CS3157: Advanced
Programming

Lecture #5

June 7

Shlomo Hershkop
shlomo@cs.columbia.edu

Announcements

» Wednesday is pizza day
— bring your appetite

 When you leave me AlIM’s and I’'m away
from my desk, please identify yourself...

* How are the labs coming along ?

» Homework DUE!!!
— lets talk!

OQutline

* Morec
— Preprocessor
— Bitwise operations
— Character handling
— Math/random
— Pointers
— Const
— Typedef
— Union
— Enum
* Reading:
— see website (Deitel chapter 7)
— ké&r ch chapter 4, 5.5-,6

Remember

 unlike high level languages, you are now
getting much more control over the
computer

— but this also gives you much more chances to
mess it up ©

— lots of control on how your code will work

* think of the difference between driving a
car and repairing it

From last time

» the C pre-processor (cpp) is a macro-processor which
— manages a collection of macro definitions
— reads a C program and transforms it

» pre-processor directives start with # at beginning of line
used to:

— include files with C code (typically, “header” files containing
definitions; file names end with .h)

— define new macros (later — not today)
— conditionally compile parts of file (later — not today)

» gcc -E shows output of pre-processor
» can be used independently of compiler

Pre-processor cont.

#define name const-expression
#define name (paraml,param2,...) expression
#undef symbol

» replaces name with constant or expression

* textual substitution

* symbolic names for global constants

* in-line functions (avoid function call overhead)
* type-independent code

#define MAXLEN 255

Example

#define MAXVALUE 100
#define check(X) ((X) < MAXVALUE)

if (check(i)) { ...}

* becomes

if ((i) < 100) {...}

» Caution: don't treat macros like function calls
#define valid(X) ((X) > 0 && (X) < 20)
* s called like:

if (valid(x++)) {...}

» and will become:

valid(x++) -> ((x++) > 0 && (x++) < 20)
e and may not do what you intended...

« conditional compilation

e pre-processor checks value of expression
 if true, outputs code segment 1, otherwise code segment 2
* machine or OS-dependent code

» can be used to comment out chunks of code— bad!
e (but can be helpful for quick and dirty debugging :-)

e example:
#define 0S linux

#if 0S == linux
puts(“Wow you are running Linux!");
#else

puts("why are you running something else???");

#endi

o ifdef

 for boolean flags, easier:
#i1fdef name

code segment 1
#else

code segment 2
#endif

» pre-processor checks if name has been
defined, e.qg.:

#define USEDB
* if SO, use code segment 1, otherwise 2

From last time

We covered basic types

int Xx = 100;
int a[100];

int b[20][34]

Int *c:

10

Function

e Declaration:

— Return-type function-name (parameters if any);

e Definition:

— Return-type function-name (parameters if any){

declarations

statements

}

* how does main fitin ?

11

Command Line Args

int main(Int argc, char *argv|[])

 argc is the argument count
e argv is the argument vector

— array of strings with command-line arguments
* the Int value is the return value

— convention: return value of 0 means success,
— > 0 means there was some kind of error
— can also declare as void (no return value)

12

* Name of executable followed by space-
separated arguments

$ a.out 1 23 "third arg”
» thisis stored like this:

1. a.out

2.1

3. 23

4. “third arg”

e argc =14

13

* If no arguments, simplify:

int main() {

printf("hello world");
exit(0);

+

» Uses exit() instead of return() — almost
the same thing.

14

booleans

e C doesn’'t have booleans

* emulate as int or char, with values 0 (false) and 1 or non-
zero (true)

 allowed by flow control statements:

if(n=0){
printf(something wrong");
}

» assignment returns zero -> falsel
» you can define your own boolean:
#define FALSE O

#define TRUE 1

15

Booleans ||

» This works in general, but beware:

if (n==TRUE) {

printf("everything is a-okay");
+

* if nis greater than zero, it will be non-zero, but
may not be 1; so the above is NOT the

* Same as:
if (n){

printf("something is rotten in the state of denmark™);

}

16

Logical operators

* in C logical operators are the same as in Java
* meaning C operator

* AND &&

* OR |

* NOT !

