
1

1

3137 Data Structures and
Algorithms in C++

Lecture 4
July 17 2006

Shlomo Hershkop

2

Announcements
please make sure to keep up with the
course, it is sometimes fast paced…

for extra office hours, please drop us an
email etc

make sure to review class notes/slides

July 26th take home midterm….

2

3

Announcements
review c++

not enough emails back on time

memory issues
leaks
misuse
casting
new/delete
overflow

4

Outline
Trees and more trees

balancing

advanced trees

reading: Chapter 4-4.5, chapter 6-6.5

3

5

Tree Traversal
should be comfortable with the idea of
how to run through a tree

Example: should be able to code from
scratch the pre-order traversal

6

binary tree height
Anyone recall the tree height algorithm ??

code ??

4

7

int height (TreeNode *node){

int lefth, righth;

if (node == NULL){
return -1; }

lefth = height(node->left);
righth = height(node->right);

return lefth > righth ? lefth+1 : righth + 1 ;
}

8

one of the nice things about binary trees
are some interesting mathematical
properties

lets discuss some of them

5

9

Prove
Can you prove that at level i the binary
tree has 2i slots ??

10

Show:
at 0 it has 20 slots

Assume
??

Prove
At level N each of the 2N slots will have at most 2
children
so next level: 2 * 2N = 2N+1

which means level N+1 has 2N+1

6

11

Prove
if we have N internal nodes, how many
external nodes ??

12

If N internal nodes, we have N+1 external
nodes

with 1 node = 0 internal , 0+1 external
Assume: ???
Proof :

for the tree to move from N internal to N+1
internal, an external must add children.
subtract one external (its now internal)
can have up to +2 children

7

13

Definition
Complete Binary Tree:

this is a binary tree which is filled in left to
right on each level

some examples

14

Advantages
one big advantage to complete binary
trees is in representing them

you can now use an array to represent the
tree

Given a node A[i]
where would the left and right child be ??

8

15

A[i]
left is A[i*2]
right A[i*2+1]
parent A[i/2]
root A[1]

can save A[0] for other stuff

any ideas on how to check if A[i] is a leaf ??

16

Height
For a binary tree with N internal nodes, its
height is between log n and n-1

worst case
linked list

best
any ideas ??

9

17

Expression Tree
Another flavor of binary trees are
expression trees

internal nodes: arithmetic operations
leaves: numbers/variables

18

Example
+

+

a *

*

b c

d +

g
*

e f

•Can you turn this into postfix ??

•What about infix ??

10

19

question
can you write a pseudo code algorithm for
converting postfix to expression trees ??

20

while (/*some input*/) {
//read in symbol
if(isSymbol(s)) {

//make tree t from s
//push to a stack

}
else {
//pop 2 trees t1, t2 from the stack
//combine to form tree t3
//push to stack
}

}

11

21

run time on trees
basic operations on trees:

Insert:
Find:

what are the worst case, and best case ??

22

idea is to have the tree as balanced as
possible as a BST to give us best case
scenario

need to keep it BST property while
balanced

12

23

with BST

insert
5, 14, 3, 12

now:
14, 12, 5, 3

24

Overhead
if you want to keep the BST tree balanced
you might end up with a situation where
inserts could end up being
n + log n = O(n)

need a better way

13

25

Adelson-Velskii & Landis
AVL Tree

data structure which keeps the trees (almost)
balanced at all times, using AVL property

AVL Property
1. H(right) == H(left)
2. H(right) differs from H(left) by 1

H(empty tree) = -1
H(node) = longest path

26

run time
because the tree is always balanced:

inserts = log n
find = log n

14

27

AVL Rotation
rotation is the operation of keeping an AVL
tree balanced

Remember that because its always an AVL
tree, the only way to unbalance it is by
insert/delete a node
if α is the node that needs rebalancing, it
means α subtree was edited in some way
divides itself into 4 cases

28

1. Just inserted into left subtree of left child
2. Just inserted into right subtree of left child
3. Just inserted into left subtree of right child
4. Just inserted into right subtree of right child

single rotations 1,4
double rotations 2,3

lets show this graphically:

15

29

insert 5,2,8
1,4,7,3

now insert 6
which is unbalanced ?
which rule is used ?

how do you code this ??

30

/**
* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the subtree.
* Set the new root of the subtree.
*/

void insert(const Comparable & x, AvlNode * & t)
{

if(t == NULL)
t = new AvlNode(x, NULL, NULL);

else if(x < t->element)
{

insert(x, t->left);
if(height(t->left) - height(t->right) == 2)

if(x < t->left->element)
rotateWithLeftChild(t);

else
doubleWithLeftChild(t);

}
else if(t->element < x)
{

insert(x, t->right);
if(height(t->right) - height(t->left) == 2)

if(t->right->element < x)
rotateWithRightChild(t);

else
doubleWithRightChild(t);

}
else

; // Duplicate; do nothing
t->height = max(height(t->left), height(t->right)) + 1;

}

16

31

/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then set new root.
*/

void rotateWithLeftChild(AvlNode * & k2)
{

AvlNode *k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = max(height(k2->left), height(k2->right)

) + 1;
k1->height = max(height(k1->left), k2->height) + 1;
k2 = k1;

}

32

/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single
* rotation for case 4.
* Update heights, then set new root.
*/
void rotateWithRightChild(AvlNode * & k1)
{
AvlNode *k2 = k1->right;
k1->right = k2->left;
k2->left = k1;
k1->height = max(height(k1->left), height(k1-

>right)) + 1;
k2->height = max(height(k2->right), k1->height)

+ 1;
k1 = k2;

}

17

33

/**
* Double rotate binary tree node: first left child.
* with its right child; then node k3 with new left child.
* For AVL trees, this is a double rotation for case 2.
* Update heights, then set new root.
*/

void doubleWithLeftChild(AvlNode * & k3)
{

rotateWithRightChild(k3->left);
rotateWithLeftChild(k3);

}

34

/**
* Double rotate binary tree node: first right child.
* with its left child; then node k1 with new right child.
* For AVL trees, this is a double rotation for case 3.
* Update heights, then set new root.
*/

void doubleWithRightChild(AvlNode * & k1)
{

rotateWithLeftChild(k1->right);
rotateWithRightChild(k1);

}

18

35

question
so using an AVL tree what do we get if we
print inorder traversal ??

36

so using the AVL tree to sort, what is the
cost of sorting n items ??

which tree operations are involved ??

19

37

Limitations
one limitation is that the tree might be
spread across memory

as you need to travel down the tree, you
take a performance hit at every level
down

one solution: store more information on
the path

38

B-trees
2-3 B-trees are tree DS found in
databases and file systems

automatically balanced
keep all data at leaf level
non leaf keys guide search by storing 1 or
2 keys (2,3) children
root is either leaf or between 2,3 children

20

39

Example
simple case: room in leaf

insert: 3,1,5

Harder: split when full
inserting: 8, 7, 6

Even Harder: move up the tree

40

Data Structure
we spoke about queues, but many times
would like to add a priority to the Queue
DS

Priority Queue
Insert
FindMin

Example: phone call service center

21

41

Implementations
Any ideas ?

42

Implementations
sorted linked list

insert – O(???)
findmin – O(???)

unsorted linked list
insert
findmin

22

43

Question
What about using a BST ??

insert
findmin

44

Heap
A heap is an implementation of a priority
queue

property: it is a binary tree that is completely
filled except on the bottom level

Any advantages ??

23

45

Next time
reading:

start chapter 5

Feedback :
please submit some feedback before leaving

Any questions ??

