
1

1

CS3157: Advanced
Programming

Lecture #4
Jan 30

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline
• Feedback
• Homework
• More file handling and reg exp
• CGI
• HTML
• CGI & Perl
• Perl Debugger

• Reading:
– Regular expressions
– File handling

2

3

Announcements

• Wednesday LAB!
– Please check class schedule page for lab

sessions
– Will have class time to work on lab

assignments, which are due Fridays
electronically.

• Office Hours
– Posted on webpage

• Class schedule posted

4

Homework

• The homework has been released
– It is due Feb 19, 11pm
– Will talk about it later today

3

5

More code examples

• We want to process the /etc/password file

• Looks like:
pcap:x:77:77:ARPWATCH User:/var/arpwatch:/sbin/nologin

ident:x:98:98:pident user:/:/bin/false

nobody:x:99:99:Nobody:/:/sbin/nologin
xfs:x:405:405:X Font Server:/etc/X11/fs:/bin/false

mysql:x:6730:1101:mysql server:/var/lib/mysql:/bin/bash

6

sub read_passwd {
my %users;
my @fields = qw/name pword uid gid fullname

home shell/;

while(<STDIN>) {
chomp;
my %rec;

@rec ={@fields} = split(/:/);

$users{$rec{name}} = \%rec;
}
return \%users;

}

4

7

my $users = read_passwd();

my @names;

foreach (keys %{$users}) {
next unless $users->{$_}{fullname};

my ($fname, $lname) = split (/\s+/,
$users->{$_}{fullname},2);

push @names, “$fname $lname”;
}

print map { “$_\n” } sort @names;

8

Helpful stuff

• $| = 1
will turn off output buffering great when
working with cgi (later today)

• Can execute command line arguments
– Backticks (``)
– System
– exec

5

9

MD5 Sum

• MD5 – uses a 128 bit hash value
• Designed in 1991
• Known problems with collision attacks
• http://www.ietf.org/rfc/rfc1321.txt
• http://en.wikipedia.org/wiki/MD5

10

Bottom line

• Still in very wide use
• Allows authentication of files given a file

and signature
• Visually authentication against tampering

• What obvious weakness??

6

11

Md5 of a file

• Can execute md5sum within perl
• Can use perl defined methods

– Write yourself
– Find someone else’s ☺

12

Using Perl Libraries

7

13

14

8

15

Digests

• The 128-bit (16-byte) MD5 hashes (also
termed message digests) are typically
represented as 32-digit hexadecimal
numbers.

• Even small change can result in a totally
different hash digest

16

Digests II

• MD5("The quick brown fox jumps over the
lazy dog") =
– 9e107d9d372bb6826bd81d3542a419d6

• MD5("The quick brown fox jumps over the
lazy cog") =
– 1055d3e698d289f2af8663725127bd4b

• MD5(“”)
– d41d8cd98f00b204e9800998ecf8427e

9

17

Recursive directory crawling

• Sample1.pl

18

File::Find
use File::Find;

$dir = “c:/example”;

find(\&exam1,$dir);

sub exam1{
print “File: $_ and path is

$File::Find::name\n”;
}

10

19

GUI

• There are easy ways to make graphics in
perl

• Will not cover in this course
– But will have enough knowledge to pick this

up on your own if you choose
– Better way: will see later today

20

Graphics

#!c:\perl\bin
use Tk;

my $mwin = MainWindow->new;

$mwin->Button(-text => "Hello World!", -
command => sub{exit})->pack;

MainLoop;

11

21

Graphics

• Will not cover in depth
• Good to know about
• Might need to one day debug someone

else’s code (GASP!)

22

Computer Security

• System and theory of ensuring the
confidentiality, integrity, availability,
and control of electronic information
and systems.
– Network
– Host
– Data

12

23

For host based security

• Want to ensure permission system
– X should only be allowed to do A, B, and C

• Want to ensure accountability
– If Y does something not allowed, should be

noted
• Want to be able to track

– If something has been tampered with, how
can we locate it

– Both preventative and reactionary

24

Homework Project

• Assuming you are a system administrator
or just paranoid

• Take chronological snapshots of your
system to compare and find changes
– Many changes by system
– Many changes by valid user
– Might locate malicious user/system changes

13

25

Useful tips

• Can turn on warning to help prevent errors
• Run in strict mode to catch potential

mistypes
• Create debugging statements to help chart

progress throughout program…
• Better yet, learn to use the perl debugger

(today if time permitting).

