
1

1

CS3157: Advanced
Programming

Lecture #5
June 7

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Announcements

• Wednesday is pizza day
– bring your appetite

• When you leave me AIM’s and I’m away
from my desk, please identify yourself…

• How are the labs coming along ?

• Homework DUE!!!
– lets talk!

2

3

Outline
• More c

– Preprocessor
– Bitwise operations
– Character handling
– Math/random
– Pointers
– Const
– Typedef
– Union
– Enum

• Reading:
– see website (Deitel chapter 7)
– k&r ch chapter 4, 5.5-,6

4

Remember

• unlike high level languages, you are now
getting much more control over the
computer
– but this also gives you much more chances to

mess it up ☺
– lots of control on how your code will work

• think of the difference between driving a
car and repairing it

3

5

From last time
• the C pre-processor (cpp) is a macro-processor which

– manages a collection of macro definitions
– reads a C program and transforms it

• pre-processor directives start with # at beginning of line
used to:
– include files with C code (typically, “header” files containing

definitions; file names end with .h)
– define new macros (later – not today)
– conditionally compile parts of file (later – not today)

• gcc -E shows output of pre-processor
• can be used independently of compiler

6

Pre-processor cont.
#define name const-expression
#define name (param1,param2,...) expression
#undef symbol

• replaces name with constant or expression
• textual substitution
• symbolic names for global constants
• in-line functions (avoid function call overhead)
• type-independent code

#define MAXLEN 255

4

7

Example
#define MAXVALUE 100
#define check(x) ((x) < MAXVALUE)
if (check(i)) { ...}

• becomes
if ((i) < 100) {...}

• Caution: don’t treat macros like function calls
#define valid(x) ((x) > 0 && (x) < 20)
• is called like:
if (valid(x++)) {...}
• and will become:
valid(x++) -> ((x++) > 0 && (x++) < 20)
• and may not do what you intended...

8

• conditional compilation

• pre-processor checks value of expression
• if true, outputs code segment 1, otherwise code segment 2
• machine or OS-dependent code

• can be used to comment out chunks of code— bad!
• (but can be helpful for quick and dirty debugging :-)

• example:
#define OS linux
...
#if OS == linux
puts(“Wow you are running Linux!");
#else
puts("why are you running something else???");
#endif

5

9

• ifdef
• for boolean flags, easier:
#ifdef name
code segment 1
#else
code segment 2
#endif
• pre-processor checks if name has been

defined, e.g.:
#define USEDB
• if so, use code segment 1, otherwise 2

10

From last time

• We covered basic types

• int x = 100;
• int a[100];

• int b[20][34]

• int *c;

6

11

Function

• Declaration:
– Return-type function-name (parameters if any);

• Definition:
– Return-type function-name (parameters if any){

declarations

statements
}

• how does main fit in ?

12

Command Line Args
int main(int argc, char *argv[])

• argc is the argument count
• argv is the argument vector

– array of strings with command-line arguments
• the int value is the return value

– convention: return value of 0 means success,
– > 0 means there was some kind of error
– can also declare as void (no return value)

7

13

• Name of executable followed by space-
separated arguments

$ a.out 1 23 "third arg"
• this is stored like this:
1. a.out
2. 1
3. 23
4. “third arg”
• argc = 4

14

• If no arguments, simplify:
int main() {
printf("hello world");
exit(0);
}

• Uses exit() instead of return() — almost
the same thing.

8

15

booleans
• C doesn’t have booleans
• emulate as int or char, with values 0 (false) and 1 or non-

zero (true)

• allowed by flow control statements:
if (n == 0) {
printf("something wrong");
}
• assignment returns zero - �> false
• you can define your own boolean:
#define FALSE 0
#define TRUE 1

16

Booleans II

• This works in general, but beware:
if (n == TRUE) {
printf("everything is a-okay");

}

• if n is greater than zero, it will be non-zero, but
may not be 1; so the above is NOT the

• same as:
if (n) {
printf("something is rotten in the state of denmark");

}

9

17

Logical operators
• in C logical operators are the same as in Java
• meaning C operator
• AND &&
• OR ||
• NOT !