* since there are no boolean types in C, these are mainly
used to connect clauses in if and while statements

* remember that
— non-zero == true
— zero == false

17

Bitwise operators

* there are also bitwise operators in C, in which
each bit is an operand:

« Meaning c operator

* bitwise AND &

» bitwise or |

* Example:

int a = 8; /* this is 1000 in base 2 */
in = 15; /* this is 1111 in base 2 */

tb
e a&b= 100008 alb= 1000@)
1111(15) 1111(15)
1000(=8) 1111(=15)

18

Question

what is the output of the following code
fragment?

inta=12,b=7;

printf("a && b = %d\n", a && b);
printf("a || b = %d\n", a || b);
printf("a & b = %d\n", a & b);
printf("a | b = %d\n", a | b);

19

Implicit convertions

implicit:
int a = 1;
char b = 97; // converts int to char
int s = a + b; // adds int and char, converts to int

promotion: char -> short -> int -> float -> double
if one operand is double, the other is made double
+ else if either is float, the other is made float

int a = 3;

float x = 97.6;

double y = 145.987;

y = X *y; // x becomes double; result is double
X = X + a; // a becomes float; result is float

real (float or double) to int truncates

20

10

explicit

e explicit:
e type casting
int a = 3;

float x = 97.6;

double y = 145.987;

y = (double)x * y;

X = x + (Float)a;

e —using functions (in math library...)

1. floor() —rounds to largest integer not greater than x

2. ceil() - round to smallest integer not smaller than x

3. round() — rounds up from halfway integer values

21

Example

#include <stdio.h>

#include <math.h>

int main() {

int j, 1, X;

double ¥ = 12.00;

for (j=0; j<10; j++) {

i =F;

X (int)f;

printf("f=%.2F i=%d x=%d
Floor(F)=%.2F ceil(F)=%.2F round(f)=%.2F\n"",
T, i,x,Floor(f),ceil(f),round(f));
f += 0.10;

} // end for j

} // end main(Q

22

11

Output

f=12.00 i=12 x=12 floor(f)=12.00 ceil(f)=12.00 round(f)=12.00
f=12.10 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
f=12.20 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
f=12.30 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
f=12.40 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
f=12.50 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=12.00
f=12.60 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=13.00
f=12.70 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=13.00
f=12.80 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=13.00
f=12.90 i=12 x=12 floor(f)=12.00 ceil(f)=13.00 round(f)=13.00

23

Be aware

» almost any conversion does something— but not
necessarily what you intended!!

o —example:

int x = 100000;

short s = Xx;

printf("%d %d\n*, X, s);

e —outputis:
100000 -31072
* WHY?

24

12

math library

Functions ceil() and floor() come from the math library

definitions:

— ceil(x): returns the smallest integer not less than x, as a double

— floor(x): returns the largest integer not greater than x, as a
double

in order to use these functions, you need to do two

things:

. include the prototypes (i.e., function definitions) in the

source code:

#include <math.h>

. include the library (i.e., functions’ object code) at link

time:

unix$ gcc abced.c -Im

exercise: can you write a program that rounds a floating

int?
point? ”e

math

some other functions from the math library (these are function
prototypes):
— double sqgrt(double x);
double pow(double x, double y);
double exp(double x);
double log(double x);
double sin(double x);
double cos(double x);

exercise: write a program that calls each of these functions

questions:
— can you make sense of /usr/include/math.h?
— where are the definitions of the above functions?
— what are other math library functions?

