CS3157: Advanced
Programming

Lecture #6
June 12

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

Wrap up pointers
File manipulations
Working with text
Wrapping up C
Lab 3

time permitting: shell programming

Announcements

» Will be posting homework project 2 this
week

— will be doing lab 3 today (due next class), no
too long

—lab 4 out Wednesday
— Hw2 posted thursday

* If you are having a problem/idea/anything
please stop by office hours

From last time

« Struct and typedefs
e How?

 Why?

Back to Pointers

» Pointers is what makes ¢ so powerful

Array

int a[4];
a[0] = 2; a[2] = 6;
a[l] = 3; a[3] = 4;

a[i] is really *(a+i)
Reason: a internally &a[0]
Why can’t we say a++ ??

Pointers
e int *ptr = a;
o ptr[i] equals *(a+i)

» char c* = “this is fun”;
— how to print this out?
— can you say c[1] = ‘d’;

* What is wrong with the following:
ptr = (int)malloc(sizeof(int)*10);
— try: gcc —Wall —o test test.c

automate this

 in ¢ we can end up juggling many files
— header, code, configuration, etc

» would like to use a tool to make all this
automated

 make to the rescue

Makefile

* make is an executable which processes
directions from a Makefile

* unix/cygwin, when type in ‘make’ will look
for a Makefile (upper case M)

» directions are divided into rules

simple

samplel: test.c
gcc —o hwl test.c

clean:
rm —f *.0

not so simple

#welcome to my make file
CC =gcc

CLIBS =-Im

FLAGS = -Wall

samplel: test.c
${CC} ${CLIBS} ${FLAGS} —0 hw1 test.c

clean:
rm —f *.0

Practical example

« Say | am going to take everyone’s age in
the room (example 30 students)....will
input one at a time, and want a sorted list
all the time

« can you write an outline of how it would
work?

« Can you convert thisto c ?

Get number

array

Create the n size array

Figure where it goes
Move everyone over to make place

lets see some code

pointer

» one of the big advantages of pointers is
that it gives your code a much neater look

 How would you write the same exact code

with pointers?

Array allocation

There is a difference between how java
allocates a double array and how c/cpp do
it...

anyone know?

which is better ?

Double Pointers

Just to make sure you all caught this:
We can have pointers to anything in memory

why not point to a pointer ?

int **ipp;
inti=5,]=6;k=7,
int *ipl = &i, *ip2 = &j;
ipp = &ip1;

#include <stdlib.h>

int allocstr(int len, char **retptr)
{
char *p = malloc(len + 1);
/* +1 for \O */
if(p == NULL)

return O;
*retptr = p;
return 1;
by
char *string = "Hello, world!";

char *copystr;
if(allocstr(strlen(string), ©str))
strcpy(copystr, string);

else fprintf(stderr, "out of
memory\n') ;

List ADT

an ADT is an abstract data type
we don’t worry about what goes underneath
just interested in operations and idea

we want to keep an ordered set of items and
support:

— insert

— delete

— find

Next

lets also assume we want the list sorted at all
times

a simple implementation of a list is an array

more complicated is a linked list

how would you code a linked listin ¢ ?

10

* First we define:

struct ELEMENT {int value; struct ELEMENT
*next; };

struct ELEMENT list;

list.next = (struct
ELEMENT*)malloc(sizeof(struct ELEMENT));

e Jlist.value = 20;

(*list.next).value = 22;
printf("'val is %d\n", list.next->value);

Dealing with lists

» Usually easier to use a head object to start
the list

» Options:
— last node will be null (end of list)
— Last node can link to first (easier to traverse)
— Add back links to allow faster walkthroughs

11

compare

 So if | have 10 items

* What is the difference between an array
and linked list?

Working with lists

void add(lInode **head, int data_in) {
IInode *tmp;

it ((tmp = malloc(sizeof(*tmp))) == NULL){
ERR_MSG(malloc);

void)exit(EXIT_FAILURE);

}

tmp->value = data_in;
tmp->next = *head;
*head = tmp;

¥

12

/* ... Inside some function ... */
IInode *head = NULL;

add(&head, some data);

Reminder

» Your mother is right when she told you
clean after yourself!

* How to clean up the list?

13

void freelist(lInode *head) {
IInode *tmp;

while (head '= NULL) {
free(head->data);

tmp = head->next;
free(head); head = tmp;
3

}

Text based programming

» Many application of computer science

» Spell checking
* Learning

* Modeling

e compression

* important study of running time on algorithms
before even bothering to code them

14

sample application

« one of the powers of being able to
manipulate raw memory is the ability of
getting your code super optimized

* i.e. instead of taking 24 hours to solve a
problem can get it down to something
faster:

— 4 minutes ©

Compression

» Anyone know how compression works ?

