Announcements

- Programming focus again, start early and make sure you can do the things we cover in class
- See me if something doesn’t click

- Reading:
 - Skim 7.2, 7.4, 7.5, 7.6, 7.7
Outline

- Sorting Algorithms
 - Basics
 - Slow
 - medium
 - Complicated
 - How fast can we go
 - How they work
 - DS to support them
Preview

- In the next few weeks
 - Inheritance
 - Class relationships

- Homework posted:
 - Problem sets (due apr 2)
 - Viruses and Virus checking program
 - Tentative due date: apr 2, will extend if needed
For homework

- Outline of the problem

- What you need to learn in java
 - Reading/writing files
 - In binary form
 - Using hashtables in multiple ways
 - Adopting it for faster processing
 - Saving live data structures for later use

- Will cover practical java examples on all this on Wednesday...
Sort a bunch of items

- So its straightforward to sort in $O(N^2)$ time
 - Insertion sort
 - Selection sort
 - Bubble sort
Selection sort

- 2 arrays, sorted and unsorted
- keep choosing min from the unsorted list and append to sorted
Bubble Sort

- Anyone ??

- iterate and swap out of ordered elements
Insertion sort

- this is the quickest of the $O(N^2)$ algorithms for small sets
Insertion sort algorithm…

- sort 1st element
- sort first 2
- sort first 3
- etc
```java
insertionSort(int arr[]) {
    int i = 1;
    while (i < arr.length) {
        insert(a, i, arr[i]);
        i = i + 1;
    }
}

insert(int a[], int length, value) {
    int i = length - 1;
    while (i ≥ 0 and a[i] > value) {
        a[i + 1] = a[i];
        i = i - 1;
    }
    a[i + 1] = value;
}
```
/**
 * Simple insertion sort.
 * @param a an array of Comparable items.
 */

public static <AnyType extends Comparable<? super AnyType>>
void insertionSort(AnyType [] a)
{
 int j;

 for(int p = 1; p < a.length; p++)
 {
 AnyType tmp = a[p];
 for(j = p; j > 0 && tmp.compareTo(a[j - 1]) < 0; j--)
 a[j] = a[j - 1];
 a[j] = tmp;
 }
implementation

- so would implementation of the underlying list affect the runtime?
 - how?

- any ideas why these are slow??
 - can you prove it?
Lower Bound

- This is an analysis for simple sorts

- Inversion:
 - an ordered pair \((i,j)\) such that \(i < j\) and \(a[i] > a[j]\)

- Can you find the inversions?
- \([45, 34, 23, 35, 59]\)
So if we swap adjacent items, we only solve at most one inversion

this leads to our slowdown

any ideas?
Theory

- before continuing....

- What would be the average number of inversion on an array of N elements ??
Average inversions

\[\frac{N(N-1)}{4} \]

- Let L be an unsorted list of elements
- Let \(L_r \) be the reverse of that list
- Any two elements are inverted either in L or \(L_r \)

- Need to look at the pairs
\[
\frac{N(N-1)}{2}
\]

- pairs in L
- on average \(\frac{1}{2} \) will be inverted
- so how does swapping affect the number?
so how to do better than N^2?
Shell sort

- idea was to look at elements which are not adjacent

- Example:
 - look at every 8th element and do insert sort on those
 - slide window
 - Now look at every 4th
 - Every 2nd

- Increment series
Increment series

- we have an increment series h_1, h_2, \ldots, h_k
- h_k must be less than N
- h_1 must be 1
 - why?
- each step keeps it sorted for last step
An array is h_k sorted

for every i $a[i] \leq a[i + h_k]$

we use diminishing increments

Example
as long as last increment is 1, we are guaranteed to sort

if we only do 1
 what is it?

lets look at the code
void shellsort(int a[], int len) {
 for(int gap = len/2; gap > 0; gap /=2) {
 for(int i=gap; i<len; i++) {
 int tmp = a[i];
 int j=i;
 for(;j>=gap && tmp < aj-gap]; j-=gap) {
 a[j] = a[j-gap];
 }
 a[j] = tmp;
 }
 }
}
/**
 * Shellsort, using Shell's (poor) increments.
 * @param a an array of Comparable items.
 */

public static <AnyType extends Comparable<? super AnyType>>
void shellsort(AnyType [] a)
{
 int j;

 for(int gap = a.length / 2; gap > 0; gap /= 2)
 for(int i = gap; i < a.length; i++)
 {
 AnyType tmp = a[i];
 for(j = i; j >= gap &&
 tmp.compareTo(a[j - gap]) < 0; j -= gap)
 a[j] = a[j - gap];
 a[j] = tmp;
 }
So what is the increment series here??

