
1

3137 Data Structures and
Algorithms in C++

Lecture 1
July 5 2006

Shlomo Hershkop

It summer Session!
� Welcome

� Ask yourself, is it better to spend the
summer outside or inside on this stuff ?!

� Hope to be very informal
� small class size….which can be a good thing

and bad!

� I hope to convince you this is more fun
than sitting on the beach ☺

2

Overview
� Today:

� Basic overview of the course and objectives
� background c++
� background algorithms
� first assignment (gasp!)

� Goal:
� Thing are much easier if everyone knows why they are here,

and what we are trying to accomplish.
� Interactive course
� We will learn about programming ideas while trying to have

fun.

What is 3137?
� CS3137: Fourth course for CS majors.
� Prerequisites:

� Intermediate knowledge in general
Programming

� Basic discrete mathematic skills
� Program Structure:

� Not enough to know how to write a program, need to
know how to analyze which structures work best for a
specific task

3

quiz!
� why is 3137 after 3157 ?

� did someone mess up their sort
implementation ??

So what are we going to be doing?
� Learn basic algorithm analysis
� bunch of basic data structures
� bunch of advanced DS
� advanced Algorithm analysis

� applied to practical problems

4

Basics
� Instructor: Professor Shlomo Hershkop

(shlomo@cs.columbia.edu)
� About Me/my Research
� Office hours:

M/W 4-5
AIM: Prof Hershkop

� Class website:
� cs.columbia.edu/~sh553/teaching/su06-3137/
� Check it regularly (at least twice a week).

� See announcement sections for update info.

� Meet twice a week: 825 Mudd
� Please come on time

Resources
� TA:

� Weijen Lee
� Since we are a small class:

� Please take advantage of the web board
� How do I check what version of gcc is running?
� What does Error ?@?@!?@ mean ?

� Bad:
� What is wrong with the following code:
� void foo()

� These kind of questions email privately to TA or Instructor

� Use your best judgement

5

Requirements
� Interest to learn about Computer Science
� Learn to use cool DS
� Learn to make your own program work

better

Textbook
� Textbook can be acquired online or at the

Columbia Bookstore.
� Else: borrow, threaten, or ‘acquire’ a book

� Required:
� Mark Allen Weiss

Data Structures and Algorithm Analysis in C++
3rd edition
ISBN: 032144146X

� Recommended:
� Any C++ background book.

6

Reading
� I will be posting reading on the website

and in class notes

� Please try to keep up with the reading
� I will try to make up examples for class, but

there are random stuff which the book covers
which is good to see in print
� Feel free to ask questions from anything you

read/see/imagine in the book

Course Structure
� 6 Homeworks – 120 points

� Will have about 1 weeks per homework
� Midterm – 30 Points

� thinking about take home
� Final (90 points)

� open book, in class
� Homework is important:

� Firm believer in hands on learning
� Start early
� Come to office hours, and ask questions

� We are here for YOU!

7

Class participation and Attendance
� Attendance and participation is expected

� Very interactive lectures & Labs
� Small class, means more help
� Class anonymous feedback system

� If you have to miss class, I expect you to catch
up.
� It’s a short semester, so bear with me
� There will be class notes posted to the website
� There will be many examples in class only, so make sure

to get someone’s notes.

Homework & Projects
� Written:

� Will be collected at first class after HW deadline.
� Programming:

� Online submission
� Must be able to run on cunix system (this is important).

� Late policy:
� You have late days that can be used during the

semester.
� I can only review the homework and approaches if

everyone submits on time, so try to ask for help earlier
rather than later

8

Cheating Policy
� Plagiarism and cheating:

� I’m all against it. It is unacceptable.
� You’re expected to do homeworks by yourself

� This is a learning experience.
� You will only cheat yourself.
� My job is to help you learn, not catch you cheating, but….

� Automated tools to catch plagiarizers
� http://www.cs.berkeley.edu/~aiken/moss.html
� Moving stuff around, renaming, etc. doesn’t help

� Results: instant zero on assignment, referral to academic
committee
� Columbia takes dishonesty very seriously
� I’d much rather you come to me or the TAs for help

Feedback System
� Last minute of class will be set aside for

feedback:
� Please bring some sort of scrap paper to class to provide

feedback.
� Feel free to leave it anonymous.
� Content: Questions, comments, ideas, random thoughts.

