
1

1

CS3157: Advanced
Programming

Lecture #10
June 26

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline

• wrap up CPP
– templates
– file handling

• Reading:
– chapters 20

• Advanced Topics
• Review for final

2

3

Announcements

• wrapping up cpp today

• Advanced Topics

• Please fill out the course evaluations on
course works….consider this part of your
final

4

development question

• is there a different if you code in visual cpp
vs gcc in cygwin if you are working on
windows ??

• when would it matter ?

3

5

virtual functions

• in C++ virtual functions allow you to define
a specific function in the base class, which
is undefined, and each of the subclasses
need to override (implement a definition)

• virtual char * md5sum();

6

• so if we use a base class pointer at a
derived class object, calling md5sum will
call the correct one

• compile time resolution
– static binding

4

7

Instantiation
• Remember as soon as you declare a class you

are instantiating it
• String s;

• sometimes would like to have classes which can
not be instantiated

• abstract classes
– a class is made abstract by having a pure virtual

function.

8

Abstract

• virtual char * md5sum() =0;

• any ideas on what error will be thrown if
you instantiate it ?

5

9

non virtual base functions

• if you have a parent class A.foo()
• derived class B defines B.foo()

• A *a_ptr = B_object

• a_ptr.foo()
– which foo will be triggered?
– why ?

10

abstract classes II

• remember that making a pointer doesn’t
instantiate anything

• can create pointers of type abstract
classes

• used to enable polymorphic behavior

• Example: Operating system device
– read/write behvaior

6

11

destructors

• when creating and manipulating objects in
a polymorphic context, destructors will
only be called on base class

12

solution

• define a virtual base class destructor
• will correct destructor will be called

7

13

• Example 20_1

14

• here is another set of examples

8

15

Abstraction with member functions
• example #1: array1.cpp
• example #2: array2.cpp

– array1.cpp with interface functions

• example #3: array3.cpp
– array2.cpp with member functions

• class definition

• public vs private

• declaring member functions inside/outside class definition

• scope operator (::)

• this pointer

16

array1.cpp
struct IntArray {

int *elems;
size_t numElems;

};
main() {

IntArray powersOf2 = { 0, 0 };
powersOf2.numElems = 8;
powersOf2.elems = (int *)malloc(powersOf2.numElems *
sizeof(int));
powersOf2.elems[0] = 1;
for (int i=1; i<powersOf2.numElems; i++) {
powersOf2.elems[i] = 2 * powersOf2.elems[i-1];

}
cout << "here are the elements:\n";
for (int i=0; i<powersOf2.numElems; i++) {
cout << "i=" << i << " powerOf2=" <<

powersOf2.elems[i] << "\n";
}
free(powersOf2.elems);

}

9

17

array2
void IA_init(IntArray *object) {
object->numElems = 0;
object->elems = 0;

} // end of IA_init()

void IA_cleanup(IntArray *object) {
free(object->elems);
object->numElems = 0;

} // end of IA_cleanup()

void IA_setSize(IntArray *object, size_t value) {
if (object->elems != 0) {
free(object->elems);

}
object->numElems = value;
object->elems = (int *)malloc(value * sizeof(int));

} // end of IA_setSize()

size_t IA_getSize(IntArray *object) {
return(object->numElems);

} // end of IA_getSize()

18

hierarchy
• composition:

– creating objects with other objects as members
– example: array4.cpp

• derivation:
– defining classes by expanding other classes
– like “extends” in java
– example:

class SortIntArray : public IntArray {
public:
void sort();
private:
int *sortBuf;
}; // end of class SortIntArray
• “base class” (IntArray) and “derived class” (SortIntArray)
• derived class can only access public members of base class

10

19

• complete example: array5.cpp
– public vs private derivation:

• public derivation means that users of the derived class
can access the public portions of the base class

• private derivation means that all of the base class is
inaccessible to anything outside the derived class

• private is the default

20

Class derivation
• encapsulation

– derivation maintains encapsulation
– i.e., it is better to expand IntArray and add sort() than to modify your own version

of IntArray

• friendship
– not the same as derivation!!
– example:

• is a friend of
• B2 is a friend of B1
• D1 is derived from B1
• D2 is derived from B2
• B2 has special access to private members of B1 as a friend
• But D2 does not inherit this special access
• nor does B2 get special access to D1 (derived from friend B1)

11

21

Derivation and pointer conversion
• derived-class instance is treated like a base-class instance
• but you can’t go the other way
• example:
main() {
IntArray ia, *pia;
// base-class object and pointer
StatsIntArray sia, *psia;
// derived-class object and pointer
pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatsIntArray *)pia; // sort of okay now since:
// 1. there’s a cast
// 2. pia is really pointing to sia,
// but if it were pointing to ia, then
// this wouldn’t work (as below)
psia = (StatsIntArray *)&ia; // no: because ia isn’t a

StatsIntArray

22

Streams

• I/O from the system point of view, is simply
a collection of bytes

• C++ allows you to access I/O on two
levels
– low level: very quick but its your job to make

sense of the byes
– high level: slower since its converting the

bytes to specific types

12

23

libraries

• <iostream>
– cin
– cout
– cerr (unbuf)
– clog (buf)

• <istream>
• <ostream>
• <iomanip>

24

fstream

• for file processing C++ uses ifstream and
ofstream objects to read/write from files

IOS

ostreamistream

iostream ofstreamifstream

fstream

13

25

• since formatting is automatically figured
out for you, how do you print out the
pointer address (i.e. %p) using cout ??

26

casting

• casting is your friend

• << static_cast<void *>(str_ptr) << endl;

14

27

• cout.put(‘a’);
– will print single character to the output stream

• can cascade

• cout.put(‘a’).put(‘b’).put(‘c’);

28

Examples

• 21_10

• 21_11

15

29

get

• one character at a time
• even whitespaces
• EOF

• different version of get

• 21_12
• 21_13

30

getline

• read till delim
• throws it out
• replaces it with \0

• 21_14

16

31

low level

• low level read/write

• 21_15

32

stream formatting

• in c it’s a headache and half to format the
output

• c++ has lots of help in steam formatters

• 21_16
• 21_17

17

33

• any ideas when formatting can
make/break your program ???

34

• example: telnet checkers program ☺

18

35

Templates

• the idea is to generalize your code as
much as possible to deal with any class
you will be handling

• can allow your classes to store any type
correctly (think void pointer)

• allows a function to adopt to specific
constraints

36

Templates

template<typename X>
void foo(X &first, X second){

first += second;
}

19

37

• 22_1

38

templates

• can also take non general arguments

• template<class T, int x> …

• integrates into inheritance

• allows friendly relationships

20

39

STL
• standard template library

• tons of useful stuff here

• if you do any serious programming you should
consider STL
– they’ve worked out all the bugs ☺
– very efficient
– make sure you understand what you are doing

40

static members

• array<float> X;
• array<int> Y;

• if there are static variable members each
gets separate copy while

• array<float> x2
– will share with above X

21

41

responding to errors

• part of good object oriented programming
is anticipating problems

• what can we do if something goes wrong
??

