
1

1

CS3157: Advanced
Programming

Lecture #1
May 22

Shlomo Hershkop
shlomo@cs.columbia.edu

2

First!

• I am not Shlomo!

• Who am I (I am the TA)

• Shlomo’s excuse: Giving a talk in
California, will be back on Wednesday!

2

3

It summer Session!

• Welcome (Greeting from Prof Shlomo)

• Ask yourself, is it better to spend the
summer outside or inside on this stuff ?!

• Hope to be very informal

• I hope to convince you this is more fun

4

Today

• Basics (of the course)
– Overview of the course and objectives
– Administrative issues

• Basic Perl
– Absolute minimum
– Syntactic details

• Setting up environment (during the
break?)

3

5

Today

• More Perl
– Subroutine
– File I/O
– Regular Expression
– Debugging

• Basic Shell Programming (if we have time)

6

Basic - overview of the class:

4

7

What?

• CS3157: Third course for CS majors.
• Prerequisites:

– Intermediate knowledge in Programming
– Object Oriented Programming:

• What, why, how, and when.

– Program Designs.
• Not enough to know how to write the program, need to know

how to do it correctly.
• Need to learn tool of the trade

8

Goal (of the course)
• Thing are much easier if everyone knows why they

are here, and what we are trying to accomplish.

• I will not stand here an lecture (although there will be
some of that). This is going to be a very interactive
course.

• We will learn about programming ideas (and
some practical skills) while trying to have fun.

5

9

So what are we going to be doing?
• Cover some practical languages:

– Perl
– C
– C++

• Cover practical skills:
– Debugging
– Environmental setup
– CGI/Web based programming
– Regular expressions
– Web scripting
– Plus more!

10

Point

• Programming is not Java !
• Computer science != programming

• Give you a feel of the real world:
1. Problem description blurry
2. Many choices for programmer
3. Will learn best tools to stay lazy ☺

6

11

Basic – admin Issues

12

Basics

• Instructor: Professor Shlomo Hershkop
(shlomo@cs.columbia.edu)

• Class website:
– cs.columbia.edu/~sh553/teaching/su06-3157/
– Check it regularly (at least twice a week).

• See announcement sections for update info.

– Will give you my background on Wednesday
when we meet

• Meet twice a week: 627 Mudd

7

13

Resources
• TA’s:

– Tae Yano (ty2142@columbia.edu)
– I will have office hour 2 to 3 hours a week, will post the time
– Place: Mudd 122a (TA room)
– else available by appointment

• Since we are a small class:
– We will setup a mail list so that an email will go to everyone:

• Good:
How do I check what version of java is running?
Hints for problem X

• What does Error ?@?@!?@ mean ?
– Bad: What is wrong with the following code:

public class foo()
– These kind of questions email privately to TA or Instructor

14

Requirements

• Interest to learn about Computer Science

• Interest to Learn to use cool tools

• Interest to Learn to make your own tools

8

15

Textbook
• Textbook can be acquired online or at the Columbia

Bookstore.
– Else: borrow, threaten, or ‘acquire’ a book

• Perl
– Programming Perl (get the last edition)
– Wall, Christiansen, and Orwant

O'Reilly
• C

– C how to program
– Dietel and Dietel

16

Reading

• I will be posting reading on the website
and in class notes

• Please try to keep up with the reading
– I will try to make up examples for class, but there

are random stuff which the book covers which is
good to see in print

– Feel free to ask questions from the book

9

17

Course Structure
• 6 Labs – 120 points

– Out Wednesday, Due by class time
• 2 Homeworks – 60 points

– Will have about 2 weeks per homework
• Final (60 points)

– open book
• Homework/Lab is very important:

– Firm believer in hands on learning
– Start early
– Come to office hours, and ask questions

• We are here for YOU!

18

Class participation and Attendance

• Attendance and participation is expected
– Very interactive lectures & Labs
– Small class, means more help
– Class anonymous feedback system

• If you have to miss class, I expect you to catch
up.
– It’s a short semester, (better coming to class than

catching up later...)
– There will be class notes posted to the website
– There will be many examples in class only, so make

sure to get someone’s notes.

