CS3157: Advanced
Programming

Lecture #9
June 21

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

 More CPP
— class abstractions
— class inheritance
— examples
— templates

* Reading:
— chapters 18, 19, 20

Announcements

e wrapping up cpp today
* hope you started homework 2

* last lab released today

So Far

we've covered basic classes

creating simple classes

working with some simple members

lets take it to the next step

Task

» would like to create a String class

* would like to say

int main (void) {
String sl1 = String(“first”);
String s2 = String(“second”);
String s3;
s3 = sl + s2;
cout << s3;

return O;

}

Operator overloading

* Most operators can be overloaded in cpp

» Treated as functions

— important to understand how arguments are
organized

— need to know how to code them

— how to code them efficiently

» example define them in terms of each other
— +=could call +

>>
&&
++
[
0

o =
e e e o o o o o o o

new
delete
/= new(]
->
+=
>>=
<<
Look up list
reminder
s3=sl+s2;
Need to overload
+

But this doesn’t overload +=

Functions can be member or non-member, your
choice!

— Non-member as friends if need private data

If its member, can use the this pointer

Exception: operators (), [], -> or any
assignments must be class members

When overloading need to follow set function
signature

cout

cout << yourclass

left operand is ostream &

so non member functions (belongs to
ostream)

friend if you would like

lets code something

10

String class

lets define a simple string class

put output in its const and dest so we can follow

constructor should take const char *

would like to have following defined:
int length();

int hash();

e any ideas on how to do it ?

11

overload printing

friend ostream & operator <<(ostream &,
const String &);

ostream &operator<<(ostream &output, String
&str) {

output << 77 << | 2992 |<<
return OUtpUt;

}

12

note

« when you call:

cout << sl << s2;

o itis first:
operator<<(cout,sl)
e and then
operator<<(cout,s2)

13

Next

want to overload the unary operator !
test if a string is blank
int operator!() const;

or
friend int operator(const String &);

Isl

e s.operator! () or operator!(s)

14

same idea

const String operator+=(const String &)
VS

friend const String &operator+=(Stirng &,
const String &)

what will s1 += s2 produce ?

15

Array Class

Arrays are hard to work with directly since
there is no support for out of bounds

lets look at 18.4 from the book

16

extending

e any ideas on how to extend the base class
??

17

» so how can we tell the difference between
++s]1 and s1++

18

signatures

e S1++

» sl.operator++(0)

» operator++(s1,0)

19

o ++sl;

e sl.operator++()

o operator++(sl)

20

10

reuse

» one of the powers to OOP is the idea of
reuseability

if | spend 5 billion hours working on my
code, | probably want to get some use out
of it outside of the specific task

— design issues

— extension issues

21

Inheritance

Idea: allow a new class to inherit data
members and functions from a base class

can add members and functions
represents a more specific idea

vehicle -> minivan

22

11

* yoOu can access protected members of
parent

e can not access private members of parent
— can still use public accessors and modifiers

23

code

class IntArray: public Array {

« simplest type of inheritance
» private members not inherited
* public/protected inherited accordingly

24

12

code

» create a point class
— setPoint
— <<

 derive Square

— getArea()
— <<

25

overriding

e we can redefine a base class function in
the derived class and have c++ call the
correct one

26

13

Question

can
Point *pp1;
Square *spl,

given
Point p = Point(3,4);
Square s = Square(..

can we say:

27

private inheritance

we have used public inheritance

private inheritance makes everyone from
the base class come in as private
members of the derived class

28

14

base class constructors

need to launch base class constructor in
derived class if you don’t want the default
to be called

destructors are reversed

lets see this in action

29

IS avVvs has a

one important design decision is to know
when to derive and when to use member
variable

30

15

Issue

one issue with overriding, is that if the derived
class doesn’t provide a function, we will use the
base class definition

this doesn’t always make sense

Example | want a function MPG for any type of
vehicle, but doesn’t make sense of base class

31

virtual functions

solution :
declare the function to be virtual
virtual double MPG();

allow you to use a base class pointer to call at
runtime the correct function (polymorphism)