42

• try
• catch

• similar to java
– except won’t escalate if not caught unless specifically

enclose in try->catch blocks
– general exception class (<exception> and

std::exception)

22

43

• 23_2

44

wrap up

23

45

More than just reacting

• We have been working with perl/c/cpp in a
static context

• Some information is presented to the user
• React to user input

• Is this how google maps works ?

46

Ajax
• Asynchronous JavaScript And XML

• technique for developing interactive applications
over the web

• Style
• Platform
• Format
• XMLHttpRequest
• Objects

24

47

Basic HTML

• Specific set of tags (depends on version)
• Up to user to set things correctly
• Most browsers will attempt to figure out

what you want
– Example not putting end body end html, will

still work

48

Advanced HTML

• CSS
– Cascading style sheets

• Define format of the WebPages
• Central location of style
• With a few clicks can completely change thousands of

WebPages.

• DOM
– Document object model

• Formal data structure to represent web based
documents/information

• Client side scripting

25

49

DOM problems
• Different browsers supported things differently
if (document.getElementById &&

document.getElementsByTagName) {
// as the key methods getElementById and getElementsByTagName
// are available it is relatively safe to assume W3CDOM support.

obj = document.getElementById("navigation")
// other code which uses the W3CDOM.
//

}

50

Examples

• http://www.dynamicdrive.com/dynamicinde
x12/pong/pong.htm

• http://www.dynamicdrive.com/dynamicinde
x4/butterfly.htm

26

51

javascript
• Client side

– PHP & CGI were both server side
• Developed under Netscape as LiveScript

– Currently 1.5
• Developed under IE as Jscript
• Object oriented approach
• Syntax like c

– No input/output support native
– Keywords
– DOM for interfacing between server and client

• Can evaluate reg expressions (eval)

52

Javascript

• Heavy use of defined functions
– Example: MouseOver

• Need to adopt to specific browser if doing
anything fancy

• Adobe
– Support javascript in pdf

• MAC
– Dashboard widgets

27

53

Programming

• You need to learn on your own
• Many good books/websites
• Most of the time .js file if not in html
• Powerful example:

– Thunderbird/firefox
• Get good debugger

54

How to do research?
• Practical research

– Know a programming language
– Have an inquisitive mind
– Keep an open mind to new ideas
– Try to solve an open research problem ☺

• Theory research
– Learn some math
– Learn some theory
– Relearn the math
– Solve something ☺

28

55

Where to start?

1. Need an idea
2. See if anyone’s done it or tried it in your

way
1. Citeseer (citeseer.ist.psu.edu)
2. Google
3. Appropriate Faculty/Researcher
4. Google groups

56

Sketch out the idea on small scale

• Design a small experiment which can validate
your idea

• Data, data, data, and Data
– Make or break you
– Will help your research

• Make sure it isn’t a circular relationship
• Evaluate results

– Don’t fake them
– Even bad results are results
– Can learn of what not to do

• Write up results

29

57

Write up options

• Word vs Latex
• gnuplot
• cvs
• Element of Style

58

In the real world
1. Keep it simple

1. Don’t re-invent the wheel
2. Design first
3. Even with fancy blinking lights, a bad idea is still a

bad idea (but with bad taste)
2. Incremental testing

1. Recognize when the bug is your fault
2. See if others have faced it too

3. Make sure version 1 works on most popular
browsers

30

59

Question

• What is this designed with?
• Can you do a better job?

• Theyrule.net

60

Bottom line

• We’ve covered a lot this semester
– Some of it was fun
– Some of it was hard work (ok most)
– Some of it was frustrating.

• BUT
– You have lots of tools
– Have an idea of where to start when dealing

with programming projects

31

61

Important lessons for learning new
languages

• CS is not meant to be a trade school
• Language isn't important…things change
• Ideas and design are more important

• Lessons:
– Choose correct environment
– Choose correct tools
– Make sure to test out ideas…might be someone

else’s fault (program think)
– Enjoy what you are doing

62

Important

• To get the most out of a language find
comfortable programming environment

• Emacs – color files
• Eclipse
• Others , see

– www.freebyte.com/programming/cpp/

32

63

Review time

• Perl
• C
• CPP
• Shell programming stuff
• misc stuff

• Review the labs/hw

64

Perl related stuff

• basics on types
• regular expressions
• perl file handling
• perl modules
• perl classes
• cpan.org

33

65

Word list
• Compiling
• Linking
• Reference parameter
• Variable scope
• Stdio.h
• Stdlib.h
• cout
• cast
• Inline
• Linked list

• Preprocessor
• Typedef
• Struct
• Pointer
• Void pointer
• . Vs ->
• Function pointer
• Reference
• const
• malloc

66

Word list II
• Huffman
• getopt
• constructor
• destructor
• iostream
• overloading
• extern
• private
• Public
• GDB

• Cgi
• GET/POST
• overload
• overriding
• Template
• This
• Friend class
• New/delete
• virtual

34

67

c
• Basic constructs
• Basic type
• Advanced types
• (review labs and class examples)
• Memory stuff – understand what is happening
• Arrays
• Functions
• Pointers
• Debuggers

68

C

• Working with CGI
• Working on different platforms
• Makefiles
• How we built libraries

35

69

C++

• Basic language
• Difference to c
• Classes
• Permissions
• new/free memory allocations
• Inheritance and polymorphism
• Keywords
• Working with files….

70

Sample exam
• You’ve done most of the work for the course, the

exam is just to make sure you remember the
important concepts

• posted online

• Couple Definitions
• 2 code checking question
• Shell code question
• C++ class manip question
• Small CGI question

36

71

Thinking question

• Say you are writing code which uses a
random number generator….

• What is important to know about it ?
• How can your code be affected ?

• If you crash, how to reconstruct events,
since based on random numbers ??

72

Closing Remarks

• If you like this…..just the beginning
• If you didn’t ….. You now know how

complicated it is….never trust a program
☺

• Hope you had a fun semester..

37

73

study tips

• go through class notes

• go through lab assignments

• make sure you understand it all, email/aim
questions….

• please don’t save it for 10 minutes before the
exam

74

• Good Luck!

• will be open books

• see you Wednesday!

• reminder: please go on coursework and fill in the course
evaluation

• if you need more time for assignments…contact me

38

75

• time permitting

76

• switch back to perl…….

39

77

Outline for next section

• Code review
• Optimization
• Caching
• Memorization
• Profiling for optimization
• HTML parsers

78

Benchmarking

• In many cases during development, you
will have different options for choosing
how to code your ideas

• would like to know which choice would
run faster

40

79

Simple idea
#!/usr/bin/perl

declare array
my @data;

start timer
$start = time();

perform a math operation 200000 times
for ($x=0; $x<=200000; $x++)
{

$data[$x] = $x/($x+2);
}

end timer
$end = time();

report
print "Time taken was ", ($end - $start), " seconds"

80

#!/usr/bin/perl

use Benchmark;

declare array
my @data;

start timer
$start = new Benchmark;

perform a math operation 200000 times
for ($x=0; $x<=200000; $x++)
{

$data[$x] = $x/($x+2);
}

end timer
$end = new Benchmark;

calculate difference
$diff = timediff($end, $start);

report
print "Time taken was ", timestr($diff, 'all'), " seconds"; [/code]

41

81

#!/usr/bin/perl

use Benchmark;

run code 100000 times and display result
timethis(100000, '

for ($x=0; $x<=200; $x++)
{

sin($x/($x+2));
}

');

82

• so timethis takes anything an eval would take
• tells you exactly how much time it took to

compute x iterations

• how about the other way, say I have 5 minutes
to calculate an answer and I want to see how
many iterations I can do ?