26

13

Random numbers

¢ with computers, nothing is random (even though it may seem so at times...)

there are two steps to using random numbers in C:
1. seeding the random number generator
2. generating random number(s)

« standard library function:
#include <stdlib.h>

¢ seed function:
srand(time (NULL));

¢ random number function returns a number between 0 and RAND_MAX
(which is 2732)
int i = rand(Q);

27

#include <stdio.h>
#include <stdlib._h>
#include <time.h>

int main(void) {
int r;

srand(time (NULL));
r = rand() % 100;

printf(“pick a number between 0 and
100...\n");

printf("was %d your number?, r);
1

28

14

Character handling

e character handling library

#include <ctype.h>

 digit recognition functions (bases 10 and 16)
« alphanumeric character recognition

e case recognition/conversion

» character type recognition

» these are all of the form:

int isdigit(int c);

« where the argument c is declared as an int, but it is interpreted as a
char

e soifc="0 (i.e., the ASCIl value '0’, index=48), then the function
returns true (non-zero int)

but if c = 0 (i.e., the ASCII value NULL, index=0), then the function
returns false (0)

29

digits
« digit recognition functions (bases 10 and 16)
int isdigit(int c);
* returns true (i.e., non-zero int) if ¢ is a decimal

digit (i.e., in the range ’'0’..’9");
returns O otherwise

int isxdigit(int c);

 returns true (i.e., non-zero int) if c is a
hexadecimal digit (i.e., in the range
'0..’9"A'..’F); returns O otherwise

30

15

Alpha numeric

 alphanumeric character recognition
int 1salpha(int c);

 returns true (i.e., non-zero int) if c is a letter (i.e.,
in the range 'A’..’Z’’a’..’z’); returns O otherwise

int isalnum(int c);

* returns true (i.e., non-zero int) if c is an
alphanumeric character (i.e., in the range
'ALZ)al.’z’)0.9); returns O otherwise

31

Case

case recognition
int islower(int c);

returns true (i.e., non-zero int) if ¢ is a lowercase letter (i.e., in the range 'a’..’z’);
returns O otherwise

int isupper(int c);
returns true (i.e., non-zero int) if ¢ is an uppercase letter (i.e., in the range 'A’..'Z’),
returns 0 otherwise

case conversion
int tolower(int c);

returns the value of ¢ converted to a lowercase letter (does nothing if ¢ is not a letter
or if ¢ is already lowercase)

int toupper(int c);

« returns the value of ¢ converted to an uppercase letter (does nothing if c is not a letter
or if ¢ is already uppercase)

32

16

types

» character type recognition

int isspace(int c);

e returns true (i.e., non-zero int) if ¢ is a space; returns 0 otherwise

int iscntri(int c);

* returns true (i.e., non-zero int) if ¢ is a control character; returns 0
otherwise

int ispunct(int c);

* returns true (i.e., non-zero int) if ¢ is a punctuation mark; returns 0
otherwise

int isprint(int c);

e returns true (i.e., non-zero int) if c is a printable character; returns 0
otherwise

int isgraph(int c);

» returns true (i.e., non-zero int) if ¢ is a graphics character; returns 0
otherwise

33

Header files

.h files usually used to define methods or
centralize defintions

public int calculateSomething(int []);

Can either name the variables or not
int[] vs int ar{]
In .c file use; #include “something.h”

34

17

compilation

« Remember to make sure you have all your
files when you split them between .c and
.h

* You include the .c files for compilation and
the compiler will find the .h files.

» Object files unchanged.

35

Outline
* Arrays
» Pointers
* Memory allocation
 functions

 function arguments
» arrays and pointers as function arguments

* Reading
— Chapter 5,6-6.3

36

18

Arrays again

» Arrays and pointers are strongly related in C

int a[10];

int *pa;

» (remember that &a[0] is the address of the first element in a, that is
the beginning of the array

pa = &a[0];

pa = a;

« pointer arithmetic is meaningful with arrays:

» ifwedo

Pntr = &a[0]

» then

*(Pntr +1) =

e Is whatever is at a[1]

37

* There is a difference between
— *(Pntr) + 1
— and (*Pntr +1)

* Note that an array hame is a pointer, so we can also do
*(a+l) andin general: *(a+i)==alijand soarea +i ==
&ali]

* The difference:

— an array name is a constant, and a pointer is not
— so we can do: Pntr = a and Pntr ++

* But we can NOT do: a = Pntr or a++ pr or Pntr = &a
» That is you can not reassign it as a pointer

