
1

CS3157: Advanced
Programming

Lecture #5
Feb 6

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• CGI
• File handling issues
• Stuff
• CGI security
• CGI Graphics
• Alternative Technologies
• Threading

• Reading: chapter 8
• For next week chapter 9

2

Announcement
• New TA

– Ankur Khanna
– OH: Thursday 10:30am-12:30pm

• Survived lab1
– Hopefully you feel comfortable with perl and basic file

manipulations
– If you are having homework problem, please

remember ..OH
– Hope to have grading back by Wednesday’s lab, I will

answer any questions about “how” to do something at
the lab (or OH).

Reminder

• Lab is on CS system
• A confirmation is sent to your CS

account
1. Either read your cs mail (pine)
2. Create a “.forward” file with your cunix

email in your cs home dir, and it will
automatically be sent to you cunix
account (do a test to be sure).

3

From last class

• When web server executes your perl
script, the %ENV is the array specific
values are set with status information
– Can get person’s IP
– Can pass information to your script

• Input/Output is redirected for your
automatically
– Output of your script to webserver

Simple example

• http://www.cs.columbia.edu/~name/a.pl

• User in browser invokes perl script
• Web server calls script
• Perl script runs and print out a html code
• Web browser renders the webpage

4

Next step

• Not just execute the script want to get
some starting information from the user

Forms

• One way to get information is to collect data
– Registration
– Payment
– Surveys

• Commands
– Possible choice combination
– Actions

• Generally user needs to hit submit for anything
to happen

5

Example

• Google.com

• Load page
• Do nothing…nothing happens
• Type search…nothing happens

– Hit submit/return trigger action

Other way

• React to user typing (will not be doing this)

6

2 ways to do it

1. Create a HTML file and display a form,
and your script gets input from the form

2. Have your script run
1. If no information is being passed, print out

the html for a form (then end)
2. Else process the form information in the

script

7

Interacting

• GET
– HTTP request directly to the cgi script by appending

the URL
• POST

– HTTP request in content of message, i.e it is stdin to
your script

• Format of GET (default):
– Value=key separated by &
– Space replaced by +
– URL conversion characters

Input Tag
• Each field is in an input tag
• Type

– Text
– Radio button
– Checkbox
– Pull down menus
– etc

• Name
– Symbolic name (so can recognize it)

• Value
– Default value, or what the user will end up typing

8

Encoding

• Spaces are turned to +
• & separates field
• Special characters are turned into %??

(hex)
– “(“ is %28

– So “class is great” = “class+is+great”

others

• Submit buttons
– <input type=“submit”>

• Reset buttons
– <input type=“reset”>

• Value will change the default name on the
button

9

Putting it all together

<form action=“cgi/some.cgi” method=“GET”>
<p> Please enter some text:
<input type=“text” name=“string”></p>

<input type=“submit”>
</form>

10

Decoding Form Input

1. $ENV{QUERY_STRING}
2. If($ENV{REQUEST_METHOD} eq

POST)
{ read $ENV{CONTENT_LENGTH}}

3. Split pairs around &
4. Split keys and values
5. Decode URL
6. Remember key,values

Drawback

• A lot of work
• Pain if we have multiple values associated

with one key
• Must be easier way…..
• CGI.pm

– Included after 5.003_07+

11

CGI.pm

• Allows you to handle cgi in a standard
format

• Can save and load key,value pairs to
standard file

• Helps in creating html documents to the
server by streamlining certain operations
and keeping it in an object oriented design

12

The bad news

• Can’t use it in this class
• Want you to practice doing it the manual

way…better for learning and later CGI +
C/CPP

Summary: CGI

• Minimum the web server needs to provide
to allow an external process to create
WebPages.

• Goal: responding to queries and
presenting dynamic content via HTTP.

13

Requirements

• Webserver setup correctly
– Will not talk about it in class.

• Configure the cgi script
– Will cover this lab.

• Basic http/html knowledge

http headers

HTTP/1.1 200 OK
Content-type text/html
Content-Length: 300

Request / Status Line

Header Fields

14

GET /index.html HTTP/1.1

• GET
• HEAD
• POST
• PUT
• DELETE
• CONNECT
• OPTIONS
• TRACE

Server responses
HTTP/1.1 200 OK
Date: Sun, 25 Sep 2005 20:30:12 GMT
Server: Apache/1.3.5 (Unix)
Last-Modified: Wed, 20 May 1998 13:12:11 GMT
ETag: “2345-7227363ed”
Content-Length: 141
Content-Type: text/html

<HTML>
<HEAD><TITLE>…….

15

CGI Environment

• In perl available through the %ENV global
hash

• Changing any of the values will only be
seen by your own subprocess
– Why?

• Some of the variables will be blank
– Why?

File handling

• We covered basic file handling

• How does this change over the web?

