
1

1

3137 Data Structures and
Algorithms in C++

Lecture 8
July 31 2006

Shlomo Hershkop

2

Announcements
� Will grade midterms by tomorrow
� Will review all questions today
� Wednesday, can we get started a little

earlier ?
� I will need to end class about ½ hour early…

� Next HW posted

� Last two weeks…don’t fall off the wagon
as we pick up the pace!

2

3

Outline
� Disjointed DS
� Graph theory
� Midterm Review

� Reading:
� Chapter 8-8.3, 9-9.3

4

Review
� We’ve covered some DS to keep track of a

set of elements
� lists
� trees
� hashtables
� queues

3

5

� Given a set of elements its sometimes
useful to be able to break them into a
number of separate sets and be able to
manipulate individual items or sets of
related items

� Practical Example: New Orleans flood alert
system

6

Equivalence Class ADT
� Union(a,b)

� merges 2 equivalence classes

� Find(a)
� retrieves equivalence class containing a

4

7

Analyzing Equivalence classes
� Amortized analysis

� some kind of analysis requires a high level approach,
since we won’t always get worst case running time
� Example: Wc, Bc, Bc, Bc, Wc, Bc, Bc, Bc, Bc, Bc…

� When doing the analysis here we will be
interested in series of M operations
� that way we can factor in all instances
� different than dealing with average case

� lets go to implementation:

8

Arrays
� use an array and store name of class at

each position

� example of union

� what is the running time
� find?
� union?

5

9

running times
� so find we can do in O(1)

� merge, worst could be O(N)
� for M merges on N items

� O(NM)
� M can’t exceed N
� so O(N2)

10

linked lists
� each member will be in its own list

� merge ?
� find ?

6

11

� so there must be a better way

� something to notice:
1. the name of the elements are static
2. the name of the set is arbitrary

12

solution
� use tree type relationship

� here it is graphically

� forest:
� collection of trees

7

13

� element which sits at the top is the root
� root will be the name of the class

� find spits out the root
� union(a,b) makes b a child of a

14

implementation
� forest can be an array with each item

containing the index of the parent
� -1 could be no parent, hence root
� constructor puts -1 in each element’s spot

� lets do some code

8

15

find
int find(int N) {

if(set[N] < 0)
return N

else
return find(set[N])

}

16

union
void union(int item1, int item2) {

int root1, root2;
root1 = find(item1);

root2 = find(item2);
if(root1 != root2)

set[root2] = root1;
}

9

17

� runtimes ??

18

� find(n)
� union(1)

� haven’t really improved it much

10

19

tricks
� so need a trick to speed things up by not

having deep trees

� Union by size
� Union by height

20

Union by size
� Rule: always make the SMALLER tree a

subtree of larger one

� Will need to keep track of how many
nodes in set
� Why is that??
� ideas ??

11

21

Union by height
� Rule: always make shallower tree a

subtree of the deeper one

� how will the height change ??

� can you code this ?

22

Theory
� Idea: Can we prove that is unions are

done by size, the depth of any node i will
not be more than log(N) ??

12

23

Proof
� lets take an arbitrary node…call it bob!
� say bob is minding his own business at

level 0
� at each union the depth can increase for

bob by 0 or 1
� when bob’s depth increase it is placed in a

tree twice as large as before
� so it can only increase its depth at most

log(N) times

24

runtimes
� worst M log N
� find: Log n
� union Log n

13

25

More tricks
� one thing to notice, is that for nodes at

end of long path, find is costly

26

Path Compression
� Like AVL trees, we want to make later

operations faster by putting in some work
now

� need to use amortized analysis
� Trick:

� When doing a find make every node along the
path to the root point to the root

� here is an example
� what is the overhead?

14

27

Quick Question
� now that we are somewhat proficient in

DS

� how would you program an algorithm to
generate mazes ??
� how would you represent a maze ?
� algorithm ?

28

summary
� so these are good data structures for

manipulating groups of items

� many times, we are also interested in
connections between groups of items (not
just membership)

� Example: all people who called norway
today ☺

15

29

� Graph Theory!!
� very old, branch of math
� many open problems
� recent discoveries on interesting applications

� Trees are linear DS since we have a root and
leaves, so can start at specific point and end at a
specific point

� A more general DS would be to have 2 way links
so can go anywhere

� not clear where beginning is, so need to be
careful about algorithms

30

Definition
� A graph G=(V,E) consists of a set of

vertices (nodes) V and edges E where
each edge is a pair (v,w) such that v,w in
V

16

31

� Directed Graph – A graph where vertices
have direction

� Undirected Graph

� Weights – in addition can associate a
weight with each edge

32

Example
� think of a map

� locations and mileage

� think of the internet
� what are the nodes ? edges ?