38

19

Note

 When an array name is passed to a
function, what is passed is the beginning
of the array, that is passed by reference

It is important, since this is an address,
any changes to that memory location will
stick when you come back from the
function

39

From last time

a pointer contains the address of an object (but
not in the OOP sense)

allows one to access object “indirectly”

& = unary operator that gives address of its
argument

* = unary operator that fetches contents of its
argument (i.e., its argument is an address)

note that & and * bind more tightly than
arithmetic operators

you can print the value of a pointer with the
formatting character %p

40

20

code

#include <stdio.h>
main() {
intx,y; [/l declare two ints
int *px; // declare a pointer to an int
X=3; Il initialize x
pX = &X;
y ="pX;
printf("x=%d px=%p y=%d\n",x,px.,y);
}

41

Memory allocation

* One of the main advantage to c/cpp is that
you can manipulate memory yourself (and
are responsible to clean up after yourself.

 When you don'titis called memory
leaking...more on this later

42

21

Array vs memory allocation

» Arrays are great when you have a rough
idea of how many items you will be dealing
with
— 10 numbers
— 30 students
— Less than 256 characters of input

43

Map of memory

Think of memory as a box

Main is placed on the bottom and any
variable on top of that

Any function call gets placed on top of that
This part of memory grows upward
It is called the stack

Your program is over when the stack is
empty

a4

22

heap

« The heap is the other side of memory

» Global variables, and allocated memory is
created on the heap

e |t grows downwards

45

HEAP

STACK

46

23

Dynamic Memory Allocation

» pre-allocated memory comes from the “stack”

» dynamically allocated memory comes from the
Hheapﬂ

* To get memory you allocated (malloc) memory,
and to let it go, you free it (free)

 family of functions in stdlib, including:

void *malloc(size t size);

void *realloc(void *ptr, size_t size
)

void free(void *);

47

» malloc and realloc return a generic pointer
(void *) and you have to “cast” the return
to the type of pointer you want

» That is if you are allocation a bunch of
characters, you say

e Ptr = (char*) malloc....

48

24

Malloc.c

#include <stdio.h>
#include <stdlib.h>
#define BLKSIZ 10
main() {
FILE *fp;
char *buf, k;
int bufsiz, i;
// open FTile for reading
if ((fp = fopen("myFfile.dat","r")) == NULL) {
perror("error opening myfile._dat");
exit(1);
by
// allocate memory for input buffer
bufsiz = BLKSI1Z;
buf = (char *)malloc(sizeof(char)*bufsiz);

49

// read contents of file
i =0;
while ((k = fgetc(fp)) = EOF) {

buf[i++] k;
if (1 ==bufsiz) {
bufsiz += BLKSIZ;
buf = (char *)realloc(buf,sizeof(char)*bufsiz);
}
}
if (1 >= bufsiz-1) {
bufsiz += BLKSIZ;
buf = (char *)realloc(buf,sizeof(char)*bufsiz);

}
buf[i] = "\0~;
// output file contents to the screen
printf("buf=[%s]\n",buf);
// close file
fclose(fp);
} 7/ end mainQ

50

25

Dynamic memory

» malloc() allocates a block of memory:
void *malloc(size_t size);

* lifetime of the block is until memory is freed, with free():

void free(void *ptr);

* example:

int *dynvec, num_elements;

printf("how many elements do you want to enter? ');
scanf("%d", &num_elements);

dynvec = (int *)malloc(sizeof(int) * num_elements);

51

Memory leaking

* memory leaks— memory allocated that is never freed:
char *combine(char *s, char *t) {
u = (char *)malloc(strlen(s) + strlen(t) + 1);

iT (sI=t) {
strcpy(u, s);
strcat(u, t);
return u;

}

else {

return O;

}

} /7* end of combine() */
» u should be freed if return 0O; is executed
» but you don't need to free it if you are still using it!

