
1

CS3157: Advanced
Programming

Lecture #3
Jan 25

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline

• Feedback
• More Regular Expressions
• Scope
• Hashing
• File handling II
• Complex examples

• Reading: Chapter 4,5 (pg-167)

3

Feedback from last class

• Slide posting
– Will post slides within 24 hrs after class
– Outside code will be also posted (links)
– Reason for not posting prior to class

• General Pace
– Will try to make it easier to take notes
– Will divide information so easier to digest
– Will be very technical at certain points…you will thank

me later on when trying to solve labs
– Will do more elaborate examples

4

Announcement

• Please see web page for unix training by
acis

• Will post office hours later tonight
• My office hours: t/th 12-1pm
• Tae M 9:50 - 10:50, T 9:50 - 10:50

2

5

Regular Expression

• Review
– Basics
– Advanced

• More in examples

• So what exactly is a regular expression?

6

Regular Expression in perl

• Trying to represent patterns to perl
• Very powerful since we can define our

program behavior based on general
pattern definitions

• Many many shortcuts available

7

Simplest

• Simplest regular expression is a literal
string match

if ($name =~ m/white house/) {

do something

}

8

Regular Expressions

• complex regular expressions use metacharacters
to describe various options in building a pattern.

• \
– Escape character

• .
– Match any single character

• Full list:
\ | () [] { } ^ $ * + ? .

3

9

Escape shortcuts
\w Match "word" character (alphanumeric plus "_")

\W Match non-word character

\s Match whitespace character

\S Match non-whitespace character

\d Match digit character

\D Match non-digit character

10

Other escape codes
\t Match tab

\n Match newline

\r Match return

\f Match formfeed

\a Match alarm (bell, beep, etc)

\e Match escape

11

Regular expression attributes

• g = match globally (all instances)
• i = do case insensitive matching
• e = evaluate right side as an expression
• s = let . match newlines
• m = $ and ^ can refer to inside newlines
• c = compliment

12

usages

1) if ($line =~ /^\s.*\S$/) {….}

2) if (not $line =~ /cs3157/) {…}
if($line !~ /cs3157/) {….}

3) while ($line =~ /^\w \w$/

4

13

groups

To allow groups of alternative choices

if($string =~ /(A|E|I|O|U|Y)/i)
{ print "String contains a vowel!\n“; }

if($string =~ /(Clinton|Bush)/)
{ print “President sir!\n“; }

14

Character choices
we can also specify character choices:

if($string =~ /[AEIOUY]/i)
{ print "String contains a vowel!\n“; }

Can also specify ranges
if($string =~ /[^a-e]/I) {

something
}

15

Groups II

• To allow us to reference for selection and
subsitution

• Each group can be referred to by scalar
$1, $2, $3 ….

Example
• “From s@aol.com Wed Jun 3 12:12:12 2005”
• If(/^From (.*) (…) (…) (.*)$/)

16

quantifiers

• ba*b

• ba{3,5}b

• ba{2}b

• /(ab){4,}/

5

17

Shortcut 1

• We can say
– [abcdefgh]

– [a-h]

– [a-h] {1,4}

18

1. How would we look for a phone number?

2. What about a street address?

19

Quick question

• How to indicate the period since period
matches any character?

20

open MAIL, “mail.txt” or die “cant open
file\n”;

while(<MAIL>) {
print if m/^From: /;

}

6

21

open MAIL, “Mail.txt” or die “can’t
open mail file\n”;

while (<MAIL>) {
if (/^([^:]+): ?(.+)$/) {

print “Header $1 has val $2\n”;
}

22

Other shortcuts

$name = “advanced programming class”

if($name =~ /programming/){
print $` ;
print $& ;
print $’ ;
}

23

What is?

if($string =~
m/^\S+\s+(Hershkop|Stolfo|Aho)/i)

{print "$string\n"};

24

Task
• Given a directory listing in dos, how to backup any file

from 2004 ?
08/04/2004 05:00 AM 256,192 winhelp.exe
08/04/2004 05:00 AM 283,648 winhlp32.exe
08/03/2005 03:07 AM 138 wininit.ini
12/14/2005 03:05 PM <DIR> WinSyS
12/14/2005 03:03 PM 12,033 WMCSetup.log
01/10/2006 09:00 PM 23,901 wmsetup.log
01/10/2006 09:00 PM 459 wmsetup10.log

7

25

while(<STDIN>)
{
my($line) = $_;
chomp($line);
if($line !~ /<DIR>/)

{
#** only lines with dates at position 28 and (long)
filename at pos 44 **

if ($line =~ /.{28}(\d\d)-(\d\d)-(\d\d).{8}(.+)$/)
{
my($filename) = $4;
my($yymmdd) = "$3$1$2";
if($yymmdd lt "971222")

{
print “move $filename \\backup\n";
}

}
}

}

26

subsitutions

• s/pattern/pattern/

• Instead of return t/f we return number of
matches

• And will change the applied target

27

transliteration

• tr/search_list/replacement_list/

• -c all characters not in the search list
• -d anything without replacement …delete
• -s squash duplicates

28

• What is scope?

8

29

scope

• Default scope is main
• $name can also be referred to as
$main::name

• package NAMESPACE
– Within any block of code, can declare that the

rest of the code will belong to a specific
namespace

30

Scope II

• my
declares the variable and value local to the
current scope

• our
confines the name to local scope

• local
confines the value to local scope

31

• Remember to place than one variable in
parenthesis!!

32

Security

• Should use pattern matches as a security
check on input

• Example:

unless ($year =~ /^\d\d$/) {
die (“problem with year input!”);

}

9

33

hashes

• A hash function is a function that converts
an input from a (typically) large domain
into an output in a (typically) smaller range

• Example:
– Map each name in the class to a somewhat

unique number
• Collision = when different keys map to the

same output.

34

Use of hashes

• Hash tables
– Data structure
– Unordered list, fast lookup

• Cryptography
• Data processing

35

• Sample code: readfile.pl

36

Useful commands
• Split

split /PATTERN/,EXPR,LIMIT
split /PATTERN/,EXPR
split /PATTERN/

split Splits a string into a
list of strings and returns that
list. By default, empty leading
fields are preserved, and empty
trailing ones are deleted. …………….