• since there are no boolean types in C, these are mainly
used to connect clauses in if and while statements

• remember that
– non-zero == true
– zero == false

18

Bitwise operators

• there are also bitwise operators in C, in which
each bit is an operand:

• Meaning c operator
• bitwise AND &
• bitwise or |
• Example:
int a = 8; /* this is 1000 in base 2 */
int b = 15; /* this is 1111 in base 2 */

• a & b = a | b=
)8(1000

&
)15(1111
)8(1000

=)15(1111

|
)15(1111
)8(1000

=

10

19

Question

• what is the output of the following code
fragment?

• int a = 12, b = 7;
• printf("a && b = %d\n", a && b);
• printf("a || b = %d\n", a || b);
• printf("a & b = %d\n", a & b);
• printf("a | b = %d\n", a | b);

20

Implicit convertions
• implicit:
int a = 1;
char b = 97; // converts int to char
int s = a + b; // adds int and char, converts to int

• promotion: char -> short -> int -> float -> double
• if one operand is double, the other is made double
• else if either is float, the other is made float

int a = 3;
float x = 97.6;
double y = 145.987;
y = x * y; // x becomes double; result is double
x = x + a; // a becomes float; result is float

• real (float or double) to int truncates

11

21

explicit
• explicit:
• type casting
int a = 3;
float x = 97.6;
double y = 145.987;
y = (double)x * y;
x = x + (float)a;
• – using functions (in math library...)

1. floor() – rounds to largest integer not greater than x

2. ceil() - round to smallest integer not smaller than x

3. round() – rounds up from halfway integer values

22

Example
#include <stdio.h>
#include <math.h>
int main() {
int j, i, x;
double f = 12.00;
for (j=0; j<10; j++) {
i = f;
x = (int)f;
printf("f=%.2f i=%d x=%d
floor(f)=%.2f ceil(f)=%.2f round(f)=%.2f\n",
f,i,x,floor(f),ceil(f),round(f));
f += 0.10;
} // end for j
} // end main()

12

23

Output
• f=12.00 i=12 x=12 floor(f)=12.00 ceil(f)=12.00 round(f)=12.00
• f=12.10 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
• f=12.20 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
• f=12.30 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
• f=12.40 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
• f=12.50 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
• f=12.60 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=13.00
• f=12.70 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=13.00
• f=12.80 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=13.00
• f=12.90 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=13.00

24

Be aware
• almost any conversion does something— but not

necessarily what you intended!!
• – example:
int x = 100000;
short s = x;
printf("%d %d\n", x, s);
• – output is:
100000 -31072
• WHY?

13

25

math library
• Functions ceil() and floor() come from the math library
• definitions:

– ceil(x): returns the smallest integer not less than x, as a double
– floor(x): returns the largest integer not greater than x, as a

double
• in order to use these functions, you need to do two

things:
1. include the prototypes (i.e., function definitions) in the

source code:
#include <math.h>

2. include the library (i.e., functions’ object code) at link
time:
unix$ gcc abcd.c -lm

• exercise: can you write a program that rounds a floating
point?

26

math
• some other functions from the math library (these are function

prototypes):
– double sqrt(double x);
– double pow(double x, double y);
– double exp(double x);
– double log(double x);
– double sin(double x);
– double cos(double x);

• exercise: write a program that calls each of these functions

• questions:
– can you make sense of /usr/include/math.h?
– where are the definitions of the above functions?
– what are other math library functions?

14

27

Random numbers
• with computers, nothing is random (even though it may seem so at times...)

