
1

3137 Data Structures and 
Algorithms in C++

Lecture 5
July 19 2006

Shlomo Hershkop

Announcements 
midpoint of semester today

make sure you are ok with the material 
covered so far



2

Outline
more trees

b trees again
compression

Priority queues
heaps

Hash table DS
background
design
applications

Question
so what is the point of a tree structure ??

what is the point of a binary search tree 
??



3

B Tree
great when can’t fit the data in memory
type of search tree
trying to make getting to data fast

increasing width will make getting to data faster

M
maximum number of children per internal node (we did 
3)

L
maximum number of data items per leaf

Rules
1. All data stored at leaf level
2. non leaf nodes store M-1 keys
3. root is either leaf or has between 2 and M 

children
4. All internal nodes have between M/2 and 

M children
1. restricts branching factor 

5. All leaves are on the same depth and 
have between L/2 and L children



4

Key
the internal node key represents the smallest 
value on the i+1th subtree

Leafs can be any DS you choose

Any ideas on the advantage of the leaf 
system here ??

is everyone comfortable with working with 
B+ trees



5

Compression
Many times we need to compress information

scaling factor
resource allocation
over promise

lossy compression
JPEG
PNG

lossless compression
when would this be important ?
TIF
BMP
.zip

side note
is everyone familiar with the tar 
program??

usage
how it works ?



6

ASCII encodes each character as a 7 bit value
the idea of compression, is to find a better way of 
representing your information

idea: instead of using uniform length codes for 
everything, use less bits for higher occurring information 
parts

Huffman trees allow you to create very good 
lossless compression tables to be able to quickly 
compress text

Huffman algorithm 

idea



7

Hoffman compression
1. Create a frequency count of each of your 

characters in your file
2. Start to build a binary tree always 

combining 2 lowest frequencies into one 
tree the resulting frequency is the 
combined frequencies

3. Going left is 0, going right is 1

Example 
If I counted:
E = 29
A = 14
T = 10
B = 4
D = 2
C = 1



8

decompression
So seeing a code, we simply run down the 
tree
As soon as we hit a leaf, translate to that 
character

Compressing text
How would you use Huffman to compress 
text??

what about decompressing



9

Priority Queue DS
DS to keep track of priority

can say lowest number is highest priority

insert
findmin

Heap
implementation of priority queue
Heap order property:

any parent is as small or smaller than its 
children

can use array representation:
no links to manage
but need to estimate largest size ahead of time



10

used everywhere
service priority
Operating systems – juggling threads, 
processes and processors

Example
When we are interested in kth smallest 
number in a large number set

can sort and then pick it out
what is the run time ??

can create BST
how will this help
what is the run time ?

can create heap and do k findmin
what is the run time ??



11

percolate up
insert operation
idea: bubble up till we reach correct 
location on the tree

1. create hole in tree to hold value
2. Does it fit ….done 
3. else: switch with parent and try again

Runtime for this ??

findmin
so now we need to find min….

what is the run time for finding the min ??

what if we want to find and delete ??



12

percolate down
pull out the root
put hole
swap with smaller child
bubble down the hole

run time
how long would it take me to find an item 
of specific priority ??

any ideas on how to help this ?



13

building a heap
given a set of N items what is the fastest 
way of building the heap ??

easy solution
just do N inserts 

worst case will be O(n log n)

when heaps invented that was best way

they actually have a linear time 
algorithm….any ideas ?



14

linear time build
start in middle
work way back up

why it works ?

D-heaps
we were doing binary heaps, but no 
reason cant have larger branching factor

issues:
when would be the best time to use heaps ?
how to structure it if cant fit entire heap in 
memory ??



15

change of pace
so can we summarize the runtimes for the 
DS we have covered ??

Question
if we have 10,000 items

how would you store it to quickly support find?

now what if you only had 20 items
how would this be different



16

Hash Table DS
This data structure is for organizing an 
unordered set of items

find
insert
delete

Comparison of average runtime
Best Tree:

AVL
find
insert
delete

Hash Table
find
insert
delete



17

Hash Function
mapping function between items and locations 
in the hashtable

let me do a graphical example with a 
bunch of names 

Issues
What hash function to use ?

What do you do about collisions??



18

Example
Lets say you need a dictionary

For each word insert in hash table
runtime ?

when I need to look up a word call find on 
hash table

runtime ?

hash functions
The truth is that hash functions should be 
based on the data

lets step through some examples



19

Option 1: integral keys
items are numbers
can use them directly to compute hash

Hash(key) = key % Tablesize

Example

Question : why not use randomness to make sure 
to avoid collisions ?

Option 2: String key
Hash(key) = sum of ascii values

Hash(abc) = 97 + 98 + 99

any idea if this will work ?



20

Counter example: 
dictionary
tablesize 40,000
what is the maximum word size
what would be the max value returned by the 
hash ??

Option 3: power
lets add some spread to the summation

Hash(ley) = key[1]*260 + key[1]*261 * 
..key[i]*26i



21

issues
non uniform distribution of characters in 
the english language
only 28% of your table will actually be 
reached
collisions!

Option 4: Adjusted power
Hash(ley) = (key[1]*370 + key[1]*371 * 
..key[i]*37i) % tablesize

need to make sure it will be positive
java uses 31i

performs well on general strings



22

ok so now we know how to get things into 
the table

what do you do when 2 things map to 
same array location ??

Option 1: Separate Chaining
At each array location have a linked list

how would the insert in the LL work ?

how do you perform a find on the hash 
table ?



23

Option 2: open addressing
if collision occurs, will try to find alternate 
cell in the array to store item

lets see how this works

strategy
first try hash(x)
if full

try Hash(x) + f(i) % tablesize to locate

f is used to move around the array to find a 
location to use

different options, any ideas ?



24

Linear probing
f(i) = i

Example

can you think of any issues ?

clustering
linear probing suffers from a problem 
called clustering

domino affect



25

Quadratic probing
f(i) = i2

how will this affect clusters ?

Theorem
if quadratic probing is used and table size 
is prime, and table is at least half empty 
then we will always find a spot for a new 
element



26

Option 3: Double Hashing
Apply a second hash function H2 and 
probe at distance i * hash2(x)

f(i) = rehash(i)

hash(x) + i*fi(x)

Note:
1. can’t return 0
2. entire table must be addressable

Load factor
number of element 
divided by
table size



27

growing 
So how do you resize a hash ??

deletion
how would deletion work

any issues?



28

Extendible Hashing
setup similar to B+ tree

hashing routine which has growth built in

use partial bits for keys

when need to grow will use more bits

question
from the data structures we have covered 
which is the most space efficient ??



29

Wrapping up
Say you want to add a new operation to 
heaps

DecreasePriority (p,d)
want to subtract d from priority p

any ideas on run time ??

Next time
Reading

chapter 5, chapter 7


