
1

1

3137 Data Structures and 
Algorithms in C++

Lecture 10
Aug 9 2006

Shlomo Hershkop

2

Announcements 
� Welcome to the Final Class!!!!

� we will wrap up data structures and algorithms today

� you need to submit all work by this weekend!!!

� please fill out the course evaluation on 
courseworks

� Extra office hours next few days



2

3

Outline
� Graph

� flow networks
� connectivity
� path exploration

� Algorithm designs
� greedy
� divide and conquer
� random
� heuristic

� Other DS
� Game trees
� General DS

� Final Review

4

reminder
� graph is just a collection of items and 

relationships
� important for exploring theoretical and 

practical problems
� representation
� algorithms



3

5

Question
� Anyone hear about six degrees of 

separation ??

� Anyone know how many links you need to 
follow from one page to any other (using 
the most direct route ) ??

6

Dijkstra
� can anyone tell me what dijkstra’s

algorithm is used for ??

� what is it ??



4

7

Problem: MST
� most of the time will have weight 

associated with the graph

� will want the minimum cost spanning tree 
connecting all nodes

� Example : laying down electric lines

8

solutions 
� prim’s algorithm

� greedy solution
� O(V2) but can be done in O(E log V) with heap
� grows the tree one branch at a time

� kruskals algorithm
� bottom up solution
� O(E log V)
� puts together forest of cheap ST and combine 

to get MST



5

9

prim’s algorithm
� V is your list of nodes
� choose random node to start MST
� while V notEmpty()

� choose cheapest edge outgoing from your MST
� remove from V, add to MST
� avoid cycles

10

kruskal’s algorithm
� look at all edges
� for use the cheapest edge to connect two 

nodes
� as long as no cycles created



6

11

flow networks
� sometimes we are interested in graph as a 

capacity problem:
� Represent graph of capacity between two 

points
� Want to see what is the max flow the graph 

can carry between the points

� application: oil pipeline, electricity grid, 
etc

12

� Given a graph with a flow capacity, what 
strategies can you think will allow you 
� any flow
� max flow
� min flow 



7

13

max flow algorithm
� hand out from last class

� will be using extra graph for book keeping

14

undoing
� can augment the algorithm by adding 

back edges

� handout



8

15

Another Graph problem
� say you have a bunch of tasks which have 

to be done over time
� some can be done in parallel
� some have to wait for a specific task to be 

done before being able to be started

� think building construction, can’t paint the 
inside without putting up the walls…etc

16

graph connectivity
� biconnected:

� graph is biconnected is there are no vertices 
which can disconnect the graph

� i.e no articulation points

� points of failure
� how to find them all??



9

17

simple algorithm
� DFS

� any vertex, DFS, number vertex as visited
� check what is the lowest number you can 

reach from any edge and back edge
� minimum of:

� current number
� lowest out edge
� lowest of out edge 

18

Euler Path
� can you have a path which starts and 

ends at the same edge and visits each 
edge exactly once ??



10

19

� solved in 1736

� key to solution:
� even degrees
� connected graph

� best algorithm : O(E+V)

20

linear solutions
� so this is a linear solution for traveling to 

each edge

� what if you wanted to travel to each node



11

21

TSP
� Traveling salesman problem:

� shortest route through n cities that visits each 
city once and returns to starting one

� can be stated as finding the shortest 
Hamiltonian circuit of the graph

� how many combinations of tours available ??

22

computing limitations
� at the beginning of the 1900’s there was 

an open problem to show what would be 
the theoretical limitation of computing

� can a computer solve every problem



12

23

halting problem
� given a program and some input, 

determine if the program given this input 
ever stops

24

� generally the solution is undecideable

� but specific instances of this problem can 
be solved



13

25

poly time problems
� the algorithms we have studied are all 

solved in polynomial time

� O(1)
� O(n)
� O(n log n)
� O(n2)
� O(n10000)

26

NP problems
� problems which can not be solved in poly 

time
� solutions can be checked in poly time

� so given a solution and graph, we can 
answer is it a Hamiltonian cycle in poly 
time



14

27

NP complete
� hardest of the NP problems
� they can all be mapped to each other

� example Map color ability
� can you color a map so that no two countries 

which touch have the same color ??
� can you use only 4 colors ??

28

� Algorithms
� lets talk about the general approach of 

designing algorithms



15

29

Process
1. Understand the problem
2. Decide on exact vs approximate solution
3. Design your algorithm
4. Prove its correct

1. might have to go back to 2 or 3

5. Analyze the algorithm
1. might have to go back to 2 or 3

6. Code the algorithm

DON’T START WITH 6!!

30

understanding problem
� need to think about what you are trying to

� represent
� solve for
� optimize

� think about computational requirements 
and resources
� different if an experiment vs real world 

environment



16

31

Approximate solutions
� Why wouldn’t you want an exact solution 

??
� can’t be done
� might be possible, very very slow

� might be part of an exact solution

32

Design issues
� Data structures can make or break your 

algorithm
� sometimes can use the standard, more often 

than not cut-paste various models
� look for similar problems, how were they 

solved
� feel free to approach the problem in an 

unusual way
� documentation is essential
� try not to reinvent the wheel (Everywhere)



17

33

Proving
� check basic cases
� we’ve done very easy proofs, as 

mentioned some algorithms avg cases 
took years to find a proof

� what does it mean for approximate 
algorithm…how do you prove it works ?