17

33

Definition
� Path = a sequence of vertices v1, v2, v3..

such that the vertices are adjacent

� Length = number of edges

� Loop = edges that starts and end at the
same vertex

34

More definitions
� Simple path = a path with distinct vertices

� that doesn’t cross itself

� Cycle = path with the first and last vertex
being the same

18

35

� DAG ?

36

DAG
� Directed Acyclic Path

19

37

definitions
� connected graph = undirected graph

where there is a path from any vertex to
any other

38

Strongly Connected
� directed graph where path from any

vertex to any other

?????

20

39

more definitions
� weakly connected – directed graph which

would have been connected if it was
undirected

� Complete graph = every vertex connected
to every other

40

Point
� Very general DS

� Air transit
� airports
� flights
� weight = cost

� Can answer:
� what are the cheapest flights ?
� shorted flights ?
� where we should add flights ?
� can we reach every city ?

21

41

one last definition
� Degree of a node:

� undirected
� number of connections of the node

� Directed
� in degree
� out degree

42

programming
� so with 2 weeks left to DS

� how would you code graphs ?

22

43

� some ideas:

� array

� linked list

44

Arrays
� 2 dimensional n by n array

� lets do a simple example with 4 nodes
� A, B, C, D

� Directed..

� How would an undirected graph be
represented?

23

45

question
� how would we use weights here ?

� how would the code look from a high level
view ?

46

Linked List
� you can also use a list representation

called an adjacency list

� list of nodes
� linked list of edges

24

47

Resources
� how much space (in terms of V and E)

would it take to represent a graph on
either implementation ?

� what does that tell you?

48

Searching
� graph can be used for many different

things

� one operation we would like to support is
searching the graph

� we want to visit nodes without wasting
time or missing any

25

49

Example
� say you represent a maze as a graph

� what strategy would you use to explore
the maze ??

50

Expansion
� DFS

� depth first search

� BFS
� breadth first search

26

51

Algorithm
� have a list of vertices and nodes

� choose one from the list
� put into DS X

� while X is not empty
� choose y out of X

� if not visited, visit
� for each adj of y if not visited put into X

� what is X ??

52

� STACK
� DFS

� Queue
� BFS

27

53

� We showed how to expand a graph to visit
all nodes, any ideas on how to sort a
graph ??

� what does it mean to sort a graph anyway
??

54

� Midterm Review

28

55

� Proof by induction
� Big O
� Theta bound
� ADT
� Extendible hashing

56

runtime?
� Sum =0;
� for (i=1; i<n n; i++)
� for (j=1; j < i * i ; j++)
� if(j % i == 0)
� For (k =0 ; k < j ; k++)
� Sum++;

29

57

� Is it possible to have two different
huffman trees for a set of symbols with
given frequencies ? Either provide an
example where two different trees can be
created or prove that there is only a single
tree

58

� If you were to create a tic tac toe player
and the computer would use a tee
structure to represent all possible moves,
what would the branching factor of the
tree be and what would be the height of
the tree assuming you represented every
possible move ?

30

59

algorithm and runtime?
int foohoo(array, n) {

if (n ==1)
return array[0];

else{
int temp = foohoo(array,n-1);
if(temp < array[n-1];

return temp;
else

return array[n-1];
}

}

60

sorting
� Given an array as input [E,X,A,M,P,L,E]

show what happens (each stage) when
you use selection sort and then the same
input for bubble sort

31

61

hashing
� Why is it a bad idea for a hash function to

depend on a single character (anywhere)
in the input ?

62

� Explain how hashing can be applied to
check whether all elements of a list are
distinct ? what is the running time ??

32

63

� Which collision strategy is good for lazy
deletion and which is not?

64

� Suppose you knew ahead of time which
keys you will be using in your hash table,
is it possible to invent a hash function so
that there are zero collisions?? (more than
yes/no) please.

33

65

� You fall asleep in your data structures course and find yourself in
another class

� They are trying to stress test various kinds of glass jars to
determine the height for which they can be dropped and still not
break.

� They have a setup where they have a ladder leaning against the
wall with n steps. you want to find the highest step which the
glass jar will survive a fall (call it the HSR = highest safe rung).

� Clearly they have no idea where to start…lucky you know data
structures and algorithms

a) describe an algorithm which takes n jars to find the correct HSR
b) now describe an algorithm which takes log n jars
c) what is the best algorithm you can think of ?

66

Next
� do reading
� start homework

� reminder we will be meeting Wednesday
at 5pm-7:40pm