32

16

abstract class

* sometimes its even useful to have a base
class which can’t be instantiated

o if any virtual function is declared pure
virtual:

o virtual int MPG() = 0;

33

note

e constructors can not be virtual

* need virtual destructors to make
everything work if you are going to have
destructors in any of your classes (do it
anyway)

34

17

» lets look at 20.1 code

35

Abstraction with member functions

« example #1: arrayl.cpp
* example #2: array2.cpp
— arrayl.cpp with interface functions

« example #3: array3.cpp
— array2.cpp with member functions

e class definition

¢ public vs private

¢ declaring member functions inside/outside class definition
* scope operator (::)

« this pointer

36

18

arrayl.cpp

struct IntArray {
int *elems;
size_t numElems;
}:
main() {
IntArray powersOf2 = { 0, O };
powersOf2._numElems = 8;
powersOf2.elems = (int *)malloc(powersOf2_numElems *
sizeof(int));
powersOf2._elems[0] = 1;
for (int i=1; i<powersOf2_numElems; i++) {
powersOf2._elems[i] = 2 * powersOf2_elems[i-1];
}
cout << "here are the elements:\n";
for (int i=0; i<powersOf2_numElems; i++) {

cout << "Mi=" << i << " powerOf2="" <<
powersOf2._elems[i] << "\n";

}

free(powersOf2._elems);

array2

void IA_init(IntArray *object) {
object->numElems = 0;
object->elems = 0;

} 7/ end of 1A_initQ

void 1A_cleanup(IntArray *object) {
free(object->elems);
object->numElems = 0;

} 7/ end of 1A_cleanup(Q)

void IA_setSize(IntArray *object, size_t value) {
if (object->elems =0) {
free(object->elems);

object->numElems = value;
object->elems = (int *)malloc(value * sizeof(int));
} 7/ end of IA_setSize()

size_t IA_getSize(IntArray *object) {
return(object->numElems);
} 7/ end of 1A_getSize()

38

19

hierarchy

e composition:
— creating objects with other objects as members
— example: array4.cpp

e derivation:
— defining classes by expanding other classes
— like “extends” in java
— example:
class SortintArray : public IntArray {
public:
void sort();
private:
int *sortBuf;
}; 7/ end of class SortIntArray
* ‘“base class” (IntArray) and “derived class” (SortintArray)
« derived class can only access public members of base class

39

» complete example: array5.cpp
— public vs private derivation:

* public derivation means that users of the derived class
can access the public portions of the base class

 private derivation means that all of the base class is
inaccessible to anything outside the derived class

* private is the default

40

20

Class derivation

* encapsulation
— derivation maintains encapsulation

— i.e., itis better to expand IntArray and add sort() than to modify your own version

of IntArray

« friendship
— not the same as derivation!!
— example:

e isafriend of

e B2is a friend of B1

e D1 is derived from B1

e D2 is derived from B2

* B2 has special access to private members of B1 as a friend

« But D2 does not inherit this special access

e nor does B2 get special access to D1 (derived from friend B1)

41

Derivation and pointer conversion

« derived-class instance is treated like a base-class instance

« but you can't go the other way

e example:

main() {

IntArray ia, *pia;

// base-class object and pointer

StatsintArray sia, *psia;

// derived-class object and pointer

pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatslIntArray *)pia; // sort of okay now since:
// 1. there’s a cast

// 2. pia is really pointing to sia,

// but if it were pointing to ia, then

// this wouldn’t work (as below)

psia = (StatslntArray *)&ia; // no: because ia isn’t a
StatsIntArray

42

21

switching gears

* recursive programming

« any one know how to recursively solve a
problem ?

43

o different types of recursions

e |eft tail recursion

e non tail recursion

a4

22

Templates

template<typename X>

void foo(X &fFirst, X second){
first += second;

}

45

STL

» standard template library

» tons of useful stuff here

* if you do any serious programming you should
consider STL
— they've worked out all the bugs ©
— very efficient
— make sure you understand what you are doing

46

23

Lab

* lets get started on the next lab now

47

24

