
1

1

CS3157: Advanced
Programming

Lecture #7
Feb 20

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline
• Working with C

– Compiling
– Basic data structures
– Basic I/O
– Types conversion
– Loops
– Branching
– compiling
– Control flow
– Arrays
– Pointers
– strings
– string library
– string tokenizing
– Memory allocation intro

• Reading
– K & R skim 1-3.
– Read: K & R 4.1-4.3, 7.1-7.5)

2

3

Announcements

• Please do the reading
• Will get lost quickly if not ☺
• Don’t worry if you don’t have any

experience

4

Brief Overview
• For the c section of the course, here are some

tips
1. Write your course code
2. Try to compile
3. Debug compile bugs, goto step 1
4. Try step 2 again
5. Run debugger to catch run time bugs
6. Run memory profiler to catch memory bugs
7. Have running product
8. Add one last cool feature and jump to step 3 ☺

3

5

How to make your c code run
• gcc is the C compiler we’ll use in this class
• it’s a free compiler from Gnu (i.e., Gnu C Compiler)
• gcc translates C program into executable for some target

machine platform
• default file name a.out
• behavior of gcc is controlled by command-line switches
• Will create files to help in compiling out programs
$ gcc hello.c
$. a.out
hello world!

6

Compiling your program
two-stage compilation
1. pre-process and compile: gcc -c hello.c
2. link: gcc -o hello hello.o

linking several modules:
>gcc -c a.c

== a.o
>gcc -c b.c

== b.o
>gcc -o hello a.o b.o

== hello

using a library, for example the “math” library (libm):
>gcc -o calc calc.c -lm

4

7

C control flow
• blocks are enclosed in curly brackets
• functions are blocks
• main() is a function
• blocks have two parts:

– variable declaration (“data segment”)
– code segment

• in C, variables have to be declared before they
are used

• initializations can occur at the end of the
declaration section, but before the code section

8

Break down of running program

• A program is a collection of functions

• The function names main is launched first

5

9

First c program
/* First c program */

int main(void){

printf("Hello Everyone\n”);

return 0;
}

10

compile

• gcc –o test simple.c

• ./test

6

11

Steps to running program

• Write code
– Platform independent (for the most part)

• Preprocess the code
– Understand and reinterpret parts

• Compile the code generate object files
– Turn it into machine code, use optimizers

• Link object files to executable
• Load executable to running code

12

Split personalities

• In c and cpp normal to divide definition of
code (header files .h) and working code (.c
files)

• So will have function declaration
• int foo();

• And function definitions
• int foo(){. }

7

13

A macro

• A macro is a section of code, which has
been given a name

• When you use the name, the preprocessor
will replace it with the code contents

14

• #define BUFFER_SIZE 1024

• Convention to use upper case
• Will be replaced exactly with the stuff after

the name

• int x = BUFFER_SIZE;

8

15

c pre-processor
• the C pre-processor (cpp) is a macro-processor which

– manages a collection of macro definitions
– reads a C program and transforms it for the compiler
– pre-processor directives start with # at beginning of line

• used to:
– include files with C code (typically, “header” files containing

definitions; file names end with .h)
– define new macros
– conditionally compile parts of file (later – not today)

• gcc -E shows output of pre-processor
• can be used independently of compiler

16

pre-processor II
• file inclusion
#include "filename.h"
#include <filename>
• inserts contents of filename into file to be compiled
• "filename.h" relative to current directory
• <filename> relative to /usr/include or in default path (specified by -I

compiler directive); note that file is named verb+filename.h+

• import function prototypes (in contrast with Java import) examples:
#include <stdio.h>
#include "mydefs.h"
#include "/home/shlomo/programs/defs.h"

9

17

Comments
/* any text until this */

• convention for longer comments:
/*
* AverageGrade()
* Given an array of grades, compute the average.
*/

• Don’t get carried away with comment boxed
• **** boxes - hard to edit, usually look ragged.