• there are two steps to using random numbers in C:
1. seeding the random number generator
2. generating random number(s)

• standard library function:
#include <stdlib.h>

• seed function:
srand(time (NULL));

• random number function returns a number between 0 and RAND_MAX
(which is 2^32)

int i = rand();

28

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main(void) {
int r;
srand(time (NULL));
r = rand() % 100;
printf("pick a number between 0 and
100...\n");

printf("was %d your number?", r);
}

15

29

Character handling
• character handling library
#include <ctype.h>
• digit recognition functions (bases 10 and 16)
• alphanumeric character recognition
• case recognition/conversion
• character type recognition

• these are all of the form:
int isdigit(int c);
• where the argument c is declared as an int, but it is interpreted as a

char
• so if c = ’0’ (i.e., the ASCII value ’0’, index=48), then the function

returns true (non-zero int)
but if c = 0 (i.e., the ASCII value NULL, index=0), then the function
returns false (0)

30

digits
• digit recognition functions (bases 10 and 16)
int isdigit(int c);
• returns true (i.e., non-zero int) if c is a decimal

digit (i.e., in the range ’0’..’9’);
returns 0 otherwise

int isxdigit(int c);
• returns true (i.e., non-zero int) if c is a

hexadecimal digit (i.e., in the range
’0’..’9’,’A’..’F’); returns 0 otherwise

16

31

Alpha numeric

• alphanumeric character recognition
int isalpha(int c);

• returns true (i.e., non-zero int) if c is a letter (i.e.,
in the range ’A’..’Z’,’a’..’z’); returns 0 otherwise

int isalnum(int c);

• returns true (i.e., non-zero int) if c is an
alphanumeric character (i.e., in the range
’A’..’Z’,’a’..’z’,’0’..’9’); returns 0 otherwise

32

Case
• case recognition
int islower(int c);
• returns true (i.e., non-zero int) if c is a lowercase letter (i.e., in the range ’a’..’z’);

returns 0 otherwise

int isupper(int c);
• returns true (i.e., non-zero int) if c is an uppercase letter (i.e., in the range ’A’..’Z’);

returns 0 otherwise

• case conversion
int tolower(int c);
• returns the value of c converted to a lowercase letter (does nothing if c is not a letter

or if c is already lowercase)

int toupper(int c);
• returns the value of c converted to an uppercase letter (does nothing if c is not a letter

or if c is already uppercase)

17

33

types
• character type recognition
int isspace(int c);
• returns true (i.e., non-zero int) if c is a space; returns 0 otherwise
int iscntrl(int c);
• returns true (i.e., non-zero int) if c is a control character; returns 0

otherwise
int ispunct(int c);
• returns true (i.e., non-zero int) if c is a punctuation mark; returns 0

otherwise
int isprint(int c);
• returns true (i.e., non-zero int) if c is a printable character; returns 0

otherwise
int isgraph(int c);
• returns true (i.e., non-zero int) if c is a graphics character; returns 0

otherwise

34

Header files

• .h files usually used to define methods or
centralize defintions

• public int calculateSomething(int []);

• Can either name the variables or not
• int[] vs int ar[]
• In .c file use; #include “something.h”

18

35

compilation

• Remember to make sure you have all your
files when you split them between .c and
.h

• You include the .c files for compilation and
the compiler will find the .h files.

• Object files unchanged.

36

Outline
• Arrays
• Pointers
• Memory allocation
• functions
• function arguments
• arrays and pointers as function arguments

• Reading
– Chapter 5,6-6.3

19

37

Arrays again
• Arrays and pointers are strongly related in C
int a[10];
int *pa;
• (remember that &a[0] is the address of the first element in a, that is

the beginning of the array
pa = &a[0];
pa = a;
• pointer arithmetic is meaningful with arrays:
• if we do
Pntr = &a[0]
• then
*(Pntr +1) =
• Is whatever is at a[1]

38

• There is a difference between
– *(Pntr) + 1
– and (*Pntr +1)

• Note that an array name is a pointer, so we can also do
*(a+1) and in general: *(a + i) == a[i] and so are a + i ==
&a[i]