10

19

Homework & Projects
• Written:

– Will be collected at first class after HW deadline.

• Programming:
– Online submission
– Must be able to run on cunix system (this is

important).

• Late policy:
– You have late days that can be used during the

semester.
– I can only review the homework and approaches if

everyone submits on time, so try to ask for help
earlier rather than later

20

Labs
• Generally will create a few programs
• If everyone has a laptop we can work in class

(end of class)
• Online submissions – will create script in first

lab!
• Will be around to answer questions hints
• Can NOT ask for code from other students

– Can ask input/output
– General ideas
– Use your best judgment

11

21

Cheating

•Don’t

22

Cheating Policy
• Plagiarism and cheating:

– I’m all against it. It is unacceptable.
• You’re expected to do homeworks by yourself

– This is a learning experience.
– You will only cheat yourself.
– My job is to help you learn, not catch you cheating, but….

• Automated tools to catch plagiarizers
– http://www.cs.berkeley.edu/~aiken/moss.html
– Moving stuff around, renaming, etc. doesn’t help

• Results: instant zero on assignment, referral to
academic committee
– Columbia takes dishonesty very seriously
– I’d much rather you come to me or the TAs for help

12

23

Feedback System
• Last minute of class will be set aside for

feedback:
– Please bring some sort of scrap paper to class to provide

feedback.
– Feel free to leave it anonymous.
– Content: Questions, comments, ideas, random thoughts.

• I will address any relevant comments at the
beginning of each class

• Summer is short, so provide feedback !
• Please feel free to show up to office hours or

make an appointment at any time

24

Shopping List

• You need either a cunix or CS account
– CS: https://www.cs.columbia.edu/~crf/accounts
– Try to log into the account asap

• Make textbook plans
– Recommend : Programming Perl
– You can choose any perl reference

• Check out the class page

13

25

Survey 1

• Programming background ?

• Do you have access to a laptop?

• Any cool technologies you would like to
see covered ?

(collect during the break)

26

Any Questions ?

14

27

Last plug

• One of the points of computer science is to
teach you how to think, learn, and analyze
computational related information.

• Example:
– Task: Create a program to run a web based

game, which will be marketed to both desktop
and phone users.

– Any ideas on how to design the programming backend?
– Ideas on how to measure requirements.
– What else is important?

28

Basic Perl - preliminary

15

29

Perl

• What is it?
– Perl was originally designed as a logging tool,

released by Larry Wall in 1987.
– Open source and cross platform. Current

version 5.8.7.
– Referred to as “duct-tape” of the internet

– Will quickly learn why ☺

30

Perl

• What is it?
– Scripting language
– Aims to be a USEFUL language
– Base + tons of libraries
– Both a compiler and byte code executable

• Where to get it?
– cpan.org
– www.activestate.com/Products/ActivePerl/

16

31

Difference: Java and PERL?
• Java

– High Level Language (or low, depends on which way you
see it from)

– Source code is compiled to byte code
– Byte code = java execution instructions
– Byte code executed by java

• Perl
– Scripting language - Very very non-rigid structure. Many

way to say the same thing.
– code can be interpreted line by line in real time - i.e.

compiles and executes each time invoked
– A lot of functionality built into base language. String (text)

handling second to none (python?)

32

• How would you write a program to extract
all email addresses from a text file ?
– With Java??
– Perl would be much better at such problem

17

33

(Before start) Environmental
Hazards
• Depending on the local system will behave differently:
• Cunix

– Anyone know what operating system they run ?
• CS students - CS department has both of these main

os’s :
– Linux
– SunOS

• Windows
– Active perl
– Cygwin

• Perl
• VNC

– Allow you to remote connect to CS if you have an account

34

Pre-programming

• What do you name a perl script ?
– Something.pl (e.g., “test.pl”)

• Make sure there is a Perl
– Many times its important to check which version of

Perl is being used. Perl evolved over time. Might
require a minimum version to work.