52

26

Example 2

int main(void) {

char *stringl = (char*)malloc(sizeof(char)*50);
char *string2 = (char*)malloc(sizeof(char)*50);
scanf(“%s”,string2);

stringl = strong2; //MISTAKE THIS IS NOT A COPY

free(string2);
free(stringl); ///??7?7?

return O

}

53

Memory leak tools

Purify

Valgrind

Insure++

Memwatch (will use it in lab)
Memtrace

Dmalloc

54

27

Dynamic memory

« note: malloc() does not initialize data, that is you have garbage there with
whatever was there in memory

¢ you can allocate and initialize with “calloc”:
void *calloc(size_t nmemb, size_t size);

— calloc allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero.

« you can also change size of allocated memory blocks with “realloc”:
void *realloc(void *ptr, size_t size);

— realloc changes the size of the memory block pointed to by ptr to size bytes. The
contents will be unchanged to the minimum of the old and new sizes; newly
allocated memory will be uninitialized.

« these are all functions in stdlib.h
¢ for more information: man malloc

55

Dynamic arrays

« ‘“arrays” are defined by specifying an element type and number of elements
— statically:

int vec[100];

char str[30];

float m[10][10];
— dynamically:

int *dynvec, num_elements;

printf("how many elements do you want to enter? ");

scanf("%d", &num_elements);

dynvec = (int *)malloc(sizeof(int) * num_elements);

« for an array containing N elements, indeces are 0..N-1

« stored as a linear arrangement of elements
« often similar to pointers

56

28

Dynamic arrays Il

+ C does not remember how large arrays are (i.e., no length attribute,
unlike Java)

e given:

int x[10];

x[10] = 5; /* error! */

 ERROR! because you have only defined x[0]..x[9] and the memory
location where x[10] is can become something else...

» sizeof x gives the number of bytes in the array
» sizeof x[0] gives the number of bytes in one array element
* You can compute the length of x via:

int length x = sizeof x / sizeof x[0];

57

Arrays cont.

* when an array is passed as a parameter to a
function:

— The size information is not available inside the
function, since you are only passing in a start memory

location
— array size is typically passed as an additional
parameter
printArray(x, length x);
— or globally

#define VECSIZE 10
int x[VECSIZE];

58

29

arrays

array elements are accessed using the
same syntax as in Java: array[index]

C does not check whether array index
values are sensible (i.e., no bounds
checking)

e.g., X[-1] or vec[10000] will not generate a
compiler warning!

if you're lucky, the program crashes with
Segmentation fault (core dumped)

59

Dynamically allocated arrays

C references arrays by the address of their first element
array is equivalent to &array|[0]

you can iterate through arrays using pointers as well as
indexes:

int *v, *last;
int sum = O;

last = &x[length_x-1];

for (v = X; v <= last; v++)
sum += *v;

60

30

Code

#include <stdio.h>

#define MAX 12

int main(void) {

int xX[MAX]; /* declare 12-element array */
int 1, sum;

for (1=0; i<MAX; i++) { x[i] = i; }

/* here, what is value of 1? of x[1]? */
sum = O;

for (1=0; iI<MAX; i++) { sum += x[i]; }
printf(“sum = %d\n",sum);

} /* end of main() */

61

Code 2

#include <stdio.h>

#define MAX 10

int main(void) {

int X[MAX]; /* declare 10-element array */
int i, sum, *p;

p = &x[0];

for (1=0; 1I<MAX; 1++) { *p =1 + 1; p++; }
p = &x[0];

sum = O;

for (1=0; I<MAX; i++) { sum += *p; p++; }
printf(“sum = %d\n",sum);

} /* end of main() */

62

31

2 dimensional arrays

o 2-dimensional arrays

* int weekends[52][2];

* you can use indices or pointer math to locate
elements in the array

— weekends|0][1]
— weekends+1

= weekends[2][1] is same as
*(weekends+2*2+1), but NOT the same as
*weekends+2*2+1 (which is an integer)!

