
1

CS3157: Advanced
Programming

Lecture #2
May 24

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Introduction

• Let me introduce myself
– My background
– Where this course fits in

• Go over some class technical details
– Any questions from last time ?
– Will be using feedback system
– For those interested

• Programming Perl: QA76.73.P22W 2000
• C how to program: QA76.73.C15.D44 2004

2

3

Labs
• Most of your grade in the class
• Easy way to gauge the progress of your learning
• Some labs will build on each other others are

geared towards specific learning skills

• Please please please (3X) ask for help if you get
stuck (after trying)
– Goal is to learn not tread in place ☺
– I read email, am on AIM sometimes
– Can log into courseworks and leave message on web

board

4

Lab Work

• Generally required to get CS account ($50)
– I could not arrange free accounts

• If you can bring a laptop into class will not need
to lab account
– But will need to setup environment to work labs on

• We will hold lab hours, last half hour of week,
and another slot, we can take a vote on this

3

5

Outline for today
• More Regular Expressions
• File handling II
• Complex perl examples
• Feedback
• Homework
• More file handling and reg exp
• CGI
• HTML
• CGI & Perl

• Reading: Chapter 4,5 (pg-167)

6

General Information
• Slide posting

– Will post slides within 24 hrs after class
– Outside code will be also posted (links)
– Reason for not posting prior to class
– Please, take notes, and take a look at class slides, make sure you

understand what you are looking at
• General Pace

– Will try to make it easier to take notes
– Will divide information so easier to digest
– Will be very technical at certain points…you will thank me later on when

trying to solve labs
– Will attempt more elaborate examples

• Your responsibility
– Understand the material
– Stop me to clarify (won’t happen on its own)
– Provide feedback

4

7

Announcement

• Office hours:
• M/W 4 - 5:20pm
• Anytime by appointment

• On AIM: prof hershkop

• Tae
T/TH 4-5pm

8

Announcement II

• Monday memorial day
– Still need to cover material

– Options:
• June 9 Friday … earlier in the day
• Online, self study with AIM/Phone/Etc
• Another day

– Difficult since some of you are taking tue/thu classes
• Just meet Monday

– Will depend on everyone’s schedule etc

5

9

Question

• Did anyone try to write some perl code ?
– What platform
– Anything unusual ?

• Anyone attempt the email processor
example ?

10

From last time

• What is the default variable ?

• For your own convenience, you should
use the “use strict” progma

• You are in main by default

• Why knowing the scope is important ?

6

11

From last time II

• When would it be great to use perl?

• Any questions from last class ?

12

subs

• When you pass in values to subroutines:
– Language independent
– Need to understand mechanisms for passing

in variables

– For example, programming a cell phone, risc
processor, ARM/Thumb environment, what
happens at sub call ?

7

13

2 choices

• Protect variables by copying values
– Overhead for

• Memory
• CPU

• Speed things up by just passing in
memory locations
– Speedup

• Memory
• CPU

14

So how does perl do it ?

• First we need to understand global scope!

• Did example last class where passed in
scalar and did some changes
– Anyone remember what happened ?

• We will learn nitty details in c, but passing
in the memory location looks like this
– See board example now

8

15

Word on quotes
• Perl has 3 different quote operators
• Can either use the quotes or the function name
• Single quotes

– ‘ ‘
– q{ }
– Literal meaning, no interop

• Double quotes
– qq{ }

• Back quotes
– qx { }

• Word lists
– qw { }

16

Some perl

• qw / /
• Will take all tokens between slashes and

make “” quotes around things
• Very useful shortcut when lazy i.e. when

you have better things to do ☺

• How do you look up new perl commands ?

9

17

Some more on scope

• Anyone know the difference between a
locally created variable and global ??
– Can you give me a practical example ?

18

Regular Expression

• Lets Review
• More examples

• So what exactly is a regular expression?

10

19

Regular Expression in perl

• Trying to represent patterns to perl
• m/ /
• What does match return ?
• Very powerful since we can define our

program behavior based on general
pattern definitions

• Many many shortcuts available

20

Simplest

• Simplest regular expression is a literal
string match

if ($location =~ m/white house/i) {
snappicture();

}else {
goSleep();

}

11

21

Regular Expressions

• complex regular expressions use metacharacters
to describe various options in building a pattern.

• \
– Escape character

• .
– Match any single character

• Full list, can you tell me what each thing does ?
\ | () [] { } ^ $ * + ? .

22

substitutions

• s/pattern/pattern/

• Instead of return t/f we return number of
matches

• And will change the applied target

• Here is an example:

12

23

$text = "Hi my email is shlomo\@cs.columbia.edu";

$text =~ s/\W(sh.*)\@(cs\.columbia\.edu)/ cool\@$2/i;

print $text . "\n";

24

transliteration

• tr/search_list/replacement_list/

• This concentrates on character
replacement….think simple cyphers

• -c all characters not in the search list
• -d anything without replacement …delete
• -s squash duplicates

13

25

Argument passing
• Anyone know what is argument passing ?

