
1

CS3157: Advanced
Programming

Lecture #6
June 12

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Wrap up pointers
• File manipulations
• Working with text
• Wrapping up C
• Lab 3

• time permitting: shell programming

2

Announcements

• Will be posting homework project 2 this
week
– will be doing lab 3 today (due next class), no

too long
– lab 4 out Wednesday
– Hw2 posted thursday

• If you are having a problem/idea/anything
please stop by office hours

From last time

• Struct and typedefs

• How?

• Why?

3

Back to Pointers

• Pointers is what makes c so powerful

Array

• int a[4];
• a[0] = 2; a[2] = 6;
• a[1] = 3; a[3] = 4;

• a[i] is really *(a+i)
• Reason: a internally &a[0]
• Why can’t we say a++ ??

4

Pointers
• int *ptr = a;

• ptr[i] equals *(a+i)

• char c* = “this is fun”;
– how to print this out?
– can you say c[1] = ‘d’;

• What is wrong with the following:
ptr = (int)malloc(sizeof(int)*10);

– try: gcc –Wall –o test test.c

automate this

• in c we can end up juggling many files
– header, code, configuration, etc

• would like to use a tool to make all this
automated

• make to the rescue

5

Makefile

• make is an executable which processes
directions from a Makefile

• unix/cygwin, when type in ‘make’ will look
for a Makefile (upper case M)

• directions are divided into rules

simple

sample1: test.c
gcc –o hw1 test.c

clean:
rm –f *.o

6

not so simple
#welcome to my make file
CC = gcc
CLIBS = -lm
FLAGS = -Wall

sample1: test.c
${CC} ${CLIBS} ${FLAGS} –o hw1 test.c

clean:
rm –f *.o

Practical example

• Say I am going to take everyone’s age in
the room (example 30 students)….will
input one at a time, and want a sorted list
all the time

• can you write an outline of how it would
work?

• Can you convert this to c ?

7

array

• Create the n size array
• Get number
• Figure where it goes
• Move everyone over to make place

• lets see some code

pointer

• one of the big advantages of pointers is
that it gives your code a much neater look

• How would you write the same exact code
with pointers?

8

Array allocation

• There is a difference between how java
allocates a double array and how c/cpp do
it…

• anyone know?

• which is better ?

Double Pointers
• Just to make sure you all caught this:
• We can have pointers to anything in memory

• why not point to a pointer ?

• int **ipp;
• int i = 5, j = 6; k = 7;
• int *ip1 = &i, *ip2 = &j;
• ipp = &ip1;

9

#include <stdlib.h>

int allocstr(int len, char **retptr)
{

char *p = malloc(len + 1);
/* +1 for \0 */

if(p == NULL)
return 0;

*retptr = p;
return 1;

}

char *string = "Hello, world!";
char *copystr;
if(allocstr(strlen(string), ©str))

strcpy(copystr, string);
else fprintf(stderr, "out of
memory\n");

10

List ADT
• an ADT is an abstract data type

• we don’t worry about what goes underneath

• just interested in operations and idea

• we want to keep an ordered set of items and
support:
– insert
– delete
– find

Next
• lets also assume we want the list sorted at all

times

• a simple implementation of a list is an array

• more complicated is a linked list

• how would you code a linked list in c ?

11

• First we define:
struct ELEMENT {int value; struct ELEMENT
*next; };

struct ELEMENT list;
list.next = (struct
ELEMENT*)malloc(sizeof(struct ELEMENT));

• list.value = 20;

(*list.next).value = 22;
printf("val is %d\n",list.next->value);

Dealing with lists

• Usually easier to use a head object to start
the list

• Options:
– last node will be null (end of list)
– Last node can link to first (easier to traverse)
– Add back links to allow faster walkthroughs

12

compare

• So if I have 10 items

• What is the difference between an array
and linked list?

Working with lists
void add(llnode **head, int data_in) {
llnode *tmp;
if ((tmp = malloc(sizeof(*tmp))) == NULL){
ERR_MSG(malloc);
void)exit(EXIT_FAILURE);
}

tmp->value = data_in;
tmp->next = *head;
*head = tmp;
}

13

/* ... inside some function ... */

llnode *head = NULL;
......

add(&head, some_data);

Reminder

• Your mother is right when she told you
clean after yourself!

• How to clean up the list?

14

void freelist(llnode *head) {
llnode *tmp;

while (head != NULL) {
free(head->data);
tmp = head->next;
free(head); head = tmp;
}

}

Text based programming
• Many application of computer science

• Spell checking
• Learning
• Modeling
• compression

• important study of running time on algorithms
before even bothering to code them

15

sample application

• one of the powers of being able to
manipulate raw memory is the ability of
getting your code super optimized

• i.e. instead of taking 24 hours to solve a
problem can get it down to something
faster:
– 4 minutes ☺

Compression

• Anyone know how compression works ?

