3137 Data Structures and
Algorithms in C++
Lecture 1

July 5 2006
Shlomo Hershkop

It summer Session!

o Welcome

O Ask yourself, is it better to spend the
summer outside or inside on this stuff ?!

O Hope to be very informal

= small class size....which can be a good thing
and bad!

O | hope to convince you this is more fun
than sitting on the beach ©

Overview

o Today:
= Basic overview of the course and objectives
®m background c++
= background algorithms
= first assignment (gasp!)
o Goal:

= Thing are much easier if everyone knows why they are here,
and what we are trying to accomplish.

= Interactive course

= We will learn about programming ideas while trying to have
fun.

What 1s 3137?

0 CS3137: Fourth course for CS majors.

O Prerequisites:
= Intermediate knowledge in general
Programming
= Basic discrete mathematic skills

= Program Structure:

Not enough to know how to write a program, need to
know how to analyze which structures work best for a
specific task

quiz!

O why is 3137 after 3157 ?

O did someone mess up their sort
implementation ??

So what are we going to be doing?

O Learn basic algorithm analysis
o bunch of basic data structures
o bunch of advanced DS

o advanced Algorithm analysis

o applied to practical problems

Basics

O Instructor: Professor Shlomo Hershkop
()
0 About Me/my Research
o Office hours:
M/W 4-5
AIM: Prof Hershkop
o Class website:
m cs.columbia.edu/—~sh553/teaching/su06-3137/

= Check it regularly (at least twice a week).
See announcement sections for update info.

O Meet twice a week: 825 Mudd
= Please come on time

Resources

o TA:
= Weijen Lee
o Since we are a small class:
= Please take advantage of the web board

How do I check what version of gcc is running?
What does Error ?@?@!?@ mean ?
= Bad:
What is wrong with the following code:
void foo()

= These kind of questions email privately to TA or Instructor

= Use your best judgement

Requirements

O Interest to learn about Computer Science
O Learn to use cool DS

O Learn to make your own program work
better

Textbook

o Textbook can be acquired online or at the
Columbia Bookstore.
= Else: borrow, threaten, or ‘acquire’ a book

O Required:
= Mark Allen Weiss
Data Structures and Algorithm Analysis in C++
3rd edition
ISBN: 032144146X

o Recommended:
= Any C++ background book.

Reading

o | will be posting reading on the website
and in class notes

O Please try to keep up with the reading

= | will try to make up examples for class, but
there are random stuff which the book covers
which is good to see in print

Feel free to ask questions from anything you
read/see/imagine in the book

Course Structure

o 6 Homeworks — 120 points
= Will have about 1 weeks per homework
o Midterm — 30 Points
= thinking about take home
o Final (90 points)
®= open book, in class
o Homework is important:
= Firm believer in hands on learning
= Start early

= Come to office hours, and ask questions
We are here for YOU!

Class participation and Attendance

o Attendance and participation is expected
= Very interactive lectures & Labs
= Small class, means more help
= Class anonymous feedback system
o If you have to miss class, | expect you to catch
up.
= |It's a short semester, so bear with me
= There will be class notes posted to the website

= There will be many examples in class only, so make sure
to get someone’s notes.

Homework & Projects

o Written:

= Will be collected at first class after HW deadline.
O Programming:

= Online submission

= Must be able to run on cunix system (this is important).
O Late policy:

= You have late days that can be used during the

semester.

= | can only review the homework and approaches if
everyone submits on time, so try to ask for help earlier
rather than later

Cheating Policy

o Plagiarism and cheating:
= I'm all against it. It is unacceptable.
O You're expected to do homeworks by yourself
= This is a learning experience.
= You will only cheat yourself.
= My job is to help you learn, not catch you cheating, but....
o Automated tools to catch plagiarizers
|
= Moving stuff around, renaming, etc. doesn’t help
Results: instant zero on assignment, referral to academic
committee
= Columbia takes dishonesty very seriously
= I'd much rather you come to me or the TAs for help

a

Feedback System

o Last minute of class will be set aside for
feedback:

= Please bring some sort of scrap paper to class to provide
feedback.

= Feel free to leave it anonymous.
m Content: Questions, comments, ideas, random thoughts.

o | will address any relevant comments at the
beginning of each class

o Summer is short, so provide feedback !

