
perldebtut - Perl debugging tutorial

A (very) lightweight introduction in the use of the perl debugger, and a pointer to existing, deeper
sources of information on the subject of debugging perl programs.

There's an extraordinary number of people out there who don't appear to know anything about using
the perl debugger, though they use the language every day. This is for them.

First of all, there's a few things you can do to make your life a lot more straightforward when it comes
to debugging perl programs, without using the debugger at all. To demonstrate, here's a simple script,
named "hello", with a problem:

While this compiles and runs happily, it probably won't do what's expected, namely it doesn't print
"Hello World\n" at all; It will on the other hand do exactly what it was told to do, computers being a bit
that way inclined. That is, it will print out a newline character, and you'll get what looks like a blank
line. It looks like there's 2 variables when (because of the typo) there's really 3:

To catch this kind of problem, we can force each variable to be declared before use by pulling in the
strict module, by putting 'use strict;' after the first line of the script.

Now when you run it, perl complains about the 3 undeclared variables and we get four error
messages because one variable is referenced twice:

Luvverly! and to fix this we declare all variables explicitly and now our script looks like this:

Perl version 5.8.8 documentation - perldebtut

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

use strict

#!/usr/bin/perl

$var1 = ’Hello World’; # always wanted to do that :-)
$var2 = "$varl\n";

print $var2;
exit;

$var1 = ’Hello World’;
$varl = undef;
$var2 = "\n";

Global symbol "$var1" requires explicit package name at ./t1 line 4.
Global symbol "$var2" requires explicit package name at ./t1 line 5.
Global symbol "$varl" requires explicit package name at ./t1 line 5.
Global symbol "$var2" requires explicit package name at ./t1 line 7.
Execution of ./hello aborted due to compilation errors.

#!/usr/bin/perl
use strict;

my $var1 = ’Hello World’;
my $varl = undef;
my $var2 = "$varl\n";

print $var2;
exit;

We then do (always a good idea) a syntax check before we try to run it again:

And now when we run it, we get "\n" still, but at least we know why. Just getting this script to compile
has exposed the '$varl' (with the letter 'l') variable, and simply changing $varl to $var1 solves the
problem.

Ok, but how about when you want to really see your data, what's in that dynamic variable, just before
using it?

Looks OK, after it's been through the syntax check (perl -c scriptname), we run it and all we get is a
blank line again! Hmmmm.

One common debugging approach here, would be to liberally sprinkle a few print statements, to add a
check just before we print out our data, and another just after:

And try again:

After much staring at the same piece of code and not seeing the wood for the trees for some time, we
get a cup of coffee and try another approach. That is, we bring in the cavalry by giving perl the ' '
switch on the command line:

Perl version 5.8.8 documentation - perldebtut

Page 2http://perldoc.perl.org

> perl -c hello
hello syntax OK

#!/usr/bin/perl
use strict;

my $key = ’welcome’;
my %data = (
’this’ => qw(that),
’tom’ => qw(and jerry),
’welcome’ => q(Hello World),
’zip’ => q(welcome),
);
my @data = keys %data;

print "$data{$key}\n";
exit;

print "All OK\n" if grep($key, keys %data);
print "$data{$key}\n";
print "done: ’$data{$key}’\n";

> perl data
All OK

done: ’’

> perl -d data
Default die handler restored.

Loading DB routines from perl5db.pl version 1.07
Editor support available.

Looking at data and -w and v

-d

Now, what we've done here is to launch the built-in perl debugger on our script. It's stopped at the first
line of executable code and is waiting for input.

Before we go any further, you'll want to know how to quit the debugger: use just the letter ' ', not the
words 'quit' or 'exit':

That's it, you're back on home turf again.

