
1

1

CS3157: Advanced
Programming

Lecture #4
June 5

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Announcements
• Will move makeup class from June 9 to June 23,

will allow us to do any catch up necessary to
wrap up C/CPP track

• Will allow more hands on during the class time
• Probably will meet 3ish

• If you are having issues with CGI, please email
or see me asap

• How comfortable are you with regular
expressions?

2

3

Announcements

• Welcome to the next phase of the course
(cue dramatic music) later today

• C

• not B or A

4

Announcements

• HW1 is going to be due soon

• Office hours + email + IM

• Reading: please wrap up the perl reading
and start on C (make sure you have a
book (see class page for reading list)

3

5

Debugging process
• This is a general programming idea:

• We have some code instructions, would like to
examine them as they run:

1. Output test cases for each line (hope it doesn’t
crash)

2. Run it within another program allowing us to
fine tune control of running process and
interaction with the running environment

6

Running perl debugger

• Can use a graphical based debugger
– Demo : Eclipse debug process!

• Should learn to use the text based
one…never know when it can come in
usuafull (actually it will, once we start c…

• Perl –d nameofscript.pl
• Perl –d –e 0

4

7

What you see

• Current scope (main::)
• What line it will execute next
• No need for comma, ‘enter’ key is a signal

• Can do many things
– Evaluate expressions
– Check variables
– Step through code

8

Common commands
• h

– Get help
• x variable [, var2, var3..]

– Examine a variable (or set)
• p

– To print something
• V ???

– Examine all variables in scope/package ?? (example main)
• s

– Step through next instruction (including sub)
• n

– Jump over subs

5

9

Today

• Lets wrap up perl
• Some advanced stuff
• Will intro and begin C

10

Advanced topics

• Multi threading
– Fork processes

• this is not an eating utensil
– Process space

• not parking space

• Communication between programs
– Pipes
– Sockets

6

11

Testing Environment

• One word on testing in the real world:
– need as much as you can get!

• Large projects
• Bugs cost time and money
• Bugs hurt morale
• Human are programmers…humans make

mistakes
• Formula for this actually

12

Automated testing

• Humans hate testing…
• Fast verification that new feature has not

broken code
• Verify all code on a regular basis
• No grumble if test to rerun test ☺

7

13

packages

• There are packages out there
(Test::Simple and Test::Harness) to
automatically run tests

• Verify what happens on good/bad input
• Verify variables/method behavior
• Usually .t files have tests

14

Advanced Random Stuff

• $| =1
– flushes the output to make sure you see what

is being printed right away

• Can choose your own delimiters when
matching

• m#shlomo#
• s!cheese!milk!
• s{something}(else)

8

15

Slicing

• similar to ranges, can fetch set of values
from hash by preceding hash variable
with @ sign

• %phonebook;
• #do bunch of reads/inserts

• @numbers = @phonebook{$n1, $n2, $n3};

• @phonebook{$n1, $n2} = (718,516);

16

What is this exactly?
$animals = [

'dog', 'cat',
'duck', 'cow',
'pig', 'lizard'

];

$sounds = {
dog => 'bark',
cat => 'meow',
duck => 'quack'

};

@domestic = @{$sounds}{@{$animals}[0,1]};

9

17

Pragma
• Like most other languages, perl allows to drop hints to

the compiler which is interpreting our code

• use warnings;
• use strict;

• Can also be done lexically
• and can fine tune control of a specific pragma

18

Example
#beginning of code
use warnings;

#bunch of stuff
{
no warnings;
#bunch of other stuff
}
use warnings;
#bunch of other other stuff

10

19

use strict ‘vars’

• Normally Perl allows you to create
variables on the fly

• Any idea of their scope ?

• One of 3 strict modes

20

Something Interesting:

• Can have a perl program with
$name
@name
%name

• All in the same scope
• Perl will never mix them up (that is our

job)

11

21

• How does he do it ?

