CS3157: Advanced
Programming

Lecture #14
May 18t

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

Welcome to the last class!

Advanced topics
— PHP Overview
— AJAX

Review for final
Final!

Php.net

» developed 1994-1995, first as collection of perl scripts and then own
interpreter

« originally created as “Personal Home Page” tools, by Rasmus
Lerdorf

 First, was a quick tool for embedding sql queries in a web page
(v1.0)
then structured code was added (v2.0), but with a buggy language
parser

+ official release (v3.0) fixed parser bugs - June 1998 introduced
object oriented ideas

* V4 more object, and passing variables in the system modified
* V5 new engine, many fixes etc

» Early as Jan 1999, 100,000 web pages were using php!!! Much
higher now!

Some say..

* php is better than cgi because:

— it runs as part of the web server process and doesn'’t require
forking (unlike cgi)

— it runs faster than cgi
— it's faster to write...
— Tons of libraries supported
* php was designed to run with apache web server on unix
— but also runs on windows and mac
* Did I mention...it'’s free!

— One important way of getting something adopted....don't
underestimate the power of a ‘free lunch’

LAMP

Linux

Apache

Mysql
Perl/PHP/Python

* phpiscodedinC
— has a well-defined API
— extensible

» the way it runs:
— a php engine is installed as part of a web server

— the engine runs the php script and produces html,
which gets passed back to the browser

— So user never sees the php code (if done right)

3 different ways !

 hello.php (plain php)
* hello2.php (php embedded in html)

* hello3.php (uses <?php start tag)

Hello.php

<?
print "hello world!";
7>

Hello2.php

<html|>

<body bgcolor=#000000 text=#ffffff>
<?

print "hello world!";

?>

</body>

</html>

Hello3.php

<html|>

<body bgcolor=#000000 text=#ffffff>
<?php

print "hello world!";

7>

</body>

</html>

basics

php start and end tags: <? ... ?>

also: <?php ... 72>

semi-colon ends a statement (like C)

string constants surrounded by quotes (") or ()

you can embed multiple php blocks in a single html file

variable names are preceded by dollar sign ($)

user input is through html forms

the language is case-sensitive, but calls to built-in functions are not

identifiers are made of letters, numbers and underscore (_); and
cannot begin with a number

expressions are similar to C

Data types
integers
floating-point numbers
strings

loosely typed (you don’t have to declare a
variable before you use it)

conversion functions: intval, doubleval, strval,
settype

settype(<value>, <newtype>) where
newtype="integer", "double" or "string"
typecasting: (integer), (string), (double), (array),
(object)

operators

 mathematical: +, -, *, /, %, ++, --

e relational: <, >, <=, >=, ==, I=

* logical: AND, &&, OR, ||, XOR, !

* bitwise: &, |, ~ (xor), ~ (ones complement), >>, <<

e assignment: =, =, -=, *=, /=,
e other:
- concatenate
- > references a class method or property
- => initialize array element index
Conditionals

« if/lelseif/else:

iIT (<expressionl>) {
<statement(s)>

}

elseift (<expression2>) {
<statement(s)>

}

else {

<statement(s)>

}

Conditional Il

 tertiary operator:
<conditional-expression> ?

<true-expression> : <false-expression>;

» switch:

switch(<root-expression>) {
case <case-expression>:
<statement(s)>;

break;

default:

<statement(s)>;

break;

}

loops

* while

while (<expression>) {
<statement(s)>;

}

* do-while

do {

<statement(s)>;

} while (<expression>);
o for

for (<initialize> ; <continue>
<statement(s)>;

}

* break:

<increment>) {

— execution jumps outside innermost loop or switch

other

« exit() function

— halts execution, meaning that no more code
(php or html) is sent to the browser

* built-in constants
— PHP_VERSION
— FILE_, LINE__
—~TRUE =1, FALSE=0
—M_PI = pi (3.1415927....)

Writing your own functions

» declared just like C:

function <name> (args) {
<body>

[return <value>]

}

» called justlike C

» arguments (and local variables) are local, and don’t exist when you
exit the function; but you can use “static” to declare a variable so
that when you call a function again, the value is retained

» use the “global” statement to declare global variables that you want
to be able to access from within a function, or the GLOBALS array
(which is like a perl hash)

e.g., GLOBALS['username’]

e recursion is okay, but be careful!

Simple 1

<?