• @ARGV

• How to get the length ?

• How to get individual items ?

• Note: older style was $#ARGV

26

STDIN STDOUT

• <STDIN>

• <STDOUT>

14

27

Unix OS

• Will cover some general unix system ideas
• Please email/ask if you are curious
• Make sure you understand what we are

covering

28

File system
• Everything is a file
• Root (top) level file is slash /
• Everything is under root
• General configuraton is usually in /etc/
• The login information is in /etc/passwd

• Actual passwords:
– Used to be plaintext in /etc/passwd
– Later scrambled ….
– Later put in private shadow file

15

29

permissions

• Different levels of permissions allow a wide
variety of control over underlying operating
system

• User/groups/others
• Read/write/execute

• ls -la [filename]
• chmod [ugo][+-][rwx]

30

Code examples

• We want to process the /etc/password file
– Any idea what would be a good application

here ?
• Looks like:
pcap:x:77:77:ARPWATCH User:/var/arpwatch:/sbin/nologin
ident:x:98:98:pident user:/:/bin/false

nobody:x:99:99:Nobody:/:/sbin/nologin

xfs:x:405:405:X Font Server:/etc/X11/fs:/bin/false
mysql:x:6730:1101:mysql server:/var/lib/mysql:/bin/bash

16

31

sub read_passwd {
my %users;
my @fields = qw/name pword uid gid fullname

home shell/;

while(<STDIN>) {
chomp;
my %rec;

@rec ={@fields} = split(/:/);

$users{$rec{name}} = \%rec;
}
return \%users;

}

32

my $users = read_passwd();

my @names;

foreach (keys %{$users}) {
next unless $users->{$_}{fullname};

my ($fname, $lname) = split (/\s+/,
$users->{$_}{fullname},2);

push @names, “$fname $lname”;
}

print map { “$_\n” } sort @names;

17

33

Helpful stuff

• $| = 1
will turn off output buffering great when
working with cgi (later today)

• In perl, can call external commands i.e.
we can execute command line
arguments

1. Backticks (``)
2. System
3. exec

34

TOOLS: VNC

• www.realvnc.com
• One way to easily work remotely on clic
• Start server on a clic machine

(city.clic.cs.columbia.edu):
– vncserver

– Run client on your side

– demo

18

35

www

• Driven by http
• Technical overview

– Servers serve http request
– Clients browsers issue requests

36

Boring vs. Exciting

• Typical
– Request is served from a file formatted in html
– Static file of what we would like to render on a web

client.
– Example:

• Class syllabus

• What is we could tailor each users web
experience to what they want.
– Design of protocol to handle this

19

37

How does CGI work:

End User
1. HTTP Request

Server

CGI Application

2. Call CGI

3. CGI Responds

4. HTTP Response

38

Perl + cgi
• Remember:

– Perl is only a tool here
– Don’t memorize, understand

• Why
• What
• How

– Don’t be afraid to experiment
• STDIN

– Contents passed to perl script
• STDOUT

– Will need HTTP headers before printing
• STDERR

– Depends on server, sometimes just error logs, sometimes error
reports on client

20

39

%ENV

• This is your best friend in PERL CGI
• Way of getting information from the client
• Create content is way to pass back

information to the client

40

Remember

• Need to set permissions:
– chmod 0755 ???.cgi
– -rwxr-xr-x

• Need to place script in correct place
– Usually cgi-bin/ directory

• Naming
– Usually need to end in .cgi

21

41

Sample test4.cgi
#!/usr/local/bin/perl

use strict;

my $time = localtime;
my $remote_id = $ENV{REMOTE_HOST}| $ENV{REMOTE_ADDR};

print "Content-type: text/html\n\n";

print <<END_OF_PRINTING;
This is the time : $time
<P>
and your id is $remote_id

END_OF_PRINTING

42

output

22

43

Some CGI Environmental Variables
• CONTENT_LENGTH

– Length of data passed to cgi
• CONTENT_TYPE
• QUERY_STRING
• REMOTE_ADDR

– Ip address of client
• REQUEST_METHOD
• SCRIPT_NAME
• SERVER_PORT
• SERVER_NAME
• SERVER_SOFTWARE
• HTTP_FROM
• HTTP_USER_AGENT
• HTTP_REFERER
• HTTP_ACCEPT

44

Problem

• How can we print out all the environment
variables ?