O Please feel free to show up to office hours or
make an appointment at any time

Shopping List

O You need either a cunix or CS account

m CS:
https://www.cs.columbia.edu/~crf/accounts
Try to log into the account asap

= Cunix
log into cunix.cc.columbia.edu

0 Check out the class page

0 Make textbook plans
» try keep up with the reading

0 Any Questions ?

Survey 1

O Please introduce yourself
= Programming background ?
= what C++ environments you’ve worked with

= Any cool technologies you would like to see
covered ?

Definitions

o Algorithm:

= Problem solving method to be used to solve a problem
independent of particular computer or program

= Central objects of study in computer science

O Heuristic
® In CS it is an Algorithm which is not guaranteed to find a
solution
= we will be studying algorithms which guarantee a
solution with some constraints

O most algorithms involve organizing data in
a specific way and supporting a specific
set of operations

O These are called Data Structures

= will start with simple ones
= study analysis techniques
= combination of structures

solving a problem

O once you outline a problem to be solved
by a computer
= choice of language
= choice of approach

= for small problems exact solution might not
make a big difference

= for huge problems, sometimes a specific
solution might take too long, and we are trying
to get it solved faster

simple approach

o0 Throw money and buy faster computer

= might give you 10 — 100 times speedup

O Study the algorithms

= might give you a million times speedup

Connectivity Example

0 Given a pair of relationships between
items, we want to know if a relationship
can be inferred for a new pair a,b

o 3-4
O 4-9
O 8-0
O 2-3
O 5-6

?2-97

12

Graphical Example

E” I i _Q;J I H_
%lgél _' HE
B T

Applications

O network communications
O circuitry

O mapping software

O variable name equivalence
O telephone network

O computer chip design

13

basic idea

O outline the problem

O understand clearly what kind of questions
you are answering

= don’t do all the work only to discover you can’t
answer the question at the end

0 understand the resource requirements

Sample Problem

0o Have a collection of index cards with
everyone’s names on it

O | want to organize it in alphabetical order

O Any ideas ?7?

14

Straightforward

O Find first name in list by going through it
O Find next
O etc

o Feels slow, how ?

Creative Approach

O Throw list in the air and make a new pile

o Will this ever find a solution ??

O any better ?

15

Fastest Solution

O Take a random name
= can throw in air if you wish

O Sort into two piles

O redo from start

0 known as quicksort, will cover when we
cover sorting routines

Measurements

o Time
= When designing an algorithm, think how fast it
will run....then prove it
O Space
= how much memory will it take up ?
= important since we tend to treat memory as
infinite
o Complexity

= how easy it is to understand

given two algorithms, one complicated and one clear,
tend to prefer the clear one

16

C++ Review

o Would like to review relevant C++

0 make sure you can do the home works

0 make sure you can do the work

Programming Environment

o online:
® CUnix

O Laptop/Desktop
= cygwin
= emacs
= eclipse + (c++ plugin)

17

Basics

o You should be familiar with creating basic c++
programs

Basic logical structure
Basic types
Basic function programming

Basic memory manipulations
® pointers
= refrences

o We will now review some basics relating to
dealing with classes and instances

CPP classes

O A class if a collection of functions and
member variables

O instances of a class is called an object

O special functions called constructors and
destructors can be automatically invoked

18

Question

O Anyone remember how to define a
constructor ?

O destructor ?
0 When are they invoked ?
0 How to prevent them from being invoked?

Types of Functions

O Accessor

= get some state information from the object
O Mutator

= change information
O Helper

= internal functions to accomplish tasks cleanly
O Predicate

= help answer simple yes/no questions

19

Example

O want to represent a memory cell which
can hold an integer value

o Call the class IntCell

Example

class IntCell {
private:
Int storedValue;
public:
IntCell() { storedvalue =0; }

¥

20

accessing variables

o IntCell mycell;
0 how do you access the value ?
o how would you set the value ?

o IntCell *cellPTR;
o cellPTR->read();

abstraction

O important when defining a class to
separate how to use the class and how we
are representing the information

21

—
=T =T T I = R R P

[e e =
- W e Wk

;f**

* A class for simulating an integer memory cell. 18

*/

class IntCell

{

public:
J(**
* Construct the IntCell.
* Initial value is 0.
*/
IntCell()
{ storedValue = 0; }

*
* Construct the IntCell,
* Initial value is initialValue,

*/

19
20
21
22
23
24
25
26
27
28
29

IntCell(int initialValue)
{ storedvalue = initialvalue; }

r‘ft*
* Return the stored value.
*/
int read()
{ return storedValue; }

;"*)(
* Change the stored value to x.
*/
void write(int x)
{ storedValue = x; }

private:
int storedvalue;
bs

Code Practice

O Any ideas of how to add a unique counter

to each instance ?

