CS3157: Advanced
Programming

Lecture #9
Mar 6

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

Arrays

Pointers

Memory allocation

functions

function arguments

arrays and pointers as function arguments

Reading
— Chapter 5,6-6.3

Arrays again

e Arrays and pointers are strongly related in C

int af10];

iInt *pa;

* (remember that &a[0] is the address of the first element in a, that is
the beginning of the array

pa = &a[0];

pa = a;

e pointer arithmetic is meaningful with arrays:
« ifwedo

Pntr = &a[O0]

e then

*(Pntr +1) =

* Is whatever is at a[1]

There is a difference between
— *(Pntr) + 1
— and (*Pntr +1)

Note that an array name is a pointer, so we can also do
*(a+1l) andin general: *(a+i)==alijand soare a +i ==
&ali]

The difference:

— an array name is a constant, and a pointer is not
— SO0 we can do: Pntr = a and Pntr ++

But we can NOT do: a = Pntr or a++ pr or Pntr = &a
That Is you can not reassign it as a pointer

Note

 \When an array name Is passed to a
function, what Is passed Is the beginning
of the array, that is passed by reference

e It Is Important, since this is an address,
any changes to that memory location will
stick when you come back from the
function

From last time

a pointer contains the address of an object (but
not in the OOP sense)

allows one to access object “indirectly”
& = unary operator that gives address of its

argument

* = unary operator that fetches contents of its

argument (I.

e., its argument is an address)

note that & and * bind more tightly than

arithmetic o

perators

you can print the value of a pointer with the

formatting c

naracter %p

code

#include <stdio.h>
main() {
Int X, y; // declare two ints
Int *px; // declare a pointer to an int

X =3: /] Initialize X
PX = &X;
y = *px;

printf("x=%d px=%p y=%d\n",x,px,y);
}

Memory allocation

* One of the main advantage to c/cpp Is that
you can manipulate memory yourself (and
are responsible to clean up after yourself.

 \When you don't it is called memory
leaking...more on this later

Array vs memory allocation

e Arrays are great when you have a rough
idea of how many items you will be dealing
with
— 10 numbers
— 30 students
— Less than 256 characters of input

Map of memory

Think of memory as a box

Main is placed on the bottom and any
variable on top of that

Any function call gets placed on top of that
This part of memory grows upward
It Is called the stack

Your program is over when the stack is
empty

10

heap

 The heap is the other side of memory

* Global variables, and allocated memory is
created on the heap

e It grows downwards

11

HEAP

STACK

12

Dynamic Memory Allocation

« pre-allocated memory comes from the “stack”

e dynamically allocated memory comes from the
Hheap”

 To get memory you allocated (malloc) memory,
and to let it go, you free it (free)

« family of functions in stdlib, including:
void *malloc(size t size);
void *realloc(void *ptr, size t size

):

void free(void *);

13

 malloc and realloc return a generic pointer
(void *) and you have to “cast” the return

to the type of pointer you want

e That is If you are allocation a bunch of
characters, you say

e Ptr = (char*) malloc....

14

Malloc.c

#include <stdio.h>
#include <stdlib.h>
#define BLKS1Z 10
main() {
FILE *fp;
char *buf, k;
int bufsiz, 1;
// open fTile for reading
1T ((fp = fopen("myfile._dat","r")) == NULL) {
perror("error opening myfile.dat");
exit(1);
+
// allocate memory for input buffer
bufsiz = BLKSIZ;

buf = (char *)malloc(sizeof(char)*bufsiz);

15

// read contents of fTile

1 = 0;
while ((k = fgetc(fp)) = EOF) {
buf[i++] = k;

iIT (1 == bufsiz) {
bufsiz += BLKSIZ;
buf = (char *)realloc(buf,sizeof(char)*bufsiz);

}
+
1T (1 >= bufsiz-1) {
bufsiz += BLKSIZ;
buf = (char *)realloc(buf,sizeof(char)*bufsiz);
+
buf[i] = *"\0";
// output fTile contents to the screen
printf("buf=[%s]\n",buf);
// close fTile
fclose(fp);
} // end main()

16

Dynamic memory

 malloc() allocates a block of memory:

void *malloc(size t size);

« lifetime of the block is until memory is freed, with free():
voild free(void *ptr);

e example:

int *dynvec, num_elements;

printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);

dynvec = (int *)malloc(sizeof(int) * num _elements);

17

Memory leaking

« memory leaks— memory allocated that is never freed:
char *combine(char *s, char *t) {

u = (char *)malloc(strlen(s) + strilen(t) + 1);
iIT (s!I=1t) {

strcpy(u, s);

strcat(u, t);

return u;

}

else {

return O;

}

} /7* end of combine() */

e u should be freed if return O; is executed

* but you don’t need to free it if you are still using it!