42

83

#!/usr/bin/perl

use Benchmark;

run code for 10 seconds and display result
timethis(-10, '

for ($x=0; $x<=200; $x++)
{

sin($x/($x+2));
}

');

84

• so how would you turn this into an
interactive script ?

43

85

#!/usr/bin/perl

use Benchmark module
use Benchmark;

ask for count
print "Enter number of iterations:\n";
$count = <STDIN>;
chomp ($code);

alter the input record separator
so as to allow multi-line code blocks
$/ = "END";

ask for code
print "Enter your Perl code (end with END):\n";
$code = <STDIN>;

print "\nProcessing...\n";

run code and display result
timethis($count, $code);

86

multiple tests

• usually if you want to compare want to be
able to run a bunch of different tests and
compare their results

44

87

#!/usr/bin/perl

use Benchmark module
use Benchmark;

time 3 different versions of the same code
timethese (1000, {

'huey' => '$x=1;
while ($x <= 5000)

{
sin ($x/($x+2));
$x++;

}',
'dewey' => 'for ($x=1; $x<=5000; $x++)

{
sin ($x/($x+2));

}',
'louie' => 'foreach $x (1...5000)

{
sin($x/($x+2));

}'
});

88

• Benchmark: timing 1000 iterations of dewey, huey, louie...
• dewey: 92 wallclock secs (91.72 usr + 0.00 sys = 91.72 CPU) @

10.90/s (n=1000)
• huey: 160 wallclock secs (159.56 usr + 0.00 sys = 159.56 CPU) @

6.27/s (n=1000)
• louie: 45 wallclock secs (44.98 usr + 0.00 sys = 44.98 CPU) @

22.23/s (n=1000)

45

89

• sometimes want to get percentage
comparisons

90

#!/usr/bin/perl

use Benchmark module
use Benchmark qw (:all);

time 3 different versions of the same code cmpthese (100, {
'huey' => '$x=1;

while ($x <= 5000)
{

sin ($x/($x+2));
$x++;

}',
'dewey' => ' for ($x=1; $x<=5000; $x++)

{
sin ($x/($x+2));

}',
'louie' => ' foreach $x (1...5000)

{
sin($x/($x+2));

}'
});

46

91

• ok, lets run a quick test to compare 2
ways of doing the same thing in perl:

92

Version 1
my $string =

'abcdefghijklmnopqrstuvwxyz';
my $concat = '';

foreach my $count (1..999999)
{

$concat .= $string;
}

47

93

Version 2
my $string = 'abcdefghijklmnopqrstuvwxyz';
my @concat;

foreach my $count (1..999999)
{

push @concat,$string;
}
my $concat = join('',@concat);

94

Optimization tips

• Most optimization can be done by simply
paying attention to how you decided to
code your ideas

• knowing some basic background
information ☺

48

95

• any ideas why this is very slow ?

foreach my $item (keys %{$values})
{

$values->{$item}->{result} = calculate($values-
>{$item});

}

sub calculate
{

my ($item) = @_;
return ($item->{adda}+$item->{addb});

}

96

inlining it
calculate_list($values);

sub calculate_list
{

my ($list) = @_;
foreach my $item (keys %{$values})
{

$values->{$item}->{result} = ($item->{adda}+$item-
>{addb});
}

}

49

97

Loops

• try not to do the same work twice
• try to avoid looping more than once
• keep loop operations within the current

variable range
• keep code local, avoid sub jumps

98

hashes

• if you will be looking through all values of
the hash, its faster to call values

• but this is a constant ref, so you wont be
able to delete

50

99

sort

• can tell the sort routine how to compare
data structures but should be careful of
the following :

100

my @marksorted = sort {
sprintf('%s%s%s',

$marked_items->{$b}->{'upddate'},
$marked_items->{$b}->{'updtime'},
$marked_items->{$a}->{itemid})

<=>
sprintf('%s%s%s',

$marked_items->{$a}->{'upddate'},
$marked_items->{$a}->{'updtime'},
$marked_items->{$a}->{itemid}) } keys

%{$marked_items};

51

101

• anyone have an idea how to improve this
?

102

map { $marked_items->{$_}->{sort} =
sprintf('%s%s%s',

$marked_items->{$_}->{'upddate'},
$marked_items->{$_}->{'updtime'},
$marked_items->{$_}->{itemid}) }

keys %{$marked_items};

my @marksorted = sort {
$marked_items->{$b}->{sort}
<=>
$marked_items->{$a}->{sort}

}keys %{$marked_items};

52

103

multiple choices

if ($userchoice > 0)
{

$realchoice = $userchoice;
}
elsif ($systemchoice > 0)
{

$realchoice = $systemchoice;
}
else
{

$realchoice = $defaultchoice;
}

104

$realchoice = $userchoice || $systemchoice ||
$defaultchoice;

53

105

caches

• what are they

• some background

• how are they used in operating systems

106

Memoization
• cache swaps time for space

– want a speedup, so willing to use up memory to
achieve it

– wrap our function to do lookup first before actually
calling it

– not always appropriate:
• time
• rand

54

107

pure function

• any function whose return is based on its
input

108

bench marking

• lets take the regular fib vs memoized fib

• use Memoize;
• memoize fib2;

55

109

another version of fib3
{ my @cache;

BEGIN { @cache = (0,1);
sub fib3 {

my $n = shift;
return $cache[$n] if defined $cache[$n];

return $cache[$n] = fib($n-1) + fib($n-2);

}

}

110

actual code

• http://perl.plover.com/MiniMemoize/numb
eredlines.html

56

111

Code tips

• Here are some general code writing tips
which will make your programs easier to
work with

• some of them are taken from “Perl Best
Practices” from Oreilly

112

Coding Advice

• There is no one size fits all solution

• but here are some guidelines for better
code generation

• choose and pick what fits best your style

57

113

Code Readability

• Many factors go into making your code
legible

• variable naming convention
• layout of code
• comment style

114

Variables

• best to be clear exactly what each
variable is

• good idea to name reference variables in
some way
– $temp_ref
– $r_something
– $command_r

58

115

Layout

• sub foo {

}

• sub foo
{

}

116

default

• Try to minimize reliance on default
behavior, spell out variables

for my $person_ref (@waitingList) {
print $person_ref->name;

}

59

117

parenthesis your subs

• you aren't paying by the word:
– add max parenthesis next to your sub and

args as needed
– remove spaces from around parenthesis

when possible

my @peopleList = getElevatorPeople($n);

118

Common Perl commands
• common perl commands

– print
– chomp
– split

• not strictly necessary to have parenthesis, will
make code look neater sometimes

