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3137 Data Structures and 
Algorithms in C++

Lecture 10
Aug 9 2006

Shlomo Hershkop
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Announcements 
� Welcome to the Final Class!!!!

� we will wrap up data structures and algorithms today

� you need to submit all work by this weekend!!!

� please fill out the course evaluation on 
courseworks

� Extra office hours next few days
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Outline
� Graph

� flow networks
� connectivity
� path exploration

� Algorithm designs
� greedy
� divide and conquer
� random
� heuristic

� Other DS
� Game trees
� General DS

� Final Review
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reminder
� graph is just a collection of items and 

relationships
� important for exploring theoretical and 

practical problems
� representation
� algorithms
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Question
� Anyone hear about six degrees of 

separation ??

� Anyone know how many links you need to 
follow from one page to any other (using 
the most direct route ) ??
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Dijkstra
� can anyone tell me what dijkstra’s

algorithm is used for ??

� what is it ??
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Problem: MST
� most of the time will have weight 

associated with the graph

� will want the minimum cost spanning tree 
connecting all nodes

� Example : laying down electric lines

8

solutions 
� prim’s algorithm

� greedy solution
� O(V2) but can be done in O(E log V) with heap
� grows the tree one branch at a time

� kruskals algorithm
� bottom up solution
� O(E log V)
� puts together forest of cheap ST and combine 

to get MST
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prim’s algorithm
� V is your list of nodes
� choose random node to start MST
� while V notEmpty()

� choose cheapest edge outgoing from your MST
� remove from V, add to MST
� avoid cycles
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kruskal’s algorithm
� look at all edges
� for use the cheapest edge to connect two 

nodes
� as long as no cycles created
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flow networks
� sometimes we are interested in graph as a 

capacity problem:
� Represent graph of capacity between two 

points
� Want to see what is the max flow the graph 

can carry between the points

� application: oil pipeline, electricity grid, 
etc

12

� Given a graph with a flow capacity, what 
strategies can you think will allow you 
� any flow
� max flow
� min flow 
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max flow algorithm
� hand out from last class

� will be using extra graph for book keeping
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undoing
� can augment the algorithm by adding 

back edges

� handout
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Another Graph problem
� say you have a bunch of tasks which have 

to be done over time
� some can be done in parallel
� some have to wait for a specific task to be 

done before being able to be started

� think building construction, can’t paint the 
inside without putting up the walls…etc

16

graph connectivity
� biconnected:

� graph is biconnected is there are no vertices 
which can disconnect the graph

� i.e no articulation points

� points of failure
� how to find them all??
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simple algorithm
� DFS

� any vertex, DFS, number vertex as visited
� check what is the lowest number you can 

reach from any edge and back edge
� minimum of:

� current number
� lowest out edge
� lowest of out edge 
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Euler Path
� can you have a path which starts and 

ends at the same edge and visits each 
edge exactly once ??
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� solved in 1736

� key to solution:
� even degrees
� connected graph

� best algorithm : O(E+V)
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linear solutions
� so this is a linear solution for traveling to 

each edge

� what if you wanted to travel to each node
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TSP
� Traveling salesman problem:

� shortest route through n cities that visits each 
city once and returns to starting one

� can be stated as finding the shortest 
Hamiltonian circuit of the graph

� how many combinations of tours available ??
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computing limitations
� at the beginning of the 1900’s there was 

an open problem to show what would be 
the theoretical limitation of computing

� can a computer solve every problem
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halting problem
� given a program and some input, 

determine if the program given this input 
ever stops

24

� generally the solution is undecideable

� but specific instances of this problem can 
be solved
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poly time problems
� the algorithms we have studied are all 

solved in polynomial time

� O(1)
� O(n)
� O(n log n)
� O(n2)
� O(n10000)
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NP problems
� problems which can not be solved in poly 

time
� solutions can be checked in poly time

� so given a solution and graph, we can 
answer is it a Hamiltonian cycle in poly 
time
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NP complete
� hardest of the NP problems
� they can all be mapped to each other

� example Map color ability
� can you color a map so that no two countries 

which touch have the same color ??
� can you use only 4 colors ??

28

� Algorithms
� lets talk about the general approach of 

designing algorithms
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Process
1. Understand the problem
2. Decide on exact vs approximate solution
3. Design your algorithm
4. Prove its correct

1. might have to go back to 2 or 3

5. Analyze the algorithm
1. might have to go back to 2 or 3

6. Code the algorithm

DON’T START WITH 6!!

30

understanding problem
� need to think about what you are trying to

� represent
� solve for
� optimize

� think about computational requirements 
and resources
� different if an experiment vs real world 

environment
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Approximate solutions
� Why wouldn’t you want an exact solution 

??
� can’t be done
� might be possible, very very slow

� might be part of an exact solution

32

Design issues
� Data structures can make or break your 

algorithm
� sometimes can use the standard, more often 

than not cut-paste various models
� look for similar problems, how were they 

solved
� feel free to approach the problem in an 

unusual way
� documentation is essential
� try not to reinvent the wheel (Everywhere)
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Proving
� check basic cases
� we’ve done very easy proofs, as 

mentioned some algorithms avg cases 
took years to find a proof

� what does it mean for approximate 
algorithm…how do you prove it works ?
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Analyze it
� time resources
� space resources
� can it be simplified ?
� can you generalize it a little ?
� can it handle a broad set of inputs ?