22

Symbol Table

• This is a data structure which maps variables to
information needed by compiler to handle it

• Perl maps variables names to Glob type
• Glob type matches to each variable type
• Each namespace has own symbol table
• Will come back to this later

12

23

Short Example
sub dispSymbols {

my($hashRef) = shift;
my(%symbols);
my(@symbols);
%symbols = %{$hashRef};
@symbols = sort(keys(%symbols));
foreach (@symbols) {

printf("%-10.10s| %s\n", $_, $symbols{$_});
}

}

dispSymbols(\%Foo::);

package Foo;
$bar = 2;
sub baz {

$bar++;
}

24

perldoc

• perldoc –f function
• perldoc –q faq

• b = move up page
• space = move down
• q = quit

13

25

Perl Skills

• We’ve covered a lot of perl skills since
beginning the course

• What you should have

• What we haven’t covered

• Where to take perl from here

26

Shift gears

• Will now start C component of the course

• This is not C#
– any ideas why it is called C#

14

27

C Phase

• Intro to C
– Background
– Compiling
– Basic data structures
– Basic I/O
– Types conversion
– Loops
– Branching

28

Roadmap

• How this all fits together
– We covered perl (duct-tape programming)
– CGI programming USING perl

– Will now move to c, which is a more low level
programming language

– Will learn to work with c, and then CGI+c
– Then CGI+perl+c etc
– Get to use the best of any programming language in a

project

15

29

Why Learn C ?

• C provides stronger control of low-level
mechanisms such as memory allocation,
specific memory locations

• C performance is usually better than Java
and usually more predictable (very task
dependant)

30

Why Learn c continued
• Java hides many details needed for writing

code, but in C you need to be careful because:
– memory management responsibility left to you
– explicit initialization and error detection left to you
– generally, more lines of (your) code for the same

functionality
– more room for you to make mistakes

• Most older code is written in C (if you are lucky)
might need there skills if you will be hired to
upgrade or interface with in place tech

16

31

Background

C
– Dennis Ritchie in late 1960s and early

1970s
– Systems programming language
– Goal: make OS portable across hardware

platforms
– Not necessarily for real applications—

could be written in Fortran or PL/I

32

Background II
C++
– Bjarne Stroustrup (Bell Labs), 1980s
– object-oriented features

Java
– James Gosling in 1990s, originally for embedded

systems
– object-oriented, like C++
– ideas and some syntax from C

17

33

Background III
• C is early-70s, procedural language

• C advantages:
– direct access to OS primitives (system calls)
– more control over memory
– fewer library issues— just execute

• C disadvantages:
– language is portable, but APIs are not
– no easy graphics interface
– more control over memory (i.e., memory leaks)
– pre-processor can lead to obscure errors

34

C vs Java
• Java program

– collection of classes
– class containing main method is starting class
– running java StartClass invokes StartClass.main method
– JVM loads other classes as required

• C program
– collection of functions
– one function – main() – is starting function
– running executable (default name a.out) starts main function
– typically, single program with all user code linked in— but can be

dynamic libraries (.dll, .so)

18

35

C vs Java …Running
• Java programs are compiled and interpreted:

– javac converts foo.java into foo.class
– class file is not machine-specific— it is byte code
– byte code is then interpreted by JVM
– and each JVM is machine-specific

• C programs are compiled into object code and then linked into
executables

(to allow for multiple object files and libraries to be compiled together
into one program):
– gcc compiles foo.c into foo.o and then links foo.o into a.out
– you can skip writing foo.o if there is only one object file used to create

your executable
– a.out is executed by OS and hardware
– the C compiler is machine-specific, creating code that executes on

specific OS/hardware

36

Outline
• Working with C

– Compiling
– Basic data structures
– Basic I/O
– Types conversion
– Loops
– Branching
– compiling
– Control flow
– Arrays
– Pointers
– strings
– string library
– string tokenizing
– Memory allocation intro

• Reading
– K & R skim 1-3.
– Read: K & R 4.1-4.3, 7.1-7.5)
– Deitel book: online posted!

