
1

1

3137 Data Structures and
Algorithms in C++

Lecture 2
July 10 2006

Shlomo Hershkop

2

Announcements
Homework due soon

make sure to submit the homework on time
ask if you need help

I forgot to take feedback last class, please
remind me at end of class

scribble/email me comments

2

3

Outline
Review
Proofs
Recursive programming
ADT
Lists
Stacks

4

From Last time
anyone have any questions ??

any questions on the homework ??

let me go over the programming section

3

5

Working environment
will post submission instructions later

need to get class account setup

some suggestions on working

let me demo eclipse

6

Question
Anyone know the difference between

Mathematical induction

vs

Logical deduction ??

4

7

Deduction
inference in which the conclusion about
particulars follow from the general or
universal premise

1. The picture is above the desk.
2. The desk is above the floor.
3. Therefore the picture is above the floor

8

Wrong deduction
1. Every terrorist opposes the government
2. Everyone in the opposition party opposes

the government.
3. Therefore everyone in the opposition

party is a terrorist

what is wrong here ?

5

9

Induction
Inference of generalized conclusion from
particular instances

i.e. the process of reasoning in which the
premises of an argument support the
conclusion but do not ensure it

The Street is wet
When it rains the street becomes wet
It must have rained

10

difference
deduction is logical necessity

Usually will see something and induce
something

which might be disproved later

this is not the case with mathematical
induction

6

11

SAP Method
here is a quick and dirty method for
mathematical induction

Show
Assume
Prove

12

Show
Here we show the theorem holds in the
simplest case (base)

7

13

Assume
Assume the theorem holds for a general
case
called inductive hypothesis
Example: assuming the hypothesis to be
true for some specific integer k.

14

Prove
Prove that the theorem holds for the next
larger case

8

15

Example

How can we prove this is the case ??

() 2

1
12 ni

n

i
=−∑

=

16

Show
Set n = 1

is it true ??

now assume it is true, how ca we prove it
is true in the general case ??

9

17

proof

() ()

()[]

()

()
QED
k

kk
hypothesisinductivefromkk

ik

ki

k

i

k

i

2

2

2
1

2
1

1

1

12
)(122

12112

112

+

++

−−+−+

−+−+

+=−

∑

∑

=

+

=

18

Next
Does this make sense ??

Can you do the same for :

Given a 2n by 2n checkerboard with any
one square deleted, it is possible to cover
this board with L-shaped pieces.

10

19

Example

20

what is the base case??

11

21

What is the assumption ??

22

How would the proof go ?

12

23

2k by 2k sections

24

Another Example
We want to prove that for the fibinochi
number series such that
F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, etc
Fi ≤ (5/3)i

13

25

Show
F1 ≤ (5/3)1

F2 ≤ (5/3)2

Assume:
true for all i

26

Proof

9
25

9
24

9
25

3
5

3
3

3
5

3
5

3
5

3
5

3
5

1

11
11

1

1

≤

≤+

⎟
⎠
⎞

⎜
⎝
⎛−−

⎟
⎠
⎞

⎜
⎝
⎛≤⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

+=

⎟
⎠
⎞

⎜
⎝
⎛≤

−

+−

−+

+

+

k

kkk
kkk

k

k

bydivide

FFF

F

14

27

Recursion
fib is related to recursion

recursion is code that is defined in terms
of itself

Many DS problems can be solved in a
recursive fashion

28

Example
can you code the power function as a
recursive method ?

15

29

power
int power(int x, int y) {

if(y==0) {
return 1;

}
else {

return x * power(x,y-1);

}
}

30

some important points
biggest problem with recursive code is
getting stuck in infinite loop

here are some quick guidelines

16

31

Rules
1. Base Case:

make sure you have a base case which
can be computed without recursion

2. Progress
make sure you are making progress
towards solution

32

More Rules
3. Assume all recursive calls return correctly

4. Never duplicate work

17

33

Question
when is recursion necessary to solve a
problem ??

34

Never

if you can do it recursively, can do it
iteratively

can you prove this ??

