
1

1

CS3157: Advanced
Programming

Lecture #8
June 19

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline
• More CPP

– basics in depth
– pointers and references differences
– class abstractions
– class inheritance
– creating classes
– long example
– cgi and c/cpp

• Reading:
– chapters 16, 17, 18 (c++, classes, overloading)

2

3

Announcements

• We wrap up the course next week
– homework 2 released
– lab due this week
– will get last lab this week
– will post sample final
– need to run makeup class on friday

4

pass by references

• c: manipulates variables by reference
through the use of pointers

• c++ introduces another way of
manipulating references variables
– reference parameters
– &
– easier to use than pointers

3

5

functions
void addTo(int a, int b) {
a = a+b;

}

void addToRef(int &a, int b){
a = a+b;

}

6

careful

• in theory could return referenced variables
• but if not declared static, will return dangling

pointers
• also like pointers, need to assign to make sense

int sum = 129;

int &refint = sum;
refint = 2;

4

7

Variable scope

• CPP allows you to specify scope through
unary scope operator (::)

• So can differentiate between local and
global variables

8

code

int count = 10;

int main(){
int count = 5;

// count is local
// ::count is global
// std::count is the same as 2

5

9

if then else

• ---- ? ----- : -------

• condition ? then : else

• (a ==5) ? a++ : a =0;

10

OOP
• we will talk later today about why everything has

been shifting to OOPD

• when you use OOD you end up working with
objects and states

• Lets say you need to manipulate fractions, how
would you do this in basic c ?
– do you have a more elegant solution ?

• Lets talk about it in C++

6

11

Functions organization

• You’ve programmed classes in Java
• What kind of functions exist with well

designed classes

12

Functions

• Accessor
– get some state information from the object

• Mutator
– change information

• Helper
– internal functions to accomplish tasks cleanly

• Predicate
– help answer simple yes/no questions

7

13

CPP classes

• A class if a collection of functions and
variables

• In CPP we have constructors and
destructors

• Anyone remember how to define a
constructor ?

• destructor ?
• when are they invoked ?

14

Example

class Counter {
public:
int x;
void print() { cout << x
<<endl;
}

}

8

15

accessing variables

• Count mycounter;
• mycounter.x = 7;
• mycounter.print();

• Counter *countPTR;
• counterPTR->print();

16

abstraction

• important when defining a class to
separate how to use the class and how we
are representing the information

• how can we fix the count class ??

9

17

Example
class Counter {
private:
int x;

public:
void setCount(int newcnt) {

x = newcnt;
}
void print() { cout << x <<endl;
}

}

18

issues

• being careful not return private references

10

19

Practice

• code the counter class

• add a static member ID (you need myid)

• int Foo::ID =0;
– in global scope

20

Hands on Coding
• Please code a Fraction Class
• main should look like:

int main(void) {
cout<<“start”<<endl;
Fraction f1;
cout<<“End”<<endl;
return 0;

}

11

21

• add constructor/destructor

• add print to them and see what it outputs

• add a global fraction

• now add a pointer to a fraction
– what happened to the destructor ?

22

• what if we wanted to keep roman
numerals as a counter ?

12

23

Example II
class Counter {
private:

char * x;
char * convertInt(int number);

public:
Counter() { … }
~Counter { … }
void setCount(int newcnt) {

x = convertInt(x);
}
void print() { cout << x <<endl;
}

}

24

ok so far….

• when we have an int as a counter, its easy
to say lets add one to the counter

• Counter c;
• c.x = 4;
• c.x++;

13

25

assignment

• by default = will assign all variables
(simple) one by one

Count a;
Counter b;
a.setCount(19);
b = a;
b.print();

26

question

• so how do you do this with a roman
numeral counter ?

14

27

background

• to answer that easily need to cover some
background material

28

• const keyword
– there are times when we want to ensure that our

program will not change a specific variables value.