• The difference:
– an array name is a constant, and a pointer is not
– so we can do: Pntr = a and Pntr ++

• But we can NOT do: a = Pntr or a++ pr or Pntr = &a
• That is you can not reassign it as a pointer

20

39

Note

• When an array name is passed to a
function, what is passed is the beginning
of the array, that is passed by reference

• It is important, since this is an address,
any changes to that memory location will
stick when you come back from the
function

40

From last time
• a pointer contains the address of an object (but

not in the OOP sense)
• allows one to access object “indirectly”
• & = unary operator that gives address of its

argument
• * = unary operator that fetches contents of its

argument (i.e., its argument is an address)
• note that & and * bind more tightly than

arithmetic operators
• you can print the value of a pointer with the

formatting character %p

21

41

code
#include <stdio.h>
main() {

int x, y; // declare two ints
int *px; // declare a pointer to an int
x = 3; // initialize x
px = &x;
y = *px;

printf("x=%d px=%p y=%d\n",x,px,y);
}

42

Memory allocation

• One of the main advantage to c/cpp is that
you can manipulate memory yourself (and
are responsible to clean up after yourself.

• When you don’t it is called memory
leaking…more on this later

22

43

Array vs memory allocation

• Arrays are great when you have a rough
idea of how many items you will be dealing
with
– 10 numbers
– 30 students
– Less than 256 characters of input

44

Map of memory

• Think of memory as a box
• Main is placed on the bottom and any

variable on top of that
• Any function call gets placed on top of that
• This part of memory grows upward
• It is called the stack
• Your program is over when the stack is

empty

23

45

heap

• The heap is the other side of memory
• Global variables, and allocated memory is

created on the heap
• It grows downwards

46

HEAP

STACK

24

47

Dynamic Memory Allocation
• pre-allocated memory comes from the “stack”
• dynamically allocated memory comes from the

“heap”
• To get memory you allocated (malloc) memory,

and to let it go, you free it (free)
• family of functions in stdlib, including:
void *malloc(size_t size);
void *realloc(void *ptr, size_t size
);

void free(void *);

48

• malloc and realloc return a generic pointer
(void *) and you have to “cast” the return
to the type of pointer you want

• That is if you are allocation a bunch of
characters, you say

• Ptr = (char*) malloc….

25

49

Malloc.c
#include <stdio.h>
#include <stdlib.h>
#define BLKSIZ 10
main() {

FILE *fp;
char *buf, k;
int bufsiz, i;
// open file for reading
if ((fp = fopen("myfile.dat","r")) == NULL) {
perror("error opening myfile.dat");
exit(1);

}
// allocate memory for input buffer
bufsiz = BLKSIZ;
buf = (char *)malloc(sizeof(char)*bufsiz);

50

II
// read contents of file
i = 0;
while ((k = fgetc(fp)) != EOF) {
buf[i++] = k;
if (i == bufsiz) {
bufsiz += BLKSIZ;
buf = (char *)realloc(buf,sizeof(char)*bufsiz);

}
}
if (i >= bufsiz-1) {
bufsiz += BLKSIZ;
buf = (char *)realloc(buf,sizeof(char)*bufsiz);

}
buf[i] = '\0';
// output file contents to the screen
printf("buf=[%s]\n",buf);
// close file
fclose(fp);

} // end main()

26

51

Dynamic memory
• malloc() allocates a block of memory:
void *malloc(size_t size);
• lifetime of the block is until memory is freed, with free():
void free(void *ptr);

• example:
int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

52

Memory leaking
• memory leaks— memory allocated that is never freed:
char *combine(char *s, char *t) {
u = (char *)malloc(strlen(s) + strlen(t) + 1);
if (s != t) {
strcpy(u, s);
strcat(u, t);
return u;
}
else {
return 0;
}
} /* end of combine() */
• u should be freed if return 0; is executed
• but you don’t need to free it if you are still using it!

