
1

CS3157: Advanced
Programming

Lecture #14
May 1st

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Welcome to the last class!
• Advanced topics

– PHP Overview
– AJAX

• Review for final
• Final!

2

Php.net
• developed 1994-1995, first as collection of perl scripts and then own

interpreter
• originally created as “Personal Home Page” tools, by Rasmus

Lerdorf
• First, was a quick tool for embedding sql queries in a web page

(v1.0)
then structured code was added (v2.0), but with a buggy language
parser

• official release (v3.0) fixed parser bugs - June 1998 introduced
object oriented ideas

• V4 more object, and passing variables in the system modified
• V5 new engine, many fixes etc
• Early as Jan 1999, 100,000 web pages were using php!!! Much

higher now!

Some say..
• php is better than cgi because:

– it runs as part of the web server process and doesn’t require
forking (unlike cgi)

– it runs faster than cgi
– it’s faster to write...
– Tons of libraries supported

• php was designed to run with apache web server on unix
– but also runs on windows and mac

• Did I mention…it’s free!
– One important way of getting something adopted….don’t

underestimate the power of a ‘free lunch’

3

LAMP

• Linux
• Apache
• Mysql
• Perl/PHP/Python

• php is coded in C
– has a well-defined API
– extensible

• the way it runs:
– a php engine is installed as part of a web server
– the engine runs the php script and produces html,

which gets passed back to the browser
– So user never sees the php code (if done right)

4

3 different ways !

• hello.php (plain php)

• hello2.php (php embedded in html)

• hello3.php (uses <?php start tag)

Hello.php

<?
print "hello world!";
?>

5

Hello2.php

<html>
<body bgcolor=#000000 text=#ffffff>
<?
print "hello world!";
?>
</body>
</html>

Hello3.php

<html>
<body bgcolor=#000000 text=#ffffff>
<?php
print "hello world!";
?>
</body>
</html>

6

basics
• php start and end tags: <? ... ?>
• also: <?php ... ?>
• semi-colon ends a statement (like C)
• string constants surrounded by quotes (") or (’)
• you can embed multiple php blocks in a single html file
• variable names are preceded by dollar sign ($)
• user input is through html forms
• the language is case-sensitive, but calls to built-in functions are not

– Any ideas why ???????

• identifiers are made of letters, numbers and underscore (_); and
cannot begin with a number

• expressions are similar to C

Data types
• integers
• floating-point numbers
• strings
• loosely typed (you don’t have to declare a

variable before you use it)
• conversion functions: intval, doubleval, strval,

settype
• settype(<value>, <newtype>) where

newtype="integer", "double" or "string"
• typecasting: (integer), (string), (double), (array),

(object)

7

operators

• mathematical: +, -, *, /, %, ++, --
• relational: <, >, <=, >=, ==, !=
• logical: AND, &&, OR, ||, XOR, !
• bitwise: &, |, ˆ (xor), ˜ (ones complement), >>, <<
• assignment: =, =, -=, *=, /=,
• other:

– . concatenate
– -> references a class method or property
– => initialize array element index

Conditionals
• if/elseif/else:
if (<expression1>) {
<statement(s)>
}
elseif (<expression2>) {
<statement(s)>
}
else {
<statement(s)>
}

8

Conditional II
• tertiary operator:
<conditional-expression> ?
<true-expression> : <false-expression>;

• switch:
switch(<root-expression>) {
case <case-expression>:
<statement(s)>;
break;
default:
<statement(s)>;
break;
}

loops
• while
while (<expression>) {
<statement(s)>;
}
• do-while
do {
<statement(s)>;
} while (<expression>);
• for
for (<initialize> ; <continue> ; <increment>) {
<statement(s)>;
}
• break:

– execution jumps outside innermost loop or switch

9

other

• exit() function
– halts execution, meaning that no more code

(php or html) is sent to the browser
• built-in constants

– PHP_VERSION
– __FILE__, __LINE__
– TRUE = 1, FALSE = 0
– M_PI = pi (3.1415927....)

Writing your own functions
• declared just like C:
function <name> (args) {
<body>
[return <value>]
}
• called just like C
• arguments (and local variables) are local, and don’t exist when you

exit the function; but you can use “static” to declare a variable so
that when you call a function again, the value is retained

• use the “global” statement to declare global variables that you want
to be able to access from within a function, or the GLOBALS array
(which is like a perl hash)
e.g., GLOBALS[’username’]

• recursion is okay, but be careful!