22

Hands on Coding

o code the counter class

O add a static member ID (you need myid)

misc stuff

O review of misc things to do with basic
class programing in C++

23

const class members

O const class members are assigned at construction time
using the : notation

class Worker {

public:
Worker(int id,int job);
int getlD () const;

private:

const int _ID;

int _job;
¥
constructor

Worker(int id, int job) : _ID(id) {
_job = job;
by

24

1ssues

O you should be careful about not returning
private references

O can use const on functions when dealing
with const arguments or member
variables

const

O Allows the compiler to know which values
shouldn’t be modified

O Very useful in your functions to either
return const reference or make sure a
pointer doesn’t alter the original object

O Example:
const iInt a = 5;

void foo(const int x) { }

25

Const pointer to non-const

O This is a pointer which always points to
same location, but the value can be
modified

O int * const ptr = &X;

*ptr = ??
can’t say
ptr = & ??

Const pointer to const data

O Int x = 200;
O const int * const ptr = &x;

26

O Some confusion
® int const * X
m const int * X //variable pointer to const
® int * const Y //const pointer to int
® int const * const Z//const point to const

Pointers to functions

O You can also pass around a pointer to a

function
o void foo (int , int (*) (int , int));

o int examplel(int x, int y) { return x+y; }

o foo(5, examplel);

27

Usage

o void foo(int a, Int (FA)(int,int)){
iT((*A)(5,10) > 0){
}

else {

}
}

Classes within classes

O class member variables can be other
classes

O important: member constructors are
actually called before main class
constructors
m does this make sense ?

28

this

o this is a keyword

O represents a pointer to the class itself

O this->x
O or (*this).x

static

O static members have instance wide scope
and livability

O great for shared variable

o have to be careful how used

29

assert

O special macro runs a test

o if true continues

O if false
m dies without calling destructors

friends

0O can declare a function to be a friend

O allows access to private member of the
class

O not scoped during definition

30

What can go wrong

O The good thing about cpp is that your
program can now crash many times even
before reaching main ©

O secret: understanding scope

Ordering and where to look for
problems

0 Global variables
= Assignments and constructors
= What else ??

o Main

O Local variables

o End local variables
o0 End main

O Global destructors

31

Class friends

o allows two or more classes to share
private members

O e.g., container and iterator classes

o friendship is not transitive

Operator overloading

O Most operators can be overloaded in cpp
O Treated as functions

O But its important to understand how they
really work

32

o + o >>
o — o &&
o ++
o o [
0 o 0
o = O new
o* o delete
o /= o newl]
_ o ->
o += o >>=
o <<
Look up list
OoX=X+Y
o Need to overload
+

o But this doesn’t overload +=

33

O Functions can be member or non-member
o Non-member as friends
o If its member, can use this

o (), [1, -= or any assignments must be
class members

0 When overloading need to follow set
function signature

unary

oY+=Z
o Y.operator+=(Z)

o ++D
O member
= D.operator++()

o Non member
= operator++(D)

34

o Functions can be member or non-member, your
choice!
= Non-member as friends if need private data

o If its member, can use the this pointer

o Exception: operators (), [], -=> or any
assignments must be class members

o When overloading need to follow set function
signature

cout

O cout << yourclass

O left operand is ostream &

O so non member functions (belongs to
ostream)

o friend if you would like

O lets code something

35

String class

o lets define a simple string class
O put output in its const and dest so we can follow

o constructor should take const char *

o would like to have following defined:
int length();
int hash();

O any ideas on how to do it ?

overload printing

friend ostream & operator <<(ostream &, const String
&);

ostream &operator<<(ostream &output, String &str) {

Output << K7V oo << ::111;

return output;

}

36

note

o0 when you call:
cout << sl << s2;

o it is first:
operator<<(cout,sl)

o and then
operator<<(cout,s?)

Next

m}

m}

a

a

want to overload the unary operator !
test if a string is blank
int operator!() const;

or
friend int operator(const String &);

Is1
s.operator! () or operator!(s)

37

same idea

O const String operator+=(const String &)
O Vs

o friend const String &operator+=(Stirng &,
const String &)

o what will s1 += s2 produce ?

o so how can we tell the difference between
++s1 and s1++

38

signatures

Osl++

O sl.operator++(0)

O operator++(sl1,0)

O ++sl;

O sl.operator++()

O operator++(sl)

39

reusce

O one of the powers to OOP is the idea of
reuseability

o if 1 spend 5 billion hours working on my
code, | probably want to get some use out
of it outside of the specific task
= design issues
= extension issues

Separation

O .h files include your design

O .cpp files your implementation

40

preprocessor

O should be familiar with basic #define
preprocessor directives

O anyone remember how to prevent an error
if the same .h file is included twice in a
project ??