• keep same style as your own subs if you want
to use it to be safe

60

119

spaces

• use spaces when referencing complex
hash key combinations

$candidates[$i] =
$incumbent{ $candidates[$i]{ get_region() } };

my $displacement
= $ini_velocity * $time + 0.5 * $acceleration *

$time**2;

120

semicolons

• use semicolons everywhere
• even when optional

• easy way to indicate section end

61

121

commas

• in a list/hash when listing items place
comma after each one (even last)

• no overhead
• allows copy paste between items

122

indent

• indent loop/condition blocks to make it
easier to read them

62

123

commands

• Never place two statements on the same
line

• foo(); $name = $house + foo2();

124

code breaks

• break code into sections
• i.e. start coding by sketching system

through comment flows
• expand each comment to a few

instructions

63

125

if/else

• make sure else can be seen

• if {
…
} else {
…
}

126

vertical

• when possible aline items vertical
my %expansion_of = (

q{it's} => q{it is},
q{we're} => q{we are},
q{didn't} => q{did not},
q{must've} => q{must have},
q{I'll} => q{I will},

);

64

127

operators

• use operators to break long lines
• use equals to break long lines

128

neatness counts

my @months = qw(
January February March
April May June
July August September
October November December

);

65

129

boolean subs

• Part of naming conventions:
– if a sub returns a boolean should follow a

similar pattern of naming the sub like

– is_Full
– has_Item

130

variables

• use case to separate types of variables
• for things which hold sets, use plural
• try to name them for their usage
• when shortening, try to make sure that it

is clear
– $dev #device or developer ?
– $last #is it the final or the last one used?

66

131

Privacy

• should use the underscore in the
beginning of a variable/sub to show its
private

132

String operations
• Should try to use single quotes when no interpolation
• replace empty string with q{} to make it easier to

separate double quote from two single quotes
• when saying tab always be clear by saying \t explicitly
• for comma character its easier to say q{,} and easier to

read
– my $printable_list = '(' . join(q{,}, @list) . ')';

– my $printable_list = '(' . join(',', @list) . ')';

67

133

escape characters

• saying $delete_key = \127;
– delete is the 127th value on the ascii table
– problem: escape numbers are specified by

base 8 numbers ☺ should be \177
– Solution:
use charnames qw(:full);

$escape_seq =
"\N{DELETE}\N{ACKNOWLEDGE}\N{CANCEL}Z";

134

constants
• use constants is really creating a compile time sub
• can’t be interpolated
• can’t be used directly in hash key

• For values that are going to be unchanged in the program can use a
readonly pm

use Readonly;
Readonly my $MOLYBDENUM_ATOMIC_NUMBER => 42;

and later...

print $count * $MOLYBDENUM_ATOMIC_NUMBER;

68

135

formatting
• leading zeros on a number says its octal
• be clear about it if you need octal say octal(number)
• use Readonly;

Readonly my %PERMISSIONS_FOR => (
USER_ONLY => oct(600),
NORMAL_ACCESS => oct(644),
ALL_ACCESS => oct(666),

);

136

formatting II
• use underscores to separate long numbers
• # In the US they use thousands, millions,

billions, trillions, etc...
• can also do the same on floats
$US_GDP = 10_990_000_000_000;
$US_govt_revenue = 1_782_000_000_000;
$US_govt_expenditure = 2_156_000_000_000;

use bignum;
$PI =
3.141592_653589_793238_462643_383279_502884_197169_399375;
$subnet_mask= 0xFF_FF_FF_80;

69

137

formatting III

• for long strings break it up and connect
using .

$usage = "Usage: $0 <file> [-full]\n"
. "(Use -full option for full dump)\n"

;

138

here doc

• can also use a here doc to break up lines

$usage = <<"END_USAGE";
Usage: $0 <file> [-full] [-o] [-beans]
Options:

-full : produce a full dump
-o : dump in octal
-beans : source is Java

END_USAGE

70

139

Better
use Readonly;
Readonly my $USAGE => <<'END_USAGE';

Usage: qdump file [-full] [-o] [-beans]
Options:

-full : produce a full dump
-o : dump in octal
-beans : source is Java

END_USAGE

and later...

if ($usage_error) {
warn $USAGE;

}

140

Avoid barewords
• when perl sees bare words it thinks they are

strings (different under strict)
$greeting = Hello . World;
print $greeting, "\n";

my @sqrt = map {sqrt $_} 0..100;
for my $N (2,3,5,8,13,21,34,55) {

print $sqrt[N], "\n";
}

71

141

beware operator precedence
• next CLIENT if not $finished;

– # Much nicer than: if !$finished

• next CLIENT if (not $finished) || $result <
$MIN_ACCEPTABLE;
– what is this do ?

• next CLIENT if not($finished || $result <
$MIN_ACCEPTABLE);

142

localization

• if you need to set a package’s variable
use the local keyword

• you need to initialize it, since its reset to
undef

72

143

Random question
#!C:\perl\bin

print 'this is a small test\n';

@list = (1,2,3);

print join q{,}, @list;
print '\n';

$list[-4] = 3;

print join q{,} ,@list;
print ‘\n’;

144

block
• use blocks rather than modifiers in most cases

if (defined $measurement) {
$sum += $measurement;

}

$sum += $measurement if defined $measurement;

73

145

avoid unclear loops
RANGE_CHECK:

until ($measurement > $ACCEPTANCE_THRESHOLD) {
$measurement = get_next_measurement();
redo RANGE_CHECK unless defined $measurement;
etc.

}

RANGE_CHECK:
while ($measurement <= $ACCEPTANCE_THRESHOLD) {

$measurement = get_next_measurement();
redo RANGE_CHECK if !defined $measurement;

146

Outline for next section

• More code tips
• Memory leaking
• HTML Parsing
• Parsing flat files
• Database Theory
• DBI
• Perl and databases
• Code Review II

74

147

More code tips

• Lets pick up where we left yesterday

148

map

• as mentioned yesterday, map can be
used when we want to replace all values
in a list

• but: it will need enough memory for all the
copies….think about it before using it

@temperature_measurements = map { F_to_K($_) }
@temperature_measurements;

75

149

Better version

• we can reuse the array location if we don’t
need the old version

for my $measurement (@temperature_measurements) {
$measurement = F_to_K($measurement);

}

150

What do you think of this ?
use List::Util qw(max);

Readonly my $JITTER_FACTOR => 0.01; # Jitter by a maximum of 1%

my @jittered_points
= map {

my $x = $_->{x};
my $y = $_->{y};

my $max_jitter = max($x, $y) / $JITTER_FACTOR;
{

x => $x + gaussian_rand({mean=>0, dev=>0.25, scale=>$max_jitter}),
y => $y + gaussian_rand({mean=>0, dev=>0.25, scale=>$max_jitter}),

}
} @points;

76

151

usually replace with for loop
my @jittered_points;

for my $point (@points) {
my $x = $point->{x};
my $y = $point->{y};

my $max_jitter = max($x, $y) / $JITTER_FACTOR;

my $jittered_point = {
x => $x + gaussian_rand({ mean=>0, dev=>0.25,

scale=>$max_jitter }),
y => $y + gaussian_rand({ mean=>0, dev=>0.25,

scale=>$max_jitter }),
};

push @jittered_points, $jittered_point;
}

152

Better, separate the two
my @jittered_points = map { jitter($_) } @points;

Add a random Gaussian perturbation to a point...
sub jitter {

my ($point) = @_;
my $x = $point->{x};
my $y = $point->{y};

my $max_jitter = max($x, $y) / $JITTER_FACTOR;

return {
x => $x + gaussian_rand({ mean=>0, dev=>0.25,

scale=>$max_jitter }),
y => $y + gaussian_rand({ mean=>0, dev=>0.25,

scale=>$max_jitter }),
};

}

77

153

some observations

• The $_ references a touched scalar
• it is not a copy
• when you execute a foreach you are

walking across a list
• so if combine commands which touch $_

be careful

154

what is the idea ?
#########################
Select .pm files for which no corresponding .pl

file exists...