27

53

Example 2
int main(void) {

char *string1 = (char*)malloc(sizeof(char)*50);
char *string2 = (char*)malloc(sizeof(char)*50);
scanf(“%s”,string2);
string1 = strong2; //MISTAKE THIS IS NOT A COPY

...
free(string2);
free(string1); ///????

return 0
}

54

Memory leak tools

• Purify
• Valgrind
• Insure++
• Memwatch (will use it in lab)
• Memtrace
• Dmalloc

28

55

Dynamic memory
• note: malloc() does not initialize data, that is you have garbage there with

whatever was there in memory
• you can allocate and initialize with “calloc”:
void *calloc(size_t nmemb, size_t size);

– calloc allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero.

• you can also change size of allocated memory blocks with “realloc”:
void *realloc(void *ptr, size_t size);

– realloc changes the size of the memory block pointed to by ptr to size bytes. The
contents will be unchanged to the minimum of the old and new sizes; newly
allocated memory will be uninitialized.

• these are all functions in stdlib.h
• for more information: man malloc

56

Dynamic arrays
• “arrays” are defined by specifying an element type and number of elements

– statically:
int vec[100];
char str[30];
float m[10][10];

– dynamically:
int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

• for an array containing N elements, indeces are 0..N-1
• stored as a linear arrangement of elements
• often similar to pointers

29

57

Dynamic arrays II
• C does not remember how large arrays are (i.e., no length attribute,

unlike Java)
• given:
int x[10];
x[10] = 5; /* error! */
• ERROR! because you have only defined x[0]..x[9] and the memory

location where x[10] is can become something else...

• sizeof x gives the number of bytes in the array
• sizeof x[0] gives the number of bytes in one array element
• You can compute the length of x via:
int length_x = sizeof x / sizeof x[0];

58

Arrays cont.
• when an array is passed as a parameter to a

function:
– The size information is not available inside the

function, since you are only passing in a start memory
location

– array size is typically passed as an additional
parameter

printArray(x, length_x);
– or globally

#define VECSIZE 10
int x[VECSIZE];

30

59

arrays

• array elements are accessed using the
same syntax as in Java: array[index]

• C does not check whether array index
values are sensible (i.e., no bounds
checking)

• e.g., x[-1] or vec[10000] will not generate a
compiler warning!

• if you’re lucky, the program crashes with
Segmentation fault (core dumped)

60

Dynamically allocated arrays
• C references arrays by the address of their first element
• array is equivalent to &array[0]
• you can iterate through arrays using pointers as well as

indexes:

int *v, *last;
int sum = 0;
last = &x[length_x-1];
for (v = x; v <= last; v++)
sum += *v;

31

61

Code
#include <stdio.h>
#define MAX 12
int main(void) {
int x[MAX]; /* declare 12-element array */
int i, sum;
for (i=0; i<MAX; i++) { x[i] = i; }
/* here, what is value of i? of x[i]? */
sum = 0;
for (i=0; i<MAX; i++) { sum += x[i]; }
printf("sum = %d\n",sum);
} /* end of main() */

62

Code 2
#include <stdio.h>
#define MAX 10
int main(void) {
int x[MAX]; /* declare 10-element array */
int i, sum, *p;
p = &x[0];
for (i=0; i<MAX; i++) { *p = i + 1; p++; }
p = &x[0];
sum = 0;
for (i=0; i<MAX; i++) { sum += *p; p++; }
printf("sum = %d\n",sum);
} /* end of main() */

32

63

2 dimensional arrays

• 2-dimensional arrays
• int weekends[52][2];
• you can use indices or pointer math to locate

elements in the array
– weekends[0][1]
– weekends+1

• weekends[2][1] is same as
*(weekends+2*2+1), but NOT the same as
*weekends+2*2+1 (which is an integer)!