� I will address any relevant comments at the
beginning of each class

� Summer is short, so provide feedback !
� Please feel free to show up to office hours or

make an appointment at any time

9

Shopping List
� You need either a cunix or CS account

� CS:
� https://www.cs.columbia.edu/~crf/accounts
� Try to log into the account asap

� Cunix
� log into cunix.cc.columbia.edu

� Check out the class page
� Make textbook plans

� try keep up with the reading

� Any Questions ?

10

Survey 1
� Please introduce yourself

� Programming background ?
� what C++ environments you’ve worked with
� Any cool technologies you would like to see

covered ?

Definitions
� Algorithm:

� Problem solving method to be used to solve a problem
independent of particular computer or program

� Central objects of study in computer science

� Heuristic
� In CS it is an Algorithm which is not guaranteed to find a

solution
� we will be studying algorithms which guarantee a

solution with some constraints

11

� most algorithms involve organizing data in
a specific way and supporting a specific
set of operations

� These are called Data Structures

� will start with simple ones
� study analysis techniques
� combination of structures

solving a problem
� once you outline a problem to be solved

by a computer
� choice of language
� choice of approach

� for small problems exact solution might not
make a big difference

� for huge problems, sometimes a specific
solution might take too long, and we are trying
to get it solved faster

12

simple approach
� Throw money and buy faster computer

� might give you 10 – 100 times speedup

� Study the algorithms

� might give you a million times speedup

Connectivity Example
� Given a pair of relationships between

items, we want to know if a relationship
can be inferred for a new pair a,b

� 3-4
� 4-9
� 8-0
� 2-3
� 5-6

? 2-9 ?

13

Graphical Example

Applications
� network communications
� circuitry
� mapping software
� variable name equivalence
� telephone network
� computer chip design

14

basic idea
� outline the problem

� understand clearly what kind of questions
you are answering
� don’t do all the work only to discover you can’t

answer the question at the end

� understand the resource requirements

Sample Problem
� Have a collection of index cards with

everyone’s names on it

� I want to organize it in alphabetical order

� Any ideas ??

15

Straightforward
� Find first name in list by going through it
� Find next
� etc

� Feels slow, how ?

Creative Approach
� Throw list in the air and make a new pile

� Will this ever find a solution ??

� any better ?

16

Fastest Solution
� Take a random name

� can throw in air if you wish

� Sort into two piles

� redo from start

� known as quicksort, will cover when we
cover sorting routines

Measurements
� Time

� When designing an algorithm, think how fast it
will run….then prove it

� Space
� how much memory will it take up ?
� important since we tend to treat memory as

infinite
� Complexity

� how easy it is to understand
� given two algorithms, one complicated and one clear,

tend to prefer the clear one

17

C++ Review
� Would like to review relevant C++

� make sure you can do the home works

� make sure you can do the work

Programming Environment
� online:

� cunix

� Laptop/Desktop
� cygwin
� emacs
� eclipse + (c++ plugin)

18

Basics
� You should be familiar with creating basic c++

programs
� Basic logical structure
� Basic types
� Basic function programming
� Basic memory manipulations

� pointers
� refrences

� We will now review some basics relating to
dealing with classes and instances

CPP classes
� A class if a collection of functions and

member variables
� instances of a class is called an object

� special functions called constructors and
destructors can be automatically invoked

19

Question
� Anyone remember how to define a

constructor ?
� destructor ?
� When are they invoked ?
� How to prevent them from being invoked?

Types of Functions
� Accessor

� get some state information from the object

� Mutator
� change information

� Helper
� internal functions to accomplish tasks cleanly

� Predicate
� help answer simple yes/no questions

20

Example
� want to represent a memory cell which

can hold an integer value

� Call the class IntCell

Example
class IntCell {

private:
int storedValue;

public:
IntCell() { storedValue =0; }

};

21

accessing variables
� IntCell mycell;

� how do you access the value ?
� how would you set the value ?

� IntCell *cellPTR;

� cellPTR->read();

abstraction
� important when defining a class to

separate how to use the class and how we
are representing the information

22

Code Practice
� Any ideas of how to add a unique counter

to each instance ?

