
1

CS3157: Advanced 
Programming

Lecture #3
Jan 25

Shlomo Hershkop
shlomo@cs.columbia.edu
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Outline

• Feedback
• More Regular Expressions
• Scope
• Hashing
• File handling II
• Complex examples

• Reading: Chapter 4,5 (pg-167)
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Feedback from last class

• Slide posting
– Will post slides within 24 hrs after class
– Outside code will be also posted (links)
– Reason for not posting prior to class

• General Pace
– Will try to make it easier to take notes
– Will divide information so easier to digest
– Will be very technical at certain points…you will thank 

me later on when trying to solve labs
– Will do more elaborate examples
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Announcement

• Please see web page for unix training by 
acis

• Will post office hours later tonight
• My office hours: t/th 12-1pm
• Tae M 9:50 - 10:50, T 9:50 - 10:50
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Regular Expression

• Review
– Basics 
– Advanced

• More in examples

• So what exactly is a regular expression?
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Regular Expression in perl

• Trying to represent patterns to perl
• Very powerful since we can define our 

program behavior based on general 
pattern definitions

• Many many shortcuts available
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Simplest 

• Simplest regular expression is a literal 
string match

if ($name =~ m/white house/ ) {

do something

}
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Regular Expressions

• complex regular expressions use metacharacters
to describe various options in building a pattern.

• \
– Escape character

• .
– Match any single character

• Full list:
\ | ( ) [ ] { } ^ $ * + ? .
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Escape shortcuts
\w Match "word" character (alphanumeric plus "_")

\W Match non-word character

\s Match whitespace character

\S Match non-whitespace character

\d Match digit character

\D Match non-digit character
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Other escape codes
\t Match tab

\n Match newline

\r Match return

\f Match formfeed

\a Match alarm (bell, beep, etc)

\e Match escape 
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Regular expression attributes

• g = match globally (all instances)
• i = do case insensitive matching
• e = evaluate right side as an expression
• s = let . match newlines
• m = $ and ^ can refer to inside newlines
• c = compliment
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usages

1) if ( $line =~ /^\s.*\S$/ ) {….}

2) if (not $line =~ /cs3157/ ) {…}
if( $line !~ /cs3157/ ) {….}

3) while ( $line =~ /^\w \w$/
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groups

To allow groups of alternative choices

if($string =~ /(A|E|I|O|U|Y)/i)
{ print "String contains a vowel!\n“; }

if($string =~  /(Clinton|Bush)/)
{ print “President sir!\n“; }
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Character choices
we can also specify character choices:

if( $string =~ /[AEIOUY]/i )
{ print "String contains a vowel!\n“;  }

Can also specify ranges
if( $string =~  /[^a-e]/I ) {

something
}
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Groups II

• To allow us to reference for selection and 
subsitution

• Each group can be referred to by scalar 
$1, $2, $3 ….

Example
• “From s@aol.com Wed Jun 3 12:12:12 2005”
• If(/^From (.*) (…) (…) (.*)$/)
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quantifiers

• ba*b  

• ba{3,5}b

• ba{2}b

• /(ab){4,}/
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Shortcut 1

• We can say
– [abcdefgh]

– [a-h]

– [a-h] {1,4}
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1. How would we look for a phone number?

2. What about a street address?
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Quick question

• How to indicate the period since period 
matches any character?
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open MAIL, “mail.txt” or die “cant open 
file\n”;

while(<MAIL>) {
print if m/^From: /;

}
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open MAIL, “Mail.txt” or die “can’t 
open mail file\n”;

while (<MAIL>) {
if (/^([^:]+): ?(.+)$/ ) {

print “Header $1 has val $2\n”;
}
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Other shortcuts

$name = “advanced programming class”

if($name =~ /programming/){
print $`  ;
print $&  ;
print $’ ;
}
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What is?

if($string =~ 
m/^\S+\s+(Hershkop|Stolfo|Aho)/i)

{print "$string\n"}; 
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Task
• Given a directory listing in dos, how to backup any file 

from 2004 ?
08/04/2004  05:00 AM           256,192 winhelp.exe
08/04/2004  05:00 AM           283,648 winhlp32.exe
08/03/2005  03:07 AM               138 wininit.ini
12/14/2005  03:05 PM    <DIR>          WinSyS
12/14/2005  03:03 PM            12,033 WMCSetup.log
01/10/2006  09:00 PM            23,901 wmsetup.log
01/10/2006  09:00 PM               459 wmsetup10.log
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while(<STDIN>)
{
my($line) = $_;
chomp($line);
if($line !~ /<DIR>/)

{
#** only lines with dates at position 28 and (long)
# filename at pos 44 **

if ($line =~ /.{28}(\d\d)-(\d\d)-(\d\d).{8}(.+)$/)
{
my($filename) = $4;
my($yymmdd) = "$3$1$2";
if($yymmdd lt "971222")

{
print “move $filename \\backup\n";
}

}
}

} 
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subsitutions

• s/pattern/pattern/

• Instead of return t/f we return number of 
matches

• And will change the applied target
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transliteration

• tr/search_list/replacement_list/

• -c all characters not in the search list
• -d anything without replacement …delete
• -s squash duplicates
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• What is scope?
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scope

• Default scope is main
• $name can also be referred to as 
$main::name

• package NAMESPACE
– Within any block of code, can declare that the 

rest of the code will belong to a specific 
namespace

30

Scope II

• my
declares the variable and value local to the 
current scope

• our
confines the name to local scope

• local
confines the value to local scope
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• Remember to place than one variable in 
parenthesis!!
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Security

• Should use pattern matches as a security 
check on input

• Example:

unless ( $year =~ /^\d\d$/) {
die (“problem with year input!”);

}
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hashes

• A hash function is a function that converts 
an input from a (typically) large domain 
into an output in a (typically) smaller range

• Example:
– Map each name in the class to a somewhat 

unique number
• Collision = when different keys map to the 

same output.
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Use of hashes

• Hash tables
– Data structure
– Unordered list, fast lookup

• Cryptography
• Data processing
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• Sample code: readfile.pl
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Useful commands
• Split

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/

split   Splits a string into a 
list of strings and returns that 
list. By default, empty leading 
fields are preserved, and empty 
trailing ones are deleted. …………….