26

Doing the work

• Find a good perl environment
• Read up on perl
• Can work

– Clic lab
– Home
– Home, remote on clic machine

14

27

TOOLS: VNC

• www.realvnc.com

• Start server on a clic machine:
– vncserver

– Run client on your side

– demo

28

www

• Driven by http
• Technical overview

– Servers serve http request
– Clients browsers issue requests

15

29

Boring vs. Exciting

• Typical
– Request is served from a file formatted in html
– Static file of what we would like to render on a web

client.
– Example:

• Class syllabus

• What is we could tailor each users web
experience to what they want.
– Design of protocol to handle this

30

How does CGI work:

End User
1. HTTP Request

Server

CGI Application

2. Call CGI

3. CGI Responds

4. HTTP Response

16

31

Perl + cgi
• Remember:

– Perl is only a tool here
– Don’t memorize, understand

• Why
• What
• How

– Don’t be afraid to experiment
• STDIN

– Contents passed to perl script
• STDOUT

– Will need HTTP headers before printing
• STDERR

– Depends on server, sometimes just error logs, sometimes error
reports on client

32

%ENV

• This is your best friend in PERL CGI
• Way of getting information from the client
• Create content is way to pass back

information to the client

17

33

Remember

• Need to set permissions:
– chmod 0755 ???.cgi
– -rwxr-xr-x

• Need to place script in correct place
– Usually cgi-bin/ directory

• Naming
– Usually need to end in .cgi

34

Sample test4.cgi
#!/usr/local/bin/perl

use strict;

my $time = localtime;
my $remote_id = $ENV{REMOTE_HOST}| $ENV{REMOTE_ADDR};

print "Content-type: text/html\n\n";

print <<END_OF_PRINTING;
This is the time : $time
<P>
and your id is $remote_id

END_OF_PRINTING

18

35

output

36

Some CGI Environmental Variables
• CONTENT_LENGTH

– Length of data passed to cgi
• CONTENT_TYPE
• QUERY_STRING
• REMOTE_ADDR

– Ip address of client
• REQUEST_METHOD
• SCRIPT_NAME
• SERVER_PORT
• SERVER_NAME
• SERVER_SOFTWARE
• HTTP_FROM
• HTTP_USER_AGENT
• HTTP_REFERER
• HTTP_ACCEPT

19

37

Problem

• How can we print out all the environment
variables ?

38

Example
#!/usr/local/bin/perl

use strict;

my $vars
print "Content-type: text/html\n\n";

foreach $vars (sort keys %ENV){
print “<P>$vars
”;
print $ENV{$vars};

}

20

39

40

HTML

• Hyper Text Markup Language
• Standard by w3:

http://www.w3.org/MarkUp/
• Way of standardizing format of documents

so that users can share information
between different systems seamlessly

• Evolving to XHTML format

21

41

HTML

• Hypertext Transfer Protocol
• Language used between web servers and

web clients
• http url’s

http://www.google.com:80/search?q=shlomo

Scheme Host

Port

Path

Query

Fragment

42

Google.com

• http://www.google.com/search?q=shlomo

22

43

Very basics

• Html consists of matching tags
• <something> = opening tag
• </something> = close tags

• HTML DOC:
– <html> <body> ……. </body> </html>

44

Web pages

• <title> …. </title> (before the body
section)

• <H1> …. </H1> (header titles h1, h2, h3)
• <P> paragraphs
•
 line breaks
• … bold
• <i> … </i> italicize
• <u> … </u> underline

23

45

More basics

•
• something
•

– Can be referred to by page.html#Anchor1
• <hr> line
• <hr width=50%> half line

46

Lists

• Unordered list
 ……
• Ordered list
 …..

• Nested lists
– Lists themselves can be nested within another

24

47

Tables

• <table>
<tr>
<td>Hello</td>
<td>World </td>
</tr>
</table>

WorldHello

48

comments

<!--

anything you do

-->

25

49

More html

• Can get wysiwyg editors
• Word will allow you to save as html
• Can take a look at webpages source code

50

Browser Issues

• Although HTML should be universal, there
are occasional differences between how
Microsoft IE renders a webpage and
Mozilla firefox

26

51

Perl Debugging
• Command line debugger can be started with the

-d command argument
perl –d something.pl
• h = help
• x = examine something
• Any perl command is read in, and saved
• s = single step evaluation
• n = jump over subroutine
• v [num] = window of commands we are in
• l x y = list lines x to y

52

Perl debugger

• b num = breakpoint at line num
• c = run until next breakpoint
• d num = delete breakpoint at line num
• X examine all variables

27

53

Perl Debugger

• Demo of perl debugger

54

Task

• Create a webpage counter (saying you are
visitor x to this page)

• Create a graphical counter

28

55

Wednesday is LAB!

• See you in the lab
• Need to show up in person to get lab, can

stay or work offline
• Will be running lab during class session

