
1

1

CS3157: Advanced
Programming

Lecture #9
June 21

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline

• More CPP
– class abstractions
– class inheritance
– examples
– templates

• Reading:
– chapters 18, 19, 20

2

3

Announcements

• wrapping up cpp today

• hope you started homework 2

• last lab released today

4

So Far

• we’ve covered basic classes

• creating simple classes

• working with some simple members

• lets take it to the next step

3

5

Task
• would like to create a String class

• would like to say
int main (void) {

String s1 = String(“first”);
String s2 = String(“second”);
String s3;
s3 = s1 + s2;
cout << s3;

return 0;
}

6

Operator overloading

• Most operators can be overloaded in cpp
• Treated as functions

– important to understand how arguments are
organized

– need to know how to code them
– how to code them efficiently

• example define them in terms of each other
– += could call +

4

7

• +
• ~
• -
• !
• =
• *
• /=
• +=
• <<

• >>
• &&
• ++
• []
• ()
• new
• delete
• new[]
• ->
• >>=

Look up list

8

reminder

• s3 = s1 + s2;
• Need to overload

+
=

• But this doesn’t overload +=

5

9

• Functions can be member or non-member, your
choice!
– Non-member as friends if need private data

• If its member, can use the this pointer

• Exception: operators (), [], -> or any
assignments must be class members

• When overloading need to follow set function
signature

10

cout

• cout << yourclass

• left operand is ostream &
• so non member functions (belongs to

ostream)
• friend if you would like

• lets code something

6

11

String class
• lets define a simple string class

• put output in its const and dest so we can follow

• constructor should take const char *
• would like to have following defined:
int length();
int hash();
• any ideas on how to do it ?

12

overload printing
friend ostream & operator <<(ostream &,
const String &);

ostream &operator<<(ostream &output, String
&str) {

output << “’” << << “’”;
return output;
}

????

7

13

note

• when you call:
cout << s1 << s2;

• it is first:
operator<<(cout,s1)

• and then
operator<<(cout,s2)

14

Next
• want to overload the unary operator !

• test if a string is blank

• int operator!() const;
• or
• friend int operator(const String &);

• !s1
• s.operator!() or operator!(s)

8

15

same idea

• const String operator+=(const String &)

• vs

• friend const String &operator+=(Stirng &,
const String &)

• what will s1 += s2 produce ?

16

Array Class

• Arrays are hard to work with directly since
there is no support for out of bounds

• lets look at 18.4 from the book

9

17

extending

• any ideas on how to extend the base class
??

18

• so how can we tell the difference between
++s1 and s1++

10

19

signatures

• s1++

• s1.operator++(0)

• operator++(s1,0)

20

• ++s1;

• s1.operator++()

• operator++(s1)

11

21

reuse

• one of the powers to OOP is the idea of
reuseability

• if I spend 5 billion hours working on my
code, I probably want to get some use out
of it outside of the specific task
– design issues
– extension issues

22

inheritance

• idea: allow a new class to inherit data
members and functions from a base class

• can add members and functions

• represents a more specific idea

• vehicle -> minivan

12

23

• you can access protected members of
parent

• can not access private members of parent
– can still use public accessors and modifiers

24

code

class IntArray: public Array {

• simplest type of inheritance
• private members not inherited
• public/protected inherited accordingly

13

25

code

• create a point class
– setPoint
– <<

• derive Square
– getArea()
– <<

26

overriding

• we can redefine a base class function in
the derived class and have c++ call the
correct one

14

27

Question
• can
• Point *pp1;
• Square *sp1;

• given
• Point p = Point(3,4);
• Square s = Square(..

• can we say:
• pp1 = s ?????
• sp1 = p ?????