64

swap
void swapNot(int a,int b) {
int tmp = a;
a = b;
b = tmp;

} // end swapNot()

void swap(int *a,int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

} // end swap()

33

65

swap
int x, y; // declare two ints
int *px, *py; // declare two pointers to ints
x = 3; // initialize x
y = 5; // initialize y

printf("before: x=%d y=%d\n",x,y);

swapNot(x,y);
printf("after swapNot: x=%d y=%d\n",x,y);

px = &x; // set px to point to x (i.e., x's address)
py = &y; // set py to point to y (i.e., y's address)

printf("the pointers: px=%p py=%p\n",px,py);

swap(px,py);
printf("after swap with pointers: x=%d y=%d px=%p py=%p\n",x,y,px,py);

// you can also do this directly, without px and py:
swap(&x,&y);
printf("after swap without pointers: x=%d y=%d\n",x,y);

66

Pointers

• Make sure you feel comfortable with the
idea of what is happening inside pointer

• Will try to use more examples today to
make specific points

34

67

int main(){
int number = 10;
foo(&number);
return 0;

}

void foo(int *p){
*p = 30;
}

68

Question

• Whats the advantage of passing in by
pointer reference ?

• What is the problem?

• How would we solve it?

35

69

const

• Allows the compiler to know which values
shouldn’t be modified

• Added in to c later

• Example:
const int a = 5;

void foo(const int x) { }

70

const

• Better than #define since error message
will be easier to understand since
preprocessor not involved

• Very useful in functions to either return
const or make sure a pointer doesn’t alter
the original object

36

71

Const pointer to non-const
• This is a pointer which always points to same

location, but the value can be modified

• int * const ptr = &x;

*ptr = ??
can’t say
ptr = & ??

• Example2: array name

72

Const pointer to const data

• Int x = 200;
• const int * const ptr = &x;

37

73

• Some confusion
– int const * X
– const int * X //variable pointer to const
– int * const Y //const pointer to int
– int const * const Z //const point to const

74

Pointers to functions

• C allows you to also pass around a pointer
to a function

• void foo (int , int (*) (int , int));

• int example1(int x, int y) { return x+y; }

• foo(5, example1);

38

75

• void foo(int a, int (*A)(int,int)){

if((*A)(5,10) > 0){

}
else {

}

}

76

Creating your own types

• Equivalent to a class idea in other
programming languages, you can define
your own types in c

struct name {

types
}

39

77

example

struct point {
int x;
int y;
}

• Usage:
struct point a;
a.x = 5;
a.y = 10;

78

Anonymous structs

• Can also create anonymous structs
struct {

int x;
int y;
} a, b;

40

79

Nesting

struct rect {
struct point pt1;
struct point p2;

}

• Use:
struct rect largeScreen;

80

Making space
• Remember in the proceeding examples, simple

types so memory is automatically allocated (in a
sense).

• struct student {
char * name;
int age;

}

struct student a;
a.name = (char*)malloc(sizeof(char)*25));
…

41

81

Use in functions

struct point makePoint(int x, int y)
{

struct point temp;
temp.x = x;
temp.y = y;
return temp;

}

82

Operations

• Copy
• Assignments
• & (addressing)
• Accessing members

• How do we compare 2 structs

42

83

Structs and pointers
• struct point *example
= (struct point *)malloc(sizeof(struct
point));

• (*example).x

what does
*example.x mean?