• perl –v
– On unix/linux/sun can see where the Perl compiler is

located (this gives you correct path to the Perl).
• which perl

18

35

Running (or executing) the code
• From the command line.

• On unix/linux, you need to tell system to execute
your perl script

chmod +x test.pl
./test.pl

• The other way is to call perl directly
perl test.pl

36

test.pl
#!/usr/bin/perl

#test.pl – should be called

#hello_world.pl

#your first perl program

print “hello everyone\n”;

19

37

Line1: Compiler/interpreter

• Perl is interpreted
• The script needs to tell the system where

the interpreter is sitting
• Accomplished by special command on the

first line of your program:

#!/usr/bin/perl
or

#!c:\perl\bin

38

Line2: Comments

• Comments start the line with a hash, will
continue to end of line mark, S.A

#your first perl program

20

39

Line3: Built in functions

• Can call tons of built in functions to do
stuff in Perl

• Can define your own (more later today)
• One is the print command (such as this)

• print “something\n”;

40

(end of Basic Perl - preliminary)
(next – syntactic detail)

21

41

Basic Perl – syntactic detail

42

Technical details

• By default the start of your code is the
equivalent of “main”

• Will run each line in turn, execute and then
next line

• Will end when reach end of code

22

43

• Whitespace
– only needed to separate terms
– all whitespace (spaces, tabs, newlines) are treated

the same
– Use them to make the code look nice, easier to look

over

• Semicolons
– every simple statement must end with one
– except compound statements enclosed in braces (i.e.,

no semicolon needed after the brace)
– except final statements within braces
– Advice: ALWAYS use semicolons for commands

44

Strings

• Double quoted strings are interpreted, so
you can have a scalar in it and it will be
translated

“hello: $name\n”;

• Use a period to combine strings
“hello” . $name . “\n”;

• Single quote strings are not interpreted,
they are read literally

23

45

Something New
• Most languages you know already, variables

need to be declared ahead of time, what type
they will deal with.

• By default Perl, will try to figure out what you mean.
• Which means as soon as you use a variable for

the first time, Perl will assign it a type then

• So initialization and declaration/assignment
happen at once

46

Variables

• Variables
– Data dependent (examples follow)
– No space in name
– names consist of letters, digits, underscores;

up to 255 chars
– CASE SENSITIVE
– Should start with letter or underscore
– Initialized variables have the value of undef

• Can use it later to test if a variable has been
used/assigned

24

47

Data types

• The basic data types are as follows, we
will go through each in turn

• scalars ($)
• arrays (@)
• hashes (%)
• subroutine(&)
• typeglob(*)

48

Scalars
• This type of variable starts with a '$'

– $first
– $course

• Can hold: int, real, string
– 234
– -89
– 36.34
– “hello world”

25

49

• Context dependent (can take any type, so to
speak)

$name = “shlomo”;
#perl sees this is a string
$n = 123;
#perl sees this as a number

50

Arrays
• Starts with @
• Order list of scalars

@class3157 =
(“shlomo”,”weijen”,”edward”);

• The scaler type in the array can be anything a
scalar can hold

• So can mix numbers and strings etc

26

51

• To reference elements, use the variable name
with a dollar in front and subscript

$class3157[0]; #is shlomo
$class3157[i]; #in general

• Since perl tries to be useful what do you think this
should be? $class3157[-1];

$class3157[14];

52

• Can get the length easily by :
$a = @class3157; or
print @class3157

• Referencing an array through a scaler
$ref = \@class3157;

• De-refrencing an array
$$ref[0]
- This can be done with any perl type
- Will print ARRAY(0x18328cc) when printing a referenced

array

27

53

When to use reference?

• Why would you want to use a reference to
an array ?

• Say you want to pass in 2 arrays into
functions, you will need to reference the
arrays…..

• More of this later

54

Anonymous Arrays

• Really cool Perl feature:
– Can create the equivalent of an anonymous

array by simply putting parenthesis around
scalars, s.a;
return($max,$average);

• Another example;
($first,$second)= @number
• This will grab the first and second scalars from the

number array

28

55

Hashes

• Very useful built in type.
• A set of name/value pairs.
• Think it as a data type like array, but with

string for index instead of int.
• Start with %. Curly braces to access

elements.

