
1

CS3157: Advanced
Programming

Lecture #3
May 31

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• References
• Perl Objects
• More CGI
• Setting up webserver/cgi

2

Announcements

• We will demo today
Recommended environments
– Eclipse
– Perl Plug in EPIC
– CGI – Webserver

we can do it as soon as I hear snoring ☺

Labs

• Lets talk about one of the problems

• Word statistics:
– Count the number of unique words in the file.
– Top 5 occurring words in the file
– Count the average length of words in the file.

• Different approaches

3

From last time

• We were covering CGI, will pick up soon
once we cover references and perl objects

• Any questions from last time ?

References

• A reference is a way of talking about a
variable

• Symbolic Reference: a reference which we
need to look up what it means in some
other place

• Hard Reference: direct value of other
object

4

Creating References

• Backslash (covered last time)
• $foo = 200;
• $ref_foo = \$foo;
• $constref = \312;
• $sub_ref = \&somesub;

References to Arrays

• $ref = [0,1,2,3,];

– how would you print the 1 ?

• $ref = [[-1,1],45,78,[‘s’,’r’]];

– how would you print the ‘s’ ?

5

Hashes

• Remember that when you stick an
anonymous list
into a hash value (why not key ?)

• How to use it ?

sub references

• $subref = sub(print “hello\n”);

• &$subref;

6

Binding

• $$arrayref[0]

• What does it mean ?

• ${$arrref[0]} ${$arrayref}[0]

Arrow Operator

• -> infix operator for referencing
– arrays
– hashes
– subroutines

• $$arrayref[2] can be $arrayref->[2]
• &$subref() can be $subref->()

7

Being Helpful

• Interesting point: if you dereference a
value that is not a reference, it will be
treated as a global variable (i.e. first use)

• use strict ‘refs’;

Modules

• Idea: take a piece of code we are using a
lot, and package it up so anyone can
reuse it

• Advantages ??

• Disadvantages ?

8

Modules

• File with code:
– something.pm

• Code which wants to use it:
– use something;

• really::something::else
– would be really/something/else.pm

Subroutines in Modules

• something.pm which defines foo();

• either
• something::foo();
• or export it correctly in the module file

– @EXPORT = qw(foo);

9

Warning

• Be careful about exporting!!

• Does anyone know the difference between
overloading and overriding ??

Bad Example

• say your package defined a sub called
isdir ……

• If you export it what will happen ?

10

Versions

• can also define a $VERSION scalar which
tells perl what your version is

• use Function 3.2.1.2;

• would check the Function.pm for version
3.2.1.2 or later

Objects

• Perl can be programmed in an object
oriented fashion with objects/classes etc

• Although you end up using references!
• Class is just a package
• Bless!! ties a reference with a class!

11

Class declaration

• package Person;

• Will define the scope until the end of the
current file

methods

• Accessor and modifier methods are
defined in the current package

• Use arrow notation to access methods

• Variable => name of method()

12

sub print {
my ($self) = @_;

#print info
print $self->firstName . “ “. $self-
>lastName;
}

constructor
sub new {
my $self = {

_firstName => undef;
_lastName => undef;

};
bless $self, ‘Person’;
return $self;
}

13

Instantiating

• my $shlomo = new Person();

accessing
sub firstName {
my ($self, $firstName) = @_;

$self->{_firstName} = $firstName if
defined ($firstName);

return $self->{_firstName};
}

14

Inheritance

• Classes can be used to extend the
functionality of a class using a process
called inheritance

• @ISA
– perl keyword showing inheritance

Switch

• Back to CGI

• review: What is CGI ?

• How do we write CGI applications ?

15

Forms

• One way to get information is to collect data
– Registration
– Payment
– Surveys

• Commands
– Possible choice combination
– Actions

• Generally user needs to hit submit for anything
to happen

Example

• Google.com

• Load page
• Do nothing…nothing happens
• Type search…nothing happens

– Hit submit/return trigger action

16

Other way

• React to user typing (will not be doing this)

17

2 ways to do it

1. Create a HTML file and display a form,
and your script gets input from the form

2. Have your script run
1. If no information is being passed, print out

the html for a form (then end)
2. Else process the form information in the

script

Interacting

• GET
– HTTP request directly to the cgi script by appending

the URL
• POST

– HTTP request in content of message, i.e it is stdin to
your script

• Format of GET (default):
– Value=key separated by &
– Space replaced by +
– URL conversion characters

18

Input Tag
• Each field is in an input tag
• Type

– Text
– Radio button
– Checkbox
– Pull down menus
– etc

• Name
– Symbolic name (so can recognize it)

• Value
– Default value, or what the user will end up typing

Encoding

• Spaces are turned to +
• & separates field
• Special characters are turned into %??