Shortcut:
example->x

84

typedef
• defining your own types using typedef (for ease

of use)
typedef short int smallNumber;
typedef unsigned char byte;
typedef char String[100];

smallNumber x;
byte b;
String name;

43

85

enum
• define new integer-like types as enumerated types:
enum weather { rain, snow=2, sun=4 };
typedef enum {
Red, Orange, Yellow, Green, Blue, Violet
} Color;

• look like C identifiers (names)
• are listed (enumerated) in definition
• treated like integers

– start with 0 (unless you set value)
– can add, subtract — e.g., color + weather
– cannot print as symbol automatically (you have to write code to

do the translation)

86

enum
• just fancy syntax for an ordered collection of integer

constants:
typedef enum {
Red, Orange, Yellow
} Color;
• is like
#define Red 0
#define Orange 1
#define Yellow 2

• here’s another way to define your own boolean:
typedef enum {False, True} boolean;

44

87

Usage

enum Boolean {False, True};

...
enum Boolean shouldWait = True;
...
if(shouldWait == False) { .. }

88

struct
int main() {
struct {
int x;
char y;
float z;
} rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z
);

} // end of main()

45

89

struct
int main() {
struct record {
int x;
char y;
float z;
};
struct record rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);
} // end of main()

90

int main() {
typedef struct {
int x;
char y;
float z;
} RECORD;

RECORD rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);
} // end of main()

46

91

• note the use of malloc where “sizeof” takes the struct type as its
argument (not the pointer!)

int main() {
typedef struct {
int x;
char y;
float z;
} RECORD;
RECORD *rec = (RECORD *)malloc(sizeof(RECORD));
rec->x = 3;
rec->y = ’a’;
rec->z = 3.1415;
printf("rec = %d %c %f\n",rec->x,rec->y,rec->z);
} // end of main()

92

Important to understand
• overall size of struct is the sum of the elements, plus padding for alignment

(i.e., how many bytes are allocated)
• given previous examples: sizeof(rec) -> 12
• but, it depends on the size and order of content (e.g., ints need to be

aligned on word boundaries, since size of char is 1 and size of int is 4):

struct {

char x;

int y;

char z;

} s1;

/* x y z */

/* |----|----|----| */

/* sizeof s1 -> 12 */

struct {

char x, y;

int z;

} s2;

/* xy z */

/* |----|----| */

/* sizeof s2 -> 8 */

47

93

Reminder
• pointers to structs are common — especially useful with functions (as

arguments to functions or as function type)
• two notations for accessing elements: (*sp).field or sp->field
• (note: *sp.field doesn’t work)
struct xyz {
int x, y, z;
};
struct xyz s;
struct xyz *sp;
...
s.x = 1;
s.y = 2;
s.z = 3;
sp = &s;
(*sp).z = sp->x + sp->y;

94

Arrays of structs
• notations for accessing elements: arr[i].field
struct xyz {
int x, y, z;
};
struct xyz arr[2];
...
arr[0].x = 1;
arr[0].y = 2;
arr[0].z = 3;
arr[1].x = 4;
arr[1].y = 5;
arr[1].z = 6;

48

95

unions
• union
• like struct:
union u_tag {
int ival;
float fval;
char *sval;
} u;
• but only one of ival, fval and sval can be used in

an instance of u (think container)
• overall size is largest of elements

96

Example
#define NAME_LEN 40

struct person {
char name[NAME_LEN+1];
float height;

};

int main(void) {
struct person p;
strcpy(p.name,"suzanne");
p.height = 60;
printf("name = [%s]\n",p.name);
printf("height = %5.2f inches\n",p.height);

} // end of main()

49

97

Files

• so perl makes working with files a 3 line
process

open (FH,”a.txt”);
while(<>){
chomp;
print splice (split / /) 1 1;
}

98

File Handling

• File *log_file;

• any ideas what this look like ?

50

99

• use function fopen to open handle
• pass in arguments to fopen to set type

– r read
– w write
– a append

• need to check if not null

100

if((log_file = fopen(“some.txt”, “w”)) == NULL)
fprint(stderr,”Cannot open %s\n”, “log_file”);

/*****
do your cool stuff here

*****/

fclose(log_file);

51

101

moving characters

• can move characters using putchar(c) and
getchar()

• if no handle supplied
• putchar(c,stdout)
• getchar(stdin)

102

strings

• fgets
• fputs

52

103

Next lab

• work with pointers

• create a small puzzle

• Play games ☺