19

37

Code Example
• Java

public class hello {
public static void main(String[] args) {

System.out.println("hello world! ");
}

}

• C

#include <stdio.h>
int main() {
printf("hello world!");
return 0;
}

38

• #include <stdio.h> to include header file stdio.h
• # lines processed by pre-processor

• No semicolon at end of pre-processor lines
• Lower-case letters only— C is case-sensitive

• int main() { ... } is the only code executed

• printf(" /* message you want printed */ ");

• \n = newline, \t = tab

• \ (escape character) in front of other special characters

20

39

Brief Overview
• For the c section of the course, here are some

tips
1. Write your course code
2. Try to compile
3. Debug compile bugs, goto step 1
4. Try step 2 again
5. Run debugger to catch run time bugs
6. Run memory profiler to catch memory bugs
7. Have running product
8. Add one last cool feature and jump to step 3 ☺

40

How to make your c code run
• gcc is the C compiler we’ll use in this class
• it’s a free compiler from Gnu (i.e., Gnu C Compiler)
• gcc translates C program into executable for some target

machine platform
• default file name a.out
• behavior of gcc is controlled by command-line switches
• Will create files to help in compiling out programs
$ gcc hello.c
$. a.out
hello world!

21

41

Compiling your program
two-stage compilation
1. pre-process and compile: gcc -c hello.c
2. link: gcc -o hello hello.o

linking several modules:
>gcc -c a.c

== a.o
>gcc -c b.c

== b.o
>gcc -o hello a.o b.o

== hello

using a library, for example the “math” library (libm):
>gcc -o calc calc.c -lm

42

C control flow
• blocks are enclosed in curly brackets
• functions are blocks
• main() is a function
• blocks have two parts:

– variable declaration (“data segment”)
– code segment

• in C, variables have to be declared before they
are used

• initializations can occur at the end of the
declaration section, but before the code section

22

43

Break down of running program

• A program is a collection of functions

• The function named main is launched first

• when main ends, your program is done
– or can crash the system earlier ☺

44

First c program
/* First c program */

int main(void){

printf("Hello Everyone\n”);

return 0;
}

23

45

compile

• gcc –o test simple.c

• ./test

46

Steps to running program

• Write code
– Platform independent (for the most part)

• Preprocess the code
– Understand and reinterpret parts

• Compile the code generate object files
– Turn it into machine code, use optimizers

• Link object files to executable
• Load executable to running code

24

47

Your Own Environment

• Windows:
– can use cygwin (free) with gcc (free)
– gcc 3.4.4.1

• Mac
– get gcc

• Unix:
– cunix has it already
– gcc 4.1.1

48

Split personalities

• In c and cpp normal to divide definition of
code (header files .h) and working code (.c
files)

• So will have function declaration
• int foo();

• And function definitions
• int foo(){. }

25

49

A macro

• A macro is a section of code, which has
been given a name

• Can do a lot with macros

• When you use the name, the preprocessor
will replace it with the code contents

• Compiler only sees changed code

50

c pre-processor
• the C pre-processor (cpp) is a macro-processor which

– manages a collection of macro definitions
– reads a C program and transforms it for the compiler
– pre-processor directives start with # at beginning of line

• used to:
– include files with C code (typically, “header” files containing

definitions; file names end with .h)
– define new macros
– conditionally compile parts of file (later – not today)

• gcc -E shows output of pre-processor
• Can be used independently of compiler

26

51

Example
• #define BUFFER_SIZE 1024

• Convention to use upper case
• Will be replaced exactly with the stuff after the

name

• int x = BUFFER_SIZE;

• Why would this be useful ?