23

Hands on Coding
� code the counter class

� add a static member ID (you need myid)

misc stuff
� review of misc things to do with basic

class programing in C++

24

const class members
� const class members are assigned at construction time

using the : notation

class Worker {
public:

Worker(int id,int job);
int getID () const;

private:
const int _ID;
int _job;

}

constructor
Worker(int id, int job) : _ID(id) {

_job = job;
}

25

issues
� you should be careful about not returning

private references

� can use const on functions when dealing
with const arguments or member
variables

const
� Allows the compiler to know which values

shouldn’t be modified
� Very useful in your functions to either

return const reference or make sure a
pointer doesn’t alter the original object

� Example:
const int a = 5;

void foo(const int x) { }

26

Const pointer to non-const
� This is a pointer which always points to

same location, but the value can be
modified

� int * const ptr = &x;

*ptr = ??
can’t say
ptr = & ??

Const pointer to const data
� Int x = 200;
� const int * const ptr = &x;

27

� Some confusion
� int const * X
� const int * X //variable pointer to const
� int * const Y //const pointer to int
� int const * const Z//const point to const

Pointers to functions
� You can also pass around a pointer to a

function
� void foo (int , int (*) (int , int));

� int example1(int x, int y) { return x+y; }

� foo(5, example1);

28

Usage
� void foo(int a, int (*A)(int,int)){

if((*A)(5,10) > 0){

}
else {

}

}

Classes within classes
� class member variables can be other

classes

� important: member constructors are
actually called before main class
constructors
� does this make sense ?

29

this
� this is a keyword

� represents a pointer to the class itself

� this->x
� or (*this).x

static
� static members have instance wide scope

and livability

� great for shared variable

� have to be careful how used

30

assert
� special macro runs a test

� if true continues

� if false
� dies without calling destructors

friends
� can declare a function to be a friend

� allows access to private member of the
class

� not scoped during definition

31

What can go wrong
� The good thing about cpp is that your

program can now crash many times even
before reaching main ☺

� secret: understanding scope

Ordering and where to look for
problems
� Global variables

� Assignments and constructors
� What else ??

� Main
� Local variables
� End local variables
� End main
� Global destructors

32

Class friends
� allows two or more classes to share

private members

� e.g., container and iterator classes

� friendship is not transitive

Operator overloading
� Most operators can be overloaded in cpp
� Treated as functions
� But its important to understand how they

really work

33

� +
� ~
� -
� !
� =
� *
� /=
� +=
� <<

� >>
� &&
� ++
� []
� ()
� new
� delete
� new[]
� ->
� >>=

Look up list

� X = X + Y
� Need to overload

+
=

� But this doesn’t overload +=

34

� Functions can be member or non-member
� Non-member as friends
� If its member, can use this
� (), [], -> or any assignments must be

class members

� When overloading need to follow set
function signature

unary
� Y += Z
� Y.operator+=(Z)

� ++D
� member

� D.operator++()

� Non member
� operator++(D)

35

� Functions can be member or non-member, your
choice!
� Non-member as friends if need private data

� If its member, can use the this pointer

� Exception: operators (), [], -> or any
assignments must be class members

� When overloading need to follow set function
signature

cout
� cout << yourclass

� left operand is ostream &
� so non member functions (belongs to

ostream)
� friend if you would like

� lets code something

36

String class
� lets define a simple string class

� put output in its const and dest so we can follow

� constructor should take const char *
� would like to have following defined:
int length();
int hash();
� any ideas on how to do it ?

overload printing
friend ostream & operator <<(ostream &, const String

&);

ostream &operator<<(ostream &output, String &str) {
output << “’” << << “’”;
return output;
}

????

37

note
� when you call:
cout << s1 << s2;

� it is first:
operator<<(cout,s1)

� and then
operator<<(cout,s2)

Next
� want to overload the unary operator !

� test if a string is blank

� int operator!() const;
� or
� friend int operator(const String &);

� !s1
� s.operator!() or operator!(s)

38

same idea
� const String operator+=(const String &)

� vs

� friend const String &operator+=(Stirng &,
const String &)

� what will s1 += s2 produce ?

� so how can we tell the difference between
++s1 and s1++

39

signatures
� s1++

� s1.operator++(0)

� operator++(s1,0)

� ++s1;

� s1.operator++()

� operator++(s1)

40

reuse
� one of the powers to OOP is the idea of

reuseability

� if I spend 5 billion hours working on my
code, I probably want to get some use out
of it outside of the specific task
� design issues
� extension issues

Separation
� .h files include your design

� .cpp files your implementation

41

preprocessor
� should be familiar with basic #define

preprocessor directives

� anyone remember how to prevent an error
if the same .h file is included twice in a
project ??