56

• name/values pairs can be defined in one
of two ways:
%phonelist = {adam=>718, barry=>345};

or
%phonelist = {“adam”,718,”barry”,345};

• Use the name to find the value
$phonelist{“adam”} #is 718

29

57

recall email problem

• So how can we use hashes to keep track
of email user counts ?

58

test2.pl
#!/usr/bin/perl

#this is the snip of the code.

$name = getnextemail($sometext);
#What does this do?
if ($emailcount{$name}) {

$emailcount{$name}++;
}else{

$emailcount{$name} = 1;
}

#but, we should cover operator and logic structure.

30

59

Reserved variables
• there’s a (long) list of global special variables... a

few important ones:
• $_ = default input and pattern-searching string, its

usually the last scalar you touched

• example:
#!/usr/bin/perl
@b = (2,4,6,8);
foreach (@b){

print $_,"\n";
} #hold on to the question on foreach

60

• $/
– input record separator (default is newline)

• $$
– process id of the perl process running the script

• $<
– real user id of the process running the script

• $0
– (0=zero) name of the perl script

31

61

• @ARGV
– list of command-line arguments

• %ENV
– hash containing current environment

(below are filehandles - we will learn about them
soon)

• STDIN
– standard input

• STDOUT
– standard output

• STDERR
– standard error

62

Operators
• unary:

1. ! : logical negation
2. - : arithmetic negation
3. ˜ : bitwise negation

• arithmetic
1. +,-,*,/,% : as you would expect
2. ** : exponentiation

• relational
1. >, <=, <=, <= : as you would expect

32

63

• equality
1. ==, != : as you would expect
2. <=> : comparison, with signed result:
3. returns -1 if the left operand is less than the right;
4. returns 0 if they are equal;
5. returns +1 if the left operand is greater than the right

• assignment, increment, decrement
1. =
2. +=, ++
3. -=, --
4. *=, **=, /=, %=
5. &&=, ||=

...Just Like C/C++/Java

64

Next

• Now that we covered the basic types of
Perl, lets start to get to the logic/rules of
the code

33

65

Statements
• simple statements are expressions that get

evaluated
• they end with a semicolon (;)
• a sequence of statements can be contained in a

block, delimited by braces ({ and })
• the last statement in a block does not need a

semicolon
• blocks can be given labels:

myblock: {
print "hello class\n";

}

66

Conditional Statements
● simple if

if (expression) {block} else {block}
● unless

unless (expression) {block} else {block}
● compound if

if (expression1) {block}
elsif (expression2) {block}
...
elsif (expressionN) {block}
else {block}

34

67

Loops

• while
while (expression) {block}

• for
for (expression1; expression2; expression3) {block}

• foreach
foreach var (list) {block}

68

while
Syntax:

while (expression) {block}

Example:
#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;
$i=0;
while ($i < $a) {

print "i=",$i," b[i]=",$b[$i],"\n";
$i++;

}

35

69

for
Syntax:

for (expression1; expression2; expression3) {block}

Example:
#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;
for ($i=0; $i<$a; $i++) {

print "i=",$i," b[i]=",$b[$i],"\n";
}

70

foreach
The 'foreach' statement allows you to quickly cycle through

array values

Syntax:
foreach var (list) {block}

Example:
#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;
foreach $e (@b) {

print "e=",$e,"\n";
}

36

71

Question

• So if foreach allows you to cycle through
arrays...

• How would you cycle through hash, since its
composed of key->value pairs ?

72

test3.pl
#!/usr/bin/perl

this is a snip of test3.pl

foreach $k (keys $emailcount) {
print “$k = “
print $emailcount{$k};
print “\n”;

}

37

73

keys

• Built in command (or function)
• Allows you to fetch all the keys of the hash type
• Use each one to access the individual value pair

74

Side note
• Side note - To look up Perl command can use the

perldoc command, do:

perldoc –f keys

• which would output (something like):

keys HASH
Returns a list consisting of all the keys of the
named hash. (In scalar context, returns the number
of keys.) The keys are returned in an apparently
random order. The actual random order is subject
to change in future versions of perl, but it is
guaranteed to be the same order as either the
"values" or "each“ function produces (given that
the hash has not been modified). ...