10

Simple 1
<?
$today = date("l F d, Y");
$yourname = $_POST['yourname'];
$cost = doubleval($_POST['cost']);
$numdays = intval($_POST['numdays']);
?>

<html>
<body>
today is:

<?
PRINT("$today
");
priNT("$yourname, you will be out \$");
print(doubleval($cost * $numdays));
print(" for buying lunch this week!");
?>
</body>
</html>

arrays
• indexed using [...]
• indeces can be integers or strings (like a perl hash)
• when strings are indeces, it’s called an “associative

array”
• array() function can be used to initialize an array
• e.g., $var = array(value0, value1, value2, ...);
• use the => operator to define the index:
$var = array(1=>value1, value2, ...);
$var = array("a"=>value1, "b"=>value2, ...
);

• multidimensional arrays are okay (like C)

11

code
<html>
<body bgcolor=#ffffff>
<?
$states = array("CA","NY");
print "here are the states:
";
for ($i=0; $i<count($states); $i++) {
print "-- $states[$i]
";

}
print "<p>";
$cities = array("CA"=>array("san francisco","los angeles"),

"NY"=>array("new york","albany","buffalo"));
print "here are the CA cities:
";
for ($i=0; $i<count($cities["CA"]); $i++) {
print("-- ".$cities["CA"][$i]."
");

}
print "here are the NY cities:
";
for ($i=0; $i<count($cities["NY"]); $i++) {
print("-- ".$cities["NY"][$i]."
");

}

Code II
print "<p>";
$states[] = "MA";
print "now here are the states:
";
for ($i=0; $i<count($states); $i++) {

print "-- $states[$i]
";
}
$cities[] = "MA";
$cities["MA"][] = "boston";
print "here are the MA cities:
";
for ($i=0; $i<count($cities["MA"]); $i++) {

print("-- ".$cities["MA"][$i]."
");
}

?>
</body>
</html>

12

classes
• defining a class:
class <class-name> {
// declare properties
// declare methods
}

• use just like java and c++
• example: myclass.php and userclass.php
• note use of include statement

userclass.php
<?
class user {

// properties
var $name;
var $password;
var $last_login;

// methods
function init($inputname, $inputpassword) {
$this->name = $inputname;
$this->password = $inputpassword;
$this->last_login = time();

}

function getLastLogin() {
return(date("M d Y", $this->last_login));

}

}

13

myclass.php
<html>
<body>
<?

include "userclass.php";

$currentuser = new user;
$currentuser->init("yaddi","cat");

print("name = ".$currentuser->name."
");
print("last login = ".$currentuser->getLastLogin());

?>
</body>
</html>

<?php
class Car {
public $miles; // variable that can be accessed outside the class
private $mpg; // variable that can only be accessed within the class
protected $mph; // variable that can only be accessed from within the class, and
// from any inherited child classes

public function __construct($param) { // constructor is called when object "Car" is
created

$this->miles = $param;
}

public function start() {
// starts the car...
}

a
public function stop() {
// stops the car...
}

public function getMpg() {
return $this->mpg;
}

}

$car = new Car($param);
echo $car->miles; // echos the value of the property "miles" of the class "Car"
?>

14

I/O
• get input from html forms using
$_POST[’<name>’]
$_GET[’<name>’]
$_REQUEST[’<name>’]
• file I/O

– basically just like C:
$fp = fopen("filename","w");
fwrite($fp,"stuff");
fclose($fp);

– note that fopen second argument mode is like C)

More than just reacting

• We have been working with perl/c/cpp in a
static context

• Some information is presented to the user
• React to user input

• Is this how google maps works ?

15

Ajax
• Asynchronous JavaScript And XML

• technique for developing interactive applications
over the web

• Style
• Platform
• Format
• XMLHttpRequest
• Objects

Basic HTML

• Specific set of tags (depends on version)
• Up to user to set things correctly
• Most browsers will attempt to figure out

what you want
– Example not putting end body end html, will

still work

16

Advanced HTML

• CSS
– Cascading style sheets

• Define format of the WebPages
• Central location of style
• With a few clicks can completely change thousands of

WebPages.