$today = date("l F d, Y");

$yourname = $_POST['yourname;

$cost = doubleval($_POST['cost]);
$numdays = intval($_POST['numdays']);
?>

<html>
<body>
today is:

<?

PRINT("$today
");

priNT("$yourname, you will be out \$");
print(doubleval($cost * $numdays));
print(" for buying lunch this week!");
>

</body>

</html>

arrays

* indexed using [...]
* indeces can be integers or strings (like a perl hash)

» when strings are indeces, it's called an “associative
array”

 array() function can be used to initialize an array

e e.g., $var = array(valueO, valuel, value2, ...);

» use the => operator to define the index:

$var = array(1=>valuel, value2, ...);
$var = array("a'"'=>valuel, "b"=>value2, ...

* multidimensional arrays are okay (like C)

10

code

<html>
<body bgcolor=#ffffff>
<?
$states = array("CA","NY");
print "here are the states:
";
for ($i=0; S$i<count($states); $i++) {
print "-- $states[$i]
";
} -
print "<p>";
$cities = array("CA"=>array("san francisco","los angeles"),
“NY"=>array("new york","albany","buffalo”));
print "here are the CA cities:
";
for ($i=0; $i<count($cities["CA"]); $i++) {
print("-- "_.$cities["CA"][$i]-"
");

print “here are the NY cities:
";

for ($i=0; $i<count($cities["NY"]); $i++) {
print("-- "_$cities["NY"][$i]."
");

}

Code Il

print "'<p>";

$states[] = "MA";

print "now here are the states:
";

for ($i=0; $i<count($states); $i++) {
print "-- $states[$i]
";

}

$cities[] = "MA";

$cities["MA"][] = "boston';

print "here are the MA cities:
";

for ($i=0; $i<count($cities["MA"]); $i++) {
print("-- ".$cities["MA"][$i]-"
");

}

?>
</body>
</html>

11

classes

» defining a class:

class <class-name> {
// declare properties
// declare methods

}

* use just like java and c++
» example: myclass.php and userclass.php
* note use of include statement

userclass.php

<?
class user {

// properties
var $name;

var $password;
var $last_login;

// methods

function init($inputname, $inputpassword) {
$this->name = $inputname;
$this->password = $inputpassword;
$this->last_login = time(Q);

}

function getLastLogin() {
return(date("M d Y", $this->last_login));
}

12

myclass.php

<html>
<body>
<?

include "userclass.php™;

$currentuser = new user;
$currentuser->init("yaddi","cat”);

print("name = ".$currentuser->name."
");
print("last login = "_$currentuser->getLastLogin());

?>
</body>
</html>

<?php

class Car {

public $miles; // variable that can be accessed outside the class

private $mpg; // variable that can only be accessed within the class

protected $mph; // variable that can only be accessed from within the class, and
// from any inherited child classes

public fﬁ?ction __construct($param) { // constructor is called when object "Car" is
create

$this->miles = $param;

3

public function start() {
// starts the car...

H

a

public function stop() {
// stops the car...

¥

public function getMpg() {
return $this->mpg;

3
b

$car = new Car($param);
echo $car->miles; // echos the value of the property "miles" of the class "Car"
?>

13

/O

e get input from html forms using
$ POST[’<name>~"]
$ GET[”<name>"]
$_REQUEST[”<name>"]
« file /O
— basically just like C:
$fp = fopen("filename™,"w");
fwrite($fp, "stuff’);
fclose($fp);

— note that fopen second argument mode is like C)

More than just reacting

We have been working with perl/c/cpp in a
static context

Some information is presented to the user
React to user input

Is this how google maps works ?

14

Ajax
Asynchronous JavaScript And XML

technique for developing interactive applications
over the web

Style

Platform

Format
XMLHttpRequest
Objects

Basic HTML

Specific set of tags (depends on version)
Up to user to set things correctly

Most browsers will attempt to figure out
what you want

— Example not putting end body end html, will
still work

15

Advanced HTML

« CSS

— Cascading style sheets

 Define format of the WebPages
» Central location of style

» With a few clicks can completely change thousands of
WebPages.

- DOM

— Document object model

» Formal data structure to represent web based
documents/information

» Client side scripting

DOM problems

 Different browsers supported things differently
if (document.getElementByld &&
document.getElementsByTagName) {

/I as the key methods getElementByld and getElementsByTagName
/l are available it is relatively safe to assume W3CDOM support.

obj = document.getElementByld("navigation")
// other code which uses the W3CDOM.