52

pre-processor II
• file inclusion
#include "filename.h"
#include <filename>
• inserts contents of filename into file to be compiled
• "filename.h" relative to current directory
• <filename> relative to /usr/include or in default path (specified by -I

compiler directive); note that file is named verb+filename.h+

• import function prototypes (in contrast with Java import) examples:
#include <stdio.h>
#include "mydefs.h"
#include "/home/shlomo/programs/defs.h"

27

53

Comments
/* any text until this */

• convention for longer comments:
/*
* AverageGrade()
* Given an array of grades, compute the average.
*/

• Don’t get carried away with comment boxed
• **** boxes - hard to edit, usually look ragged.

54

Where to begin?

• Lets talk about what are the primitive data
types:

28

55

Data Types
• Very important when

trying to resource
memory/cpu

• float has 6 bits precision
• double has 15 bits

precision
• Range can change

depending on machine
type, generally int is
native to the machine
type 64double

32float

32long

32int

16short

8char

BitsType

56

Types II

• unsigned char
• unsigned short
• unsigned int
• unsigned long

• Byte size is the same, but can now have
greater range

• Can look at /usr/include/limits.h

29

57

Use in functions

• Variables must be declared in the
beginning of the function to be used

• Common mistake: forgetting to declare at
top of function

58

Intro arrays
• An array is a group of memory locations with the

same name and type
• To get to a particular element in the array we

need
– data type
– name
– Length or position

• Array length can be determined:
– statically— at compile time (when we code)

• e.g., char str1[10];
– dynamically— at run time (more on this later)

• e.g., char *str2;

30

59

• Defining a variable is called “allocating memory”
to store that variable

• Defining an array means allocating memory for a
group of bytes,

• Individual array elements are indexed
– starting with 0
– ending with length -1

• Indices follow array name, enclosed in square
brackets ([])
e.g., name[25]

60

• Initializing the arrays are your problem
int a[3];
….
X = a[1]; ……

• Bound checking is your problem
printf(“%d”,a[100]); …..

31

61

int C[5]
-45

0

17

4

82

C[0]

C[1]

C[2]

C[3]

C[4]

We can say for example

X = C[4] / 5;

Declarations:

int b[100],v[3];

62

More arrays

• Can also create arrays in the following
manners

1. int a[] = {1,2,3};
2. int b[3] = {6,3,7};
3. int n[10] = {0};

Note you need to initialize the array
elements, 3 is a trick case.

32

63

Library

• Access libraries using the include
statement

• Generally include header files
• Compiler links them automatically
• Example:

– Standard input/output: stdio.h
– To look up information use the man page:
man stdio

64

33

65

stdio.h

• Access stdio functions by
– using #include <stdio.h>
– compiler links it automatically

• defines stdin, stdout, stderr
• use for character, string and file I/O (later)

• printf

66

printf Function

• The way printf works is it takes a format to print
out and then the data to add to the format

• One or more of the following:
– %[flags][width][.precision][modifiers]type

– “%d”
• Means a single number

– “%d %d %d”
• ??

34

67

• printf (“%d %d”,a,b);

68

stdio.h : printf, type specifier
• int printf(const char *format, ...) formatted output to stdout

B800:0000Address pointed by the argumentp

Nothing printed. The argument must be a pointer to integer where
the number of characters written so far will be stored.

n

7FAUnsigned hexadecimal integer (capital letters)X

7faUnsigned hexadecimal integerx

7235Unsigned decimal integeru

sampleString of characterss

610Signed octalo

392.65Use shorter %E or %fG

392.65Use shorter %e or %fg

392.65Decimal floating pointf

3.9265E2Scientific notation (mantise/exponent) using E characterE

3.9265e2Scientific notation (mantise/exponent) using e charactere

392Signed decimal integerd or i

aCharacterc

35

69

printf flags

• %[flags][width][.precision][modifiers]type

Used with g or G the result is the same as
e or E but trailing zeros are not removed.

Used with e, E or f forces the output value
to contain a decimal point even if only
zeros follow.

Used with o, x or X type the value is
preceeded with 0, 0x or 0X respectively if
non-zero.

#

If the argument is a positive signed value,
a blank is inserted before the number.