Fire the debugger up again on your script and we'll look at the help menu. There's a couple of ways of
calling help: a simple ' ' will get the summary help list, ' ' (pipe-h) will pipe the help through your
pager (which is (probably 'more' or 'less'), and finally, ' ' (h-space-h) will give you the entire help
screen. Here is the summary page:

D h

Perl version 5.8.8 documentation - perldebtut

Page 3http://perldoc.perl.org

Enter h or ‘h h’ for help, or ‘man perldebug’ for more help.

main::(./data:4): my $key = ’welcome’;

DB<1> q
>

List/search source lines: Control script execution:
l [ln|sub] List source code T Stack trace
- or . List previous/current line s [expr] Single step [in expr]
v [line] View around line n [expr] Next, steps over subs
f filename View source in file <CR/Enter> Repeat last n or s
/pattern/ ?patt? Search forw/backw r Return from

subroutine
M Show module versions c [ln|sub] Continue until

position
Debugger controls: L List
break/watch/actions
o [...] Set debugger options t [expr] Toggle trace [trace

expr]
<[<]|{[{]|>[>] [cmd] Do pre/post-prompt b [ln|event|sub] [cnd] Set

breakpoint
! [N|pat] Redo a previous command B ln|* Delete a/all

breakpoints
H [-num] Display last num commands a [ln] cmd Do cmd before line
= [a val] Define/list an alias A ln|* Delete a/all actions
h [db_cmd] Get help on command w expr Add a watch

expression
h h Complete help page W expr|* Delete a/all watch

exprs
|[|]db_cmd Send output to pager ![!] syscmd Run cmd in a

subprocess
q or ^D Quit R Attempt a restart
Data Examination: expr Execute perl code, also see: s,n,t expr
x|m expr Evals expr in list context, dumps the result or lists

methods.
p expr Print expression (uses script’s current package).
S [[!]pat] List subroutine names [not] matching pattern
V [Pk [Vars]] List Variables in Package. Vars can be ~pattern or

!pattern.

q

h |h
h h

1

help

More confusing options than you can shake a big stick at! It's not as bad as it looks and it's very
useful to know more about all of it, and fun too!

There's a couple of useful ones to know about straight away. You wouldn't think we're using any
libraries at all at the moment, but ' ' will show which modules are currently loaded, and their version
number, while ' ' will show the methods, and ' ' shows all subroutines (by pattern) as shown below. '

' and ' ' show variables in the program by package scope and can be constrained by pattern.

Using 'X' and cousins requires you not to use the type identifiers ($@%), just the 'name':

Remember we're in our tiny program with a problem, we should have a look at where we are, and
what our data looks like. First of all let's view some code at our present position (the first line of code
in this case), via ' ':

At line number 4 is a helpful pointer, that tells you where you are now. To see more code, type 'v'
again:

And if you wanted to list line 5 again, type 'l 5', (note the space):

Perl version 5.8.8 documentation - perldebtut

Page 4http://perldoc.perl.org

X [Vars] Same as "V current_package [Vars]".
y [n [Vars]] List lexicals in higher scope <n>. Vars same as V.
For more help, type h cmd_letter, or run man perldebug for all docs.

DB<2>S str
dumpvar::stringify
strict::bits
strict::import
strict::unimport

DM<3>X ~err
FileHandle(stderr) => fileno(2)

DB<4> v
1 #!/usr/bin/perl
2: use strict;
3
4==> my $key = ’welcome’;
5: my %data = (
6 ’this’ => qw(that),
7 ’tom’ => qw(and jerry),
8 ’welcome’ => q(Hello World),
9 ’zip’ => q(welcome),
10);

DB<4> v
8 ’welcome’ => q(Hello World),
9 ’zip’ => q(welcome),
10);
11: my @data = keys %data;
12: print "All OK\n" if grep($key, keys %data);
13: print "$data{$key}\n";
14: print "done: ’$data{$key}’\n";
15: exit;

DB<4> l 5
5: my %data = (

M
m S

V X

v

In this case, there's not much to see, but of course normally there's pages of stuff to wade through,
and 'l' can be very useful. To reset your view to the line we're about to execute, type a lone period '.':

The line shown is the one that is about to be executed , it hasn't happened yet. So while we can
print a variable with the letter ' ', at this point all we'd get is an empty (undefined) value back. What
we need to do is to step through the next executable statement with an ' ':

Now we can have a look at that first ($key) variable:

line 13 is where the action is, so let's continue down to there via the letter ' ', which by the way,
inserts a 'one-time-only' breakpoint at the given line or sub routine:

We've gone past our check (where 'All OK' was printed) and have stopped just before the meat of our
task. We could try to print out a couple of variables to see what is happening:

Not much in there, lets have a look at our hash:

Well, this isn't very easy to read, and using the helpful manual (), the ' ' command looks
promising:

Perl version 5.8.8 documentation - perldebtut

Page 5http://perldoc.perl.org

DB<5> .
main::(./data_a:4): my $key = ’welcome’;

