory. The 12 benchmarks used in this
experiment were selected from the hand-optimized bench-
mark suite, which exhibit considerable diversity in ILP. We
varied the workload size (i.e. degree of multi-programming)
from two to 16 applications running simultaneously.

The metric used to measure throughput improvements
wasweighted speedup(WS) [30]. For this study, we used
the results from Figure 6 to compute individual bench-
mark speedup as a function of the number of cores, rather
than employing an on-line algorithm. Given the cores-to-
speedup function of each application, we use an optimal dy-
namic programming algorithm to find the core assignments
that maximize WS on TFlex [11]. Each workload was run
only on those fixed CMPs that had at least as many proces-
sors as applications in the workload. When the workload
size exceeds the CMP processor count, we assume that the
weighted speedup stays constant, similar to a previously ap-
plied methodology [19].

Results: For each workload size, Figure 10 reports the
average weighted speedup on TFlex and on the set of fixed-
granularity CMPs. The best CMP granularity changes de-
pending on the workload size (i.e. the number of threads).
CMP-16 is the best for workloads with two threads, CMP-
8 is the best for four-thread workloads, CMP-4 is the best
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Figure 10:Weighted Speedup comparison between TFlex and fixed-granularity CMPs.

for six to eight threads, and CMP-2 is the best for twelve to
sixteen threads. Because of the capability of selecting the
best granularity for each workload, the TFlex array consis-
tently outperforms the best fixed-granularity CMP. The set
of bars labeled AVG show the average WS across all work-
loads. While CMP-4 is the best granularity for fixed CMPs,
the TFlex design produces an average of 26% higher WS
and a maximum of 47% higher WS.

Figure 10 also demonstrates the value of asymmetric
processor composition in TFlex by comparing to a hypo-
thetical flexible CMP that can change its granularity dy-
namically but is symmetric, requiring each processor to be
composed from equal numbers of cores. The results for
this hypothetical system, labeled VB CMP (Variable Best
CMP), show that the capability of composing processors of
different granularities for different simultaneously execut-
ing programs results in a 6% improvement in throughput.
For a given granularity, even when the number of threads
exactly matches the number of processors, some threads
may under-utilize their own processor’s resources. In such
a scenario, TFlex is able to allocate a portion of these under-
utilized resources to applications which can make better use
of them. The table in Figure 10 lists the fraction of applica-
tions at each workload size that are assigned to a given pro-
cessor granularity and demonstrates that the optimal pro-
cessor granularity varies even within a given workload size.
For workloads of size eight, TFlex allocates four cores to
the majority of the applications, but also allocates two cores
to 28% of them and eight cores to 14% of them. A CMP-
4 configuration, conversely, would allocate only four cores
regardless of the application characteristics.

8 Conclusions

Since clock rate scaling can no longer sustain computer
system performance scaling, future systems will need to
mine concurrency at multiple levels of granularity. De-
pending on the workload mix and number of available
threads, the balance between instruction-level and thread-
level parallelism will likely change frequently for general-
purpose systems, rendering the design-time freezing of pro-
cessor granularity in traditional CMPs an undesirable op-

tion. Composable lightweight processors (CLPs) provide
the flexibility to allocate resources dynamically to differ-
ent types of concurrency, ranging from running a single
thread on a logical processor composed of many distributed
cores to running many threads on separate physical cores.
The system can also use energy and/or area efficiency to
choose the best-suited processor configuration. We envi-
sion multiple methods of controlling the allocation of cores
to threads. At one end of the spectrum, the operating system
could make such decisions based on the number of threads
to run, and their criticality. The OS could even monitor how
each thread uses its allocated resources and reallocate them
among the threads as necessary. At the other end of the
spectrum, the hardware could potentially adjust the num-
ber of cores per thread in an automated fashion. This ca-
pability would further blur the distinction between conven-
tional uniprocessors and multiprocessors, which we view as
a promising direction.
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