

Announcements

- Please go to course works to fill out the class evaluation
 - Again, I will give you credit on final for this
 - Chance to win prizes!
 - Please take care of it this week

Announcements

- Final: 5/8 Monday 1-4 pm in class.
 - We will do a full review next week Monday
 - Please prepare questions you might have
 - Will have extra office hours in preparation

Schedule:

- Will now wrap up cpp
- Next we will cover basic and not so basic unix utilities
- Might have time for some software engineering background
- Will meet for last lab this week
- Anyone want to see php next week?

Last Homework

- Very short
- Will be posted today
- Using the POWER of template programming you will be writing a fraction class for CPP and use a simple CGI frontend to make it work over the network

Fraction class

- When you want to add $\frac{1}{2}$ + 1/3
- Convert to .5 + .3 = .8
- Want to work with fraction natively
- Want to learn to use templates
- Also want to be able to operate on fractions and reduce fractions
 - Will need to code GCD

Template programming

- What are templates?
- How are they used?
- Why ?

Queue Example

```
template <class T>
  class Queue {
    public:
        Queue();
        ~Queue();
        T& remove();
        void add (const T &);
        int isEmpty();
        int isFull();
    private:
        QueueItem<T> *front;
        QueueItem<T> *back;
    }
```

Queueltem

```
template <class P>
QueueItem {
   public:
        //??
   private:
        P item;
        QueueItem *next;
```


Unix Command Shell

- What is UNIX exactly ?
- What are Unix flavors ?
- What in the world is a command shell ??

Brief History

- Early on, OS were specialized to hardware
 Upgrade = new OS
- 1965, Bell Labs and GE
 - Multics
 - System to support many users at the same time
 - Mainframe timesharing system
 - 1969 Bell withdrew, but some researchers persisted on the idea of small operating system

More history

- So first ideas coded in Assembler and B
- Rewritten in C wanted high level code
 - First concept of software pipes
 - Released in 1972
 - Released source through licensing agreements
 - Addition of TCP and specialization versions to different groups
 - Taught in university courses where it caught on
 - Brought to business by new graduates © (early 80's)
 - System V (1983)

- · Allows you to interact with the operating system
- · Usually refer to non graphical one
- Windows NT/XP:
 - Start -> run -> cmd
- Windows 98
 - Start -> run -> command
- Unix
 - Log in (most of the time)
- Mac
 - terminal

Technical Details

- Shell is simply a program which takes your commands and interprets them
- Usually write your own in OS course
- Many different kinds of shells
 - Mainly to confuse you ©
- Main advantage
 - Can use build in language to write simple but powerful scripts

\$SHELL

- if the answer is /bin/sh, then you are
- if the answer is /bin/bash, then that's close enough
- otherwise, you can start the Bourne shell by typing sh at the UNIX prompt
- enter Ctrl-D or exit to exit the Bourne shell and go back to whatever shell you were running before...

Useful tools & commands

- wc counts characters, words and lines in input
- grep matches regular expression patterns in input
- cut extracts portions of each line from input
- cat print files
- sort sorts lines of input
- sed stream edits input
- ps displays process list of running processes
- who displays anyone logged in on the system

	WC
	ts the number of characters/words/lines in its input a piped command (see below)
hello	
world	
• usage:	
unix-prompt\$ wc he 2 2 12 hello.dat	llo.dat
unix-prompt\$ wc -l 2 hello.dat	hello.dat
unix-prompt\$ wc -c 12 hello.dat	hello.dat
unix-prompt\$ wc -w 2 hello.dat	hello.dat

Global Regular Expression Parser GREP

- one of the most useful tools in unix
- three standard versions:
 - plain old grep
 - extended grep: egrep
 - fast grep: fgrep
- used to search through files for ... regular expressions!
- prints only lines that match given pattern
- a kind of filter
- BUT it's line oriented


```
examples:
grep -i "^[aeiou]" myfile
grep -v "^[aeiou]" myfile
grep -iv "^[aeiou]" myfile
how do you list all lines containing a digit?
how do you list all lines containing a 5?
how do you list all lines containing a 0?
how do you list all lines containing 50?
how do you list all lines containing a 5 and an 0?
```



```
what do the following sed commands do?
sed 's/xx/yy' myfile
sed '/BSD/d' myfile
sed '/^BEGIN/,/^END/p@' myfile
how do you change the content of all your html
files to lowercase?
how do you change all the html commands to
lowercase?
```



```
Filename is t.sh
• #!/bin/sh
• hello="hi"

    echo 0=$hello

 echo 1='$hello'

• echo 2="$hello"

 echo 3=`$hello`

 echo 4="`$hello`"

• echo 5="'$hello'"
• filename=hi
• #!/bin/sh
• echo "how did you get in here?"
output=
unix$ t.sh
0=hi
1=$hello
2=hi
3=how did you get in here?
4=how did you get in here?
5='hi'
```


variables

- variables are placeholders for values ٠
- shell does variable substitution •
- \$var or \${var} is the value of the variable •
- assignment: •
 - var=value (with no spaces before or after!)
 - let "var = value"
 - export var=value
- BUT values go away when shell is done executing
- uninitialized variables have no value •
- variables are untyped, interpreted based on context •
- standard shell variables: •
 - \${N} = shell Nth parameter \$\$ = process ID

 - \$? = exit status

 filename=u.s 	sh		
#!/bin/sh			
echo 0=\$0			
echo 1=\$1			
echo 2=\$2			
echo 3=\$\$			
echo 4=\$?			
output			
unix\$ u.sh			
0=.//u.sh			
1=			
2=			
3=21093			
4=0			
unix\$ u.sh abc 2	23		
0=.//u.sh			
1=abc			
2=23			
3=21094			
4=0			


```
while
i=0
while [$i -lt 10]; do
echo "i=$i"
((i=$i+1)) # same as let "i=$i+1"
done

for
for
for counter in `ls *.c`; do
echo $counter
done
```


- shell substitutes and executes
- order:
 - brace expansion
 - tilde expansion
 - parameter and variable expansion
 - command substitution
 - arithmetic expansion
 - word splitting
 - filename expansion

Command subing

replace \$(command) or 'command' by stdout of executing command • • can be used to execute content of variables: unix\$ x=ls unix\$ \$x myfile.c a.out unix\$ echo \$x ls unix\$ echo `ls` myfile.c a.out unix\$ echo `x` sh: x: command not found unix\$ echo `\$x` myfile.c a.out unix\$ echo \$(ls) myfile.c a.out unix\$ echo \$(x) sh: x: command not found unix\$ echo \$(\$x) myfile.c a.out

Built in commands

- alias, unalias create or remove a pseudonym or shorthand for a command or series of commands
- jobs, fg, bg, stop, notify control process execution
- command execute a simple command
- cd, chdir, pushd, popd, dirs change working directory
- echo display a line of text
- history, fc process command history list
- set, unset, setenv, unsetenv, export shell built-in functions to determine the characteristics for environmental variables of the current shell and its descendents
- getopts parse utility options
- hash, rehash, unhash, hashstat evaluate the internal hash table of the contents of directories
- kill send a signal to a process