16

Examples

* http://www.dynamicdrive.com/dynamicinde
x12/pong/pong.htm

http://www.dynamicdrive.com/dynamicinde
x4/butterfly.htm

javascript

Client side

— PHP & CGI were both server side
Developed under Netscape as LiveScript
— Currently 1.5

Developed under IE as Jscript

Object oriented approach

Syntax like ¢

— No input/output support native

— Keywords
— DOM for interfacing between server and client

Can evaluate reg expressions (eval)

17

Javascript

Heavy use of defined functions

— Example: MouseOver

Need to adopt to specific browser if doing
anything fancy

Adobe

— Support javascript in pdf

MAC

— Dashboard widgets

Programming

You need to learn on your own
Many good books/websites
Most of the time .js file if not in html

Powerful example:
— Thunderbird/firefox

Get good debugger

18

How to do research?

* Practical research
— Know a programming language
— Have an inquisitive mind
— Keep an open mind to new ideas
— Try to solve an open research problem ©

* Theory research
— Learn some math
— Learn some theory
— Relearn the math
— Solve something ©

Where to start?

1. Need an idea

2. See if anyone’s done it or tried it in your

way
Citeseer (citeseer.ist.psu.edu)
Google

Appropriate Faculty/Researcher
Google groups

b pRE

19

Sketch out the idea on small scale

* Design a small experiment which can validate
your idea

» Data, data, data, and Data
— Make or break you

— Will help your research
» Make sure itisn't a circular relationship

» Evaluate results
— Don’t fake them
— Even bad results are results
— Can learn of what not to do

» Write up results

Write up options

e Word vs Latex

» gnuplot

* CVS

* Element of Style

20

In the real world

1. Keepitsimple
1. Don't re-invent the wheel
2. Design first
3. Even with fancy blinking lights, a bad idea is still a
bad idea (but with bad taste)
2. Incremental testing
1. Recognize when the bug is your fault
2. See if others have faced it too

3. Make sure version 1 works on most popular
browsers

Question

* What is this designed with?
« Can you do a better job?

* Theyrule.net

21

Bottom line

» We’'ve covered a lot this semester
— Some of it was fun
— Some of it was hard work (ok most)
— Some of it was frustrating.

e BUT
—You have lots of tools

— Have an idea of where to start when dealing
with programming projects

Important lessons for learning new
languages

CS is not meant to be a trade school
Language isn't important...things change
Ideas and design are more important

Lessons:
— Choose correct environment
— Choose correct tools

— Make sure to test out ideas...might be someone
else’s fault (program think)

— Enjoy what you are doing

22

Important

To get the most out of a language find
comfortable programming environment

Emacs — color files
Eclipse

Others , see
— www.freebyte.com/programming/cpp/

Review time

Focus on C

Focus on CPP

Shell programming stuff
Idea of PHP

Perl

Review the labs

23

Word list

Compiling » Preprocessor
Linking * Typedef
Reference parameter e Struct
Variable scope * Pointer
Stdio.h » Void pointer
Stdlib.h e .Vs->
cout » Function pointer
cast » Reference
Inline e const
Linked list * malloc
Word list I
Huffman * Cgi
getopt « GET/POST
constructor » overload
destructor » overriding
ijostream * Template
overloading » This
extern » Friend class
private * New/delete
Public * virtual
GDB

24

Basic constructs

Basic type

Advanced types

(review labs and class examples)

Memory stuff — understand what is happening
Arrays

Functions

Pointers

Debuggers

C

Working with CGl

Working on different platforms
Makefiles

How we built libraries

25

C++

Basic language

Difference to c

Classes

Permissions

new/free memory allocations
Inheritance and polymorphism
Keywords

Working with files....

Sample exam

You've done most of the work for the course, the
exam is just to make sure you remember the
important concepts

Will be posted online

Couple Definitions

2 code checking question
Shell code question

C++ class manip question
Small CGI question

26

Thinking question

Say you are writing code which uses a
random number generator....

What is important to know about it ?
How can your code be affected ?

If you crash, how to reconstruct events,
since based on random numbers ??

Closing Remarks

If you like this.....just the beginning

If you didn't You now know how complicated
it is....never trust a program ©

Hope you had a fun semester..
Extra office hours this week, will email....

27

