
1

1

3137 Data Structures and
Algorithms in C++

Lecture 7
July 26 2006

Shlomo Hershkop

2

Announcements
� will do review later today

� will take questions at end

� please make sure to submit/plan hw
� semester is going to end in 2 weeks from

today

2

3

Outline
� Sorting – quick sort
� Disjoint DS
� Review for midterm

� Reading: Chapter 7.7-7.8, 8-8.3

4

Quick sort
� fastest currently known sort

� Average N log N
� Worst: N2

3

5

Quicksort
� if one element return
� else

� pick a pivot from the list
� split the list around the pivot
� return quicksort(left) + pivot +

quicksort(right)

� Lets do an example

6

issues
� How does worst case happen ?

� how to pick the pivot ??

4

7

Pivot #1
� use the first element of the list

� pro/cons ?

8

� sorted list will always be N2

5

9

Pivot #2
� choose random element for pivot

� pro/cons ?

10

� great performance

� expensive to generate random number

6

11

Pivot #3
� Choose median value from the list

� pro/cons ?

12

� hmmm don’t you need a sorted list to get
median?

� actually there is a linear algorithm for this
☺ will be doing it on homework

7

13

Pivot #4
� Median of 3

� since #3 isnt cheap, can grab 3 elements
and take median
� can even use random if you don’t mind

14

coding
� ok so enough theory, how do you code all

this ??

� arrays are much cheaper than linked lists

� lots of tricks to keep things cheap

8

15

16

9

17

18

understanding
� Ok, any idea of how to maximize cutoff

point ?

� how to analyze quicksort ??

10

19

Analysis
� so how to analyze quick sort

� think how we did mergesort analysis

20

Quick sort
� i = size of left partition
� C1 = time to choose pivot
� C2 = partitioning the set

� what do you get?

11

21

� what would be the worst case runtime?

� can you solve this with the methods from
Monday?

() () ()121 −−+++= iNTiTNCCNT

22

Telescope

() () ()
() ()
() () ()

add

ncNTNT
cNNTNT

NTTcNNT
i

......
221

1
10

0

−+−=−
+−=

−++=
=

12

23

� what is the big O runtime ??

� this was pretty clear before the analysis ☺

� its slow-sort ☺

� what is the best case

() () ()
⎟
⎠
⎞

⎜
⎝
⎛ −

+=
2

11 NNcTNT

24

� i = N/2
� T(N) = 2T(N/2)+cN

� For average case if you were to analyze every
possible input, when left small, right large

() ()∑
−

=

=
1

0

1 N

j
jT

N
iT

13

25

Telescope This!

() ()⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

−

=

1

0

12
N

j
jT

N
cNNT

26

telescope

() ()

() () () ()

...
)1()1(2)1()1()(*

1211

2*

22

2
2

0

2
1

0

−−+−=−−−

−=−−

+=

−

∑

∑

−

=

−

=

NccNNTNTNNTN
subtract

NcjTNTN

telescope

cNjTNTN

Nmultiple

N

j

N

j

14

27

Bottom line

NNNT

NO
N

NT
simplifies

i
CT

N
NT N

i

log)(

)(log
1
)(

12
2

)1(
1
)(!

0

=

=
+

+=
+ ∑

+

=

28

Wrapping up sorting
� consider three elements

� a,b,c

� If we want to sort these three, what
possible ordering can there be ?

15

29

comparisons
� if we compare a & b

� left if a<b
� right if b<a

� what are subtrees ?

30

Decision Tree
� decision trees portrays the comparisons

made by some algorithm

� can imagine a tree for quick sort

� we can use it represent any comparison
based sorting algorithm

16

31

� so lets discuss some tree ideas, and apply
them back to sorting routines

32

Lemma 1
� A binary tree of depth d has at most 2d

leaves

� can you prove this ??

17

33

Lemma 2
� A binary tree with L leaves must have a

depth of at least log(L)

� proof should be obvious

34

Lemma 3
� Any sorting algorithm that uses only

comparisons requires at least log(N!)
comparisons in the worst case

� since N! ordering possibilities

18

35

Theorem
� any sorting algorithm that only uses

comparisons requires Θ(N log N)
comparisons

� can you show this ?

36

� log(N!) = log (N * N-1 * N-2 * N-3 …
� log of product = log of sums

� log(N!) = log(N) + log(N-1) + log(N-2)..
� (drop n/2 terms) ≥ log(N) + … + log(N/2)
� ≥ n/2 log(N/2) = ΘN log N

19

37

� so how to get past the N log N barrier ??

38

more information
� if you have extra information you can

break the n log n barrier
� knowing the range, we can use other sorts

� bucket sort

20

39

External Sorts
� say you can only handle 100 items at a

time
� need to sort 1000

� general case: many times the number of
instances to sort will not fit into memory

� Strategy:
� any ideas ?