18

35

proof: cpu is not a recursive cpu

generally a non recursive solution will run
faster
BUT

harder to read

36

Example
count number of digits in an int recursively

int numDigits(int x) {
if(abs(x) < 10) {

return 1;
}
else {

return numDigits(x/10) + 1;
}

}

19

37

tail recursion
most of the time, when you see recursion
its slowed down by the fact that it needs
to wait for another function call before
returning its value

38

Factorial
int factorial(int num) {

if (num ==1)
return 1;

else
return num * factorial(num-1);

}

20

39

Better version
int fact2(int num, int result) {

if(num==1)
return result;

else
return fact2(num1-,result*num);

}

40

switch gears
let us start to talk about how to organize
data

21

41

Abstraction
one important concept for DS is the idea
of abstraction

anyone have a pilots license ??

anyone know how to fly a plane ??

42

Abstraction is hiding the details
focus on important bits
simplify
allow change to happen later

we can replace underlying structure without changing
the outside view
same idea of a standard api

22

43

List ADT
We want to represent a group of items

with a list which operations would you
have ??

44

List ADT
insert
remove
sort

find first
find last
count

Notice how we aren’t even talking about how to
store the list
Any IDEAS ??

23

45

Arrays to implement List ADT
Positive ?
Negative ?

what is the cost of insertion ?

what is the cost of insert at beginning ?

find by value ?

find by index ?

46

Linked List
structure which has list and links to
elements
each node points to next
not necessarily adjacent in memory
last has null pointer
need to keep link to first element

24

47

Linked Lists
Positive ?
Negative ?

what is the cost of insertion ?

what is the cost of insert at beginning ?

find by value ?

find by index ?

48

improvements
can improve linked list DS by adding
another set of links going backwards
Double linked lists

header / tail nodes

25

49

50

quick question
here is a short code segment, see if you
can type it up and compile on your
computer….for those who don’t have one,
can you tell me the output…

26

51

#include <iostream.h>

class X {
public:
X() { cout << 1 << ' '; }

X(const X&){ cout << 2 << ' '; }

~X(){ cout << 3 << ' '; }

X& operator=(const X&){ cout << 4 << ' '; }
};

X f(X x){ return x; }
X& g(X& x){ return x; }

int main() {
X a;
X b = a;
cout << endl;
a = b;
cout << endl;
a = f(b);
cout << endl;
b = g(a);
cout << endl;
return 0;

}

52

27

53

54

Iterators
some data structures have an idea of a
position
want to abstract that away

use of helpers known as Iterators which
allow you to iterate over a group of items

28

55

Issues
getting Iterators

operations

when required ?

56

operations
++

*

==
!=

anything else ??

29

57

When do we need Iterators ?
list manipulations can be made safer and
easier using Iterators

Example:
inserts
range inserts
deletion
range deletion

58

30

59

60

31

61

Applications
Tons of applications for List DS

depending on application will choose
implementation

basic sorts

62

Selection Sort
Given an array of size n

for every position 1..n
current is min
run through rest
swap if less

32

63

lets do the code

64

void selectionsort(int numbers[],int size) {
int i,j,min,tmp;

for(i=0;i<size,i++) {
min = numbers[i];
for(j=i; j<size; j++) {

if(min> numbes[j]) {
tmp = numbers[j];
numbers[j] = min;
min = tmp;

}
}

numbers[i] = min;
}

33

65

run time ?

66

Bucket sort
this is a really good sort for values range
< m with distinct values

create an array of size m, for each item
throw it in the correct bucket

when done read off all values in sorted
order

what is the run time ?

34

67

Radix sort
variation of bucket sort

anyone hear of this ?

68

need to know largest value
will iterate over all digits from last to first
on each iteration

35

69

Example
155
024
197
922
874
137
256
156
207
027

lets do each iteration

70

run time ?

36

71

Analysis
O (P (N + B))

N = number of values
B = number of buckets
P = number of passes

linear because it grows slowly in relation
to n

72

C++ issue
in many dynamic DS the gain from
reorganizing the DS will be lost with the
overhead of new/delete

any ideas ??

37

73

Solution
allocate memory in large blocks
will not be doing this generally, but should
be aware of the technique
example, create a class to ask for space,
which allocates a 100 items at a time,
giving back references until it needs to ask
for another block of 100

74

Next Time
Finish homework
Reading:

chapter 3
4.1

Will be releasing homework 2 Wednesday