O #ifndef __something___unique___
O #define __something___unique___

o #endif

41

inheritance

O idea: allow a new class to inherit data
members and functions from a base class

0 can add members and functions
O represents a more specific idea

O vehicle -> minivan

O you can access protected members of
parent

O can not access private members of parent
= can still use public accessors and modifiers

42

code

class IntArray: public Array {

O simplest type of inheritance
O private members not inherited
O public/protected inherited accordingly

code

O create a point class
= setPoint
<<

O derive Square

= getArea()
<<

43

overriding

O we can redefine a base class function in
the derived class and have c++ call the
correct one

Question

O can
o Point *ppl;
O Square *spl;

O given
o Point p = Point(3,4);
O Square s = Square(..

O can we say:

44

private inheritance

O we have used public inheritance

O private inheritance makes everyone from
the base class come in as private
members of the derived class

base class constructors

O need to launch base class constructor in
derived class if you don’t want the default
to be called

o destructors are reversed

O lets see this in action

45

1s a vs has a

O one important design decision is to know
when to derive and when to use member
variable

1ssue

O one issue with overriding, is that if the derived
class doesn’t provide a function, we will use the
base class definition

o this doesn’t always make sense

o Example | want a function MPG for any type of
vehicle, but doesn’'t make sense of base class

46

virtual functions

o solution :
o declare the function to be virtual
o virtual double MPG();

o allow you to use a base class pointer to call at
runtime the correct function (polymorphism)

abstract class

0O sometimes its even useful to have a base
class which can’t be instantiated

o if any virtual function is declared pure
virtual:

o virtual int MPG() = O;

47

note

O constructors can not be virtual

O need virtual destructors to make
everything work if you are going to have
destructors in any of your classes (do it
anyway)

Class derivation

o encapsulation
= derivation maintains encapsulation

= i.e., itis better to expand IntArray and add sort() than to modify your own
version of IntArray

o friendship
= not the same as derivation!!
= example:

is a friend of

B2 is a friend of B1

D1 is derived from B1

D2 is derived from B2

B2 has special access to private members of B1 as a friend
But D2 does not inherit this special access

nor does B2 get special access to D1 (derived from friend B1)

ooooooao

48

Derivation and pointer conversion

o derived-class instance is treated like a base-class instance

O but you can’'t go the other way

o example:

main(Q) {

IntArray ia, *pia;

// base-class object and pointer

StatsIntArray sia, *psia;

// derived-class object and pointer

pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer

psia = (StatsIntArray *)pia; // sort of okay now since:
// 1. there’s a cast

// 2. pia is really pointing to sia,

// but if it were pointing to ia, then

// this wouldn’t work (as below)

psia = (StatsIntArray *)&ia; // no: because ia isn’t a StatsintArray

Compiler issues

0 Back to our IntCell example:

IntCell i1cell;
icell = 37;

o will this compile ?7?

49

what happens

o IntCell temp(37);
O icell = temp;

explicit

O explicit keyword tells the compiler to not
create constructors in the background for
you

50

1 /**
2 * A class for simulating an integer memory cell.
3 */
4 class IntCell
5
6 public:
7 explicit IntCell(int initialValue = 0)
8 : storedValue(initialValue) { }
9 int read() const
10 { return storedValue; }
11 void write(int x)
12 { storedValue = x; }
13
14 private:
15 int storedValue;
16 };
reminder

O pointer to objects has slight behavior
differences

51

int main()

{
IntCell *m;

1

2

3

4

5 m = new IntCell(0);

6 m=>write(5);

7 cout << "Cell contents: " << m->read() << endl;
8
9
0
1

delete m;
return 0;

Templates

template<typename X>

void foo(X &First, X second){
first += second;

}

see book for complete review

52

1 /**
2 * Return the maximum item in array a. o
3 * Assumes a.size() > 0.
4 * Comparable objects must provide operator< and operator=
5 %
6 template <typename Comparable>
7 const Comparable & findMax(const vector<Comparable> & a)
& |
9 int maxIndex = 0;
10
11 for(int i = 1; i < a.size(); i++)
12 if(a[maxIndex] <a[i])
13 maxIndex = i;
14 return a[maxIndex];
15}
1 int main()
_2
3 vector<int> vi(37);
4 vector<double> v2(40);
5 vector<string> v3(80);
6 vector<IntCell> v4(75);
7
8 // Additional code to fill in the vectors not shown
9
10 cout << findMax(vl) << endl; // OK: Comparable = int
11 cout << findMax(v2) << endl; // OK: Comparable = double
12 cout << findMax(v3) << endl; // OK: Comparable = string
13 cout << findMax(v4) << endl; // Illegal; operator< undefined
14
15 return 0;
16}

53

I /**
_ 2 * A class for simulating a memory cell.

