
1

3137 Data Structures and
Algorithms in C++

Lecture 6
July 24 2006

Shlomo Hershkop

Announcements
� online syllabus updated with detailed

readings

� Will do review on Wednesday

� what ever covered until today will be on
midterm

� will release midterm this Wednesday (will
talk about this)

2

Outline
� wrap up hashing
� Search engines

� DS point of view

� Compression
� Search Algorithms

� Chapter 7-7.7

Hashing
� review

� what is a hash data structure
� operations ?
� run times?

3

strategies
� for collisions
� for clustering
� for table size
� for growing the hash table

Extendible hashing
� great when cant fit hash in memory

� use keys themselves to point to the
location necessary to retrieve data
� related to how B trees work

� allow quickly grow the hash table at
constant cost

� Example

4

Application
� anyone know how Google works from a

data structure point of view

� runtime ??

Search engine technology
� generally search engines work in the

following way:
� collect documents e.g. webpages
� index information
� wait for search

� understand query
� search and match
� scoring system

5

� Any ideas how to design a search engine
so that you can quickly find results ?

� hash table of search words

� inverted index table

6

Vector Model
� Each document is a vector in an n

dimensional vector space of search terms
� take query and find closets points

� sparse (very)
� if one word tokens, order will be ignored

algorithm
� First we generate a master word list

� can strip out stop words

� Stemming: can also calculate related
words i.e. runs and run worry and
worrying

7

master word list
� cat
� dog
� fine
� good
� got
� hat
� make
� pet

A cat is a fine pet
$vec = [1, 0, 1, 0, 0, 0, 1];

� many ways of calculating similarity
between search term and documents

� cosine
� can generate relevance scoring

8

General issues
� Better parsing
� Non-English Collections

� stemming
� stop words

� Similarity Search
� can combine a few docs to find similarity

� Term Weighting
� Incorporating Metadata
� Exact Phrase Matching

Switch Back
� lets get back to our data structures

� Lempel-Ziv compression
� how it works
� LZW

� where used

9

More DS
� Searching

Simple
� So its straightforward to sort in O(N2) time

� Insertion sort
� Selection sort
� Bubble sort

10

More complicated
� Shell Sort

� This is an O(N1.5) algorithm that is simple and
efficient in practice

� originally presented as an O(N2) algorithm
� complicated to analyze
� took many years to get better bounds

More Complex
� O(N log N) algorithms

� merge sort
� heapsort

11

Quicksort
� worst case O(n2)
� average case O(N log N)

� will learn how to make the worst case occur
with such low probability that we will end up
dealing with average case

Selection sort
� anyone remember how this one works ??

� 2 arrays, sorted and unsorted
� keep choosing min from the unsorted list

and append to sorted

12

Bubble Sort
� Anyone ??

� iterate and swap out of ordered elements

Insertion sort
� this is the quickest of the O(N2) algorithms

for small sets

13

Insertion
� sort 1st element
� sort first 2
� sort first 3
� etc

code ??
insertionSort(array a, int length) {

int i := 1;
while (i < length) {

insert(a, i, a[i]);
i := i + 1;

}
}

insert(array a, int length, value) {
int i := length - 1;
while (i ≥ 0 and a[i] > value) {

a[i + 1] := a[i];
i := i - 1;

}
a[i + 1] := value;

}

14

15

implementation
� so would implementation of the underlying

list affect the runtime ?
� how ?

� any ideas why these are slow ??
� can you prove it?

Lower Bound
� This is an analysis for simple sorts

� Inversion:
� an ordered pair (i,j) such that i ‹ j

and a[i] › a[j]

� Can you find the inversions ?
� [45, 34, 23, 35, 59]

16

swap
� So if we swap adjacent items, we only

solve at most one inversion

� this leads to our slowdown

� any ideas ?

Theory
� before continuing….

� What would be the average number of
inversion on an array of N elements ??

17

Average inversions

� Let L be an unsorted list of elements
� Let Lr be the reverse of that list
� Any two elements are inverted either in L

or Lr

� need to look at the pairs

()
4

1−NN

� pairs in L

� on average ½ will be inverted

� so how does swapping affect the number ?

()
2

1−NN

18

� so how to do better than N2?