– variables can be declared const
– const int x =3;
– const Count c(13);

– functions need to be declared const when dealing
with const variable members

15

29

const class members
• const class members are assigned at construction time

using the : notation

class Worker {
public:

Worker(int id,int job);
int getID () const;

private:
const int _ID;
int _job;

}

30

constructor

Worker(int id, int job) : _ID(id) {
_job = job;

}

16

31

Classes within classes

• class member variables can be other
classes

• important: member constructors are
actually called before main class
constructors
– does this make sense ?

32

this

• this is a keyword

• represents a pointer to the class itself

• this->x
• or (*this).x

17

33

static

• static members have instance wide scope
and livability

• great for shared variable

• have to be careful how used

34

assert

• special macro runs a test

• if true continues

• if false
– dies without calling destructors

18

35

friends

• can declare a function to be a friend

• allows access to private member of the
class

• not scoped during definition

36

Order of running program

• In c we saw that the program always starts
from main

• As mentioned in class this is different in
cpp

19

37

What can go wrong

• The good thing about cpp is that your
program can now crash many times even
before reaching main ☺

38

Ordering and where to look for
problems

• Global variables
– Assignments and constructors
– What else ??

• Main
• Local variables
• End local variables
• End main
• Global destructors

20

39

code

• I’d like to cover a bunch of code examples
now illustrating the power of classes

• Will start from simple array and work out a
complex class

• Then start on a simple data structure

40

Class friends

• allows two or more classes to share
private members

• e.g., container and iterator classes

• friendship is not transitive

21

41

Operator overloading

• Most operators can be overloaded in cpp
• Treated as functions
• But its important to understand how they

really work

42

• +
• ~
• -
• !
• =
• *
• /=
• +=
• <<

• >>
• &&
• ++
• []
• ()
• new
• delete
• new[]
• ->
• >>=

Look up list

22

43

Operators which can not be
overloaded

• .
• .*
• ::
• ?:
• sizeof

44

• X = X + Y
• Need to overload

+
=

• But this doesn’t overload +=

23

45

• Functions can be member or non-member
• Non-member as friends
• If its member, can use this
• (), [], -> or any assignments must be class

members

• When overloading need to follow set
function signature

46

• Code from fig18_03 (c book)

• Will cover next class in depth

24

47

unary

• Y += Z
• Y.operator+=(Z)

• ++D
• member

– D.operator++()
• Non member

– operator++(D)

48

Next

– Software engineering
• Will cover most in class, you are responsible for

understanding high level overview

25

49

What is Software Engineering?
• Stephen Schach: “Software engineering is a discipline whose aim is

the production of fault-free software, delivered on time and within
budget, that satisfies the user’s needs.”

• includes:
– requirements analysis
– human factors
– functional specification
– software architecture
– design methods
– programming for reliability
– programming for maintainability
– team programming methods
– testing methods
– configuration management

50

People
• you can’t do everything yourself
• e.g., your assignment: “write an operating

system”
• where do you start?
• what do you need to write?
• do you know how to write a device driver?
• do you know what a device driver is?
• should you integrate a browser into your

operating system?
• how do you know if it’s working?

26

51

Why
• in school, you learn the mechanics of programming
• you are given the specifications
• you know that it is possible to write the specified

program in the time allotted
• but not so in the real world...

– what if the specifications are not possible?
– what if the time frame is not realistic?
– what if you had to write a program that would last for 10 years?

• in the real world:
– software is usually late, over budget and broken
– software usually lasts longer than employees or hardware

• the real world is cruel and software is fundamentally
brittle

52

Who
• the average manager has no idea how software needs to

be implemented

• the average customer says: “build me a system to do X”

• the average layperson thinks software can do anything
(or nothing)

• most software ends up being used in very different ways
than how it was designed to be used

27

53

Time
• you never have enough time
• software is often under budgeted
• the marketing department always wants it

tomorrow
• even though they don’t know how long it will take

to write it and test it
• “Why can’t you add feature X? It seems so

simple...”
• “I thought it would take a week...”
• “We’ve got to get it out next week. Hire 5 more

programmers...”