38

75

Modifiers
• Nifty grammar, but should be careful about

assuming a line will execute, read it carefully. (There
are many way to say same thing...)

• You can follow a simple statement by an if,
unless, while, or until modifier:

statement if expression;
statement unless expression;
statement while expression;
statement until expression;

76

Examples
• Examples:

#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;

print "hello world!\n" if ($a < 10);
print "hello world!\n" unless ($a < 10);
#print "hello world!\n" while ($a < 10);
#print "hello world!\n" until ($a < 10);

39

77

Controlling loops

• next
within a loop allows you to skip the current loop

iteration
• last

allows you to end the loop

• Just like continue/break statement from
C/C++/Java

78

(end of Basic Perl – syntactical details)
(next – More Perl – Subroutine, File I/O, RE)
(take a break, if have not. collect survey)

40

79

More Perl – Subroutine, File I/O,
RE

80

Ok so far

• We have variable types, arithmetic
operators, and some logic

• More interesting parts. Starting with writing
your own functions, which Perl calls
subroutines

• Talk of scope before going into
subroutine...

41

81

Scope

• What is scope?
• Default scope is main
• $name can also be referred to as

$main::name
• package NAMESPACE

Within any block of code, can declare that the
rest of the code will belong to a specific
namespace

82

Variables and Modifiers
• Modifiers allow you to differentiate between

variable types.
• Local (current) - variable exists within the local

(current) section (scope), either main or a
subroutine or code block (between braces):

my $name

• Global – can be seen from other section of the
code:

our $name

local $name

42

83

Scope: usage

• my $time, $out;
– here, only time is a local variables

• my ($time,$out)
– correct way to do it.

• Remember to place more than one variable in
parenthesis!!

84

Subroutine
• syntax for defining:

sub name {block}
sub name (proto) {block}

• where proto is like a prototype, where you put in
sample arguments

• syntax for calling from your code:
name(arg list);
name arglist;

(the & sign used to be required when calling functions, this has been
changed in the latest perl : it is optional if you use parenthesis in the
method call)

43

85

• Usually the sub definitions are placed at the
bottom of the file

• No reason, but makes code easier to read

86

sub1.pl
print “welcome to the program”;
testsub();

sub testsub(){
print “hi everyone\n”;

}

44

87

Passing arguments
• All arguments to a subroutine come in on the

@_ array

• That is argument list is packaged as an array
and can be accessed in the sub

88

• 3 different ways to grab arguments:
$a = @_[0];
($a) = @_;
$a = shift;

• Shift moves out the top of an array, if we don’t
specify it (and its first) we are talking about the
default array (nice and confusing).

45

89

Passing by values

• By default pass by value
• Which means a copy is sent in
• Any changed will be only local to

subroutine

90

So…what will be printed here?
$n = 45;
print "n is now $n\n";
testsub($n);
print "n is now $n\n";

sub testsub{
$a = shift;
print "in testsub 1 = $a\n";
$a++;
print "in testsub 2 = $a\n";

}

46

91

Pass by reference

• To have variables changed, pass the
reference to the scalar to the sub…i.e. you
are really manipulating the original one

• Use a backslash to say it’s a scalar
• Use extra dollar to say dereference

92

Pass by reference
$n = 45;

print "n is now $n\n";
testsub(\$n);
print "n is now $n\n";

sub testsub{
$a = shift;
print "in testsub $a\n";
$$a++;

}

47

93

Different subs

• Perl will make a best effort to both figure
out what the variables mean and which
functions you are trying to call

94

Example
#!c:\perl\bin
#this is sub4.pl snip

($first,$last) = &getname();
print "First is $first";

#return the fill name as a string
sub getname(){

return "shlomo hershkop";
}
#return name split
sub getname(){

return ("shlomo","hershkop");
}

48

95

(end Subroutine)
(next – File I/O)

96

Working with files

• Many things which are complicated in other
language become super easy in Perl. File I/O
with Perl is nice and easy.