18

Where to begin?

• Lets talk about what are the primitive data
types:

10

19

Data Types
• Very important when

trying to resource
memory/cpu

• float has 6 bits precision
• double has 15 bits

precision
• Range can change

depending on machine
type, generally int is
native to the machine
type 64double

32float

32long

32int

16short

8char

BitsType

20

Types II

• unsigned char
• unsigned short
• unsigned int
• unsigned long

• Byte size is the same, but can now have
greater range

• Can look at /usr/include/limits.h

11

21

Use in functions

• Variables must be declared in the
beginning of the function to be used

• Common mistake: forgetting to declare at
top of function

22

Intro arrays
• An array is a group of memory locations with the

same name and type
• To get to a particular element in the array we

need
– data type
– name
– Length or position

• Array length can be determined:
– statically— at compile time (when we code)

• e.g., char str1[10];
– dynamically— at run time (more on this later)

• e.g., char *str2;

12

23

• defining a variable is called “allocating memory”
to store that variable

• defining an array means allocating memory for a
group of bytes,

• individual array elements are indexed
– starting with 0
– ending with length -1

• indices follow array name, enclosed in square
brackets ([])
e.g., name[25]

24

• Initializing the arrays are your problem
int a[3];
….
X = a[1]; ……

• Bound checking is your problem
printf(“%d”,a[100]); …..

13

25

int C[5]
-45

0

17

4

82

C[0]

C[1]

C[2]

C[3]

C[4]

We can say for example

X = C[4] / 5;

Declarations:

int b[100],v[3];

26

More arrays

• Can also create arrays in the following
manners

1. int a[] = {1,2,3};
2. int b[3] = {6,3,7};
3. int n[10] = {0};

Note you need to initialize the array
elements, 3 is a trick case.

14

27

Library

• Access libraries using the include
statement

• Generally include header files
• Compiler links them automatically
• Example:

– Standard input/output: stdio.h
– To look up information use the man page:
man stdio

28

15

29

stdio.h

• Access stdio functions by
– using #include <stdio.h>
– compiler links it automatically

• defines stdin, stdout, stderr
• use for character, string and file I/O (later)

• printf

30

printf

• The way printf works is it takes a format to print
out and then the data to add to the format

• One or more of the following:
– %[flags][width][.precision][modifiers]type

– “%d”
• Means a single number

– “%d %d %d”
• ??

16

31

• printf (“%d %d”,a,b);

32

stdio.h : printf, type specifier
• int printf(const char *format, ...) formatted output to stdout

B800:0000Address pointed by the argumentp

Nothing printed. The argument must be a pointer to integer where
the number of characters written so far will be stored.

n

7FAUnsigned hexadecimal integer (capital letters)X

7faUnsigned hexadecimal integerx

7235Unsigned decimal integeru

sampleString of characterss

610Signed octalo

392.65Use shorter %E or %fG

392.65Use shorter %e or %fg

392.65Decimal floating pointf

3.9265E2Scientific notation (mantise/exponent) using E characterE

3.9265e2Scientific notation (mantise/exponent) using e charactere

392Signed decimal integerd or i

aCharacterc

17

33

printf flags

• %[flags][width][.precision][modifiers]type

Used with g or G the result is the same as
e or E but trailing zeros are not removed.

Used with e, E or f forces the output value
to contain a decimal point even if only
zeros follow.

Used with o, x or X type the value is
preceeded with 0, 0x or 0X respectively if
non-zero.

#

If the argument is a positive signed value,
a blank is inserted before the number.

Blank

Forces to preceed the result with a sign (+
or -) if signed type. (by default only -
(minus) is printed).

+

Left align within the given width. (right
align is the default).