Shell sort
� idea was to look at elements which are not

adjacent
� Example:

� look at every 8th element and do insert sort on
those
� slide window

� Now look at every 4th

� Every 2nd

� Increment series

19

Increment series
� we have an increment series

h1, h2, .., hk

� hk must be less than N
� h1 must be 1

� why?

� each step keeps it sorted for last step

hk sorted
� An array is hk sorted

� for every i a[i] ≤ a[i + hk]

� we use diminishing increments

� Example

20

� as long as last increment is 1 , we are
guaranteed to sort

� if we only do 1
� what is it ?

� lets look at the code

void shellsort(int a[], int len) {
for(int gap = len/2; gap > 0; gap /=2)

for(int i=gap; i<len; i++) {
int tmp = a[i];
int j=i;
for(;j>=gap && tmp < aj-gap]; j-=gap)
{ a[j] = a[j-gap];
}
a[j] = tmp;

}
}

21

� So what is the increment series here ??

� 1 2 4 8 16 .. 2k Θ(N2)

� Hubert
� 1 3 7 .. 2k-1 Θ(N1.5)

� bizare sequences
� Θ(N1.3)

worst case runtime

22

Heapsort
� Heap sort worst case O(N log N)

� average is slightly better
� 2N(log N – log log N -4)

� can save space using the same array
� example

Better times
� lets start with better than n2 sorting

23

merge sort
� if list has one element

� return
� else

� mergesort left half
� mergesort right half
� merge 2 halves

� Example

24

Analysis
� Lets do some simple analysis on

mergesort running times

� Assume we have N items
� N being a power of 2 so we can split nicely

� if N is one, constant time to mergesort
� else its 2 * N/2 mergesorts

� Define function
� T(N) = time to mergesort N items

� T(1) = 1
� T(N) = 2T(n/2)+N

� how to solve this ??

25

� this is a recurrence relationship

� in discrete do this all the time

First method: Telescoping
� trick is what to divide

by

� what happens when
you add 2 consecutive
ones ??

� add all together ?

1
1

)1(
2

)2(
...

1
)

4
(

)
4

(

)
2

(

)
2

(

__

1

2

)
2

()(

1
)

2
(2)(

+=

+=

+=

+=

TT

N

NT

N

NT

nextfornow

N

NT

N
NT

N

NT

N
NT

26

Solution

NNTNNT

NT
N
NT

log)1(*)(

log
1

)1()(

+=

+=

limitations
� telescoping is great, but sometimes hard

to find what to divide by

� substitution is another method

27

substitution
� T(N) = 2T(N/2)+N

� sub N/2

� T(N/2) = 2T(N/4)+N/2

� go back to original
� T(N) = 4T(N/4) + 2N

� what do you get in the end ??

28

� T(N) = 2KT(N/2K)+KN

bottom line
� telescoping

� more scratch work

� substitution
� more brute force
� easier when don’t have a clue

29

end of the day
� Mergesort

� O(nlogn)

� if so good why not the default one?

reality
� requires extra temporary array
� copying is slow….sometimes

� constant time to the big O runtime will catch
up to you

� Great for external sorting

30

Next
� cue dramatic music

� QUICKSORT

Quick sort
� fastest currently known sort

� Average N log N
� Worst: N2

31

Quicksort
� if one element return
� else

� pick a pivot from the list
� split the list around the pivot
� return quicksort(left) + pivot +

quicksort(right)

� Lets do an example

issues
� How does worst case happen ?

� how to pick the pivot ??

32

Pivot #1
� use the first element of the list

� pro/cons ?

� sorted list will always be N2

33

Pivot #2
� choose random element for pivot

� pro/cons ?

� great performance

� expensive to generate random number

34

Pivot #3
� Choose median value from the list

� pro/cons ?

� hmmm don’t you need a sorted list to get
median?

� actually there is a linear algorithm for this
☺ will be doing it on homework

35

Pivot #4
� Median of 3

� since #3 isnt cheap, can grab 3 elements
and take median
� can even use random if you don’t mind

� OK lets have a quiz!!

� actually, just submit feedback after next
slide

� and let me know which topics you would
like to see covered in Wednesday

36

For next time
� please complete the homework, and make sure

you understand the solutions (correct ones)
� if late, let weijen know you are submitting late
� in general (for last 2) submit theory as early as possible

and let him know you are doing it

� do all reading (see online)

� review before the exam (will be limited timed)
� If I can get it to work ☺