(hex)
– “(“ is %28

– So “class is great” = “class+is+great”

19

others

• Submit buttons
– <input type=“submit”>

• Reset buttons
– <input type=“reset”>

• Value will change the default name on the
button

Putting it all together

<form action=“cgi/some.cgi” method=“GET”>
<p> Please enter some text:
<input type=“text” name=“string”></p>

<input type=“submit”>
</form>

20

Decoding Form Input

1. $ENV{QUERY_STRING}
2. If($ENV{REQUEST_METHOD} eq

POST)
{ read $ENV{CONTENT_LENGTH}}

3. Split pairs around &
4. Split keys and values
5. Decode URL
6. Remember key,values

21

Drawback

• A lot of work
• Pain if we have multiple values associated

with one key
• Must be easier way…..
• CGI.pm

– Included after 5.003_07+

22

CGI.pm

• Allows you to handle cgi in a standard
format

• Can save and load key,value pairs to
standard file

• Helps in creating html documents to the
server by streamlining certain operations
and keeping it in an object oriented design

The bad news

• Can’t use it in this class
• Want you to practice doing it the manual

way…better for learning and later CGI +
C/CPP

23

Summary: CGI

• Minimum the web server needs to provide
to allow an external process to create
WebPages.

• Goal: responding to queries and
presenting dynamic content via HTTP.

Requirements

• Webserver setup correctly
– We will practice with Abyss
– http://www.aprelium.com/abyssws/download.p

hp
• Configure the cgi script

– Will cover this lab.
– http://www.aprelium.com/data/doc/2/abyssws-

win-doc-html/hosts-configuration.html
• Basic http/html knowledge

24

http headers

HTTP/1.1 200 OK
Content-type text/html
Content-Length: 300

Request / Status Line

Header Fields

GET /index.html HTTP/1.1

• GET
• HEAD
• POST
• PUT
• DELETE
• CONNECT
• OPTIONS
• TRACE

25

Server responses
HTTP/1.1 200 OK
Date: Sun, 25 Sep 2005 20:30:12 GMT
Server: Apache/1.3.5 (Unix)
Last-Modified: Wed, 20 May 1998 13:12:11 GMT
ETag: “2345-7227363ed”
Content-Length: 141
Content-Type: text/html

<HTML>
<HEAD><TITLE>…….

CGI Environment

• In perl available through the %ENV global
hash

• Changing any of the values will only be
seen by your own subprocess
– Why?

• Some of the variables will be blank
– Why?

26

File handling

• We covered basic file handling

• How does this change over the web?

File Locking
use Fcntl “:flock”;

open FILE, “?????.txt” or die $!;

#one of these
flock FILE, LOCK_EX;
flock FILE, LOCK_SH;
…..
flock FILE, LOCK_UN;

27

Side Note: Line Endings

• Carriage return \r
• Line Feed \n
• CRLF
• Unix – LF (\n) CR (\r)

• print “Content-type: text/html\n\n”

• Why not \n\r\n\r ????

Serving web pages
#!/usr/local/bin/perl
use strict;
$|=1;

my $time = localtime;
my $remote_id = $ENV{REMOTE_HOST}| $ENV{REMOTE_ADDR};
print "Content-type: text/html\n\n";

print <<END_OF_PRINTING;
This is the time : $time <P>
and your id is $remote_id

END_OF_PRINTING

28

Serving more than webpages

print "Content-type: text/html\n\n";

print “Content-type: image/jpeg\n\n”;
print “Content-type: image/png\n\n”;
print “Content-type: audio/mp3\n\n”;

Serving mp3 files

open(MP3FILE,”….”) || die ….

my $buffer;
print “Content-type: audio/mp3\n\n”;
binmode STDOUT;
while(read(MP3FILE, $buffer, 16384)){
print $buffer;
}

29

Example

• http://..../cgi-bin/mp3server.cgi/Song.mp3

Argument passing

• Say you have a cool program which you
can hook to the web…..
– Give a cell phone
– Give a message
– Will send the cell phone a message

30

<HTML><HEAD>
<TITLE>Cool</TITLE>
</HEAD>
<BODY>

<form action=“cgi-bin/cool.cgi” method=“GET”>
<p>Enter cell phone to use:
<input type=“text” name=“cellphone”></p>
<p>Enter Message:
<input type=“text” name”message”></p>
<input type=“submit”>
</form>
</BODY></HTML>

Use CGI;
my $coolp = ‘/usr/local/bin/cellmsg’;

my $q = new CGI;
my $cell = $q->param(“cellphone”);
my $msg = $q->param(“message”);
#error checking here
open PIPE, “$coolp $cell $message |” or die “Can

not open cellphone program”;
print $q->header(“text/plain”);
print while <PIPE>
close PIPE;

31

What can go wrong?