63

swap

void swapNot(int a,int b) {
int tmp = a;
a = b;
b = tmp;

} 7/ end swapNot()

void swap(int *a,int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

} 7/ end swap(Q)

64

32

swap

int x, y; // declare two ints

int *px, *py; // declare two pointers to ints
x = 3; // initialize x

y =5; // initialize y

printf("before: x=%d y=%d\n",X,y);

swapNot(X,y);
printf("after swapNot: x=%d y=%d\n",x,y);

&x; // set px to point to x (i.e., x"s address)
&y; // set py to point to y (i.e., y"s address)

px
Py

printf("the pointers: px=%p py=%p\n",pX,py);

swap(px,py);
printf("after swap with pointers: x=%d y=%d px=%p py=%p\n‘‘,X,Y,px,py);

// you can also do this directly, without px and py:
swap(&x,&y);
printf("after swap without pointers: x=%d y=%d\n",x,y);

Pointers
* Make sure you feel comfortable with the
idea of what is happening inside pointer
» Will try to use more examples today to
make specific points

33

int main(){

int number = 10;
foo(&number) ;
return O;

}

void foo(int *p){
*p = 30;
+

67

Question

* Whats the advantage of passing in by
pointer reference ?

* What is the problem?

e How would we solve it?

68

34

const

 Allows the compiler to know which values
shouldn’t be modified

» Added in to c later

* Example:
const Int a = 5;

void foo(const int x) { }

69

const

» Better than #define since error message
will be easier to understand since
preprocessor not involved

» Very useful in functions to either return
const or make sure a pointer doesn't alter
the original object

70

35

Const pointer to non-const

This is a pointer which always points to same
location, but the value can be modified

int * const ptr = &x;

*ptr = ??
can’t say
ptr = & ??

Example2: array name

71

Const pointer to const data

Int x = 200;
const int * const ptr = &x;

72

36

 Some confusion

—int const * X

— const int * X //variable pointer to const
—int * const Y //const pointer to int

—int const * const Z //const point to const

73

Pointers to functions

C allows you to also pass around a pointer

to a function
void foo (int , int (*) (int , Iint));

int examplel(int x, int y) { return x+y; }

foo(5, examplel);

74

37

e void foo(int a, int (FA)(int,int)){
1IT((*A)(5,10) > 0){
by

else {

}
}

75

Creating your own types
» Equivalent to a class idea in other

programming languages, you can define
your own types in ¢

struct name {

types
+

76

38

example

struct point {
int x;
int y;
+
» Usage:
struct point a;
a.Xx 5;
a.y 10;

77

Anonymous structs

« Can also create anonymous structs
struct {
Iint x;
int y;
} a, b;

78

39

Nesting

struct rect {
struct point ptl;
struct point p2;

}

e Use:
struct rect largeScreen;

79

Making space

» Remember in the proceeding examples, simple
types so memory is automatically allocated (in a
sense).

e struct student {

char * name;
int age;

}

struct student a;
a.name = (char*)malloc(sizeof(char)*25));

80

40

Use in functions

struct point makePoint(int x, int y)

{

struct point temp;
temp.Xx = X;

temp.y =y;
return temp;

81

Operations

Copy

Assignments

& (addressing)
Accessing members

How do we compare 2 structs

82

41

Structs and pointers

e struct point *example
= (struct point *)malloc(sizeof(struct

point));
e (example).x

what does
*example.x mean?

Shortcut:
example->x

83

typedef

» defining your own types using typedef (for ease
of use)

typedef short int smallNumber;
typedef unsigned char byte;
typedef char String[100];

smal INumber x;
byte b;

String name;

84

42

enum

» define new integer-like types as enumerated types:
enum weather { rain, snow=2, sun=4 };
typedef enum {

Red, Orange, Yellow, Green, Blue, Violet
} Color;

* look like C identifiers (names)
 are listed (enumerated) in definition

» treated like integers
— start with 0 (unless you set value)
— can add, subtract — e.g., color + weather

— cannot print as symbol automatically (you have to write code to

do the translation)

85

enum

 just fancy syntax for an ordered collection of integer
constants:

typedef enum {

Red, Orange, Yellow
} Color;