#########################
@pm_files_without_pl_files

= grep { s/.pm\z/.pl/xms && !-e } @pm_files;

78

155

Thinking
• $_ successively holds a copy of each of the

filenames in @pm_files.
• replace the .pm suffix of that copy with .pl
• see if the resulting file exists
• If it does, then the original (.pm) filename will be

passed through the grep to be collected in
@pm_files_without_pl_files

• Any issues ?

156

• $_ only holds aliases
• substitution in the grep block replaces the .pm suffix of each

original filename with .pl;
• then the -e checks whether the resulting file exists.
• If the file doesn't exist, then the filename (now ending in .pl) will be

passed through to @pm_files_without_pl_files.
• we will have modified the original element in @pm_files.
• Oops!

• unintentionally mess up the contents of @pm_files and did not
even do the job it was supposed to do.

79

157

visual

• besides neat code
• if possible have code fit within single view

window, so can keep track of what is
happening
– more for loop iterations

• not always possible

158

sub words_to_num {
my ($words) = @_;

Treat each sequence of non-whitespace as a word...
my @words = split /\s+/, $words;

Translate each word to the appropriate number...
my $num = $EMPTY_STR;
for my $word (@words) {

if ($word =~ m/ zero | zéro /ixms) {
$num .= '0';

}
elsif ($word =~ m/ one | un | une /ixms) {

$num .= '1';
}
elsif ($word =~ m/ two | deux /ixms) {

$num .= '2';
}
elsif ($word =~ m/ three | trois /ixms) {

$num .= '3';
}
etc. etc. until...
elsif ($word =~ m/ nine | neuf /ixms) {

$num .= '9';
}
else {

Ignore unrecognized words
}

}

return $num;
}

and later...

print words_to_num('one zero eight neuf'); # prints: 1089

80

159

my @words = split /\s+/, $words;

Translate each word to the appropriate number...

my $num = $EMPTY_STR;
for my $word (@words) {

my $digit = $num_for{lc $word};
if (defined $digit) {

$num .= $digit;
}

}

return $num;
}

160

difference

• adding more info

81

161

Look up table
my %num_for = (
English Français Française Hindi

'zero' => 0, 'zéro' => 0, 'shunya' => 0,
'one' => 1, 'un' => 1, 'une' => 1, 'ek' => 1,
'two' => 2, 'deux' => 2, 'do' => 2,
'three' => 3, 'trois' => 3, 'teen' => 3,

etc. etc. etc.

'nine' => 9, 'neuf' => 9, 'nau' => 9,
);

162

Another lookup task
my $salute;

if ($name eq $EMPTY_STR) {
$salute = 'Dear Customer';

}
elsif ($name =~ m/\A ((?:Sir|Dame) \s+ \S+)/xms) {

$salute = "Dear $1";
}

elsif ($name =~ m/([^\n]*), \s+ Ph[.]?D \z/xms) {
$sa1ute = "Dear Dr $1";

}
else {

$salute = "Dear $name";
}

82

163

my $salute = $name eq $EMPTY_STR ? 'Dear Customer'
: $name =~ m/ \A((?:Sir|Dame) \s+ \S+) /xms ? "Dear $1"
: $name =~ m/ (.*), \s+ Ph[.]?D \z /xms ? "Dear Dr $1"
: "Dear $name"
;

164

Loops

• try to avoid do..while loops
– can’t use next, last
– logic is at the end

• Reject as early as possible
– use lots of next to avoid computation per

loop
• Add labels to loops to make it clear we

might exit early

83

165

clean version
Readonly my $INTEGER => qr/\A [+-]? \d+ \n? \z/xms;

my $int;

INPUT:
for my $attempt (1..$MAX_TRIES) {

print 'Enter a big integer: ';
$int = <>;

last INPUT if not defined $int;
redo INPUT if $int eq "\n";
next INPUT if $int !~ $INTEGER;

chomp $int;
last INPUT if $int >= $MIN_BIG_INT;

}

166

Documentation tips
• public part

– perldoc stuff which will be of interest to regular users
– this stuff should live in only one place in your file

• Private
– other developers
– yourself tomorrow

• use templates to generate fill in the blank
comments for classes

• proof read

84

167

some ideas
• =head1 EXAMPLES
• =head1 FREQUENTLY ASKED QUESTIONS
• =head1 COMMON USAGE MISTAKES
• =head1 SEE ALSO

168

private comment templates
##
Usage : ????
Purpose : ????
Returns : ????
Parameters : ????
Throws : no exceptions
Comments : none
See Also : n/a

85

169

where to sprinkle

• single line comments before/after
• anywhere you had a problem
• to clarify

– if you are doing too much commenting,
maybe a good idea to recode it

170

built in

• Try to use as many built ins before you go
find other libraries
– generally they have been optimized to run

with perl

– for specific things, you might want to find
replacement

– at the same time each built in is optimized for
a specific scenario

86

171

sort – don’t recompute
(optimized with an on-the-fly key cache)

@sorted_files
= do {

my %md5_of;
sort { ($md5_of{$a} ||= md5sum($a))

cmp
($md5_of{$b} ||= md5sum($b))

}
@files;

};

172

• if doing sort more than once
– globalize the cache
– take a slice at some point
– memoize

87

173

reverse of a sort

• standard:
– @sorted_results = sort { $b cmp $a }

@unsorted_results;

• Optimized
– @sorted_results = reverse sort

@unsorted_results;

174

Reverse

• use scalar reverse when you want to
reverse a scalar

• my $visible_email_address =
reverse $actual_email_address;

• my $visible_email_address =
scalar reverse $actual_email_address;

• reason:
– add_email_addr(reverse $email_address);

88

175

split

• For data that is laid out in fields of varying
width, with defined separators (such as
tabs or commas) between the fields, the
most efficient way to extract those fields is
using a split.