• To go through a file 3 step process:
– Open
– Read / Write
– Close

49

97

Open files

• When you open, you need to say what type of
operations you will be doing:

open(FILEHANDLE, filename); # to open a file for read in
open(FILEHANDLE, >filename); # to open a file for writing
open(FILEHANDLE, >>filename); # to open a file for

appending

98

Print to files

• Once you’ve opened the file, can send
something to it by putting it after the print
command:

print FILEHANDLE, “….”;

• The filehandle is the variable you specified with
the open command

• Don’t forget to close the file when done writing

50

99

Example:
#!/usr/bin/perl
#this is the snip from fh1.pl
open(MYFILE,">a.dat");
#for example of s.c, see the next
print MYFILE "hi there!\n";
print MYFILE "bye-bye\n";
close(MYFILE);

100

Read form file

• Once you open a file handle, can get stuff from it
using the pointy brackets, like this:

<MYFILE>;

• This basically reads a line of text from the file
• Since destination isn’t specified its read to the $_
• You can also read in to a variable.

$line = <MYFILE>;

51

101

Errors handling

• So what if the open command fails?

• A trick - use double pipe to do something
like this;

... || warn print "message";

• Or if you want to fail:
... || die print "message";

102

Example II
#!/usr/bin/perl
open(MYFILE1,“a.dat") || warn "file 1
not found!";

open(MYFILE2,“>b.dat") || die "file 2
problems!";

while (<MYFILE1>) {
print MYFILE2 "$_\n"

}

close(MYFILE2);

52

103

Take a second to look this over
#!/usr/bin/perl

open(TEST,“test.txt") || die “can not
open file!\n”;

$linecount =0;
while ($line = <TEST>){
$linecount++;

}
close(MYFILE);
print “number of lines in the file:
$linecount\n”;

104

Not only read line

• Can also read individual bytes from files
(useful in low level graphic manipulation)

• getc FILEHANDLE
reads next byte from filehandle

53

105

chomp

• Not lunch! Another built-in function

• Removes \n very useful when processing
logs

• V. useful when you are reading line from
file

106

Other Useful built-in functions
(there are much much more)
• chomp $var
• chomp @list

removes any line-ending characters
• chop $var
• chop @list

removes last character
• chr number

returns the character represented by the ASCII value number
• eof filehandle

returns true if next read on filehandle will return end-of-file
• exists $hash{$key}

returns true if specified hash key exists, even if its value is
undefined

• exit
exits the perl process immediately

54

107

(end File I/O)
(next – Regular Expression)

108

Ok lets switch gears

• You now have enough knowledge to code
some simple but powerful programs.

• Lets do something that Perl is really good
at.

55

109

Patterns

• Many times when you process text, you need to
find patterns
– Email addresses
– Phone numbers
– Credit cards

• How would you look for all phone numbers in a
text file using Java ? (not really pretty)

110

Regular Expressions

• Regular Expressions is an elegant way of
Expressing patterns

• Use of simple building blocks to express even
the most complex patterns

• Perl has the extensive support for Regular
Expression

56

111

Match function
• Matching function in Perl

m/ /;

• Pattern goes between slashes, m is optional
• Use the =~ operator to match against text
• Returns true if match occurs, false otherwise
if($sometext =~ m/computer/){print
“matched”;}

this will look for any occurrence of the word 'computer' in
the scalar string $sometext.

112

Simplest pattern
• Is a string

• e.g., “computer”

• ...Is the pattern “c followed by o followed by m
...”

• Will not match to “cosputer”

57

113

Example (simple)
What will this do ?