3 */

4 template <typename Object>

5 class MemoryCell

6

7 public:

8 explicit MemoryCell(const Object & initialValue = Object())
9 : storedValue(initialvalue) { }
10 const Object & read() const

11 { return storedValue; }
12 void write(const Object & x)
13 { storedValue = x; }
14 private:
15 Object storedValue;
16 };

1 int main()

2 |

3 MemoryCell<int> ml;

4 MemoryCell<string> m2;("hello");
5

6 ml.write(37);

7 m2.write(m2.read() + "world");
8 cout << ml.read() << endl << m2.read() << endl;
9

10 return 0;

11)

54

STL

o standard template library

o tons of useful stuff here
= they’'ve worked out all the bugs ©
= very efficient
= make sure you understand what you are doing

o #include <vector>
O #include <string>

1 #include <iostream>

2 #include <vector>

3 using namespace std;

4

5 int main()

6 |

7 vector<int> squares(100);

8

9 for(int i = 0; i < squares.size(); i++)
10 squares[i] =i * i;

11

12 for(int i = 0; i < squares.size(); i++)
13 cout << i << " " << squares[i] << endl;
14

15 return 0;

16}

55

Reviewing

O make sure you are comfortable writing
c++ code

O please speak to me ASAP if you need
more help/reading etc

O Please ask if you need help

0 Read Chapter 1 (ending) for more
examples

Switch Gears

o Back to DS & A

O Lets assume we have some algorithm

O Lets discuss how to measure algorithms

56

Model of Computation

o In order to analyze algorithms

= Will want to consider a model to study what it
means to compute

= would like to create classes of algorithms, so
that we can talk about them in a uniform way
broad catagories

= Will make some simplifications

Simplifications

m}

Computation

= Assume every step of the algorithm takes one step
Different than real life
Generally Addition/subtraction < Multi <<< Division
CPU tasks << Memory access <<<<<< Disk access
Will come back to this when we discuss multi threaded environments

Space
® Assume infinite memory
Will adjust later

Time
= Will be counting time steps

57

Definition - Theta

o T(N) = ©(g(N))
= set of functions f(N) are in ©(g(N))

if there exists positive constants c,, c,, N,

such that 0 < c; g(N) < f(N) < ¢, g(N)

for all N 2 n,

O theta bound is strongest bounding

o real world sometimes hard to make such
guarantees

0 need to relax bound

58

Big-O

o T(n) =O0(Cg(N))

if there are positive constants ¢ and n,
such that
T(N) =c g(N) when N =2 ng

o Known as Big O notation

0 Asymptotic in the upper limit

Omega

O lower bound only

59

little o

o little -0 provides an upper bound but not a
tight one

0 doesn’t say much

o should be aware of it

Functions

o We would like to use functions to describe the
growth of some resource by an algorithm

o Want to compare different algorithms by growth
rate

o Big O allows us to define an upper bound on a
function

O SO we can say:
s?mething is on the order of Big-O of something
else

60

Careful

o On small input sizes, it is hard to analyze an
algorithm

o Might be lucky

o Its been shown time and time again that
something which just “works” but poorly
designed can have some very expensive
ramifications when scaling goes up.

Simplification

O Say an algorithm is said to run in
3n2+2n +5

O Drop constants
o Drop low order polynomial terms

o We are interested in the function as it is
taken to the limit

61

What to analyze

O Input size is strong consideration

0 Generally an algorithm might have
= Best case (ha!)
= Worst case
» Average case

o Which is most interesting?

Other considerations

0 Remember it's a great tool, but very
simplified

O Programming language
o Compiler
o Computer code

62

Example to analyze

int sum(int n) {
int part_sum = 0;

for(int i=0;1 <= n; 1++){
part_sum += 1 * i * 1;

return part_sum;

O What is the runtime of this algorithm in terms of a function
?