-

34

example

int class_size = 35;
char class_name[15] = “3157 adv prog”;

printf(“Welcome to our test program\n”);

printf(“the %s class size is %d”,
class_name, class_size);

18

35

int array
1. #include <stdio.h>
2. #define MAX 6

3. int main(void) {
4. int arr[MAX] = { -45, 6, 0, 72, 1543, 62 };
5. int i;

6. for (i=0; i<MAX; i++) {
7. printf(“[%d] = %d \n", i, arr[i]);
8. }

9. } /* end of main() */

36

stdio.h: scanf
• int scanf(const char *format, ...)

19

37

Example: scanf/printf
#include <stdio.h>
void main(void) {
int n = 0; /* initialization required */
printf("how much wood could a woodchuck chuck\n");
printf("if a woodchuck could chuck wood?"); /* prompt user

*/
scanf("%d",&n); /* read input */
printf("the woodchuck can chuck %d pieces of wood!\n",n

);
return;
}

38

output

$ a.out
how much wood could a woodchuck chuck
if a woodchuck could chuck wood? 12345
the woodchuck can chuck 12345 pieces of

wood!

20

39

Loops
• loops in C are just like in Java

• there are 2 methods for looping:
– counter-controlled (loop for a fixed number of times)
– sentinal-controlled (loop while a condition is true)

• there are 3 statements for implementing the 2 methodologies:
– for
– while
– do...while

• as always: beware the infinite loop!

• Ctrl-C interrupts your executing C program

40

Branching
• branching in C is just like in Java

• there are 2 ways to do branching:
– if/else
– switch

• questions:
– which is more flexible and powerful?
– one can always be translated into the other, but not

the other way around— which is which?

21

41

Pointer power
• Variables that contain memory addresses as their values
• Data types we’ve learned about in C use direct

addressing
• Pointers facilitate indirect addressing
• Declaring pointers:

– pointers indirectly address memory where data of the types
we’ve already discussed is stored (e.g., int, char, float, etc.)

– declaration uses asterisks (*) to indicate a pointer to a memory
location storing a particular data type

– Called dereferencing a pointer
• example:
int *count;
float *avg;

42

Pointers: nitty gritty

• ampersand & is used to get the address of
a variable (dereference a pointer)

• example:
int count = 12;
int *countPtr = &count;
• &count returns the address of count and

stores it in the pointer variable countPtr

22

43

Another example

• here’s another example:
int i = 3, j = -99;
int count = 12;
int *countPtr = &count;
printf (“%d”, *countPtr);

• Here is the memory picture:

44

Arrays as pointers

• an array is some number of contiguous memory
locations

• an array definition is really a pointer to the
starting memory location of the array

• and pointers are really integers
• so you can perform integer arithmetic on them
• e.g., +1 increments a pointer, -1 decrements
• you can use this to move from one array

element to another

23

45

Code
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main() {
int i, *j, arr[5];
srand(time (NULL));
for (i=0; i<5; i++)
arr[i] = rand() % 100;
printf("arr=%p\n",arr);
for (i=0; i<5; i++) {
printf("i=%d arr[i]=%d &arr[i]=%p\n",i,arr[i],&arr[i]);
}
j = &arr[0];
printf("\nj=%p *j=%d\n",j,*j);
j++;
printf("after adding 1 to j:\n j=%p *j=%d\n",j,*j);
}

46

Output
arr=0xbffff4f0
i=0 arr[i]=29 &arr[i]=0xbffff4f0
i=1 arr[i]=8 &arr[i]=0xbffff4f4
i=2 arr[i]=18 &arr[i]=0xbffff4f8
i=3 arr[i]=95 &arr[i]=0xbffff4fc
i=4 arr[i]=48 &arr[i]=0xbffff500
j=0xbffff4f0 *j=29
after adding 1 to j:
j=0xbffff4f4 *j=8

24

47

Pointer operations

• Difference between
– ptr++
– *ptr++

• int b[5] ….
int *bPtr;

bPtr = b //or
bPtr = &b[0]

48

• Careful when moving pointers

• bPTr += 2;

the memory location isn’t simply
incremented by 2…..depends on size of
type being pointed to.