28

private inheritance

• we have used public inheritance

• private inheritance makes everyone from
the base class come in as private
members of the derived class

15

29

base class constructors

• need to launch base class constructor in
derived class if you don’t want the default
to be called

• destructors are reversed

• lets see this in action

30

is a vs has a

• one important design decision is to know
when to derive and when to use member
variable

16

31

issue

• one issue with overriding, is that if the derived
class doesn’t provide a function, we will use the
base class definition

• this doesn’t always make sense

• Example I want a function MPG for any type of
vehicle, but doesn’t make sense of base class

32

virtual functions

• solution :

• declare the function to be virtual

• virtual double MPG();

• allow you to use a base class pointer to call at
runtime the correct function (polymorphism)

17

33

abstract class

• sometimes its even useful to have a base
class which can’t be instantiated

• if any virtual function is declared pure
virtual:

• virtual int MPG() = 0;

34

note

• constructors can not be virtual

• need virtual destructors to make
everything work if you are going to have
destructors in any of your classes (do it
anyway)

18

35

• lets look at 20.1 code

36

Abstraction with member functions
• example #1: array1.cpp
• example #2: array2.cpp

– array1.cpp with interface functions

• example #3: array3.cpp
– array2.cpp with member functions

• class definition

• public vs private

• declaring member functions inside/outside class definition

• scope operator (::)

• this pointer

19

37

array1.cpp
struct IntArray {

int *elems;
size_t numElems;

};
main() {

IntArray powersOf2 = { 0, 0 };
powersOf2.numElems = 8;
powersOf2.elems = (int *)malloc(powersOf2.numElems *
sizeof(int));
powersOf2.elems[0] = 1;
for (int i=1; i<powersOf2.numElems; i++) {
powersOf2.elems[i] = 2 * powersOf2.elems[i-1];

}
cout << "here are the elements:\n";
for (int i=0; i<powersOf2.numElems; i++) {
cout << "i=" << i << " powerOf2=" <<

powersOf2.elems[i] << "\n";
}
free(powersOf2.elems);

}

38

array2
void IA_init(IntArray *object) {
object->numElems = 0;
object->elems = 0;

} // end of IA_init()

void IA_cleanup(IntArray *object) {
free(object->elems);
object->numElems = 0;

} // end of IA_cleanup()

void IA_setSize(IntArray *object, size_t value) {
if (object->elems != 0) {
free(object->elems);

}
object->numElems = value;
object->elems = (int *)malloc(value * sizeof(int));

} // end of IA_setSize()

size_t IA_getSize(IntArray *object) {
return(object->numElems);

} // end of IA_getSize()

20

39

hierarchy
• composition:

– creating objects with other objects as members
– example: array4.cpp

• derivation:
– defining classes by expanding other classes
– like “extends” in java
– example:

class SortIntArray : public IntArray {
public:
void sort();
private:
int *sortBuf;
}; // end of class SortIntArray
• “base class” (IntArray) and “derived class” (SortIntArray)
• derived class can only access public members of base class

40

• complete example: array5.cpp
– public vs private derivation:

• public derivation means that users of the derived class
can access the public portions of the base class

• private derivation means that all of the base class is
inaccessible to anything outside the derived class

• private is the default

21

41

Class derivation
• encapsulation

– derivation maintains encapsulation
– i.e., it is better to expand IntArray and add sort() than to modify your own version

of IntArray

• friendship
– not the same as derivation!!
– example:

• is a friend of
• B2 is a friend of B1
• D1 is derived from B1
• D2 is derived from B2
• B2 has special access to private members of B1 as a friend
• But D2 does not inherit this special access
• nor does B2 get special access to D1 (derived from friend B1)

42

Derivation and pointer conversion
• derived-class instance is treated like a base-class instance
• but you can’t go the other way
• example:
main() {
IntArray ia, *pia;
// base-class object and pointer
StatsIntArray sia, *psia;
// derived-class object and pointer
pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatsIntArray *)pia; // sort of okay now since:
// 1. there’s a cast
// 2. pia is really pointing to sia,
// but if it were pointing to ia, then
// this wouldn’t work (as below)
psia = (StatsIntArray *)&ia; // no: because ia isn’t a

StatsIntArray

22

43

switching gears

• recursive programming

• any one know how to recursively solve a
problem ?

44

• different types of recursions

• left tail recursion

• non tail recursion

23

45

Templates

template<typename X>
void foo(X &first, X second){

first += second;
}

46

STL
• standard template library

• tons of useful stuff here

• if you do any serious programming you should
consider STL
– they’ve worked out all the bugs ☺
– very efficient
– make sure you understand what you are doing

24

47

Lab

• lets get started on the next lab now