1 2 4 8 16 .. 2^k $\Theta(N^2)$

Hubert
- 1 3 7 .. 2^k-1 $\Theta(N^{1.5})$

bizarre sequences
- $\Theta(N^{1.3})$
worst case runtime

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>9</th>
<th>2</th>
<th>10</th>
<th>3</th>
<th>11</th>
<th>4</th>
<th>12</th>
<th>5</th>
<th>13</th>
<th>6</th>
<th>14</th>
<th>7</th>
<th>15</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>After 8-sort</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td>14</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>After 4-sort</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td>14</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>After 2-sort</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
<td>6</td>
<td>14</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>After 1-sort</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>
Heapsort

- Heap sort worst case $O(N \log N)$
 - average is slightly better
 - $2N(\log N - \log \log N - 4)$

- can save space using the same array
 - example
Better times

- lets start with better than n^2 sorting
merge sort

- if list has one element
 - return

- else
 - mergesort left half
 - mergesort right half
 - merge 2 halves

- Example
/**
 * Internal method for heapsort.
 * @param i the index of an item in the heap.
 * @return the index of the left child.
 */
private static int leftChild(int i)
{
 return 2 * i + 1;
}

/**
 * Internal method for heapsort that is used in deleteMax and buildHeap.
 * @param a an array of Comparable items.
 * @param i the position from which to percolate down.
 * @param n the logical size of the binary heap.
 */
private static <AnyType extends Comparable<? super AnyType>>
void percDown(AnyType[] a, int i, int n)
{
 int child;
 AnyType tmp;
 for(tmp = a[i]; leftChild(i) < n; i = child)
 {
 child = leftChild(i);
 if(child != n - 1 &\& a[child].compareTo(a[child + 1]) < 0)
 child++;
 if(tmp.compareTo(a[child]) < 0)
 a[i] = a[child];
 else
 break;
 }
 a[i] = tmp;
}

/**
 * Standard heapsort.
 * @param a an array of Comparable items.
 */
public static <AnyType extends Comparable<? super AnyType>>
void heapsort(AnyType[] a)
{
 for(int i = a.length / 2; i >= 0; i--) /* buildHeap */
 percDown(a, i, a.length);
 for(int i = a.length - 1; i > 0; i--)
 {
 swapReferences(a, 0, i); /* deleteMax */
 percDown(a, 0, i);
 }
/**
 * Internal method that makes recursive calls.
 * @param a an array of Comparable items.
 * @param tmpArray an array to place the merged result.
 * @param left the left-most index of the subarray.
 * @param right the right-most index of the subarray.
 */

private static <AnyType extends Comparable<? super AnyType>>
void mergeSort(AnyType [] a, AnyType [] tmpArray, int left, int right)
{
 if(left < right)
 {
 int center = (left + right) / 2;
 mergeSort(a, tmpArray, left, center);
 mergeSort(a, tmpArray, center + 1, right);
 merge(a, tmpArray, left, center + 1, right);
 }
}

/**
 * Mergesort algorithm.
 * @param a an array of Comparable items.
 */

public static <AnyType extends Comparable<? super AnyType>>
void mergeSort(AnyType [] a)
{
 AnyType [] tmpArray = (AnyType[]) new Comparable[a.length];
 mergeSort(a, tmpArray, 0, a.length - 1);
}
Analysis

- Lets do some simple analysis on mergesort running times

- Assume we have N items
 - N being a power of 2 so we can split nicely
 - if N is one, constant time to mergesort
 - else its 2 * N/2 mergesorts
- Define function
- \(T(N) = \) time to mergesort \(N \) items
- \(T(1) = 1 \)
- \(T(N) = 2T(n/2)+N \)
- how to solve this ??
First method: Telescoping

- trick is what to divide by

\[
\frac{T(N)}{N} = \frac{2T\left(\frac{N}{2}\right)}{N} + 1
\]

- what happens when you add 2 consecutive ones ??

\[
\frac{T(N)}{N} = \frac{T\left(\frac{N}{2}\right)}{N} + 1
\]

now _ for _ next

\[
\frac{T\left(\frac{N}{2}\right)}{\left(\frac{N}{2}\right)} = \frac{T\left(\frac{N}{4}\right)}{\left(\frac{N}{4}\right)} + 1
\]

...

\[
\frac{T(2)}{2} = \frac{T(1)}{1} + 1
\]
Solution

\[
\frac{T(N)}{N} = \frac{T(1)}{1} + \log N
\]

\[
T(N) = N \times T(1) + N \log N
\]
limitations

- telescoping is great, but sometimes hard to find what to divide by

- substitution is another method
substitution

- $T(N) = 2T(N/2) + N$

- sub $N/2$

- $T(N/2) = 2T(N/4) + N/2$

- go back to original

- $T(N) = 4T(N/4) + 2N$
what do you get in the end ??
\[T(N) = 2^k T(N/2^k) + KN \]
bottom line

- telescoping
 - more scratch work
- substitution
 - more brute force
 - easier when don’t have a clue
end of the day

- Mergesort
 - $O(n \log n)$

- if so good why not the default one?
reality

- requires extra temporary array
- copying is slow....sometimes
 - constant time to the big O runtime will catch up to you

- Great for external sorting
Next

- cue dramatic music

- QUICKSORT
Quick sort

- fastest currently known sort
 - Average $N \log N$
 - Worst: N^2
Quicksort

- if one element return
- else
 - pick a pivot from the list
 - split the list around the pivot
 - return quicksort(left) + pivot + quicksort(right)

- Lets do an example
issues

- How does worst case happen?
- how to pick the pivot??
Pivot #1

- use the first element of the list

- pro/cons ?
sorted list will always be N^2
Pivot #2

- choose random element for pivot

- pro/cons?
- great performance
- expensive to generate random number
Pivot #3

- Choose median value from the list

- pro/cons?
hmmm don’t you need a sorted list to get median?

actually there is a linear algorithm for this 😊 will be doing it on homework
Pivot #4

- Median of 3

- since #3 isn't cheap, can grab 3 elements and take median
 - can even use random if you don’t mind
Next

- Java file manipulations
- Java generics
- Java serializable
- Java comparable