176

Specify field separator
Readonly my $RECORD_SEPARATOR => q{,};
Readonly my $FIELD_COUNT => 3;

Grab each line/record
while (my $record = <$sales_data>) {

chomp $record;
Extract all fields
my ($ident, $sales, $price)

= split $RECORD_SEPARATOR, $record, $FIELD_COUNT+1;
Append each record, translating ID codes and
normalizing sales (which are stored in 1000s)
push @sales, {

ident => translate_ID($ident),
sales => $sales * 1000,
price => $price,

};
}

89

177

Reality check
my ($ident, $sales, $price, $unexpected_data)
= split $RECORD_SEPARATOR, $record, $FIELD_COUNT+1;

if($unexpected_data){
carp
"Unexpected trailing garbage at end of record id

'$ident':\n",
"\t$unexpected_data\n“;
}

178

sorting

• stable sort
– keeps items which are equal (in a sort sense)

in order as the sort progress

– B A E` D G E`` F Q E```
– A B D E` E`` E``` F G Q

90

179

optimization

• internally the sort routine will sometimes
compute all keys and store them along
with the items to sort efficiently

180

reuse sorting
use Sort::Maker;
Create sort subroutines (ST flag enables

Schwartzian transform)
...
make_sorter(name => 'sort_md5', code => sub{ md5sum($_) }, ST => 1);
make_sorter(name => 'sort_ids', code => sub{ /ID:(\d+)/xms }, ST => 1);
make_sorter(name => 'sort_len', code => sub{ length }, ST => 1);

and later
...
@names_shortest_first = sort_len(@names);
@names_digested_first = sort_md5(@names);
@names_identity_first = sort_ids(@names);

91

181

Any ideas ?

• my @stuff = <*.pl>;

182

equivalent
• my @files = glob($FILE_PATTERN);

92

183

sleep

• takes integer args
• sleep 0.5; #??

• Solution:
– use Time::HiRes qw(sleep);

– sleep 0.5;

184

Beware

• before this package, programmers were
taking advantage of another call

• select undef, undef, undef, 0.5;

• it is supposed to check if i/o streams are
free

• can take second fractions

93

185

• even if doing it wrong, at least encapsulate

sub sleep_for {
my ($duration) = @_;
select undef, undef, undef, $duration;
return;
}

and then
sleep_for(0.5);

186

• map BLOCK LIST
• map EXPR, LIST

• hard to tell when expression part ends

• @args = map substr($_, 0, 1), @flags, @files, @options;

• @args = map {substr $_, 0, 1} @flags, @files, @options;

94

187

Scalar::Util
• blessed $scalar

– If $scalar contains a reference to an object, blessed() returns a
true value (specifically, the name of the class).

– Otherwise, it returns undef.
• refaddr $scalar

– If $scalar contains a reference, refaddr() returns an integer
representing the memory address that reference points to.

– If $scalar doesn't contain a reference, the subroutine returns
undef.

– useful for generating unique identifiers for variables or objects
• reftype $scalar

188

List::Util

• first {<condition>} @list
• shuffle @list
• max @list
• sum @list

• List::MoreUtils
– all {<condition>} @list

95

189

sub fix {
my (@args) = @_ ? @_ : $_; # Default to fixing $_ if no args provided

Fix each argument by grammatically transforming it and then printing it...
for my $arg (@args) {
$arg =~ s/\A the \b/some/xms;
$arg =~ s/e \z/es/xms;
print $arg;

}
return;
}

and later...
&fix('the race'); # Works as expected, prints: 'some races'

for ('the gaze', 'the adhesive') {
&fix; # Doesn't work as expected: looks like it should fix($_),

but actually means fix(@_), using this scope's @_!
See the 'perlsub' manpage for details

}

190

sub lock {
my ($file) = @_;
return flock $file, LOCK_SH;

}

sub link {
my ($text, $url) = @_;
return qq{$text};

}

lock($file);
Calls 'lock' subroutine; built-in 'lock' hidden
print link($text, $text_url);
Calls built-in 'link'; 'link' subroutine hidden

96

191

subs

• name sub arg so that it makes your code
easier to work with
– as opposed to working with $_[0], $_[1] etc
– can make mistakes with offsets

192

• for more than three args, pass in hash ref

97

193

sub padded {

my ($arg_ref) = @_;

my $gap =
$arg_ref->{cols} - length $arg_ref->{text};
my $left = $arg_ref->{centered} ? int($gap/2) : 0;
my $right = $gap - $left;

return $arg_ref->{filler} x $left
. $arg_ref->{text}
. $arg_ref->{filler} x $right;

}

194

use Contextual::Return;
return (
LIST { @server_data{ qw(name uptime load users) };
}

BOOL { $server_data{uptime} > 0;
}

NUM { $server_data{load};
}

STR { "$server_data{name}: $server_data{uptime},
$server_data{load}"; }

HASHREF { \%server_data;
}

);

98

195

sub prototypes

• this is good only if programmers can see
the sub
– that is good for private subs

• issues
– can’t specify how they will be used
– can introduce bugs if adding it to code

196

returns

• always type out your returns
• covers your bases
• plain return for failure

– returning undef can be misinterpreted in list
context as non false return

99

197

Files

• pay attention how you use bareword
filenames when creating them

• Never open, close, or print to a file without
checking the outcome.

198

SAVE:
while (my $save_file = prompt 'Save to which file? ') {

Open specified file and save results...

open my $out, '>', $save_file or next SAVE;
print {$out} @results or next SAVE;
close $out or next SAVE;

Save succeeded, so we're done...

last SAVE;
}

100

199

filehandles

• if you don’t need them, close them asap
– will free up memory and buffers much earlier

• Use while (<>), not for (<>)
– for implemented very inefficiently
– any ideas why ?

200

side point
• ranges are different, although files are slurped in all at once for list context

in for loop
• the following is lazily evaluated
for my $n (2..1_000_000_000) {

my @factors = factors_of($n);

if (@factors == 2) {
print "$n is prime\n";

}
else {

print "$n is composite with factors:
@factors\n";

}
}

101

201

fast way to slurp

• if you need to read in a file at once
• default a little inefficient as it looks for

record seperators (\n)
• override the definition

my $text = do { local $/; <$in> };

202

• faster way involves system level calls
– sysread $fh, $text, -s $fh;

• File::Slurp
– read_file

• wraps that system call

102

203

• use Perl6::Slurp;

• my $text = slurp $file_handle;

204

• Avoid using *STDIN, unless you really
mean it.

• might not have a regular stdin
– example: in a pipeline

• Always put filehandles in braces within
any print statement.

103

205

interfacing with user
• Always prompt for interactive input
• can run a check:

use IO::Interactive qw(is_interactive);

and later...
if (is_interactive()) {

print $PROMPT;
}

206

• if you are doing a lot of interaction
consider:

use IO::Prompt;

my $line = prompt 'Enter a line: ';

104

207

references

• Wherever possible, dereference with arrows
– neater code
– interpolates

• Where prefix dereferencing is unavoidable, put
braces around the reference (next slide)

• Never use symbolic references
• for circular references, be sure to call weaken

208

push @{$list_ref}, @results;

print substr(${$str_ref}, 0, $max_cols);

my $first = ${$list_ref}[0];
my @rest = @{$list_ref}[1..$MAX];

my $first_name = ${$name_ref}{$first};
my ($initial, $last_name) =

@{$name_ref}{$middle, $last};

print @{${$ref_to_list_ref}}[1..$MAX];

105

209

Objects

• always use the base form
– use base qw(Avian Agrarian Alien);

• bless class explicitly
• Pass constructor arguments as labeled

values, using a hash reference
• Separate your construction, initialization,

and destruction processes

210

Databases

• lets talk about databases

106

211

Database

• a collection of data stored on a computer with
varying layers of abstraction sitting on top of it.