54

Complexity
• software is complex!
• or it becomes that way

– feature bloat
– patching

• e.g., the evolution of Windows NT
– NT 3.1 had 6,000,000 lines of code
– NT 3.5 had 9,000,000
– NT 4.0 had 16,000,000
– Windows 2000 has 30-60 million
– Windows XP has at least 45 million...

28

55

Necessity

• you will need these skills!

• risks of faulty software include
– loss of money
– loss of job
– loss of equipment
– loss of life

56

Therac-25
• http://sunnyday.mit.edu/papers/therac.pdf

• therac-25 was a linear accelerator released in 1982 for
cancer treatment by releasing limited doses of radiation

• it was software-controlled as opposed to hardware-
controlled (previous versions of the equipment were
hardward-controlled)

• it was controlled by a PDP-11; software controlled safety

• in case of error, software was designed to prevent
harmful effects

29

57

• BUT
• in case of software error, cryptic codes were displayed to

the operator, such as:
• “MALFUNCTION xx”
• Where 1 < xx < 64

• operators became insensitive to these cryptic codes
• they thought it was impossible to overdose a patient
• however, from 1985-1987, six patients received massive

overdoses of radiation and several died

58

• main cause:
• a race condition often happened when operators entered

data quickly, then hit the up-arrow key to correct the data
and the values were not reset properly

• the manufacturing company never tested quick data
entry— their testers weren’t that fast since they didn’t do
data entry on a daily basis

• apparently the problem had existed on earlier models,
but a hardware interlock mechanism prevented the
software race condition from occurring

• in this version, they took out the hardware interlock
mechanism because they trusted the software

30

59

Example2: Ariane 501
• next-generation launch vehicle, after ariane 4

• presigious project for ESA
• maiden flight: june 4, 1996
• inertial reference system (IRS), written in ada

– computed position, velocity, acceleration
– dual redundancy
– calibrated on launch pad
– relibration routine runs after launch (active but not used)

• one step in recalibration converted floating point value of horizontal velocity to integer

• ada automatically throws out of bounds exception if data conversion is out of bounds

• if exception isn’t handled... IRS returns diagnostic data instead of position, velocity,
acceleration

60

• perfect launch

• ariane 501 flies much faster than ariane 4

• horizontal velocity component goes out of bounds

• IRS in both main and redundant systems go into diagnostic mode

• control system receives diagnotic data but interprets it as wierd
position data

• attempts to correct it...

• ka-boom!

• failure at altitiude of 2.5 miles

• 25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid
propellant

31

61

• expensive failure:
– ten years
– $7 billion

• horizontal velocity conversion was deliberately left unchecked

• who is to blame?

• “mistakes were made”

• software had never been tested with actual flight parameters

• problem was easily reproduced in simulation, after the fact

62

Mythical man-month
• Fred Brooks (1975)

• book written after his experiences in the OS/360 design

• major themes:
– Brooks’ Law: “Adding manpower to a late software project makes it

later.”
– the “black hole” of large project design: getting stuck and getting out
– organizing large team projects and communication
– documentation!!!
– when to keep code; when to throw code away
– dealing with limited machine resources

• most are supplemented with practical experience

32

63

No silver bullet
• paper written in 1986 (Brooks)

• “There is no single development, in either technology or
management technique, which by itself promises even one order-of
magnitude improvement within a decade of productivity, in reliability,
in simplicity.”

• why? software is inherently complex

• lots of people disagreed, but there is no proof of a counter-argument

• Brooks’ point: there is no revolution, but there is evolution when it
comes to software development

64

SE Mechanics

• well-established techniques and
methodologies:
– team structures
– software lifecycle / waterfall model
– cost and complexity planning / estimation
– reusability, portability, interoperability,

scalability
– UML, design patterns

33

65

Team Structures
• why Brooks’ Law?