18

Example 2

int main(void) {

char *stringl = (char*)malloc(sizeof(char)*50);
char *string2 = (char*)malloc(sizeof(char)*50);
scant(“%s”,string2);

stringl = strong2; //MISTAKE THIS IS NOT A COPY

free(string2);
free(stringl); ///7?7?77

return O

}

19

Memory leak tools

Purify

Valgrind

Insure++

Memwatch (will use it in lab)
Memtrace

Dmalloc

20

Dynamic memory

» note: malloc() does not initialize data, that is you have garbage there with
whatever was there in memory

* you can allocate and initialize with “calloc”:
void *calloc(size_t nmemb, size t size);

— calloc allocates memory for an array of nmemb elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero.

e you can also change size of allocated memory blocks with “realloc™
void *realloc(void *ptr, size t size);

— realloc changes the size of the memory block pointed to by ptr to size bytes. The
contents will be unchanged to the minimum of the old and new sizes; newly
allocated memory will be uninitialized.

 these are all functions in stdlib.h
o for more information: man malloc

21

Dynamic arrays

o ‘“arrays” are defined by specifying an element type and number of elements
— statically:

int vec[100];

char str[30];

float m[10][10];
— dynamically:
iInt *dynvec, num_elements;
printf(""how many elements do you want to enter? ");

scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num _elements);

« for an array containing N elements, indeces are 0..N-1

e stored as a linear arrangement of elements
e often similar to pointers

22

Dynamic arrays I

 C does not remember how large arrays are (i.e., no length attribute
unlike Java)

e given:

int x[10];

x[10] = 5; /7* error! */

« ERROR! because you have only defined x[0]..x[9] and the memory
location where x[10] is can become something else...

« sizeof x gives the number of bytes in the array
» sizeof x[0] gives the number of bytes in one array element

* You can compute the length of x via:
int length _x = sizeof x / sizeof x[0];

23

Arrays cont.

 when an array Is passed as a parameter to a
function:

— The size information is not available inside the
function, since you are only passing in a start memory

location
— array size is typically passed as an additional
parameter
printArray(x, length x);
— or globally

#define VECSIZE 10
int xX[VECSIZE];

24

arrays

array elements are accessed using the
same syntax as in Java: array[index]

C does not check whether array index
values are sensible (i.e., no bounds
checking)

e.g., X[-1] or vec[10000] will not generate a
compiler warning!

If you're lucky, the program crashes with
Segmentation fault (core dumped)

25

Dynamically allocated arrays

 C references arrays by the address of their first element

e array is equivalent to &array[0]
e you can iterate through arrays using pointers as well as
Indexes:

int *v, *last;

int sum = O;

last = &x[length x-1];

for (v = x; v <= last; v++)
sum += *v;

26

Code

#include <stdio.h>

#define MAX 12

int main(void) {

int x[MAX]; /7* declare 12-element array */
int 1, sum;

for (1=0; i<MAX; i++) { x[i] = 1; }

/* here, what 1s value of 1?7 of x[1]? */
sum = 0O;

for (1=0; 1I<MAX; 1++) { sum += x[1]; }
printf("sum = %d\n",sum);

} /7* end of main() */

27

Code 2

#include <stdio.h>

#define MAX 10

int main(void) {

iInt Xx[MAX]; /* declare 10-element array */
int 1, sum, *p;

p = &x[0];

for (1=0; I<MAX; 1++) { *p =1 + 1; p++; }
p = &x[0];

sum = 0O;

for (1=0; 1I<MAX; 1++) { sum += *p; p++; }
printf("sum = %d\n",sum);

} /7* end of main() */

28

2 dimensional arrays

o 2-dimensional arrays
o Int weekends[52][2];

e you can use indices or pointer math to locate
elements Iin the array
— weekends|[0][1]
— weekends+1

e weekends[2][1] is same as
*(weekends+2*2+1), but NOT the same as
*weekends+2*2+1 (which Is an integer)!

29

swap

int tmp = a;
a = b;
b = tmp;
} 7/ end swapNot()

void swap(Int *a,int *b) {
Int tmp = *a;
*q = *b;
*b = tmp;

} 7/ end swap()

30

swap

Int X, y; // declare two ints

Int *px, *py; // declare two pointers to ints
x = 3; // initialize x

y =5; // initialize y

printf("before: x=%d y=%d\n",x,y);

swapNot(X,y);
printf("after swapNot: x=%d y=%d\n",X,y);

&x; // set px to point to x (1.e., X"s address)
&y; // set py to point toy (1.e., y"s address)

pX
Py

printf("the pointers: px=%p py=%p\n",pX,py);

swap(px,py);
printf("after swap with pointers: x=Wd y=%d px=%p py=%p\n*,X,y,pX,py);

// you can also do this directly, without px and py:
swap(&x,&y);
printf("after swap without pointers: x=%d y=%d\n",x,y);

31

Next time

Do reading on memory allocation and
structs

e See you in lab Wednesday.

32