• Each layer of abstraction generally makes the
data stored within easier to both organize and
access, by separating the request for particular
data from the mechanics of getting that data.

212

Relational Database
• relational database is a database that is

perceived by the user as a collection of tables,
where a table is an unordered collection of
rows.

• (Loosely speaking, a relation is a just a
mathematical term for such a table.)

• Each row has a fixed number of fields, and
each field can store a predefined type of data
value, such as an integer, date, or string.

107

213

API
• Databases use Application Programming Interfaces

(APIs) to provide access to the data stored within the
database.

• In the case of the simplest databases, the API is simply
the file read/write calls provided by the operating system

• An API allows programmers to interact with a more
complex piece of software through access paths defined
by the original software creators.

• Example: Berkeley Database Manager API. In addition
to simply accessing the data, the API allows you to alter
the structure of the database and the data stored within
the database.

214

Query Language

• Allows you to manipulate the underlying
data in the database

• Fetch
• Store
• Update
• Delete

108

215

Simplest case

• We can use a flat file as the simplest
database

• How to separate data
– delimiter
– fix length

• how would the operations work ?

216

• what is missing from this picture ?

109

217

• concurrency

• we need to protect the integrity of the
database

218

SQL

• Structured Query Language, or SQL is a
language designed for the purpose of
manipulating data within databases.

110

219

RDBM
• relational database model revolves around data

storage units called tables, which have a
number of attributes associated with them,
called columns.

• Example:
– user
– password
– homedirectory
– GUI
– UID

220

schema

• A schema is a collection of logical data
structures, or schema objects, such as
tables and views.

• In some databases, a schema
corresponds to a user created within the
database.

• In others, it's a more general way of
grouping related tables.

111

221

data

• data is stored in rows
• each column has a type associated with it
• types:

– numeric
– text
– binary
– type specific (time)
– null

222

Select

• SELECT column, column, ..., column
• FROM table

• SELECT user,passwd from usertable

• SELECT user,passwd from usertable
where user like ‘%sh%’;

112

223

• joining tables

• grouping data

• ordering data

224

• lets take a quick look at the background
slides

113

225

Perl implementation

• The DBI architecture is split into two main
groups of software:

1. The DBI defines the actual DBI programming
interface, routes method calls to the
appropriate drivers, and provides various
support services to them.

2. Specific drivers are implemented for each
different type of database and actually perform
the operations on the databases.

226

114

227

DBI handles

228

• can have mulitple driver handles open at the
same time
– great for data transfers

• $dbh = DBI->connect($data_source, ...);

• statement handles are for working with sql

115

229

• $dbh = DBI->connect($data_source, $username, $password,
\%attr);

#!/usr/bin/perl -w
#
ch04/connect/ex1: Connects to an Oracle database.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username",

"password")
or die "Can't connect to Oracle database: $DBI::errstr\n";

exit;

230

#!/usr/bin/perl -w
#
ch04/connect/ex3: Connects to two Oracle databases simultaneously.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver
my $dbh1 = DBI->connect("dbi:Oracle:archaeo", "username", "password")

or die "Can't connect to 1st Oracle database: $DBI::errstr\n";

my $dbh2 = DBI->connect("dbi:Oracle:seconddb", "username", "password")
or die "Can't connect to 2nd Oracle database: $DBI::errstr\n";

exit;

116

231

#!/usr/bin/perl -w
#
ch04/connect/ex4: Connects to two database, one Oracle, one mSQL
simultaneously. The mSQL database handle has
auto-error-reporting disabled.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver
my $dbh1 = DBI->connect("dbi:Oracle:archaeo", "username", "password")

or die "Can't connect to Oracle database: $DBI::errstr\n";

my $dbh2 = DBI->connect("dbi:mSQL:seconddb", "username", "password" , {
PrintError => 0

})
or die "Can't connect to mSQL database: $DBI::errstr\n";

exit;

232

Now, disconnect from the database
$dbh->disconnect
or warn "Disconnection failed:
$DBI::errstr\n";

exit;

117

233

For example:

Attributes to pass to DBI->connect()
%attr = (

PrintError => 0,
RaiseError => 0

);

Connect...
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , \%attr);

Re-enable warning-level automatic error reporting...
$dbh->{PrintError} = 1;

Most DBI methods will return a false status value, usually undef, when execution fails. This is easily tested by Perl in
the following way:

Try connecting to a database
my $dbh = DBI->connect(...)

or die "Can't connect to database: $DBI::errstr!\";

234

getting ready to talk
• every database has its own system of representing

– empty strings
– quotes
– escapes

my $quotedString = $dbh->quote($string);

Use quoted string as a string literal in a SQL statement
my $sth = $dbh->prepare("

SELECT *
FROM media
WHERE description = $quotedString

");

$sth->execute();

118

235

trace
• 0

– Disables tracing.
• 1

– Traces DBI method execution showing returned values and
errors.

• 2
– As for 1, but also includes method entry with parameters.

• 3
– As for 2, but also includes more internal driver trace

information.
• 4

– Levels 4, and above can include more detail than is helpful

236

use DBI;

Remove any old trace files
unlink 'dbitrace.log' if -e 'dbitrace.log';

Connect to a database
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password");

Set the tracing level to 1 and prepare()
DBI->trace(1);
doPrepare();

Set the trace output back to STDERR at level 2 and prepare()
DBI->trace(2, undef);
doPrepare();

exit;

prepare a statement (invalid to demonstrate tracing)
sub doPrepare {

print "Preparing and executing statement\n";
my $sth = $dbh->prepare("

SELECT * FROM megalith
");
$sth->execute();
return;

}

exit;

119

237

utilities

• neat
– allows you to print out type and formatted

output of any data
• looks_like_number

238

Life of sql query
1. The prepare stage parses an SQL statement, validates that statement, and returns a statement

handle representing that statement within the database.
2. Providing the prepare stage has returned a valid statement handle, the next stage is to execute

that statement within the database. This actually performs the query and begins to populate data
structures within the database with the queried data. At this stage, however, your Perl program
does not have access to the queried data.

3. Fetch stage, in which the actual data is fetched from the database using the statement handle.
The fetch stage pulls the queried data, row by row, into Perl data structures, such as scalars or
hashes, which can then be manipulated and post-processed by your program.

The fetch stage ends once all the data has been fetched, or it can be terminated early using the
finish() method.

If you'll need to re-execute() your query later, possibly with different parameters, then you can
just keep your statement handle, re-execute() it, and so jump back to stage 2.