• When executing command can in theory
pass in the following arguments

Something ; rm –rf *.*

32

Perl Taint mode

• -T
– Taints all data references (incoming)

• #!/usr/bin/perl –wT

• Flags data to make sure perl doesn’t do
anything insecure

Tainted?
• STDIN
• CGI

• If variables/values are tainted
• Tainted follows it around with assignments
Sub is_tainted {

my $var = shift;
my $blank = substr($var ,0,0);
return not eval { eval “1 || $blank” || 1};

}

33

Why

• Why would you want to keep track of
tainted data?

Getting out of taint

• Match related patterns ($1,$2 ..)
• Idea: would check for security problems

and then allow it

• Reminder: only in taint mode if set

34

Other issues

• Remember with each user, your perl script
is being instantiated and executed

• In general might want to be able to run
alongside yourself (not only in web
context).
– How do we share a variable between

instances (to pass information) ?

Command shell

• A better way of executing command shell
arguments to a program is to divide the
work

• Create an instance of the program you
want to run

• Pass arguments directly to it, instead of
using the command shell (where can
combine multiple commands

35

fork/exec

my $pid = open PIPE, “-|”;
die “problem forking $!” unless defined $pid;

unless($pid) {
exec COOL, $message or die “cant open
pipe $!”;

Some more background

• When you work with CGI, many times you
have to work with specific formats and files

• Need to know how it will be handled on
client side

• One such common file, is graphics..

36

Graphics

• Formats:
– GIF (Graphic Interchange Format)

• 256 colors
• LZW compression
• Animation
• Transparent bit

– PNG (Portable Network Graphic)
• 256 color / 16-bit gray / 48-bit true color
• NOT LZW
• Alpha channels
• Interlacing algorithms

• JPEG (Joint Photographic Expert Group)
– 24-bit color
– Lossy compression
– No animation/transparency

• PDF (Portable Document Format)
– Postscript language for document layout

37

Image manipulation

• Many packages in perl to work with image
data

• GD
– Lightweight package
– Port of c graphics library
– Manipulation routines for PNG

CGI

• CGI is a common framework

• Perl is not the only player

• We will also be doing CGI + PERL|C|CPP

38

Alternatives

• ASP
– Created by Microsoft for its servers
– Mix code into html
– Visual basic/javascript

• PHP
– Apache webserver
– Similar to perl
– Embed code in html

Alt II
• Coldfusion

– Webserver interprets std coldfusion call embedded in
html, and can add code to run custom functions

– Windows, and linux
• Java servelts

– Compiled java classes invoked by web client
– Code creates documents

• FastCGI
– Threaded instance of perl continuasly running to help

cgi perl run faster
• Mod_perl

– Appache server perl thread to make perl cgi faster

39

Text handling

• One of the exciting developments in the
last decade of computer science is data
processing/mining/learning

• Many other area in and out of CS need
data to be analyzed or presented in some
(controlled but arbitrary fashion)

Handling data

• Using chiseled stone
• By hand (literally copy paste)
• Early mechanics (typwriters)
• Take 3157 ☺

40

Outputting text

• Many times will have multiple fields per line
• Arbitrary delimiters:

– Comma
– Tabs
– Pipe |

• Make sure whatever you choose
– Is either not/can’t be present in the data
– What if it is? How to represent these delimiters ??

Approach

• Memory vs disk based handling

• Brute force

• Divide and conquer

• Regexp is your friend

41

Ahead!

• Because CGI/Internet involves network
based thinking, I will illustrate a quick
example now.

Socket
• In order to communicate across computer

networks (or between processes on the same
computer)

• Need to decide on rules of communication
– Language of protocol
– Directional vs bi-directional
– Throwaway or continuous
– Life time of communication
– Overhead
– Priority
– Location

42

IO:Socket client
see: http://search.cpan.org/~gbarr/IO-1.2301/IO/Socket/INET.pm

Use IO::Socket::INET;

$socket = IO::Socket::INET->new(
PeerAddr => $remote_host,
PeerHost => $remote_port,
Proto => “tcp”,
Type => SOCK_STREAM) or die…

#writing out
print $socket “hello World”;

#notice treatment of handle
$answer = <socket>;

close($socket);

43

Server version
my $server = IO::Socket::INET->new(

LocalPort=> $portnum,
LocalAddr => 'localhost',
Proto => 'tcp',
Reuse => "1",
Listen => "10")

or die "could not start server on port $portnum ….\

while($client = $server->accept()) {
#...

}

Next

• Start Lab 2 early

• Make sure you are started on Homework 1

