CS3157: Advanced
Programming

Lecture #8
June 19

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

* More CPP
— basics in depth
— pointers and references differences
— class abstractions
— class inheritance
— creating classes
— long example
— cgi and c/cpp

* Reading:
— chapters 16, 17, 18 (c++, classes, overloading)

Announcements

* We wrap up the course next week
—homework 2 released
— lab due this week
— will get last lab this week
— will post sample final
— need to run makeup class on friday

pass by references

» C: manipulates variables by reference
through the use of pointers

e c++ introduces another way of
manipulating references variables
—reference parameters
- &

— easier to use than pointers

functions

void addTo(int a, int b) {
a = atb;

}

void addToRef(int &a, Int b){
a = atb;

}

careful

in theory could return referenced variables

but if not declared static, will return dangling
pointers

also like pointers, need to assign to make sense

int sum = 129;
int &refint = sum;
refint = 2;

Variable scope

» CPP allows you to specify scope through
unary scope operator (::)

* So can differentiate between local and
global variables

code

Iint count = 10;

int main(){
int count = 5;

// count 1s local
// -:-:count is global
// std::count iIs the same as 2

If then else

e condition ? then : else

e (a==5)7?at+:a=0;

OOP

» we will talk later today about why everything has
been shifting to OOPD

* when you use OOD you end up working with
objects and states

* Lets say you need to manipulate fractions, how
would you do this in basic ¢ ?

— do you have a more elegant solution ?

e Lets talk about it in C++

10

Functions organization

* You've programmed classes in Java

 What kind of functions exist with well
designed classes

11

Functions

Accessor

— get some state information from the object
Mutator

— change information

Helper

— internal functions to accomplish tasks cleanly

Predicate
— help answer simple yes/no questions

12

CPP classes

e A class if a collection of functions and
variables

* In CPP we have constructors and
destructors

« Anyone remember how to define a
constructor ?

 destructor ?
» when are they invoked ?

13

Example
class Counter {
public:

int x;

void print() { cout << Xx
<<endl;

}
}

14

accessing variables

e Count mycounter;
e mycounter.x = 7;
e mycounter.print();

e Counter *countPTR;
e counterPTR->print();

15

abstraction

» important when defining a class to
separate how to use the class and how we
are representing the information

 how can we fix the count class ??

16

Example

class Counter {
private:
int x;
public:
void setCount(int newcnt) {
X = newcnt;
+

void print() { cout << x <<endl;

}
}

17

Issues

» being careful not return private references

18

Practice

e code the counter class

» add a static member ID (you need myid)

e int Foo::ID =0;
—in global scope

19

Hands on Coding

* Please code a Fraction Class
e main should look like:

int main(void) {

cout<<“start’<<endl;

Fraction f1;

cout<<“End”<<endl;
return O;

}

20

10

add constructor/destructor

add print to them and see what it outputs

add a global fraction

now add a pointer to a fraction
— what happened to the destructor ?

21

» what if we wanted to keep roman
numerals as a counter ?

22

11

Example I

class Counter {
private:

char * x;

char * convertint(int number);
public:

Counter() { .. }

~Counter { .. }

void setCount(int newcnt) {

X = convertint(X);
}

void print() { cout << x <<endl;

}

23

ok so far....

 when we have an int as a counter, its easy
to say lets add one to the counter

e Counter c;

eC.X = 4;
® C.X++;

24

12

assignment

» by default = will assign all variables
(simple) one by one

Count a;
Counter b;
a.setCount(19);
b = a;
b.print();

25

guestion

» s0 how do you do this with a roman
numeral counter ?

26

13

background

» to answer that easily need to cover some
background material

27

= const keyword

— there are times when we want to ensure that our
program will not change a specific variables value.

— variables can be declared const
— const int x =3;
— const Count c(13);

— functions need to be declared const when dealing
with const variable members

28

14

const class members

» const class members are assigned at construction time
using the : notation

class Worker {
public:
Worker(int id,int job);
int getID () const;
private:
constint _ID;
int _job;
}

29

constructor
Worker(int id, int job) : _ID(id) {
_job = job;
}

30

15

Classes within classes

» class member variables can be other

classes

important: member constructors are
actually called before main class
constructors

— does this make sense ?

31

this
this is a keyword

represents a pointer to the class itself

this->x
or (*this).x

32

16

static

 static members have instance wide scope
and livability

» great for shared variable

* have to be careful how used

33

assert

» special macro runs a test

e if true continues

« if false
— dies without calling destructors

34

17

friends

e can declare a function to be a friend

« allows access to private member of the
class

* not scoped during definition

35

Order of running program

* In c we saw that the program always starts
from main

* As mentioned in class this is different in
Ccpp

36

18

What can go wrong

» The good thing about cpp is that your

program can now crash many times even
before reaching main ©

37

Ordering and where to look for
problems

Global variables
— Assignments and constructors
— What else ??