#!c:\perl\bin
this is snip of re1.pl
$name = "shlomo hershkop";

if($name =~ /lom/){
print "have found match\n";

}
else{
print "no match found\n";

}

114

Example 2
#!/usr/bin/perl

$s = "hello world";
print ’$s=[’,$s,"]\n";
$t = ($s =˜ s/l/x/g);
print ’$t=[’,$t,"]\n";
print ’$s=[’,$s,"]\n";

this outputs:
$s=[hello world]
$t=[3]
$s=[hexxo worxd]

58

115

Flip patterns

• Can flip the match by saying:
!~/ /

• Example:
$line !~ /great/

• Will match any line with the word 'great'

116

Regular Expression attributes
• The matching operator can be modified by

following the last slash with specific characters.
– g = match globally (all instances)
– i = do case insensitive matching
– e = evaluate right side as an expression
– s = let . match newlines
– m = $ and ^ can refer to inside newlines
– c = compliment

59

117

Example 1
#!/usr/bin/perl
$s = "hello world";
print ’$s=[’,$s,"]\n";
if ($s =˜ m/x/)

{ print "there’s an x in ",$s,"\n" }
else

{ print "there isn’t\n" }
if ($s =˜ m/L/i)

{ print "there’s an l in ",$s,"\n" }
else

{ print "there isn’t\n" }

this outputs:
$s=[hello world]
there isn’t
there’s an l in hello world

118

Substitute function

• Instead of matching operation, can use
substitute
s/ / /;

• First space is pattern to find, second space is
pattern to replace it with

• Returns number of times substituted

60

119

Anchors
• You can force where on the line the pattern is

match by:
• ^

– Caret. Matches at the start of the line
• $

– Dollar sign. Mathes at the end of the line
• Example:

$line =~ /^credit/
#line begins with word credit

$line =~ /bye$/
#line ends with word bye

$line !~ /^great/i

120

Character choices
• [...]
• We can specify character ranges by using the

square brackets:

• Examples:
if($string =~ /[AEIOUY]/i)
{ print "contains a vowel!\n“; }
#Can also specify ranges
if($string =~ /[^a-e]/I) {
something }

61

121

Metacharacters
• Complex regular expressions use

metacharacters to describe various options in
building a pattern.

• \
– Backslash. A character prefixed by backslash is called

escape characters and have special meanings (e.g.,
“\n”).

• .
– Period. Match any single character
– e.g., /compu.er/ can match 'computer' and 'compuser'

122

• *
– Asterisk. Match zero or more of the preceding

character
– /comp*uter/ will match 'computer', 'comppppputer',

and 'comuter'

• +
– Plus sign. Match 1 or more of the preceding character
– /ab+a/ will match 'aba', 'abba', 'abbbbba', but not 'aa'

• ?
– Question mark. Match 1 or 0 of the preceding

character

62

123

Quantifiers
• { n1, n2 }

– Match n1 to n2 of the preceding character

• { n, }
– Match n or more of the preceding character

• { n }
– Match exactly n of the preceding character

124

Examples:
/ba*b/; #b,zero or more a, b
/ba{3,5}b/; #b, 3 and 5 a’s, b
/ba{2}b/; #b, exactly 2 a’s, b
/(ab){4,}/; #4 or more ab’s
/[a-h]{1,4}/; #1 to 4 character a~h

63

125

Escape shortcuts
• \w

– Match "word" character (alphanumeric plus "_")

• \W
– Match non-word character

• \s
– Match whitespace character

• \S
– Match non-whitespace character

• \d
– Match digit character

• \D
– Match non-digit character

126

More escape codes
• \t

– Match tab

• \n
– Match newline

• \r
– Match return

• \f
– Match formfeed

• \a
– Match alarm (bell, beep, etc)

• \e
– Match escape

64

127

Groups
• (...)

– Things inside parenthesis are taken as
“groups”

• To allow groups of alternative choices use pipe

Examples:
if($string =~ /(A|E|I|O|U|Y)/i)

{ print "String contains a vowel!\n“; }

if($string =~ /(Clinton|Bush)/)
{ print “President sir!\n“; }

128

Groups
• Perl has shortcuts to allow us to reference for

selection and subsitution
• Each group can be referred to by scalar $1, $2,

$3 ….
• Example:

$line = “From s@aol.com Wed Jun 3
12:12:12 2005”

if($line =~ /^From (.*)(…)(…)(.*)$/)
#each match can be refer back with $1, 2,
3, and so on.