16

• On the computer text (characters) are
represented fix length set of bits

• 7 bits for ASCII

• Can we do better than that?

Compression

• If we can use less bits for higher occurring
characters, overall we will use less bits in
our text file

17

Binary tree

• Let me introduce a data structure to you

• A binary tree has a node with optional left
and right children

• Think of it as a linked list with two links

Hoffman compression

1. Create a frequency count of each of your
characters in your file

2. Start to build a binary tree always
combining 2 lowest frequencies into one
tree the resulting frequency is the
combined frequencies

3. Going left is 0, going right is 1

18

Example

• If I counted:
• E = 29
• A = 14
• T = 10
• B = 4
• D = 2
• C = 1

decompression

• So seeing a code, we simply run down the
tree

• As soon as we hit a leaf, translate to that
character

19

Compressing text

• How would you use Huffman to compress
text??

Stream

• a stream is just a simple way of looking at
any device

• stream can be file, screen, port, printer,
keyboard etc

• open: hooks a pointer with the stream
• close: unhooks

20

Modes
• r Open a text file for reading
• w Create a text file for writing
• a Append to a text file
• rb Open a binary file for reading
• wb Open a binary file for writing
• ab Append to a binary file
• r+ Open a text file for read/write
• w+ Create a text file for read/write
• a+ Append or create a text file for read/write
• r+b Open a binary file for read/write
• w+b Create a binary file for read/write
• a+b Append a binary file for read/write

FILE *fp;

if ((fp = fopen("myfile", "r"))
==NULL){
printf("Error opening file\n");
exit(1);

}

21

Reminder

• make sure you are getting a valid pointer
back

• make sure you are creating the correct
mode

• why this is important

• int fclose(FILE *fp);

• The fclose() function closes the file associated
with fp, which must be a valid file pointer
previously obtained using fopen()

• disassociates the stream from the file
• The fclose() function returns 0 if successful and

EOF (end of file) if an error occurs.

22

binary vs text

• Generally two modes OS operates in

• text
– ascii

• binary
– byte level

#include <stdio.h> /* header file */
#include <stdlib.h>
void main(void)
{

FILE *fp; /* file pointer */
int i;

/* open file for output */
if ((fp = fopen("myfile", "w"))==NULL){
printf("Cannot open file \n");
exit(1);
}
i=100;

if (fwrite(&i, 2, 1, fp) !=1){
printf("Write error occurred");
exit(1);
}
fclose(fp);

/* open file for input */
if ((fp =fopen("myfile", "r"))==NULL){
printf("Read error occurred");
exit(1);
}
printf("i is %d",i);
fclose(fp);
}

23

other stuff

• int remove(char *file-name);

• void rewind(FILE *fp);

File manipulations
• FILE *fopen (const char *path, const char *mode);

• FILE *Fp;
• Fp = fopen("/home/johndoe/input.dat", "r");

• fscanf(Fp, "%d", &x);

• fprintf(Fp, "%s\n", "File Streams are cool!");

• int fclose(FILE *stream);

24

Command line arguments

• Many times you want to pass in specific
information to your program as command
line args

• Tool for helping you do this:

int getopt(int argc, char * const argv[], const char
*optstring);

extern char *optarg;

extern int optind, opterr, optopt;

25

Change main method

• int main(int argc, char **argv)

• ./junk -b something data.txt

int ich;

while ((ich = getopt (argc, argv, "ab:c")) != EOF) {
switch (ich) {

case 'a': /* Flags/Code when -a is specified */
break;

case 'b': /* Flags/Code when -b is specified */
/* The argument passed in with b is specified */

/* by optarg */
break;

case 'c': /* Flags/Code when -c is specified */
break;

default: /* Code when there are no parameters */
break;

}
}

if (optind < argc) {
printf ("non-option ARGV-elements: ");
while (optind < argc)

printf ("%s ", argv[optind++]);
printf ("\n");

}

26

wrapping up c
• c is very powerful language
• because of advanced in hardware/software push today

to write OO code
• for many reasons:

– re-usability
– modularity
– scalability
– maintainability

• Need to know c
– many good ideas first implemented here
– might need to maintain code in c
– might end up writing a specific

Lab 3

• we will be doing lab 3 in class today…..,
but you need to submit your own
COMMENTED work

• notice the comments

27

For Wednesday

• Read up on c file handling
• Read up on structs, linked lists, nodes,

huffman algorithm
• Wrap up the lab

• Get c++ book and read intro parts on
language and basic usage