Main

Local variables
End local variables
End main

Global destructors

38

19

code

 I'd like to cover a bunch of code examples
now illustrating the power of classes

» Will start from simple array and work out a
complex class

* Then start on a simple data structure

39

Class friends

e allows two or more classes to share
private members

e e.g., container and iterator classes

« friendship is not transitive

40

20

Operator overloading

» Most operators can be overloaded in cpp
» Treated as functions

» But its important to understand how they
really work

41

o + e >>
¢ &&
o 4+
| + [
* 0
() =] [) neW
* * delete
e » new[
« >
e >>=

Look up list

42

21

Operators which can not be
overloaded

° 7

sizeof

43

e X=X+Y

 Need to overload
+

» But this doesn’t overload +=

a4

22

Functions can be member or non-member
Non-member as friends
If its member, can use this

0, [I, -> or any assignments must be class
members

When overloading need to follow set
function signature

45

» Code from fig18 03 (c book)

» Will cover next class in depth

46

23

unary

Y+=Z
Y.operator+=(Z)

++D
member
— D.operator++()

Non member
— operator++(D)

47

Next

— Software engineering

» Will cover most in class, you are responsible for
understanding high level overview

48

24

What is Software Engineering?

Stephen Schach: “Software engineering is a discipline whose aim is
the production of fault-free software, delivered on time and within
budget, that satisfies the user’s needs.”

includes:

— requirements analysis

— human factors

— functional specification

— software architecture

— design methods

— programming for reliability

— programming for maintainability

— team programming methods

— testing methods

— configuration management

49

People

you can’t do everything yourself

e.g., your assignment: “write an operating
system”

where do you start?

what do you need to write?

do you know how to write a device driver?
do you know what a device driver is?

should you integrate a browser into your
operating system?
how do you know if it's working?

50

25

Why

in school, you learn the mechanics of programming
you are given the specifications

you know that it is possible to write the specified
program in the time allotted

but not so in the real world...

— what if the specifications are not possible?

— what if the time frame is not realistic?

— what if you had to write a program that would last for 10 years?
in the real world:

— software is usually late, over budget and broken

— software usually lasts longer than employees or hardware

the real world is cruel and software is fundamentally
brittle

51

Who

the average manager has no idea how software needs to
be implemented

the average customer says: “build me a system to do X”

the average layperson thinks software can do anything
(or nothing)

most software ends up being used in very different ways
than how it was designed to be used

52

26

Time

» you never have enough time
» software is often under budgeted

» the marketing department always wants it
tomorrow

» even though they don’t know how long it will take
to write it and test it

* “Why can’'t you add feature X? It seems so
simple...”

* “| thought it would take a week...”

* “We've got to get it out next week. Hire 5 more
programmers...”

53

Complexity

» software is complex!

* or it becomes that way
— feature bloat
— patching

* e.g., the evolution of Windows NT
— NT 3.1 had 6,000,000 lines of code
— NT 3.5 had 9,000,000
— NT 4.0 had 16,000,000
— Windows 2000 has 30-60 million
— Windows XP has at least 45 million...

54

27

Necessity

» you will need these skills!

* risks of faulty software include
— loss of money
—loss of job
— loss of equipment
— loss of life

55

Therac-25

* http://sunnyday.mit.edu/papers/therac.pdf

« therac-25 was a linear accelerator released in 1982 for
cancer treatment by releasing limited doses of radiation

* it was software-controlled as opposed to hardware-
controlled (previous versions of the equipment were
hardward-controlled)

* it was controlled by a PDP-11; software controlled safety

* in case of error, software was designed to prevent
harmful effects

56

28

BUT

in case of software error, cryptic codes were displayed to
the operator, such as:

“MALFUNCTION xx"
Where 1 < xx < 64

operators became insensitive to these cryptic codes
they thought it was impossible to overdose a patient

however, from 1985-1987, six patients received massive
overdoses of radiation and several died

57

main cause:

a race condition often happened when operators entered
data quickly, then hit the up-arrow key to correct the data
and the values were not reset properly

the manufacturing company never tested quick data
entry— their testers weren’t that fast since they didn’t do
data entry on a daily basis

apparently the problem had existed on earlier models,
but a hardware interlock mechanism prevented the
software race condition from occurring

in this version, they took out the hardware interlock
mechanism because they trusted the software

58

29

Example2: Ariane 501

next-generation launch vehicle, after ariane 4

presigious project for ESA
maiden flight: june 4, 1996
inertial reference system (IRS), written in ada
— computed position, velocity, acceleration
— dual redundancy
— calibrated on launch pad
— relibration routine runs after launch (active but not used)

one step in recalibration converted floating point value of horizontal velocity to integer
ada automatically throws out of bounds exception if data conversion is out of bounds

if exception isn’t handled... IRS returns diagnostic data instead of position, velocity,
acceleration

59

perfect launch

ariane 501 flies much faster than ariane 4

horizontal velocity component goes out of bounds

IRS in both main and redundant systems go into diagnostic mode

control system receives diagnotic data but interprets it as wierd
position data

attempts to correct it...
ka-boom!
failure at altitiude of 2.5 miles

25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid
propellant

60

30

expensive failure:
— tenyears
— $7 billion

horizontal velocity conversion was deliberately left unchecked
who is to blame?