Blank

Forces to preceed the result with a sign (+
or -) if signed type. (by default only -
(minus) is printed).

+

Left align within the given width. (right
align is the default).

-

70

example

int class_size = 35;
char class_name[15] = “3157 adv prog”;

printf(“Welcome to our test program\n”);

printf(“the %s class size is %d”,
class_name, class_size);

36

71

int array
1. #include <stdio.h>
2. #define MAX 6

3. int main(void) {
4. int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };
5. int i;

6. for (i=0; i<MAX; i++) {
7. printf(“[%d] = %d \n", i, arr[i]);
8. }

9. } /* end of main() */

72

stdio.h: scanf
• int scanf(const char *format, ...)

37

73

Example: scanf/printf
#include <stdio.h>
void main(void) {
int n = 0; /* initialization required */
printf("how much wood could a woodchuck chuck\n");
printf("if a woodchuck could chuck wood?"); /* prompt user

*/
scanf("%d",&n); /* read input */
printf("the woodchuck can chuck %d pieces of wood!\n",n

);
return;
}

74

output

$ a.out
how much wood could a woodchuck chuck
if a woodchuck could chuck wood? 12345
the woodchuck can chuck 12345 pieces of

wood!

38

75

Loops
• loops in C are just like in Java

• there are 2 methods for looping:
– counter-controlled (loop for a fixed number of times)
– sentinal-controlled (loop while a condition is true)

• there are 3 statements for implementing the 2 methodologies:
– for
– while
– do...while

• as always: beware the infinite loop!

• Ctrl-C interrupts your executing C program

76

Branching
• branching in C is just like in Java

• there are 2 ways to do branching:
– if/else
– switch

• questions:
– which is more flexible and powerful?
– one can always be translated into the other, but not

the other way around— which is which?

39

77

Pointer power
• Variables that contain memory addresses as their values
• Data types we’ve learned about in C use direct

addressing
• Pointers facilitate indirect addressing
• Declaring pointers:

– pointers indirectly address memory where data of the types
we’ve already discussed is stored (e.g., int, char, float, etc.)

– declaration uses asterisks (*) to indicate a pointer to a memory
location storing a particular data type

– Called dereferencing a pointer
• example:
int *count;
float *avg;

78

Pointers: nitty gritty

• ampersand & is used to get the address of
a variable (dereference a pointer)

• example:
int count = 12;
int *countPtr = &count;
• &count returns the address of count and

stores it in the pointer variable countPtr

40

79

Another example

• here’s another example:
int i = 3, j = -99;
int count = 12;
int *countPtr = &count;
printf (“%d”, *countPtr);

• Here is the memory picture:

80

Arrays as pointers

• an array is some number of contiguous memory
locations

• an array definition is really a pointer to the
starting memory location of the array

• and pointers are really integers
• so you can perform integer arithmetic on them
• e.g., +1 increments a pointer, -1 decrements
• you can use this to move from one array

element to another

41

81

Code
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main() {
int i, *j, arr[5];
srand(time (NULL));
for (i=0; i<5; i++)
arr[i] = rand() % 100;
printf("arr=%p\n",arr);
for (i=0; i<5; i++) {
printf("i=%d arr[i]=%d &arr[i]=%p\n",i,arr[i],&arr[i]);
}
j = &arr[0];
printf("\nj=%p *j=%d\n",j,*j);
j++;
printf("after adding 1 to j:\n j=%p *j=%d\n",j,*j);
}

82

Output
arr=0xbffff4f0
i=0 arr[i]=29 &arr[i]=0xbffff4f0
i=1 arr[i]=8 &arr[i]=0xbffff4f4
i=2 arr[i]=18 &arr[i]=0xbffff4f8
i=3 arr[i]=95 &arr[i]=0xbffff4fc
i=4 arr[i]=48 &arr[i]=0xbffff500
j=0xbffff4f0 *j=29
after adding 1 to j:
j=0xbffff4f4 *j=8

42

83

Pointer operations

• Difference between
– ptr++
– *ptr++

• int b[5] ….
int *bPtr;

bPtr = b //or
bPtr = &b[0]

84

• Careful when moving pointers

• bPTr += 2;

the memory location isn’t simply
incremented by 2…..depends on size of
type being pointed to.