• DOM
– Document object model

• Formal data structure to represent web based
documents/information

• Client side scripting

DOM problems
• Different browsers supported things differently
if (document.getElementById &&

document.getElementsByTagName) {
// as the key methods getElementById and getElementsByTagName
// are available it is relatively safe to assume W3CDOM support.

obj = document.getElementById("navigation")
// other code which uses the W3CDOM.
//

}

17

Examples

• http://www.dynamicdrive.com/dynamicinde
x12/pong/pong.htm

• http://www.dynamicdrive.com/dynamicinde
x4/butterfly.htm

javascript
• Client side

– PHP & CGI were both server side
• Developed under Netscape as LiveScript

– Currently 1.5
• Developed under IE as Jscript
• Object oriented approach
• Syntax like c

– No input/output support native
– Keywords
– DOM for interfacing between server and client

• Can evaluate reg expressions (eval)

18

Javascript

• Heavy use of defined functions
– Example: MouseOver

• Need to adopt to specific browser if doing
anything fancy

• Adobe
– Support javascript in pdf

• MAC
– Dashboard widgets

Programming

• You need to learn on your own
• Many good books/websites
• Most of the time .js file if not in html
• Powerful example:

– Thunderbird/firefox
• Get good debugger

19

How to do research?
• Practical research

– Know a programming language
– Have an inquisitive mind
– Keep an open mind to new ideas
– Try to solve an open research problem ☺

• Theory research
– Learn some math
– Learn some theory
– Relearn the math
– Solve something ☺

Where to start?

1. Need an idea
2. See if anyone’s done it or tried it in your

way
1. Citeseer (citeseer.ist.psu.edu)
2. Google
3. Appropriate Faculty/Researcher
4. Google groups

20

Sketch out the idea on small scale

• Design a small experiment which can validate
your idea

• Data, data, data, and Data
– Make or break you
– Will help your research

• Make sure it isn’t a circular relationship
• Evaluate results

– Don’t fake them
– Even bad results are results
– Can learn of what not to do

• Write up results

Write up options

• Word vs Latex
• gnuplot
• cvs
• Element of Style

21

In the real world
1. Keep it simple

1. Don’t re-invent the wheel
2. Design first
3. Even with fancy blinking lights, a bad idea is still a

bad idea (but with bad taste)
2. Incremental testing

1. Recognize when the bug is your fault
2. See if others have faced it too

3. Make sure version 1 works on most popular
browsers

Question

• What is this designed with?
• Can you do a better job?

• Theyrule.net

22

Bottom line

• We’ve covered a lot this semester
– Some of it was fun
– Some of it was hard work (ok most)
– Some of it was frustrating.

• BUT
– You have lots of tools
– Have an idea of where to start when dealing

with programming projects

Important lessons for learning new
languages

• CS is not meant to be a trade school
• Language isn't important…things change
• Ideas and design are more important

• Lessons:
– Choose correct environment
– Choose correct tools
– Make sure to test out ideas…might be someone

else’s fault (program think)
– Enjoy what you are doing

23

Important

• To get the most out of a language find
comfortable programming environment

• Emacs – color files
• Eclipse
• Others , see

– www.freebyte.com/programming/cpp/

Review time

• Focus on C
• Focus on CPP
• Shell programming stuff
• Idea of PHP
• Perl
• Review the labs

24

Word list
• Compiling
• Linking
• Reference parameter
• Variable scope
• Stdio.h
• Stdlib.h
• cout
• cast
• Inline
• Linked list

• Preprocessor
• Typedef
• Struct
• Pointer
• Void pointer
• . Vs ->
• Function pointer
• Reference
• const
• malloc

Word list II
• Huffman
• getopt
• constructor
• destructor
• iostream
• overloading
• extern
• private
• Public
• GDB

• Cgi
• GET/POST
• overload
• overriding
• Template
• This
• Friend class
• New/delete
• virtual

25

c
• Basic constructs
• Basic type
• Advanced types
• (review labs and class examples)
• Memory stuff – understand what is happening
• Arrays
• Functions
• Pointers
• Debuggers

C

• Working with CGI
• Working on different platforms
• Makefiles
• How we built libraries

26

C++

• Basic language
• Difference to c
• Classes
• Permissions
• new/free memory allocations
• Inheritance and polymorphism
• Keywords
• Working with files….

Sample exam
• You’ve done most of the work for the course, the

exam is just to make sure you remember the
important concepts

• Will be posted online

• Couple Definitions
• 2 code checking question
• Shell code question
• C++ class manip question
• Small CGI question

27

Thinking question

• Say you are writing code which uses a
random number generator….

• What is important to know about it ?
• How can your code be affected ?

• If you crash, how to reconstruct events,
since based on random numbers ??

Closing Remarks

• If you like this…..just the beginning
• If you didn’t ….. You now know how complicated

it is….never trust a program ☺

• Hope you had a fun semester..
• Extra office hours this week, will email….