25

49

Strings

• storing multiple characters in a single variable
• data type is still char
• BUT it has a length
• last character the is terminator: ’\0’, aka NULL
• string constants are surrounded by double

quotes: "
• example:

– char s[6] = "ABCDE";

50

String II

• char s[6] = “ABCDE”;
• Memory storage looks like:

• Need to remember that you are really
accessing indices 0 – (length-2) since the
value at length-1 is always \0

A B C D E \0

26

51

Using strings

• printing strings
• format sequence: %s
• example:
#include <stdio.h>
int main() {
char str[6] = "ABCDE";
printf("str = %s\n", str);
} /* end of main() */

52

String Library
• to use the string library, include the header in your C source file:
#include <string.h>
• string length function:
int strlen(char *s);
• this function returns the number of characters in s; note that this is

NOT the same thing as the number of characters allocated for the
string array

• string comparison function:
int strcmp(const char *s1, const char *s2);
• “This function returns an integer greater than, equal to, or less than

0, if the string pointed to by s1 is greater than, equal to, or less than
the string pointed to by s2 respectively. The sign of a non-zero
return value is determined by the sign of the difference between the
values of the first pair of bytes that differ in the strings being
compared.”

man strcmp

27

53

copying functions:
char *strcpy(char *dest, char
*source);

• copies characters from source array into dest
array up to NULL

char *strncpy(char *dest, char
*source, int num);

• copies characters from source array into dest
array; stops after num characters (if no NULL
before that); appends NUL

54

Search
char *strchr(const char
*source, const char ch);

• returns pointer to first occurrence of ch in
source; NULL if none

char *strstr(const char
*source, const char *search);

• return pointer to first occurrence of search
in source

28

55

String Parsing
char *strtok(char *s1, const char
*s2);

• breaks string s1 into a series of tokens, delimited
by s2

• called the first time with s1 equal to the string
you want to break up

• called subsequent times with NULL as the first
argument

• each time is called, it returns the next token on
the string

• returns null when no more tokens remain

56

Example
char inputline[1024];
char *name, *rank, *serial_num;
printf("enter name+rank+serial number: ");
scanf("%s", inputline);
name = strtok(inputline,"+");
rank = strtok(null,"+");
serial_num = strtok(null,"+");

29

57

Formatting functions
int sscanf(char *string, char *format, ...)
• parse the contents of string according to format
• placed the parsed items into 3rd, 4th, 5th, ... argument
• return the number of successful conversions

int sprintf(char *buffer, char *format, ...)
• produce a string formatted according to format
• place this string into the buffer
• the 3rd, 4th, 5th, ... arguments are formatted
• return number of successful conversions

• format characters are like printf and scanf (see notes
from earlier lectures)

58

Memory allocations

• One of the most powerful features of c is
the ability of the programmer to create
more memory space during the execution
of the program.

• Limited by physical machine memory
• If you want to be able to create memory,

you also need to free it manually

30

59

malloc /sizeof / free

• charPtr = malloc (sizeof (…));

• free (charPtr)

60

Compiling problems
• errors can come from multiple sources:

– pre-processor: missing include files
– parser: syntax errors
– assembler: rare
– linker: missing libraries and references
– e.g., undefined names will be reported when linking:

undefined symbol first referenced in file
_print program.o
ld fatal: Symbol referencing errors
No output written to file.

• if gcc gets confused, there can be hundreds of messages!
– fix first message first, and then retry— ignore the rest

• gcc will produce an executable with warnings
• gcc is more forgiving than javac!

31

61

Review for midterm

• Will post online review notes, and some
sample questions etc.

• Open book, open notes
• No computers or any computing device
• Will be testing you on understanding of

material covered

62

• Should know perl
– Basic types and usages, comments etc.
– Perl debugger
– File handling, Subroutines
– md5

• CGI
– What, how, and sometimes why
– How to use perl/CGI

• C
– Basics
– Types/pointers/arrays
– Linking, compiling, and makefiles