4. deallocation stage. This is essentially an automatic internal cleanup exercise in which the DBI
and driver deallocate the statement handle and associated information. For some drivers, that
process may also involve talking to the database to tell it to deallocate any information it may
hold related to the statement

120

239

prepare stage

240

stage 2:
Create the statement handle
my $sth = $dbh->prepare("SELECT id, name FROM

megaliths");

Execute the statement handle
$sth->execute();

121

241

stage 3
• The data retrieved by your SQL query is known as a result set (so called because of the mathematical set theory

on which relational databases are based).
• The result set is fetched into your Perl program by iterating through each record, or row, in the set and bringing

the values for that row into your program. This form of fetching result set data on a row-by-row basis is generally
termed a cursor.

• Cursors are used for sequential fetching operations: records are fetched in the order in which they are stored
within the result set. Currently, records cannot be skipped over or randomly accessed. Furthermore, once a row
addressed by a cursor has been fetched, it is ``forgotten'' by the cursor. That is, cursors cannot step backwards
through a result set.

• We fetch data from the database's result set is to loop through the records returned via the statement handle,
processing each row until no rows are left to fetch:

while (records to fetch from $sth) {
Fetch the current row from the cursor
@columns = get the column values;
Print it out...
print "Fetched Row: @columns\n";

}

242

Prepare the SQL statement (assuming $dbh exists)
$sth = $dbh->prepare("

SELECT meg.name, st.site_type
FROM megaliths meg, site_types st
WHERE meg.site_type_id = st.id

");

Execute the SQL statement and generate a result set
$sth->execute();

Fetch each row of result data from the database as a list
while (($name, $type) = $sth->fetchrow_array) {

Print out a wee message....
print "Megalithic site $name is a $type\n";

}

122

243

• returned data is in the same order your
sql statement was worded

• select user, passwd
• select passwd, user

244

• can use references instead of data copy of run
through results

Fetch the rows of result data from the database

as an array ref....

while ($array_ref = $sth->fetchrow_arrayref) {
Print out a wee message....

print "Megalithic site $array_ref->[0] is a
$array_ref->[1]\n";

}

die "Fetch failed due to $DBI::errstr" if $DBI::err;

123

245

what is wrong here
The stash for rows...
my @stash;

Fetch the row references and stash 'em!
while ($array_ref = $sth->fetchrow_arrayref) {

push @stash, $array_ref;
}

Dump the stash contents!
foreach $array_ref (@stash) {

print "Row: @$array_ref\n";
}

246

The stash for rows...
my @stash;

Fetch the row references and stash 'em!
while ($array_ref = $sth->fetchrow_arrayref) {

push @stash, [@$array_ref]; # Copy the array
contents

}

Dump the stash contents!
foreach $array_ref (@stash) {

print "Row: @$array_ref\n";
}

124

247

• call finish if you don’t want all the results
or are done processing

• will signal the db that it can “forget” your
resultsets

• if you have any results pending, shutdown
of db will give you warning messages

248

non select statements
Assuming a valid database handle exists....
Delete the rows for Stonehenge!
$rows = $dbh->do("

DELETE FROM megaliths
WHERE name = 'Stonehenge'

");

• will return number of rows affected

125

249

binding
$sth = $dbh->prepare("

SELECT name, location
FROM megaliths
WHERE name = ?

");
$sth->bind_param(1, $siteName);

250

type binding
use DBI qw(:sql_types);

$sth = $dbh->prepare("
SELECT meg.name, meg.location, st.site_type, meg.mapref
FROM megaliths meg, site_types st
WHERE name = ?
AND id = ?
AND mapref = ?
AND meg.site_type_id = st.id

");
No need for a datatype for this value. It's a string.
$sth->bind_param(1, "Avebury");

This one is obviously a number, so no type again
$sth->bind_param(2, 21);

However, this one is a string but looks like a number
$sth->bind_param(3, 123500, { TYPE => SQL_VARCHAR });

Alternative shorthand form of the previous statement
$sth->bind_param(3, 123500, SQL_VARCHAR);

All placeholders now have values bound, so we can execute
$sth->execute();

126

251

binding results
Perl variables to store the field data in
my ($name, $location, $type);

Prepare and execute the SQL statement
$sth = $dbh->prepare("

SELECT meg.name, meg.location, st.site_type
FROM megaliths meg, site_types st
WHERE meg.site_type_id = st.id

");
$sth->execute();

Associate Perl variables with each output column
$sth->bind_columns(undef, \$name, \$location, \$type);

Fetch the data from the result set
while ($sth->fetch) {

print "$name is a $type located in $location\n";
}

252

Do vs Prepare

• do statement actually does a 4 step
process in the background

• if you have multiple statements in a do,
better call prepare+execute instead

127

253

memory usage
• There is a saying that to estimate memory usage of Perl, assume a

reasonable algorithm for memory allocation, multiply that estimate by 10,
and while you still may miss the mark, at least you won't be quite so
astonished. This is not absolutely true, but may provide a good grasp of
what happens.

• Assume that an integer cannot take less than 20 bytes of memory, a float
cannot take less than 24 bytes, a string cannot take less than 32 bytes (all
these examples assume 32-bit architectures, the result are quite a bit
worse on 64-bit architectures).

• If a variable is accessed in two of three different ways (which require an
integer, a float, or a string), the memory footprint may increase yet another
20 bytes. A sloppy malloc(3) implementation can inflate these numbers
dramatically.

254

• sub foo;
– may take up to 500 bytes of memory, depending on which release of Perl

you're running.

• Anecdotal estimates of source-to-compiled code bloat suggest an eightfold
increase. This means that the compiled form of reasonable (normally
commented, properly indented etc.) code will take about eight times more
space in memory than the code took on disk.

• There are two Perl-specific ways to analyze memory usage:
$ENV{PERL_DEBUG_MSTATS} and -DL command-line switch. The first is
available only if Perl is compiled with Perl's malloc(); the second only if Perl
was built with -DDEBUGGING. See the instructions for how to do this in
the INSTALL podpage at the top level of the Perl source tree.

128

255

• If your perl is using Perl's malloc() and was
compiled with the necessary switches (this is
the default), then it will print memory usage
statistics after compiling your code when
$ENV{PERL_DEBUG_MSTATS} > 1, and
before termination of the program when
$ENV{PERL_DEBUG_MSTATS} >= 1. The
report format is similar to the following example:

256

$ PERL_DEBUG_MSTATS=2 perl -e "require Carp"
Memory allocation statistics after compilation: (buckets 4(4)..8188(8192)

14216 free: 130 117 28 7 9 0 2 2 1 0 0
437 61 36 0 5

60924 used: 125 137 161 55 7 8 6 16 2 0 1
74 109 304 84 20

Total sbrk(): 77824/21:119. Odd ends: pad+heads+chain+tail: 0+636+0+2048.
Memory allocation statistics after execution: (buckets 4(4)..8188(8192)

30888 free: 245 78 85 13 6 2 1 3 2 0 1
315 162 39 42 11

175816 used: 265 176 1112 111 26 22 11 27 2 1 1
196 178 1066 798 39

Total sbrk(): 215040/47:145. Odd ends: pad+heads+chain+tail:
0+2192+0+6144.