� #ifndef __something__unique__
� #define __something__unique__

� #endif

42

inheritance
� idea: allow a new class to inherit data

members and functions from a base class

� can add members and functions

� represents a more specific idea

� vehicle -> minivan

� you can access protected members of
parent

� can not access private members of parent
� can still use public accessors and modifiers

43

code
class IntArray: public Array {

� simplest type of inheritance
� private members not inherited
� public/protected inherited accordingly

code
� create a point class

� setPoint
� <<

� derive Square
� getArea()
� <<

44

overriding
� we can redefine a base class function in

the derived class and have c++ call the
correct one

Question
� can
� Point *pp1;
� Square *sp1;

� given
� Point p = Point(3,4);
� Square s = Square(..

� can we say:
� pp1 = s ?????
� sp1 = p ?????

45

private inheritance
� we have used public inheritance

� private inheritance makes everyone from
the base class come in as private
members of the derived class

base class constructors
� need to launch base class constructor in

derived class if you don’t want the default
to be called

� destructors are reversed

� lets see this in action

46

is a vs has a
� one important design decision is to know

when to derive and when to use member
variable

issue
� one issue with overriding, is that if the derived

class doesn’t provide a function, we will use the
base class definition

� this doesn’t always make sense

� Example I want a function MPG for any type of
vehicle, but doesn’t make sense of base class

47

virtual functions
� solution :

� declare the function to be virtual

� virtual double MPG();

� allow you to use a base class pointer to call at
runtime the correct function (polymorphism)

abstract class
� sometimes its even useful to have a base

class which can’t be instantiated
� if any virtual function is declared pure

virtual:
� virtual int MPG() = 0;

48

note
� constructors can not be virtual

� need virtual destructors to make
everything work if you are going to have
destructors in any of your classes (do it
anyway)

Class derivation
� encapsulation

� derivation maintains encapsulation
� i.e., it is better to expand IntArray and add sort() than to modify your own

version of IntArray

� friendship
� not the same as derivation!!
� example:

� is a friend of
� B2 is a friend of B1
� D1 is derived from B1
� D2 is derived from B2
� B2 has special access to private members of B1 as a friend
� But D2 does not inherit this special access
� nor does B2 get special access to D1 (derived from friend B1)

49

Derivation and pointer conversion
� derived-class instance is treated like a base-class instance
� but you can’t go the other way
� example:
main() {
IntArray ia, *pia;
// base-class object and pointer
StatsIntArray sia, *psia;
// derived-class object and pointer
pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatsIntArray *)pia; // sort of okay now since:
// 1. there’s a cast
// 2. pia is really pointing to sia,
// but if it were pointing to ia, then
// this wouldn’t work (as below)
psia = (StatsIntArray *)&ia; // no: because ia isn’t a StatsIntArray

Compiler issues
� Back to our IntCell example:

IntCell icell;

icell = 37;

� will this compile ??

50

what happens
� IntCell temp(37);
� icell = temp;

explicit
� explicit keyword tells the compiler to not

create constructors in the background for
you

51

reminder
� pointer to objects has slight behavior

differences

52

Templates
template<typename X>

void foo(X &first, X second){
first += second;
}

see book for complete review

53

54

55

STL
� standard template library

� tons of useful stuff here
� they’ve worked out all the bugs ☺
� very efficient
� make sure you understand what you are doing

� #include <vector>
� #include <string>

56

Reviewing
� make sure you are comfortable writing

c++ code

� please speak to me ASAP if you need
more help/reading etc

� Please ask if you need help

� Read Chapter 1 (ending) for more
examples

Switch Gears
� Back to DS & A

� Lets assume we have some algorithm

� Lets discuss how to measure algorithms

57

Model of Computation
� In order to analyze algorithms

� Will want to consider a model to study what it
means to compute

� would like to create classes of algorithms, so
that we can talk about them in a uniform way
� broad catagories

� Will make some simplifications

Simplifications
� Computation

� Assume every step of the algorithm takes one step
� Different than real life

� Generally Addition/subtraction < Multi <<< Division
� CPU tasks << Memory access <<<<<< Disk access
� Will come back to this when we discuss multi threaded environments

� Space
� Assume infinite memory

� Will adjust later

� Time
� Will be counting time steps

58

Definition - Theta
� T(N) = Θ(g(N))