* islike

#define Red O
#define Orange 1
#define Yellow 2

» here’s another way to define your own boolean:
typedef enum {False, True} boolean;

86

43

Usage

enum Boolean {False, True};

enum Boolean shouldWait = True;

if(shouldwait == False) { .. }

87

struct

int main() {
struct {

int x;

char y;
float z;

} rec;
rec.x ;
rec.y ‘a’;

rec.z = 3.1415;

printf("rec = %d %c %f\n",rec.x,rec.y,rec.z

Y 77 end of mainQ)

88

44

struct

int main() {
struct record {
int x;

char y;

float z;

};

struct record rec;
rec.x 3;

rec.y ’a’;

rec.z 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);
} 7/ end of main(Q)

89

int main() {
typedef struct {

int x;

char y;

float z;

} RECORD;
RECORD rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;

printf(“"rec = %d %c %f\n",rec.x,rec.y,rec.z);
} /7 end of main(Q)

90

45

» note the use of malloc where “sizeof” takes the struct type as its

argument (not the pointer!)
int main() {
typedef struct {
int x;
char y;
float z;
} RECORD;

RECORD *rec = (RECORD *)malloc(sizeof(RECORD));

rec->x = 3;
rec->y ’a’;
rec->z 3.1415;

printf("rec = %d %c %f\n'',rec->x,rec->y,rec->z);

} 7/ end of main(Q)

91

Important to understand

« overall size of struct is the sum of the elements, plus padding for alignment
(i.e., how many bytes are allocated)

e given previous examples: sizeof(rec) -> 12

* but, it depends on the size and order of content (e.g., ints need to be
aligned on word boundaries, since size of char is 1 and size of int is 4):

struct {

char x;

inty;

char z;

}sl;

xyz

e e e e)

/* sizeof s1 -> 12 */

struct {
char x, y;
int z;
}s2;

/* sizeof s2 -> 8 */
92

46

Reminder

* pointers to structs are common — especially useful with functions (as
arguments to functions or as function type)

* two notations for accessing elements: (*sp).field or sp->field
¢ (note: *sp.field doesn’t work)

struct xyz {

int X, y, z;

}:

struct xyz s;

struct xyz *sp;

s.x =1
s.y =2
s.z =3
sp = &s

(*sp).z = sp->x + sp->y;

93

Arrays of structs

» notations for accessing elements: arrfi].field
struct xyz {

int x, y, z;

}:

struct xyz arr[2];
arr[0].x = 1;
arr[0].y = 2;
arr[0].z = 3;
arr[1].x = 4;
arr[1].y = 5;
arr[l1].z = 6;

94

47

unions

e union

 like struct:

union u_tag {

int ival;

float fval;

char *sval;

} u;

» but only one of ival, fval and sval can be used in
an instance of u (think container)

» overall size is largest of elements

95

Example

#define NAME_LEN 40

struct person {
char name[NAME_LEN+1];
float height;

};

int main(void) {
struct person p;
strcpy(p-name,’'suzanne'™);
p-height = 60;
printf("name
printf("height
} /7 end of main(Q)

[%s]\n",p-name);
%5.2F inches\n",p.height);

96

48

Files

» so perl makes working with files a 3 line
process

open (FH,”a.txt”);

while(<>){

chomp;

print splice (split /7 /7) 1 1;
+

97

File Handling

e File *log file;

« any ideas what this look like ?

98

49

« use function fopen to open handle
« pass in arguments to fopen to set type

—r read
- W write
—a append

* need to check if not null

99

iT((log_file = fopen(“some.txt”, “w”)) == NULL)
fprint(stderr,”Cannot open %s\n”, “log_file”);

/*****

do your cool stuff here

*****/

fclose(log _file);

100

50

moving characters

can move characters using putchar(c) and

getchar()

if no handle supplied
putchar(c,stdout)
getchar(stdin)

101

» fgets
 fputs

strings

102

51

Next lab

» work with pointers

» create a small puzzle

e Play games ©

103

52