– training time
– increased communications: pairs grow by

• while people/work grows by

– how to divide software? this is not task sharing

• types of teams
– democratic
– “chief programmer”
– synchronize-and-stabilize teams
– eXtreme Programming teams

66

Lifecycles
• software is not a build-one-and-throw-away process

• that’s far too expensive

• so software has a lifecycle

• we need to implement a process so that software is
maintained correctly

• examples:
– build-and-fix
– waterfall

34

67

Software lifestyle cycle
• 7 basic phases (Schach):

– requirements (2%)
– specification/analysis (5%)
– design (6%)
– implementation (module coding and testing) (12%)
– integration (8%)
– maintenance (67%)
– retirement

• percentages in ()’s are average cost of each task during 1976-1981
• testing and documention should occur throughout each phase
• note which is the most expensive!

68

Requirements
• what are we doing, and why?

• need to determine what the client needs, not what the client wants
or thinks they need

• worse— requirements are a moving target!

• common ways of building requirements include:
– prototyping
– natural- �language requirements document

• use interviews to get information (not easy!)

• example: your online store

35

69

Specifications
• the “contract”— frequently a legal document

• what the product will do, not how to do it

• should NOT be:
– ambiguous, e.g., “optimal”
– incomplete, e.g., omitting modules
– contradictory

• detailed, to allow cost and duration estimation

• classical vs object-oriented (OO) specification
– classical: flow chart, data-flow diagram
– object-oriented: UML

• example: your online store

70

Design Phase
• the “how” of the project

• fills in the underlying aspects of the specification

• design decisions last a long time!

• even after the finished product
– maintenance documentation
– try to leave it open-ended

• architectural design: decompose project into modules

• detailed design: each module (data structures, algorithms)

• UML can also be useful for design

• example: your online store

36

71

Implementation
• implement the design in programming language(s)

• observe standardized programming mechanisms

• testing: code review, unit testing

• documentation: commented code, test cases

• integration considerations
– combine modules and check the whole product
– top-down vs bottom-up ?
– testing: product and acceptance testing; code review
– documentation: commented code, test cases
– done continually with implementation (can’t wait until the last minute!)

• example: your online store

72

Maintenance Phase
• defined by Schach as any change
• by far the most expensive phase
• poor (or lost) documentation often makes the situation even worse
• programmers hate it

• several types:
– corrective (bugs)
– perfective (additions to improve)
– adaptive (system or other underlying changes)

• testing maintenance: regression testing (will it still work now that I’ve fixed
it?)

• documentation: record all the changes made and why, as well as new test
cases

• example: your on-line store— how might the system change once it’s been
implemented?

37

73

Retirement phase

• the last phase, of course

• why retire?
– changes too drastic (e.g., redesign)
– too many dependencies (“house of cards”)
– no documentation
– hardware obsolete

• true retirement rate: product no longer useful

74

Planning and Estimation

• we still need to deal with the bottom line
– how much will it cost?
– can you stick to your estimate?
– how long will it take?
– can you stick to your estimate?

• how do you measure the product (size,
complexity)?

38

75

Reusability
• impediments:

– lack of trust
– logistics of reuse
– loss of knowledge base
– mismatch of features

• how to:
– libraries
– APIs
– system calls
– objects (OOP)
– frameworks (a generic body into which you add your particular

code)

76

Portability
• Java and C#

• Java: uses a JVM
– write once, run anywhere (sorta, kinda)

• C#: also uses a JVM
– emphasizes mobile data rather than code

• winner?
– betting against Microsoft is historically a losing

proposition...

39

77

interoperability

• e.g., CORBA

• define abstract services

• allow programs in any language to access
services in any language in any location

• object-ish

78

Scalability

• something to keep in mind

• don’t worry about scaling beyond the abilities of
the machine

• avoid unnecessary barriers

• from single connection to forking processes to
threads...

40

79

homework

• homework 2 is out

• larger project

• not enough time ☺

• Software engineering solution ??

80

PANIC!!

41

81

• just kidding

• sit down and plan out the classes

• start to code them out

• run small tests (can even code this separately
and rerun every once in a while)

82

Next class

• wrap up lab

• reading

• reading

• coding hw2

