
1

1

3137 Data Structures and
Algorithms in C++

Lecture 3
July 12 2006

Shlomo Hershkop

2

Announcements
� Homework 2 out tonight

� Please make sure you complete hw1 asap
� if you have issues, please contact me

� will be doing more hands on code today to
help you get started

� please do the reading to keep up with the
theory

2

3

Outline
� lists applications
� Stacks

� code
� applications

� Queues
� Trees

� Reading: Chapter 3,4 (beginning)

4

Lists
� remember we discussed a DS called a list

� group of items

� set of operations

� depending on implementation, different set of run
times

� you choose appropriate implementation
depending on task
� given a project constraint…

3

5

Dynamic memory allocation
� one of the nice things about C/C++ is the

ability to allocate memory on the fly

� one of the bad things about C/C++ is the
ability to allocate memory on the fly

6

memory types
� generally memory comes from either

stack or heap

� anyone know the difference ?

4

7

� we start with fixed memory allocation for
things we know ahead of time

� stack builds up in memory

� heap builds down

� here it is visually:

8

� so because stack builds up, its easy to
keep it neat
� why is that ??

� heap:
� you can allocate/de-allocate in any pattern so

how do you keep track of everything ??

5

9

lists
� linked list of memory blocks which allow

you to traverse to see where I can allocate
memory from
� called free list

� malloc/new
� remove memory from free list and pass it back

to program

� free/delete
� add it back to the free list

10

definition
� Garbage collection

� is the process of reclaiming unused free memory space
� each node of memory has a bit called the “mark” bit

� 0 = free
� 1 = reserved

� initialization:
� each memory node set to free

� marking:
� if memory in use set to reserved

� gathering:
� all node marked free are linked into a list which

represents all your free memory

6

11

� since memory can be allocated in different
sizes

� you have many choices of how to take a
block from the free list

� any ideas what works best ??

12

First Fit Algorithm
� when we need memory of size X
� starts traversing the free list as soon as

we find a block of size X or greater,
allocate, and put the “change” back on
free list

� any ideas on run time ?

7

13

Best Fit Algorithm
� either exact fit or min leftover

14

Definition
� Memory Fragmentation

� free space becomes divided into many small
pieces

� need memory of size X but although it exists
do not have continuous piece of memory of
size X

� this is not file fragmentation
� anyone know what this is ??

� so what can we do about it ??

8

15

solution
� is to go through memory combining all

allocated memory on one side and free
memory on other side

� need to figure out which memory blocks
can be freed

� use of sweeping algorithm
� white, black, grey lists
� reachability calculations

16

Stack ADT
� Restricted list

� 2 basic operations:
� Push
� Pop

� LIFO DS

� view of only top item in the list

9

17

� might think its pretty simple

� second most fundamental DS in computer
science after arrays

18

� Any idea on runtime ??

� implementation ?

10

19

implementation

� linked list
� how this works

� array
� how this works

20

coding
� what would the code look like ??

� lets start with simple non template version

� say we want to implement an integer
stack

11

21

functions
� isEmpty()
� Push
� Pop

22

Application
� balancing symbols

� lets write some code to see if we have
balanced symbols in a block of text

12

23

functions
� isOpenParent()
� isClosedParent()
� isParent()

� rule:
� if(isParent()){

� if(isOpenParent())
� push

� else
� pop and compare
� now what ??

24

� Anyone know what reverse polish notation
is ??

13

25

Postfix Notation
� postfix
� reverse polish notation

� infix

� prefix

26

Example 2
� This is on the next homework

� can you write a palindrome detector

� Too bad, I hid a boot

14

27

� mentioned it during recursive
programming

� A calls B calls C

� LIFO

28

Queue DS
� List with specific property:

� FIFO

� enqueue
� dequeue

� run time ??

15

29

Implementation
� Any ideas on how to implement ??

� what will the run time be for each ??

30

Simple
� Array

� use a simple array

� Linked List
� use a linked list with head/tail

16

31

circular list
� alternative is to use an array but with two

extra indices showing where the head/tail
are located

� What will be the run time ?
� how to determine size??

32

� priority queue

� this queue also keeps track of how
important something is…higher
importance should go first

17

33

Reverse
� can you think of a fast way to reverse a

queue ??

34

Elevator simulation
� Anyone know what software are run on

elevators ??

� how to write code ?
� how to test ?

18

35

Switch
� ok, lets leave basic data structures and

start on more complicated ones….

36

Definition
� Tree

� a collection of nodes consisting of a root node
and zero ro more non empty subtrees each of
whose roots are connected by a directed edge
from the primary root

19

37

Definition
� Parent node

� node at the beginning of a directed edge

� Child node
� node at the end of a directed edge

� Internal node
� non root with children

38

� basic tree
� just root with no children

� leaf
� tree with no children

20

39

Definition

�A Path from nodei to nodek
consists of a sequence of
nodes ni, ni+1,..,nk such
that ni is the parent of ni+1
and i ≤ k

40

Question
� So what can trees represent ??

� family relationships
� file systems
� organizations
� game strategy
� dictionary

21

41

� so given a tree structure

� What would be the runtime for finding an
element ??

� inserting ?

42

� if the tree has up to M number of children per
node then its called a M-ary tree
� for homework will be coding dictionary, an ideas on how

to do it ??

� Binary Tree
� either single node or node with up to 2 children which

are binary trees
� left, right

� Because trees are recursively defined, the
algorithms to manipulate them are usually coded
recursively

22

43

code
class TreeNode {
int item;
TreeNode *left;
TreeNode *right;

};

Class BinaryTree{
TreeNode *root;

};

44

definition
� Binary Search Tree

� tree in which every element to the left is less
than current node, and every element to the
right is greater than current node

23

45

� lets do some code
� can you fill this in ??

class BST {

};

46

functions
� ?constructors ??
� insert
� find
� delete
� print ???

24

47

Printing a tree
� There are three general ways of printing a

tree structure

� inorder
� preorder
� postorder

48

� inorder
� inorder(left), root, inorder(right)

� preorder
� root, preorder(left), preorder(right)

� postorder
� postorder(left), postorder(right), root

25

49

void printinorder(TreeNode *node){
if(node == NULL)

return;

printinorder(node->left);
printItem(node);
printinorder(node->right);

}

50

� tree height is the path length

� how would you define the height
function??

26

51

int height(TreeNode *node) {

if(node == NULL)
return -1;

int lefth = height(node->left);
int righth = height(node->right);

if(lefth > righth)
return 1 + lefth;

else
return 1 + righth;

52

� find ??

� how does find work ?

� what is the running time ?

27

53

helper find function
bool findh(const int n, TreeNode *node) {

if (node == NULL)
return false;

else if (n < node->item)
return findh(n, node->left);

else if (n > node->item)
return findh(n, node->right);

else
return true;

}

54

� how do you find the minimum on the
BStree ??

� what about the maximum ??

28

55

TreeNode * findmax(TreeNode *node){

if(node != NULL)
while(node->right != NULL)
node = node->right;

return node;
}

56

� what would insert look like ??

29

57

void insert(int n, TreeNode* node) {

if(node == null)
node = new TreeNode(n,NULL,NULL);

??????

}

58

Next time
� wrap up homework

� get eclipse working ☺
� pay attention to your version and the c++ plug

in version

� reading chapter 3,4