15

* On the computer text (characters) are
represented fix length set of bits

e 7 bits for ASCII

e Can we do better than that?

Compression

 If we can use less bits for higher occurring
characters, overall we will use less bits in
our text file

16

Binary tree

» Let me introduce a data structure to you

» A binary tree has a node with optional left
and right children

* Think of it as a linked list with two links

Hoffman compression

1. Create a frequency count of each of your
characters in your file

2. Start to build a binary tree always
combining 2 lowest frequencies into one
tree the resulting frequency is the
combined frequencies

3. Going leftis 0, going right is 1

17

Example

If I counted:
E=29
A=14
T=10
B=4
D=2
C=1

decompression

So seeing a code, we simply run down the
tree

As soon as we hit a leaf, translate to that
character

18

Compressing text

 How would you use Huffman to compress
text??

Stream

e a stream is just a simple way of looking at
any device

» stream can be file, screen, port, printer,
keyboard etc

» open: hooks a pointer with the stream
 close: unhooks

19

Modes

* r Open atext file for reading

« w Create a text file for writing

« a Append to atext file

* rb Open a binary file for reading

* wb Open a binary file for writing

* ab Append to a binary file

* r+ Open a text file for read/write

» w+ Create a text file for read/write

* at+ Append or create a text file for read/write
* r+b Open a binary file for read/write

* w+tb Create a binary file for read/write
e a+b Append a binary file for read/write
FILE *fp;

it ((fp = fopen('myfile™, "r'))
==NULL){
printf("Error opening file\n");
exit(l);

by

20

Reminder

e make sure you are getting a valid pointer
back

* make sure you are creating the correct
mode

» why this is important

« int fclose(FILE *fp);

» The fclose() function closes the file associated
with fp, which must be a valid file pointer
previously obtained using fopen()

» disassociates the stream from the file

» The fclose() function returns O if successful and
EOF (end of file) if an error occurs.

21

binary vs text

» Generally two modes OS operates in

e text
— asci
* binary
— byte level

#include <stdio.h> /* header file */
#include <stdlib.h>
void main(void)

{

FILE *fp; /* file pointer */
int i;

/* open file for output */

ifT ((fp = fopen('myfile™, "w'"))==NULL){
printf('Cannot open file \n");
exit(l);

3
i=100;

if (fwrite(&i, 2, 1, fp) 1=1){
printf("Write error occurred™);
exit(l);

3
fclose(fp);

/* open file for input */

if ((fp =fopen("myfile™, "r"))==NULL){
printf(*'Read error occurred™);
exit(l);

3
printf('i is %d",i);
fclose(fp);

22

other stuff

* int remove(char *file-name);

« void rewind(FILE *fp);

File manipulations

e FILE *fopen (const char *path, const char *mode);

= FILE *Fp;
e Fp = fopen(*'*/home/johndoe/input.dat™, *r');

e fscanf(Fp, "%d", &x);

e fprintf(Fp, "%s\n", "File Streams are cool!");

e int fclose(FILE *stream);

23

Command line arguments

* Many times you want to pass in specific
information to your program as command
line args

 Tool for helping you do this:

int getopt(int argc, char * const argv[], const char
*optstring);

extern char *optarg;

extern int optind, opterr, optopt;

24

Change main method

e Int main(int argc, char **argv)

e _/junk -b something data.txt

int ich;

while ((ich = getopt (argc, argv, "ab:c™)) != EOF) {
switch (ich) {
case "a": /* Flags/Code when -a is specified */
break;
case "b": /* Flags/Code when -b is specified */
/* The argument passed in with b is specified */
/* by optarg */

break;
case "c": /* Flags/Code when -c is specified */
break;
default: /* Code when there are no parameters */
break;
3
3

if (optind < argc) {
printf (“'non-option ARGV-elements: ');
while (optind < argc)
printf ("%s ", argv[optind++]);
printf ('\n");
3

25

wrapping up c

c is very powerful language

because of advanced in hardware/software push today
to write OO code

for many reasons:

— re-usability

— modularity

— scalability

— maintainability

Need to know ¢

— many good ideas first implemented here
— might need to maintain code in ¢

— might end up writing a specific

Lab 3

« we will be doing lab 3 in class today.....,
but you need to submit your own
COMMENTED work

e notice the comments

26

For Wednesday

Read up on c file handling

Read up on structs, linked lists, nodes,
huffman algorithm

Wrap up the lab

Get c++ book and read intro parts on
language and basic usage

27