40

switch gears
� lets switch gears for a second

� Question:
� I want to be able to give you a bunch of items and you

should say which set the items belong to (given this
information)
� should be able to add items to sets
� should be able to lookup an item’s set

� I want to be able to do it quickly

� Example: search results: want to be able to tell you
what broad categories a search results can be divided by

21

41

� any implementation ideas ?

� runtime ?

42

equivalence
� A relationship R is defined on a set, if for

every pair (a,b) we can answer aRb as
true of false

� Equivalence relationship:
1. reflexive

1. aRa for any A

2. symetrics
1. if aRb then bRa

3. transitive
1. if aRb and bRc then … aRc

22

43

� one implementation idea:

� use large matrix and mark if relationship exist

44

� lets do a quick example of a bunch of
join’s using a matrix

23

45

Equivalence class
� an equivalence class of an element a in S

is the subset of S that contains all
elements related to a

� what are the equivalence classes in the
previous example?

46

online vs offline
� some DS operations can be online some

offline

� Offline:
� get all information, and then can process

� Online:
� need to deal with the information before

continuing
� Example:

� paper exam vs oral exam

24

47

Equivalence Class ADT
� Union(a,b)

� merges 2 equivalence classes

� Find(a)
� retrieves equivalence class containing a

48

Analyzing Equivalence classes
� when doing the analysis here we will be

interested in series of M operations

� lets go to implementation
� any ideas ?

25

49

Arrays
� use an array and store name of class at

each position

� example of union

� what is the running time
� find?
� union?

50

running times
� so find we can do in O(1)

� merge, worst could be O(N)
� for M merges on N items

� O(NM)
� M can’t exceed N
� so O(N2)

26

51

linked lists
� each member will be in its own list

� merge ?
� find ?

� will come back to this next week

52

Review time
� Lets start a general review

� make sure you are familiar with
everything covered so far

� address some of the questions seen

27

53

runtimes
� Runtimes are a rough way of judging

algorithms

� what is Big-O

� why classes of functions ?

54

Recursion
� understanding recursion

� tail recursion

� when to use

� when not to use

28

55

� what is a DS ?

� what are ADT ?

56

LIST
� what is the list ADT ?

� operations ?
� runtimes ?

29

57

Lists
� arrays

� linked lists

58

queues
� what is a the Queue ADT ?

� operations ?
� runtimes ?

� Priority queue ADT ?
� operations ?
� runtimes ?

30

59

� how do the number of links affect the
linked list class ?
� single vs double linked

� what if we added a mid point link

� what is we added a bunch of others

60

Trees
� what is the Tree ADT ?

� operations
� runtimes ?

31

61

Trees
� complete trees
� binary trees
� BST
� Balanced BST

� AVL
� Red-black

� lazy deletion
� tree traversal algorithms
� expression trees
� B+ trees
� huffman trees

62

heaps
� what are heaps ?

� what DS being implemented ?

32

63

hashtable
� what is the hash table ADT ?

� operations ?
� runtimes ?

� what issues need to be dealt with during
operations ?
� why not issue with Lists ?

� Extendible hashing

64

sorting
� basic sorts

� bubble
� insert
� selection
� random

� better ones
� heap sort

� Better yet
� mergesort
� quicksort

33

65

� Sample Exam

� lets do some sample questions together

66

Sample 1
� An algorithm takes 0.5 ms for input of size

100. How long will it take for input of size
500 if the runtime is of the following
(assume low order terms are negligible).
Show work.
� a) Linear
� b) O (N log N)
� c) Quadratic
� d) Cubic

34

67

Sample 2
� Programs A and B are analyzed and found

to have worst-case running times no
greater than 150N log N and N2,
respectively. Answer the following if
possible:
� a) Which program has the better

guarantee on the running time for large values
of N (N > 10,000)?

� b) Which program has the better
guarantee on the running time for small values
of N (N <100)

68

Sample 3
� Suppose we want to add an operation FINDKth to

our toolbox of binary tree operations.
� This operation returns the kth smallest item in

the tree. Assume all items are distinct (no
repeats)

� Explain how you would modify the binary tree
structure to support FINDKth.

� This operation also must run in O (log N) average
time , without sacrificing the time bound an any
other operation currently in the tree.

35

69

Sample 4
� Show the result of inserting the keys

1011-1101, 0000-0010 , 1001-1011,
1011-1110, 0111-1111, 0101-0001,
1001-0110, 0000-1011 , 1100-1111,
1001-1110, 1101-1011 , 0010-1011,
0110-0001, 1111-0000, 01110-1111

� into an initially empty B-tree structure
with M=3, L=3. These are 8 character
keys , the dash makes them easier to
read.

70

� any other questions ??

36

71

Next
� do all the reading
� the exam is open brain/notes/book closed

general internet
� will post when test is ready

� please email/aim but will only answer up
to test time

� Good luck