DB<6> s
main::(./data_a:5): my %data = (
main::(./data_a:6): ’this’ => qw(that),
main::(./data_a:7): ’tom’ => qw(and jerry),
main::(./data_a:8): ’welcome’ => q(Hello World),
main::(./data_a:9): ’zip’ => q(welcome),
main::(./data_a:10):);

DB<7> p $key
welcome

DB<8> c 13
All OK
main::(./data_a:13): print "$data{$key}\n";

DB<9> p $data{$key}

DB<10> p %data
Hello Worldziptomandwelcomejerrywelcomethisthat

DB<11> p keys %data
Hello Worldtomwelcomejerrythis

DB<12> x %data
0 ’Hello World’
1 ’zip’
2 ’tom’
3 ’and’
4 ’welcome’
5 undef
6 ’jerry’
7 ’welcome’
8 ’this’

next
p

s

c

h h x

That's not much help, a couple of welcomes in there, but no indication of which are keys, and which
are values, it's just a listed array dump and, in this case, not particularly helpful. The trick here, is to
use a to the data structure:

The reference is truly dumped and we can finally see what we're dealing with. Our quoting was
perfectly valid but wrong for our purposes, with 'and jerry' being treated as 2 separate words rather
than a phrase, thus throwing the evenly paired hash structure out of alignment.

The ' ' switch would have told us about this, had we used it at the start, and saved us a lot of
trouble:

We fix our quoting: 'tom' => q(and jerry), and run it again, this time we get our expected output:

While we're here, take a closer look at the ' ' command, it's really useful and will merrily dump out
nested references, complete objects, partial objects - just about whatever you throw at it:

Let's make a quick object and x-plode it, first we'll start the debugger: it wants some form of input from
STDIN, so we give it something non-committal, a zero:

Now build an on-the-fly object over a couple of lines (note the backslash):

And let's have a look at it:

Perl version 5.8.8 documentation - perldebtut

Page 6http://perldoc.perl.org

9 ’that’

DB<13> x \%data
0 HASH(0x8194bc4)

’Hello World’ => ’zip’
’jerry’ => ’welcome’
’this’ => ’that’
’tom’ => ’and’
’welcome’ => undef

> perl -w data
Odd number of elements in hash assignment at ./data line 5.

> perl -w data
Hello World

> perl -de 0
Default die handler restored.

Loading DB routines from perl5db.pl version 1.07
Editor support available.

Enter h or ‘h h’ for help, or ‘man perldebug’ for more help.

main::(-e:1): 0

DB<1> $obj = bless({’unique_id’=>’123’, ’attr’=> \
cont: {’col’ => ’black’, ’things’ => [qw(this that etc)]}}, ’MY_class’)

DB<2> x $obj
0 MY_class=HASH(0x828ad98)

’attr’ => HASH(0x828ad68)
’col’ => ’black’

reference

-w

x

Useful, huh? You can eval nearly anything in there, and experiment with bits of code or regexes until
the cows come home:

If you want to see the command History, type an ' ':

And if you want to repeat any previous command, use the exclamation: ' ':

For more on references see and

Here's a simple program which converts between Celsius and Fahrenheit, it too has a problem:

Perl version 5.8.8 documentation - perldebtut

Page 7http://perldoc.perl.org

’things’ => ARRAY(0x828abb8)
0 ’this’
1 ’that’
2 ’etc’

’unique_id’ => 123
DB<3>

DB<3> @data = qw(this that the other atheism leather theory scythe)

DB<4> p ’saw -> ’.($cnt += map { print "\t:\t$_\n" } grep(/the/, sort
@data))
atheism
leather
other
scythe
the
theory
saw -> 6

DB<5> H
4: p ’saw -> ’.($cnt += map { print "\t:\t$_\n" } grep(/the/, sort @data))
3: @data = qw(this that the other atheism leather theory scythe)
2: x $obj
1: $obj = bless({’unique_id’=>’123’, ’attr’=>
{’col’ => ’black’, ’things’ => [qw(this that etc)]}}, ’MY_class’)
DB<5>

DB<5> !4
p ’saw -> ’.($cnt += map { print "$_\n" } grep(/the/, sort @data))
atheism
leather
other
scythe
the
theory
saw -> 12