43

85

Strings

• storing multiple characters in a single variable
• data type is still char
• BUT it has a length
• last character the is terminator: ’\0’, aka NULL
• string constants are surrounded by double

quotes: "
• example:

– char s[6] = "ABCDE";

86

String II

• char s[6] = “ABCDE”;
• Memory storage looks like:

• Need to remember that you are really
accessing indices 0 – (length-2) since the
value at length-1 is always \0

A B C D E \0

44

87

Using strings

• printing strings
• format sequence: %s
• example:
#include <stdio.h>
int main() {
char str[6] = "ABCDE";
printf("str = %s\n", str);
} /* end of main() */

88

String Library
• to use the string library, include the header in your C source file:
#include <string.h>
• string length function:
int strlen(char *s);
• this function returns the number of characters in s; note that this is

NOT the same thing as the number of characters allocated for the
string array

• string comparison function:
int strcmp(const char *s1, const char *s2);
• “This function returns an integer greater than, equal to, or less than

0, if the string pointed to by s1 is greater than, equal to, or less than
the string pointed to by s2 respectively. The sign of a non-zero
return value is determined by the sign of the difference between the
values of the first pair of bytes that differ in the strings being
compared.”

man strcmp

45

89

copying functions:
char *strcpy(char *dest, char
*source);

• copies characters from source array into dest
array up to NULL

char *strncpy(char *dest, char
*source, int num);

• copies characters from source array into dest
array; stops after num characters (if no NULL
before that); appends NUL

90

Search
char *strchr(const char
*source, const char ch);

• returns pointer to first occurrence of ch in
source; NULL if none

char *strstr(const char
*source, const char *search);

• return pointer to first occurrence of search
in source

46

91

String Parsing
char *strtok(char *s1, const char
*s2);

• breaks string s1 into a series of tokens, delimited
by s2

• called the first time with s1 equal to the string
you want to break up

• called subsequent times with NULL as the first
argument

• each time is called, it returns the next token on
the string

• returns null when no more tokens remain

92

Example
char inputline[1024];
char *name, *rank, *serial_num;
printf("enter name+rank+serial number: ");
scanf("%s", inputline);
name = strtok(inputline,"+");
rank = strtok(null,"+");
serial_num = strtok(null,"+");

47

93

Formatting functions
int sscanf(char *string, char *format, ...)
• parse the contents of string according to format
• placed the parsed items into 3rd, 4th, 5th, ... argument
• return the number of successful conversions

int sprintf(char *buffer, char *format, ...)
• produce a string formatted according to format
• place this string into the buffer
• the 3rd, 4th, 5th, ... arguments are formatted
• return number of successful conversions

• format characters are like printf and scanf (see notes
from earlier lectures)

94

Memory allocations

• One of the most powerful features of c is
the ability of the programmer to create
more memory space during the execution
of the program.

• Limited by physical machine memory
• If you want to be able to create memory,

you also need to free it manually

48

95

malloc /sizeof / free

• charPtr = malloc (sizeof (…));

• free (charPtr)

96

Compiling problems
• errors can come from multiple sources:

– pre-processor: missing include files
– parser: syntax errors
– assembler: rare
– linker: missing libraries and references
– e.g., undefined names will be reported when linking:

undefined symbol first referenced in file
_print program.o
ld fatal: Symbol referencing errors
No output written to file.

• if gcc gets confused, there can be hundreds of messages!
– fix first message first, and then retry— ignore the rest

• gcc will produce an executable with warnings
• gcc is more forgiving than javac!

49

97

For Next Time

• Do Reading

• Do Homework!!