� set of functions f(N) are in Θ(g(N))

if there exists positive constants c1, c2, n0

such that 0 < c1 g(N) < f(N) < c2 g(N)

for all N ≥ n0

� theta bound is strongest bounding

� real world sometimes hard to make such
guarantees

� need to relax bound

59

Big-O
� T(n) = O(g(N))

if there are positive constants c and no
such that
T(N) ≤ c g(N) when N ≥ no

� Known as Big O notation

� Asymptotic in the upper limit

Omega
� lower bound only

60

little o
� little -o provides an upper bound but not a

tight one

� doesn’t say much

� should be aware of it

Functions
� We would like to use functions to describe the

growth of some resource by an algorithm
� Want to compare different algorithms by growth

rate
� Big O allows us to define an upper bound on a

function
� So we can say:

something is on the order of Big-O of something
else

61

Careful
� On small input sizes, it is hard to analyze an

algorithm
� Might be lucky

� Its been shown time and time again that
something which just “works” but poorly
designed can have some very expensive
ramifications when scaling goes up.

Simplification
� Say an algorithm is said to run in

3n2 + 2n + 5

� Drop constants
� Drop low order polynomial terms
� We are interested in the function as it is

taken to the limit

62

What to analyze
� Input size is strong consideration

� Generally an algorithm might have
� Best case (ha!)
� Worst case
� Average case

� Which is most interesting?

Other considerations
� Remember it’s a great tool, but very

simplified

� Programming language
� Compiler
� Computer code

63

Example to analyze
int sum(int n) {

int part_sum = 0;

for(int i=0;i <= n; i++){
part_sum += i * i * i;

}
return part_sum;
}

� What is the runtime of this algorithm in terms of a function
?

General rules
� For simplification here are some general

rules

64

For Loop
� Running time of a for loop is at most the

running time of statements inside (plus
tests) multiplied by number of iterations

Nested Loops
� Analyze inside out

for ($i = 0; $i < $n; $i++)
{
for($j = 0; $j < $n; $j++)
{

k++;
}

}

65

More Rules
� Consecutive statements

� Just add consecutive statements within a
code block

� If/else
� The runtime of if/else is the test plus the

larger of the running time
� Take worst behavior

Example

for($i = foo_1(); $i < $n; $i++)
{

somesub($i);
$total += foo2();

}

66

Practice
� Lets do some simple examples

Example 1
int findMax(int list[],int max){

int maxValue = list[0];
for(int i =0; i < max; i++) {

if(maxValue < list[i]) {
maxValue = $list[i];

}

}

return maxValue;
}

67

Example 2
int Example2 (int list[],int max) {
int k =0;

for(int i =0; i < max; i++) {
for(int j =0; j < max; j++) {

k = (i * j) + n;
}

}
return k;

}

Example 3
int Example3(int n){

int k =0;
for(int i =0 ; i < 1000; i++) {

k = k + n;
}

return k;
}

68

Example 4
sub Example4(int n) {

int k =0;
for(int i=0; i < n; i++) {

for(int j =0; j < n *n; j++) {
k = (i * j) + n;

}
}
return k;
}

Example 5
int Example5(int n) {
int k =0;
for(int i =0; i < n; i++) {

for(int j =0; j < n; j++) {
k += Example4(n);

}
}
return k;
}

69

Example 6
int Example6(int n) {
int k =0;
while(n > 1) {

n -= 1;
k++;

}
return k;
}

Example 7
int Example7(int n) {
int k =0;
while (n > 1) {

n = n / 2;
k++;

}
return k;
}

70

Example 8
int Example8 (int n) {

if(n == 0) {
return 1;

} else {
return Example8(n/2) + 1;

}
}

Example 9
int Example9(int n) {

if(n <= 1) {
return 1;

} else {
return Example9(n -1) + Example9(n-2);

}
}

71

Question
� Given a sequence of numbers (possibly

negative) A1,A2,..,An what is the sequence
for the maximum subsequence value (0 if
all are negative)

-2, 11, -4, 13, -2, -10

Quick attempt
� Try to write some pseudo code, and

provide a rough analysis for the running
time

72

� Line 13,14 O(1)
� Loops are of N
� 3 loops inside each other

� What is the run time actually ?
� What is the big O of n?

73

How can we improve?
� Think about the triple loop

74

We can do better
� Next algorithm builds on a popular

principle of “divide and conquer”
� Divide the set of number into 2 halves

� Might be on left
� Might be on right
� Might span both sets

� So how to do we analyze the running
time?

75

� So why does the linear solution work ?

� Any thoughts ?

� So running time is easy to calculate
� How correct is it ?

Next
� Get book
� set up working environment
� Read chapters 1,2

� Download homework, start working on it

� start skimming 3-3.2