#!/usr/bin/perl -w
use strict;

my $arg = $ARGV[0] || ’-c20’;

if ($arg =~ /^\-(c|f)((\-|\+)*\d+(\.\d+)*)$/) {

H

!

perlref perlreftut

Stepping through code

For some reason, the Fahrenheit to Celsius conversion fails to return the expected output. This is
what it does:

Not very consistent! We'll set a breakpoint in the code manually and run it under the debugger to see
what's going on. A breakpoint is a flag, to which the debugger will run without interruption, when it
reaches the breakpoint, it will stop execution and offer a prompt for further interaction. In normal use,
these debugger commands are completely ignored, and they are safe - if a little messy, to leave in
production code.

Perl version 5.8.8 documentation - perldebtut

Page 8http://perldoc.perl.org

my ($deg, $num) = ($1, $2);
my ($in, $out) = ($num, $num);
if ($deg eq ’c’) {
$deg = ’f’;
$out = &c2f($num);
} else {
$deg = ’c’;
$out = &f2c($num);
}
$out = sprintf(’%0.2f’, $out);
$out =~ s/^((\-|\+)*\d+)\.0+$/$1/;
print "$out $deg\n";
} else {
print "Usage: $0 -[c|f] num\n";
}
exit;

sub f2c {
my $f = shift;
my $c = 5 * $f - 32 / 9;
return $c;
}

sub c2f {
my $c = shift;
my $f = 9 * $c / 5 + 32;
return $f;
}

> temp -c0.72
33.30 f

> temp -f33.3
162.94 c

my ($in, $out) = ($num, $num);
$DB::single=2; # insert at line 9!
if ($deg eq ’c’)
...

> perl -d temp -f33.3
Default die handler restored.

Loading DB routines from perl5db.pl version 1.07
Editor support available.

We'll simply continue down to our pre-set breakpoint with a ' ':

Followed by a view command to see where we are:

And a print to show what values we're currently using:

We can put another break point on any line beginning with a colon, we'll use line 17 as that's just as
we come out of the subroutine, and we'd like to pause there later on:

There's no feedback from this, but you can see what breakpoints are set by using the list 'L'
command:

Note that to delete a breakpoint you use 'd' or 'D'.

Now we'll continue down into our subroutine, this time rather than by line number, we'll use the
subroutine name, followed by the now familiar 'v':

Perl version 5.8.8 documentation - perldebtut

Page 9http://perldoc.perl.org

Enter h or ‘h h’ for help, or ‘man perldebug’ for more help.

main::(temp:4): my $arg = $ARGV[0] || ’-c100’;

DB<1> c
main::(temp:10): if ($deg eq ’c’) {

DB<1> v
7: my ($deg, $num) = ($1, $2);
8: my ($in, $out) = ($num, $num);
9: $DB::single=2;
10==> if ($deg eq ’c’) {
11: $deg = ’f’;
12: $out = &c2f($num);
13 } else {
14: $deg = ’c’;
15: $out = &f2c($num);
16 }

DB<1> p $deg, $num
f33.3

DB<2> b 17

DB<3> L
temp:
17: print "$out $deg\n";
break if (1)

DB<3> c f2c
main::f2c(temp:30): my $f = shift;

DB<4> v
24: exit;
25
26 sub f2c {
27==> my $f = shift;
28: my $c = 5 * $f - 32 / 9;
29: return $c;

c

Note that if there was a subroutine call between us and line 29, and we wanted to
through it, we could use the ' ' command, and to step over it we would use ' ' which would execute
the sub, but not descend into it for inspection. In this case though, we simply continue down to line 29:

And have a look at the return value:

This is not the right answer at all, but the sum looks correct. I wonder if it's anything to do with
operator precedence? We'll try a couple of other possibilities with our sum:

:-) that's more like it! Ok, now we can set our return variable and we'll return out of the sub with an 'r':

Looks good, let's just continue off the end of the script:

A quick fix to the offending line (insert the missing parentheses) in the actual program and we're
finished.

Actions, watch variables, stack traces etc.: on the TODO list.

