3137 Data Structures and
Algorithms in C++

Lecture 5
July 19 2006
Shlomo Hershkop

Announcements

0 midpoint of semester today

= make sure you are ok with the material
covered so far

Outline

O more trees
= b trees again
®m compression

O Priority queues
® heaps

O Hash table DS
® background
m design
= applications

Question

O so what is the point of a tree structure ??

O what is the point of a binary search tree
??

B Tree

o great when can’t fit the data in memory
O type of search tree

O trying to make getting to data fast
® increasing width will make getting to data faster

oM

= maximum number of children per internal node (we did
3)

oL
= maximum number of data items per leaf

Rules

1. All data stored at leaf level
2. non leaf nodes store M-1 keys

3. root is either leaf or has between 2 and M
children

4. All internal nodes have between M/2 and
M children
1. restricts branching factor

5. All leaves are on the same depth and
have between L/2 and L children

O Key

= the internal node key represents the smallest
value on the i+1t subtree

O Leafs can be any DS you choose

O Any ideas on the advantage of the leaf
system here ??

O is everyone comfortable with working with
B+ trees

Compression

o Many times we need to compress information
m scaling factor
= resource allocation
= over promise

O lossy compression
= JPEG
= PNG

O lossless compression
= when would this be important ?
TIF
BMP
.Zip

side note

O is everyone familiar with the tar
program??
® usage
= how it works ?

o ASCII encodes each character as a 7 bit value

o the idea of compression, is to find a better way of
representing your information

® idea: instead of using uniform length codes for
everything, use less bits for higher occurring information
parts

o Huffman trees allow you to create very good
lossless compression tables to be able to quickly
compress text

0 Huffman algorithm

® idea

Hofftman compression

1. Create a frequency count of each of your
characters in your file

2. Start to build a binary tree always
combining 2 lowest frequencies into one
tree the resulting frequency is the
combined frequencies

3. Going left is 0, going right is 1

Example

o If 1 counted:
OoE =29
oA=14

oT =10
oB=4

oD =2

oC=1

decompression

O So seeing a code, we simply run down the
tree

O As soon as we hit a leaf, translate to that
character

Compressing text

0 How would you use Huffman to compress
text??

O what about decompressing

Priority Queue DS

O DS to keep track of priority
= can say lowest number is highest priority

O insert
o findmin

Heap

O implementation of priority queue

O Heap order property:

= any parent is as small or smaller than its
children

O can use array representation:
= no links to manage
= but need to estimate largest size ahead of time

O used everywhere
= service priority

= Operating systems — juggling threads,
processes and processors

Example

o When we are interested in kth smallest
number in a large number set

O can sort and then pick it out
= what is the run time ??
O can create BST
= how will this help
= what is the run time ?
O can create heap and do k findmin
= what is the run time ??

10

percolate up

O insert operation

O idea: bubble up till we reach correct
location on the tree

create hole in tree to hold value
Does it fitdone

else: switch with parent and try again

Runtime for this ??

findmin

0O so now we need to find min....

o what is the run time for finding the min ??

o what if we want to find and delete ??

11

percolate down

O pull out the root

O put hole

o swap with smaller child
0 bubble down the hole

run time

0 how long would it take me to find an item
of specific priority ?7?

O any ideas on how to help this ?

12

building a heap

O given a set of N items what is the fastest
way of building the heap ??

easy solution

O just do N inserts
= worst case will be O(n log n)

o when heaps invented that was best way

O they actually have a linear time
algorithm....any ideas ?

13

linear time build

O start in middle
o work way back up

o why it works ?

D-heaps

O we were doing binary heaps, but no
reason cant have larger branching factor

O issues:
= when would be the best time to use heaps ?

= how to structure it if cant fit entire heap in
memory ??

14

change ot pace

O SO can we summarize the runtimes for the
DS we have covered ??

Question

o if we have 10,000 items
= how would you store it to quickly support find?

0 now what if you only had 20 items
= how would this be different

15

Hash Table DS

O This data structure is for organizing an
unordered set of items

o find
O insert
O delete

Comparison of average runtime

O Best Tree:
= AVL
find
insert
delete

o Hash Table
find
insert
delete

16

o Hash Function

= mapping function between items and locations
in the hashtable

O let me do a graphical example with a
bunch of names

Issues

o What hash function to use ?

0 What do you do about collisions??

17

Example

O Lets say you need a dictionary

o For each word insert in hash table
® runtime ?

o when | need to look up a word call find on
hash table

® runtime ?

hash functions

o The truth is that hash functions should be
based on the data

O lets step through some examples

18

Option 1: integral keys

O items are numbers
o can use them directly to compute hash

o Hash(key) = key % Tablesize

o Example

O Question : why not use randomness to make sure
to avoid collisions ?

Option 2: String key

0 Hash(key) = sum of ascii values

0 Hash(abc) = 97 + 98 + 99

O any idea if this will work ?

19

O Counter example:
m dictionary
= tablesize 40,000
= what is the maximum word size

= what would be the max value returned by the
hash ?7?

Option 3: power

O lets add some spread to the summation

o Hash(ley) = key[1]*26° + key[1]*261 *
..key[i]*26'

20

1ssues

o non uniform distribution of characters in
the english language

O only 28% of your table will actually be
reached

0 collisions!

Option 4: Adjusted power

o Hash(ley) = (key[1]*37° + key[1]*371 *
..key[i]*37) % tablesize

O need to make sure it will be positive
O java uses 31!
O performs well on general strings

21

O ok so now we know how to get things into
the table

o0 what do you do when 2 things map to
same array location ??

Option 1: Separate Chaining

O At each array location have a linked list
= how would the insert in the LL work ?

0 how do you perform a find on the hash
table ?

22

Option 2: open addressing

o if collision occurs, will try to find alternate
cell in the array to store item

O lets see how this works

strategy

o first try hash(x)

o if full
® try Hash(x) + f(i) % tablesize to locate

m f is used to move around the array to find a
location to use

m different options, any ideas ?

23

Linear probing

o f(i) = i

O Example

O can you think of any issues ?

clustering

O linear probing suffers from a problem
called clustering

o domino affect

24

Quadratic probing

o f(i) = i2

o how will this affect clusters ?

Theorem

O if quadratic probing is used and table size
Is prime, and table is at least half empty
then we will always find a spot for a new
element

25

Option 3: Double Hashing

O Apply a second hash function H, and
probe at distance i * hash,(x)

o f(i) = rehash(i)

O hash(x) + i*f(x)

o Note:
1. can’t return O
2. entire table must be addressable

lL.oad factor

0o number of element
o divided by
O table size

26

growing

O So how do you resize a hash ??

deletion

o how would deletion work

O any issues?

27

Extendible Hashing

O setup similar to B+ tree

0 hashing routine which has growth built in

O use partial bits for keys

0 when need to grow will use more bits

question

o from the data structures we have covered
which is the most space efficient ??

28

Wrapping up

O Say you want to add a new operation to
heaps

0 DecreasePriority (p,d)
= want to subtract d from priority p

= any ideas on run time ??

Next time

O Reading
m chapter 5, chapter 7

29