16

File Locking
use Fcntl “:flock”;

open FILE, “?????.txt” or die $!;

#one of these
flock FILE, LOCK_EX;
flock FILE, LOCK_SH;
…..
flock FILE, LOCK_UN;

Side Note: Line Endings

• Carriage return \r
• Line Feed \n
• CRLF
• Unix – LF (\n) CR (\r)

• print “Content-type: text/html\n\n”

• Why not \n\r\n\r ????

17

Serving web pages
#!/usr/local/bin/perl
use strict;
$|=1;

my $time = localtime;
my $remote_id = $ENV{REMOTE_HOST}| $ENV{REMOTE_ADDR};
print "Content-type: text/html\n\n";

print <<END_OF_PRINTING;
This is the time : $time <P>
and your id is $remote_id

END_OF_PRINTING

Serving more than webpages

print "Content-type: text/html\n\n";

print “Content-type: image/jpeg\n\n”;
print “Content-type: image/png\n\n”;
print “Content-type: audio/mp3\n\n”;

18

Serving mp3 files

open(MP3FILE,”….”) || die ….

my $buffer;
print “Content-type: audio/mp3\n\n”;
binmode STDOUT;
while(read(MP3FILE, $buffer, 16384)){
print $buffer;
}

Example

• http://..../cgi-bin/mp3server.cgi/Song.mp3

19

Argument passing

• Say you have a cool program which you
can hook to the web…..
– Give a cell phone
– Give a message
– Will send the cell phone a message

<HTML><HEAD>
<TITLE>Cool</TITLE>
</HEAD>
<BODY>

<form action=“cgi-bin/cool.cgi” method=“GET”>
<p>Enter cell phone to use:
<input type=“text” name=“cellphone”></p>
<p>Enter Message:
<input type=“text” name”message”></p>
<input type=“submit”>
</form>
</BODY></HTML>

20

Use CGI;
my $coolp = ‘/usr/local/bin/cellmsg’;

my $q = new CGI;
my $cell = $q->param(“cellphone”);
my $msg = $q->param(“message”);
#error checking here
open PIPE, “$coolp $cell $message |” or die “Can

not open cellphone program”;
print $q->header(“text/plain”);
print while <PIPE>
close PIPE;

What can go wrong?

21

• When executing command can in theory
pass in the following arguments

Something ; rm –rf *.*

Perl Taint mode

• -T
– Taints all data references (incoming)

• #!/usr/bin/perl –wT

• Flags data to make sure perl doesn’t do
anything insecure

22

Tainted?
• STDIN
• CGI

• If variables/values are tainted
• Tainted follows it around with assignments
Sub is_tainted {

my $var = shift;
my $blank = substr($var ,0,0);
return not eval { eval “1 || $blank” || 1};

}

Why

• Why would you want to keep track of
tainted data?

23

Getting out of taint

• Match related patterns ($1,$2 ..)
• Idea: would check for security problems

and then allow it

• Reminder: only in taint mode if set

Other issues

• Remember with each user, your perl script
is being instantiated and executed

• In general might want to be able to run
alongside yourself (not only in web
context).
– How do we share a variable between

instances (to pass information) ?

24

Command shell

• A better way of executing command shell
arguments to a program is to divide the
work

• Create an instance of the program you
want to run

• Pass arguments directly to it, instead of
using the command shell (where can
combine multiple commands

fork/exec

my $pid = open PIPE, “-|”;
die “problem forking $!” unless defined $pid;

unless($pid) {
exec COOL, $message or die “cant open
pipe $!”;

25

Some more background

• When you work with CGI, many times you
have to work with specific formats and files

• Need to know how it will be handled on
client side

• One such common file, is graphics..

Graphics

• Formats:
– GIF (Graphic Interchange Format)

• 256 colors
• LZW compression
• Animation
• Transparent bit

– PNG (Portable Network Graphic)
• 256 color / 16-bit gray / 48-bit true color
• NOT LZW
• Alpha channels
• Interlacing algorithms

26

• JPEG (Joint Photographic Expert Group)
– 24-bit color
– Lossy compression
– No animation/transparency

• PDF (Portable Document Format)
– Postscript language for document layout

Image manipulation

• Many packages in perl to work with image
data

• GD
– Lightweight package
– Port of c graphics library
– Manipulation routines for PNG

27

CGI

• CGI is a common framework

• Perl is not the only player

• We will also be doing CGI + PERL|C|CPP

Alternatives

• ASP
– Created by Microsoft for its servers
– Mix code into html
– Visual basic/javascript

• PHP
– Apache webserver
– Similar to perl
– Embed code in html

28

Alt II
• Coldfusion

– Webserver interprets std coldfusion call embedded in
html, and can add code to run custom functions

– Windows, and linux
• Java servelts

– Compiled java classes invoked by web client
– Code creates documents

• FastCGI
– Threaded instance of perl continuasly running to help

cgi perl run faster
• Mod_perl

– Appache server perl thread to make perl cgi faster

Next time

• See you in lab
– Will be programming CGI

• Do reading please.