23

45

Example
#!/usr/local/bin/perl

use strict;

my $vars
print "Content-type: text/html\n\n";

foreach $vars (sort keys %ENV){
print “<P>$vars
”;
print $ENV{$vars};

}

46

24

47

HTML

• Hyper Text Markup Language
• Standard by w3:

http://www.w3.org/MarkUp/
• Way of standardizing format of documents

so that users can share information
between different systems seamlessly

• Evolving to XHTML format

48

HTML

• Hypertext Transfer Protocol
• Language used between web servers and

web clients
• http url’s

http://www.google.com:80/search?q=shlomo

Scheme Host

Port

Path

Query

Fragment

25

49

Google.com

• http://www.google.com/search?q=shlomo

50

Very basics

• Html consists of matching tags
• <something> = opening tag
• </something> = close tags

• HTML DOC:
– <html> <body> ……. </body> </html>

26

51

Web pages

• <title> …. </title> (before the body
section)

• <H1> …. </H1> (header titles h1, h2, h3)
• <P> paragraphs
•
 line breaks
• … bold
• <i> … </i> italicize
• <u> … </u> underline

52

More basics

•
• something
•

– Can be referred to by page.html#Anchor1
• <hr> line
• <hr width=50%> half line

27

53

Lists

• Unordered list
 ……
• Ordered list
 …..

• Nested lists
– Lists themselves can be nested within another

54

Tables

• <table>
<tr>
<td>Hello</td>
<td>World </td>
</tr>
</table>

WorldHello

28

55

comments

<!--

anything you do

-->

56

More html

• Can get wysiwyg editors
• Word will allow you to save as html
• Can take a look at webpages source code

29

57

Browser Issues

• Although HTML should be universal, there
are occasional differences between how
Microsoft IE renders a webpage and
Mozilla firefox

58

Perl Debugging
• Command line debugger can be started with the

-d command argument
perl –d something.pl
• h = help
• x = examine something
• Any perl command is read in, and saved
• s = single step evaluation
• n = jump over subroutine
• v [num] = window of commands we are in
• l x y = list lines x to y

30

59

Perl debugger

• b num = breakpoint at line num
• c = run until next breakpoint
• d num = delete breakpoint at line num
• X examine all variables

60

Task

1. Create a webpage counter (saying you
are visitor x to this page)

2. Now create a graphical counter

31

61

MD5 Sum

• MD5 – uses a 128 bit hash value
• Designed in 1991
• Known problems with collision attacks
• http://www.ietf.org/rfc/rfc1321.txt
• http://en.wikipedia.org/wiki/MD5

62

Bottom line

• Still in very wide use
• Allows authentication of files given a file

and signature
• Visually authentication against tampering

• What obvious weakness??

32

63

Md5 of a file

• Can execute md5sum within perl
• Can use perl defined methods

– Write yourself
– Find someone else’s ☺

64

Using Perl Libraries

33

65

66

34

67

Digests

• The 128-bit (16-byte) MD5 hashes (also
termed message digests) are typically
represented as 32-digit hexadecimal
numbers.

• Even small change can result in a totally
different hash digest

68

Digests II

• MD5("The quick brown fox jumps over the
lazy dog") =
– 9e107d9d372bb6826bd81d3542a419d6

• MD5("The quick brown fox jumps over the
lazy cog") =
– 1055d3e698d289f2af8663725127bd4b

• MD5(“”)
– d41d8cd98f00b204e9800998ecf8427e

35

69

Recursive directory crawling

• Sample1.pl

70

File::Find
use File::Find;

$dir = “c:/example”;

find(\&exam1,$dir);

sub exam1{
print “File: $_ and path is

$File::Find::name\n”;
}

36

71

GUI

• There are easy ways to make graphics in
perl

• Will not cover in this course
– But will have enough knowledge to pick this

up on your own if you choose
– Better way: will see later today

72

Graphics

#!c:\perl\bin
use Tk;

my $mwin = MainWindow->new;

$mwin->Button(-text => "Hello World!", -
command => sub{exit})->pack;

MainLoop;

37

73

Graphics

• Will not cover in depth
• Good to know about
• Might need to one day debug someone

else’s code (GASP!)

74

Computer Security

• System and theory of ensuring the
confidentiality, integrity, availability,
and control of electronic information
and systems.
– Network
– Host
– Data

38

75

For host based security

• Want to ensure permission system
– X should only be allowed to do A, B, and C

• Want to ensure accountability
– If Y does something not allowed, should be

noted
• Want to be able to track

– If something has been tampered with, how
can we locate it

– Both preventative and reactionary

76

Homework Project

• Assuming you are a system administrator
or just paranoid

• Take chronological snapshots of your
system to compare and find changes
– Many changes by system
– Many changes by valid user
– Might locate malicious user/system changes

• Want to search filenames
• Want to organize snapshots of system

39

77

Useful programming tips

• Can turn on warning to help prevent errors
• Run in strict mode to catch potential

mistypes
• Create debugging statements to help chart

progress throughout program…
• Better yet, learn to use the perl debugger

(today if time permitting).

78

Doing the work

• Find a good perl environment
• Read up on perl
• Can work

– Clic lab
– Home
– Home, remote on clic machine

40

79

Simple example

• http://www.cs.columbia.edu/~name/a.pl

• User in browser invokes perl script
• Web server calls script
• Perl script runs and print out a html code
• Web browser renders the webpage

80

Next step

• Not just execute the script want to get
some starting information from the user