� not always all steps necessary!
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coding
� have lots of experience from this class ☺
� most of the time proof approximated by 

testing…remember to code this!!
� packages available!

� choose language carefully
� consider available language resources!

� don’t loose efficiency of the algorithm with 
poor implementation

36

Classes of algorithms
� Lets talk about different types of 

algorithms
� greedy
� divide and conquer
� dynamic algorithms
� backtracking
� decrease and conquer
� randomized algorithms
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Greedy Algorithm
� many examples that we have seen

� “grab what you can and run “ philosophy

� settle for an answer not quite best, hoping 
we get close

38

problem
� given a set of points in 2 dimensional 

space

� can you find closest pair of points to any 
point ?

� hmmm sounds familiar ??
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� strategies ??

� runtimes ??

� improvements ?

40

� mentioned finding the median number in 
linear time

� any ideas on this ??
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divide and conquer
� idea: to hard to solve whole problem so 

can solve bits and combine the results

� mergesorts
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quick question
� Quick sort has a worst case behavior of ??

� so how do we solve it
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median selection
� I mentioned that there is a linear 

algorithm for choosing the median

� anyone read it up ?
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basic idea:
� divide your elements into groups of small size say 

5
� find the median in each group…running time ???
� so we have N/2 medians
� find the medians of these medians

� how close are we to the median ??
� what does it do to quicksort ?



23

45

Dynamic algorithms
� divide the problem into overlapping sub 

problems

� the final solution will have repeated parts, 
so lets memoize them so only need to 
recompute them once

� fibonacci sequence
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backtracking
� build up solution slowly, and when hit a 

dead end, back up and try another 
solution
� uses the idea of promising paths and non-

promising paths
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problem
� how to place n queens on a n by n board

� lets do 4 queens

48

decrease and conquer
� idea: problem of size n can be solved as 

problem size n-1 + the i’th item

� think of some of the sorting routines
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random algorithm
� why would you want to base your 

algorithm on random decisions ?

50

randomness
� for some hard problems

� can not solve directly
� we can get the correct answer with high probability
� run efficiently in expectation!

� Example
� computer networks….anyone use an ethernet network
� anyone know how they work
� how the tcp/ip protocol works ? 
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Problem
� given a Graph (undirected) we want to find the 

minimum number of edge deletions so that we 
can divide the graph into two distinct non-empty 
sets A and B

� real life example: say you have a complex 
network, what would be the minimum number of 
damages to it to split the network

� any ideas on this ?
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contraction algorithm
� proposed in 92
� here is a sketch of the idea 
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� Review for final

54

basics
� should remember your fundamental data 

structures
� lists
� queues
� stacks

� form the basis for advanced structures
� trees
� hash tables
� graphs
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implementation and run time
� You are familiar with runtime concepts
� implementation can make break a data 

structure
� arrays, linked lists affect on implementation

� coding ideas we’ve covered
� recursion
� code layout
� efficiency concerns
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hash tables
� idea of hash table
� hash functions
� collision resolution
� scalability issues
� bloom filter hashing

� in use with other DS
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Trees
� implementation details
� BST
� Traversals
� AVL
� B+ trees

� how are trees related to graphs ??
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� sorting
� Basic sorts

� bubble
� selection
� insertion

� Better
� heapsort

� Even Better
� mergesort
� quicksort

� analysis of sorts
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sets
� idea of sets
� union / find
� path compression
� union by rank
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Graphs
� implementation
� sorting
� shortest paths
� network flows
� MST
� Expansion

� DFS
� BFS

� Algorithms
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Algorithms
� analyzing general run times
� comparing classes of algorithms
� getting a feel if it’s a good algorithm
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� Lessons Learned
� Think then code!

� Try not to reinvent wheel or do things in 
n3 or n! land ☺
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practice I
� say you are standing in front of a wall 

which stretches infinitely to the left and 
right. 

� there is a door somewhere N steps away, 
but you don’t know which directions

� give an algorithm to find it

� now give a linear algorithm and exact 
runtime!
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Practice II
� for prim’s algorithm…if you have a choice 

between two edges, can you prove it 
makes no difference which one is chosen
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Practice III
� You are given an array that contains N numbers. 
� We want to determine if there are two numbers 

whose sum equals a given number K. 
� for instance if the input is 8,4,1,6 and K=10, the 

answer is yes (use 4 and 6). 
� A number may be used twice. 
� Do the following:

� Give an O(N2) algorithm to solve this problem
� Give an O(N log N) algorithm to solve this problem. 
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Practice IV
� is it possible to implement insertion sort 

for sorting linked lists ? 
� will it have the same o(n2) running as an 

array version ??
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conclusion
� hope you have fun learning about the 

theory and programming of DS and 
Algorithms

� please remember its open your notes and 
book but nothing else (no random 
websites)

� please remember to fill out the online 
survey
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where to next
� so what can you do now ☺



35

69

� Thank you

� good luck on the final….