“mistakes were made”

software had never been tested with actual flight parameters

problem was easily reproduced in simulation, after the fact

61

Mythical man-month

Fred Brooks (1975)
book written after his experiences in the OS/360 design

major themes:

— Brooks’ Law: “Adding manpower to a late software project makes it
later.”

— the “black hole” of large project design: getting stuck and getting out
— organizing large team projects and communication

— documentation!!!

— when to keep code; when to throw code away

— dealing with limited machine resources

most are supplemented with practical experience

62

31

No silver bullet

e paper written in 1986 (Brooks)

* “There is no single development, in either technology or
management technique, which by itself promises even one order-of
magnitude improvement within a decade of productivity, in reliability,
in simplicity.”

» why? software is inherently complex
» lots of people disagreed, but there is no proof of a counter-argument

» Brooks’ point: there is no revolution, but there is evolution when it
comes to software development

63

SE Mechanics

» well-established techniques and
methodologies:
— team structures
— software lifecycle / waterfall model
— cost and complexity planning / estimation

— reusability, portability, interoperability,
scalability

— UML, design patterns

64

32

Team Structures

» why Brooks’ Law?
— training time
— increased communications: pairs grow by

» while people/work grows by
— how to divide software? this is not task sharing

* types of teams
— democratic
— “chief programmer”
— synchronize-and-stabilize teams
— eXtreme Programming teams

65

Lifecycles

» software is not a build-one-and-throw-away process
» that's far too expensive
* so software has a lifecycle

» we need to implement a process so that software is
maintained correctly

* examples:
— build-and-fix
— waterfall

66

33

Software lifestyle cycle

7 basic phases (Schach):

— requirements (2%)

— specification/analysis (5%)

— design (6%)

— implementation (module coding and testing) (12%)
— integration (8%)

— maintenance (67%)

— retirement

percentages in ()'s are average cost of each task during 1976-1981

testing and documention should occur throughout each phase
note which is the most expensive!

67

Requirements

what are we doing, and why?

need to determine what the client needs, not what the client wants
or thinks they need

worse— requirements are a moving target!
common ways of building requirements include:
— prototyping
— natural-language requirements document(l

use interviews to get information (not easy!)

example: your online store

68

34

Specifications

the “contract’— frequently a legal document
what the product will do, not how to do it
should NOT be:

— ambiguous, e.g., “optimal”

— incomplete, e.g., omitting modules

— contradictory
detailed, to allow cost and duration estimation
classical vs object-oriented (OO) specification

— classical: flow chart, data-flow diagram

— object-oriented: UML

example: your online store

69

Design Phase

the “how” of the project
fills in the underlying aspects of the specification
design decisions last a long time!

even after the finished product
— maintenance documentation
— try to leave it open-ended

architectural design: decompose project into modules
detailed design: each module (data structures, algorithms)
UML can also be useful for design

example: your online store

70

35

Implementation

implement the design in programming language(s)
observe standardized programming mechanisms
testing: code review, unit testing

documentation: commented code, test cases

integration considerations
— combine modules and check the whole product
— top-down vs bottom-up ?
— testing: product and acceptance testing; code review
— documentation: commented code, test cases
— done continually with implementation (can’t wait until the last minute!)

example: your online store

71

Maintenance Phase

defined by Schach as any change

by far the most expensive phase

poor (or lost) documentation often makes the situation even worse
programmers hate it

several types:
— corrective (bugs)
— perfective (additions to improve)
— adaptive (system or other underlying changes)

testing maintenance: regression testing (will it still work now that I've fixed
it?)

documentation: record all the changes made and why, as well as new test
cases

example: your on-line store— how might the system change once it's been
implemented?

72

36

Retirement phase

* the last phase, of course

* why retire?
— changes too drastic (e.qg., redesign)
— too many dependencies (“house of cards”)
— no documentation
— hardware obsolete

* true retirement rate: product no longer useful

73

Planning and Estimation

» we still need to deal with the bottom line
— how much will it cost?
— can you stick to your estimate?
— how long will it take?
— can you stick to your estimate?

* how do you measure the product (size,
complexity)?

74

37

Reusability

* impediments:

lack of trust

logistics of reuse

loss of knowledge base
mismatch of features

* how to:
— libraries
— APIs
system calls
objects (OOP)
frameworks (a generic body into which you add your particular
code)

75

Portability

Java and C#

Java: uses a JVM
— write once, run anywhere (sorta, kinda)

C#: also uses a JVM
— emphasizes mobile data rather than code

winner?

— betting against Microsoft is historically a losing
proposition...

76

38

iInteroperability

e.g., CORBA
define abstract services

allow programs in any language to access
services in any language in any location

object-ish

77

Scalability

something to keep in mind

don’t worry about scaling beyond the abilities of
the machine

avoid unnecessary barriers

from single connection to forking processes to
threads...

78

39

homework

homework 2 is out
larger project
not enough time ©

Software engineering solution ??

79

PANIC!!

80

40

just kidding
sit down and plan out the classes
start to code them out

run small tests (can even code this separately
and rerun every once in a while)

81

Next class

wrap up lab
reading
reading

coding hw2

82

41