34

Analyze it
� time resources
� space resources
� can it be simplified ?
� can you generalize it a little ?
� can it handle a broad set of inputs ?

� not always all steps necessary!



18

35

coding
� have lots of experience from this class ☺
� most of the time proof approximated by 

testing…remember to code this!!
� packages available!

� choose language carefully
� consider available language resources!

� don’t loose efficiency of the algorithm with 
poor implementation

36

Classes of algorithms
� Lets talk about different types of 

algorithms
� greedy
� divide and conquer
� dynamic algorithms
� backtracking
� decrease and conquer
� randomized algorithms



19

37

Greedy Algorithm
� many examples that we have seen

� “grab what you can and run “ philosophy

� settle for an answer not quite best, hoping 
we get close

38

problem
� given a set of points in 2 dimensional 

space

� can you find closest pair of points to any 
point ?

� hmmm sounds familiar ??



20

39

� strategies ??

� runtimes ??

� improvements ?

40

� mentioned finding the median number in 
linear time

� any ideas on this ??



21

41

divide and conquer
� idea: to hard to solve whole problem so 

can solve bits and combine the results

� mergesorts

42

quick question
� Quick sort has a worst case behavior of ??

� so how do we solve it



22

43

median selection
� I mentioned that there is a linear 

algorithm for choosing the median

� anyone read it up ?

44

basic idea:
� divide your elements into groups of small size say 

5
� find the median in each group…running time ???
� so we have N/2 medians
� find the medians of these medians

� how close are we to the median ??
� what does it do to quicksort ?



23

45

Dynamic algorithms
� divide the problem into overlapping sub 

problems

� the final solution will have repeated parts, 
so lets memoize them so only need to 
recompute them once

� fibonacci sequence

46

backtracking
� build up solution slowly, and when hit a 

dead end, back up and try another 
solution
� uses the idea of promising paths and non-

promising paths



24

47

problem
� how to place n queens on a n by n board

� lets do 4 queens

48

decrease and conquer
� idea: problem of size n can be solved as 

problem size n-1 + the i’th item

� think of some of the sorting routines



25

49

random algorithm
� why would you want to base your 

algorithm on random decisions ?

50

randomness
� for some hard problems

� can not solve directly
� we can get the correct answer with high probability
� run efficiently in expectation!

� Example
� computer networks….anyone use an ethernet network
� anyone know how they work
� how the tcp/ip protocol works ? 



26

51

Problem
� given a Graph (undirected) we want to find the 

minimum number of edge deletions so that we 
can divide the graph into two distinct non-empty 
sets A and B

� real life example: say you have a complex 
network, what would be the minimum number of 
damages to it to split the network

� any ideas on this ?

52

contraction algorithm
� proposed in 92
� here is a sketch of the idea 



27

53

� Review for final

54

basics
� should remember your fundamental data 

structures
� lists
� queues
� stacks

� form the basis for advanced structures
� trees
� hash tables
� graphs



28

55

implementation and run time
� You are familiar with runtime concepts
� implementation can make break a data 

structure
� arrays, linked lists affect on implementation

� coding ideas we’ve covered
� recursion
� code layout
� efficiency concerns

56

hash tables
� idea of hash table
� hash functions
� collision resolution
� scalability issues
� bloom filter hashing

� in use with other DS



29

57

Trees
� implementation details
� BST
� Traversals
� AVL
� B+ trees

� how are trees related to graphs ??

58

� sorting
� Basic sorts

� bubble
� selection
� insertion

� Better
� heapsort

� Even Better
� mergesort
� quicksort

� analysis of sorts



30

59

sets
� idea of sets
� union / find
� path compression
� union by rank

60

Graphs
� implementation
� sorting
� shortest paths
� network flows
� MST
� Expansion

� DFS
� BFS

� Algorithms



31

61

Algorithms
� analyzing general run times
� comparing classes of algorithms
� getting a feel if it’s a good algorithm

62

� Lessons Learned
� Think then code!

� Try not to reinvent wheel or do things in 
n3 or n! land ☺



32

63

practice I
� say you are standing in front of a wall 

which stretches infinitely to the left and 
right. 

� there is a door somewhere N steps away, 
but you don’t know which directions

� give an algorithm to find it

� now give a linear algorithm and exact 
runtime!

64

Practice II
� for prim’s algorithm…if you have a choice 

between two edges, can you prove it 
makes no difference which one is chosen



33

65

Practice III
� You are given an array that contains N numbers. 
� We want to determine if there are two numbers 

whose sum equals a given number K. 
� for instance if the input is 8,4,1,6 and K=10, the 

answer is yes (use 4 and 6). 
� A number may be used twice. 
� Do the following:

� Give an O(N2) algorithm to solve this problem
� Give an O(N log N) algorithm to solve this problem. 

66

Practice IV
� is it possible to implement insertion sort 

for sorting linked lists ? 
� will it have the same o(n2) running as an 

array version ??



34

67

conclusion
� hope you have fun learning about the 

theory and programming of DS and 
Algorithms

� please remember its open your notes and 
book but nothing else (no random 
websites)

� please remember to fill out the online 
survey

68

where to next
� so what can you do now ☺



35

69

� Thank you

� good luck on the final….


