
 1

Homework 1 (50 points)
cs3157 – Advanced Programming
Prof. Shlomo Hershkop
Dept of Computer Science
Columbia University
Summer 2006

Out: May 25.
Due: June 9 1pm

Objective:

1. Practice with some Perl coding/compiling/debugging
2. Get a taste of what Security programmers do.
3. Have fun!

Programming Part:

There is a tool provided as part of the standard Linux install which is called “locate”.
This program allows you to search across your files for a specific file or directory. It
doesn’t actually do a real time search, but searches an internal file containing information
about your file system. The command to trigger a refresh of this information is called
“updatedb”. (you can try it if you have cygwin installed, but it might take a while!).

In this homework you will be building a “super” locate command. It will be part locate
and part security tool. This tool can not only locate a specific file, but can also give you a
unique signature to identify the file….when you run it over your files, it is called taking a
snapshot.

Let’s imagine someone has hacked into your computer and manipulated some set of
files!!! That is very bad! (I was teaching a class at the time, so you can’t pin this on your
instructor).

Lucky for you, you have a snapshot of your system in which you noted each file, and
their unique signature. This means you can easily take a new snapshot and run through all
your current files and compare them to see which have been changed.

If the signature is not the same, it is an indication that something was changed. (Note we
can manipulate a file without changing its size, so size is not an indication).

In addition to “just” detecting file changes between two snapshots, we would like to use
this tool to take a snapshot and then be able to search for a specific file to get any
individual signature. When searching you should be doing pattern matching not just
straight equals. So if you search for “time” it should match “Time”, “timestamp”,
“stoptime” etc.

 2

So you will need to create the following Perl program:

1) Name it superlocate.pl and program it in strict mode. (1 POINTS)

2) You will be judged on comments and formatting too! So please remember to
document what you are doing and clean up your code with an automatic formatter
or good practice. (6 POINTS)

3) It should work in the following manner:
a. When it starts it should present the following choices:

i. Create Snapshot
ii. Browse Snapshots

iii. Find File
iv. Compare 2 snapshots
v. About

vi. Quit

b. Create Snapshot (12 points)

will allow the user to create a snapshot by allowing the user to enter a
PATH. It will recursively run through the location specified by PATH.
For each file you will need to take it’s MD5 hash (of contents), and keep
track of it in the snapshot file.
for example if the user enters c:\temp
it will start at c:\temp and go down to all files there, and put the output
into a file in a snapshot subdirectory. The name of the file should be also
specified by the user.

You have to keep a relative path when keeping track of the files.

c. Browse snapshot (7 Points)

should allow you to list all the files in the snapshot directory and see more
info (like when it was created).

d. Find File (10 Points)

Will ask for a name and allow you to specify one of the current snapshot
files to search

 3

e. Compare 2 Snapshots (10 Points)

will allow you to specify 2 snapshot files and output 3 lists:

i. Changed Files: those are files which appear in both lists but have
different MD5s

ii. Deleted Files: those are files only appearing in the first list
iii. Created Files: those are files only appearing in second list

f. About (2 Point)

Short message about your program

g. Quit (2 Point)

will quit your perl script

Extra Credit (5 Points): Allow you to pass in all arguments for Create, Find, or Compare
so can run this tool without interaction….

TIPS:
In addition to submitting the Perl program, you will need to include a README file
giving a sentence of what each file in the submission does.

Your code should never terminate unexpectedly. Check for all possible errors the user
could make (non-existent file, non-existent directory, etc). When any user error occurs,
exit gracefully with an appropriate error message

Make sure to divide your program into logical sections using subroutines and not one
giant main as discussed in class! Also remember to use strict;

Code Style is graded on how easily read your source code is. For generic tips on
improving your code's style, read perldoc perlstyle. Most important are three criteria:
meaningful variable names, consistent and helpful indentation, and explanitory but not
over-abundant comments.

Start early and Good Luck!!