65

129

(end of RE -followed by
practice)

130

Quick question

• How to indicate the period since period matches
any character?

66

131

Usage Example
if ($line =~ /^\s.*\S$/) {...}

if (not $line =~ /cs3157/) {...}

if($line !~ /cs3157/) {...}

while ($line =~ /^\w \w$/) {...}

132

What is?
open MAIL, “mail.txt” or die “cant open
file\n”;

while(<MAIL>) {

print if m/^From: /;

}

67

133

open MAIL, “Mail.txt” or die “can’t open
mail file\n”;

while (<MAIL>) {

if (/^([^:]+): ?(.+)$/) {

print “Header $1 has val $2\n”;

}

134

if($string =~
m/^\S+\s+(Hershkop|Stolfo|Aho)/i){
print "$string\n"
};

68

135

• Should use pattern matches as a security check
on input!

unless ($year =~ /^\d\d$/) {
die (“problem with year input!”);

}

136

What is?
$name = “advanced programming class”
if($name =~ /programming/){

print $` ;
print $& ;
print $’ ;

}

69

137

Useful command
• Split

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/

split Splits a string into a list of
strings and returns that list. By
default, empty leading fields are
preserved, and empty trailing ones are
deleted. …………….

138

Short check

● Can you take a second to write a short pattern
on what an email looks like ?

● How would we look for a phone number using
regular expressions ??

● What about a street address?

70

139

(end of RE practice)
(next - debugging)

140

Debugging w Perl
• Use 'strict' pragma
• Use 'warning' pragma
• Use 'perl -w' option

– This output warning as it compile
• Use 'perl -c' option

– This does syntax check
• Use debugger '-d' option

– bring you down (up?) to debug mode.

71

141

Pragmas
• Perl allows you to control the interpreter
• Pragmas are compiler hints to allow you to

operate in some special mode

• Two examples:
• use warning

– This will give you ideas of what Perl thinks it is doing
• use strict

– This will be very strict about variables, so you will
need to declare each variable (my,our) before being
able to use it in your program

142

Strict mode

• This isn’t about the midterm
• Tells Perl to only allow variable you

explicitly create in your programs
– Prevents typos
– Easier to maintain
– Less work for interpreter
– Will clearly state what it thinks you need to be

doing to get things correct

72

143

Use strict

• Goes at top of your program:
use strict;

• For example, for loop below:
for($i =0; $i < 100; $i++) #won’t work if first

use of $i
for (my $i; $i < 100; $i++) #will work for strict

• USE it for homework/lab assignment !

144

Debug mode
• 'perl -d your_code.pl'
• Essential command to know:

– 'q' for exit from debug more
– 'h' for help (give you the list of commands)
– 'v' view where in the code you are
– 'v [line]' for viewing around [line]
– 's' for step over. execute code line by line
– 'n' for step over (skip subroutines)
– 'c [line]' continue to the [line]

73

145

Good advice

• Learn to read errors and warnings
• It will tell you what the problem is and what

line it thinks its on
• Do not ignore, ask for help if you need it

146

Useful Unix commands
• ls -la
• chmod
• man
• uname –a
• pwd
• who
• finger
• cd
• mkdir
• locate
• which

74

147

Perl References
• there are lots and lots of advanced and funky

things you can do in perl; this is just a start!

here’s a quick start reference:
• http://www.comp.leeds.ac.uk/Perl/
• http://www.perl.com

function reference list is here:
• http://www.perldoc.com/perl5.6/pod/perlfunc.htm

l

148

Perldoc
• Use 'perldoc', or 'man'
• Below are some of the helpfulones:

– perlre (1) - about Regular Expression
– perlvar (1) - predefined variables explained

here
– perlrun (1) – about command line option
– perlop (1) – about operators
– perlfunc (1) – about built in functions
– perldebtut (1) – debugger help