General rules

o For simplification here are some general
rules

63

For Loop

O Running time of a for loop is at most the
running time of statements inside (plus
tests) multiplied by number of iterations

Nested Loops

o Analyze inside out

for ($1 = 0; $i < $n; $i++)
{
for($j = 0; $j < $n; $j++)
{

k++;

64

More Rules

o Consecutive statements
m Just add consecutive statements within a
code block
o If/else

® The runtime of if/else is the test plus the
larger of the running time

m Take worst behavior

Example

for($1 = foo_1(); $1 < $n; $i++)
{

somesub($i);
$total += foo2();

}

65

Practice

O Lets do some simple examples

Example 1

int findMax(int list[],int max){

int maxValue = list[0];
for(int i =0; i < max; i++)
1T(maxvValue < list[i]) {
maxValue = $list[i1];

}

return maxValue;

}

66

Example 2

int Example2 (int list[],int max) {
int k =0;
for(int 1 =0; i < max; i++) {
for(int j =0; j < max; j++) {
) k=(@™>*j)+n;

return Kk;

Example 3

int Example3(int n){

int k =0;
for(int 1 =0 ; 1 < 1000; i1++) {
k = k + n;
ks
return k;
3

67

Example 4

sub Example4(int n) {

int k =0;
for(int i=0; 1 < n; i++) {
for(int j =0; j < n *n; j++) {
k=@ ™*]J)+n;
}
}

return k;

}

Example 5

int Example5(int n) {

int k =0;

for(int 1 =0; 1 < nj; 1++) {
for(int j =0; j < n; j++) {
y k += Example4(n);

}

return k;

}

68

Example 6

int Example6(int n) {
int k =0;
while(n > 1) {

n -=1;

k++;
}
return k;

}

Example 7

int Example7(int n) {
int kK =0;
while (n > 1) {
n=n/2;
k++;

}

return k;

}

69

Example 8

int Example8 (int n) {
if(h == 0) {
return 1;
} else {
return Example8(n/2) + 1;

}
}

Example 9

int Example9(int n) {
if(n<=1){
return 1;
} else {
return Example9(n -1) + Example9(n-2);

“

70

Question

O Given a sequence of numbers (possibly
negative) A;,A,,..,A, what is the sequence
for the maximum subsequence value (O if
all are negative)

-2, 11, -4, 13, -2, -10

Quick attempt

O Try to write some pseudo code, and
provide a rough analysis for the running
time

71

Co ~ O Ui b W N~

/**
* Cubic maximum contiguous subsequence sum algorithm.
*/
int maxSubSuml(const vector<int> & a)
{ -
int maxSum = 0;
for(int i = 0; 1 < a.size(); i++)
9 for(int j = i; j < a.size(); j++)
10 {
11 int thisSum = 03
12
13 for(int k = i; k <= j; k++)
14 thisSum += a[k];
15
16 if(thisSum > maxSum)
17 maxSum = thisSum;
18 }
19
20 return maxSum;
21 '}

Line 13,14 O(1)
Loops are of N
3 loops inside each other

What is the run time actually ?
What is the big O of n?

72

How can we improve?

O Think about the triple loop

I /**

2 * Quadratic maximum contiguous subsequence sum algorithm.
3 */

4 int maxSubSum2(const vector<int> & a)

— 5 N

6 int maxSum = 03

7

8 for(int i = 0; i < a.size(); i++)

9 {
10 int thisSum = 0;

11 for(int j = i; j < a.size(); j++)
12 {

13 thisSum += a[j 13
14
15 if(thisSum > maxSum)

16 maxSum = thisSum;

17 }

18 }
19
20 return maxSum;
21}

73

We can do better

o Next algorithm builds on a popular
principle of “divide and conquer”

o Divide the set of number into 2 halves
= Might be on left
= Might be on right
= Might span both sets

O So how to do we analyze the running

time?

1 /**

2 * Linear-time maximum contiguous subsequence sum algorithm.
3 */

T 4 int maxSubSum4(const vector<int> & a) ___

5 A

6 int maxSum = 0, thisSum = 0;

7

8 for(int j = 0; j < a.size(}; j++)

9 {
10 thisSum += a[j 1;
11
12 if(thisSum > maxSum)
13 maxSum = thisSum;
14 else if(thisSum < 0)
15 thisSum = 0;
16 }
17
18 return maxSum;
19}

74

o So why does the linear solution work ?
o Any thoughts ?

O So running time is easy to calculate
O How correct is it ?

Next

O Get book
O set up working environment
0 Read chapters 1,2

o Download homework, start working on it

O start skimming 3-3.2

75