Perl version 5.8.8 documentation - perldebtut

Page 10http://perldoc.perl.org

30 }
31
32 sub c2f {
33: my $c = shift;

DB<4> c 29
main::f2c(temp:29): return $c;

DB<5> p $c
162.944444444444

DB<6> p (5 * $f - 32 / 9)
162.944444444444

DB<7> p 5 * $f - (32 / 9)
162.944444444444

DB<8> p (5 * $f) - 32 / 9
162.944444444444

DB<9> p 5 * ($f - 32) / 9
0.722222222222221

DB<10> $c = 5 * ($f - 32) / 9

DB<11> r
scalar context return from main::f2c: 0.722222222222221

DB<12> c
0.72 c
Debugged program terminated. Use q to quit or R to restart,
use O inhibit_exit to avoid stopping after program termination,
h q, h R or h O to get additional info.

a

single-step
s n

Placeholder for a, w, t, T

Ever wanted to know what a regex looked like? You'll need perl compiled with the DEBUGGING flag
for this one:

Did you really want to know? :-) For more gory details on getting regular expressions to work, have a
look at , , and to decode the mysterious labels (BOL and CURLYN, etc. above), see

.

To get all the output from your error log, and not miss any messages via helpful operating system
buffering, insert a line like this, at the start of your script:

To watch the tail of a dynamically growing logfile, (from the command line):

Wrapping all die calls in a handler routine can be useful to see how, and from where, they're being
called, has more information:

Various useful techniques for the redirection of STDOUT and STDERR filehandles are explained in
and .

Perl version 5.8.8 documentation - perldebtut

Page 11http://perldoc.perl.org

w

t

T

> perl -Dr -e ’/^pe(a)*rl$/i’
Compiling REx ‘^pe(a)*rl$’
size 17 first at 2
rarest char
at 0
1: BOL(2)
2: EXACTF <pe>(4)
4: CURLYN[1] {0,32767}(14)
6: NOTHING(8)
8: EXACTF <a>(0)
12: WHILEM(0)
13: NOTHING(14)
14: EXACTF <rl>(16)
16: EOL(17)
17: END(0)

floating ‘’$ at 4..2147483647 (checking floating) stclass ‘EXACTF <pe>’
anchored(BOL) minlen 4
Omitting $‘ $& $’ support.

EXECUTING...

Freeing REx: ‘^pe(a)*rl$’

$|=1;

tail -f $error_log

BEGIN { $SIG{__DIE__} = sub { require Carp; Carp::confess(@_) } }

REGULAR EXPRESSIONS

OUTPUT TIPS

perlre perlretut
perldebguts

perlvar

perlopentut perlfaq8

Just a quick hint here for all those CGI programmers who can't figure out how on earth to get past that
'waiting for input' prompt, when running their CGI script from the command-line, try something like
this:

Of course and will tell you more.

The command line interface is tightly integrated with an extension and there's a interface
too.

You don't have to do this all on the command line, though, there are a few GUI options out there. The
nice thing about these is you can wave a mouse over a variable and a dump of its data will appear in
an appropriate window, or in a popup balloon, no more tiresome typing of 'x $varname' :-)

In particular have a hunt around for the following:

perlTK based wrapper for the built-in debugger

data display debugger

and are NT specific

NB. (more info on these and others would be appreciated).

We've seen how to encourage good coding practices with and . We can run the perl
debugger to inspect your data from within the perl debugger with the and
commands. You can walk through your code, set breakpoints with and step through that code with
or , continue with and return from a sub with . Fairly intuitive stuff when you get down to it.

There is of course lots more to find out about, this has just scratched the surface. The best way to
learn more is to use perldoc to find out more about the language, to read the on-line help (
is probably the next place to go), and of course, experiment.

, , , ,

Richard Foley <richard@rfi.net> Copyright (c) 2000

Various people have made helpful suggestions and contributions, in particular:

Ronald J Kimball <rjk@linguist.dartmouth.edu>

Hugo van der Sanden <hv@crypt0.demon.co.uk>

Peter Scott <Peter@PSDT.com>

Perl version 5.8.8 documentation - perldebtut

Page 12http://perldoc.perl.org

CGI

GUIs

SUMMARY

SEE ALSO

AUTHOR

CONTRIBUTORS

> perl -d my_cgi.pl -nodebug

CGI perlfaq9

perldebug

perldebug perldebguts perldiag dprofpp perlrun

emacs vi

ptkdb

ddd

PerlDevKit PerlBuilder

use strict -w
perl -d scriptname p x

b s
n c r

