CS3157: Advanced
Programming

Lecture #15
Apr 24

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

o C++ wrap up
» Shell commands
» Software engineering

Announcements

» Please go to course works to fill out the
class evaluation
— Again, | will give you credit on final for this
— Chance to win prizes!
— Please take care of it this week

Announcements

» Final: 5/8 Monday 1-4 pm in class.
— We will do a full review next week Monday
— Please prepare questions you might have
— Will have extra office hours in preparation

Schedule:

Will now wrap up cpp

Next we will cover basic and not so basic
unix utilities

Might have time for some software
engineering background

Will meet for last lab this week

Anyone want to see php next week?

Wrap up CPP

 Issues with last lab
— Not sure what happened

— | ran tests on some machines, but | don’t
recall if 1 did all operators on all clic machine
types ©

— Nature of the course, what lesson can you
take away from it ?

Last Homework

* Very short
» Will be posted today

» Using the POWER of template
programming you will be writing a fraction
class for CPP and use a simple CGl front-
end to make it work over the network

Fraction class
* When you want to add %2 + 1/3
e Convertto.5+.3=.8

* Want to work with fraction natively
* Want to learn to use templates

 Also want to be able to operate on fractions and
reduce fractions

— Will need to code GCD

Template programming

 What are templates?
* How are they used?

« Why ?

Queue Example

template <class T>
class Queue {
public:
Queue();
~Queue();

T& remove();

void add (const T &);

int iseEmpty(Q);

int isFull(Q);
private:

Queueltem<T> *front;

Queueltem<T> *back;

}

Queueltem

template <class P>
Queueltem {
public:
//?7?
private:
P 1tem;
Queueltem *next;

Detalls

« Can have multiple classes in the definition
template <class U, class V, int X>

« Can use keyword ‘typename’ or ‘class’
— version issues

Unix Command Shell

 What is UNIX exactly ?

 What are Unix flavors ?

 What in the world is a command shell ??

Brief History

» Early on, OS were specialized to hardware
— Upgrade = new OS

» 1965, Bell Labs and GE

— Multics
» System to support many users at the same time
* Mainframe timesharing system
— 1969 — Bell withdrew, but some researchers
persisted on the idea of small operating
system

More history

So first ideas coded in Assembler and B
Rewritten in C — wanted high level code

First concept of software pipes

Released in 1972

Released source through licensing agreements

Addition of TCP and specialization versions to different groups
Taught in university courses where it caught on

Brought to business by new graduates © (early 80's)

System V (1983)

Command shell

Allows you to interact with the operating system
Usually refer to non graphical one

Windows NT/XP:
— Start -> run -> cmd

Windows 98

— Start -> run -> command
Unix

— Log in (most of the time)
Mac

terminal

Technical Detalls

Shell is simply a program which takes your
commands and interprets them

Usually write your own in OS course
Many different kinds of shells
— Mainly to confuse you ©

Main advantage

— Can use build in language to write simple but
powerful scripts

Main shells (unix)

e Bourne Shell
—sh
—ksh
—zsh

e C shell

—csh
—tcsh

shell

» shis the “Bourne shell”, the first scripting language

e itis a program that interprets your command lines and runs other
programs

* it can invoke Unix commands and also has its own set of commands

while (1) {

print prompt and wait for user to enter input;
read input from terminal;

parse into words;

substitute variables;

execute commands (execv or builtin);

}

* shell commands can be read:
— from a terminal == interactive
— from a file == shell script

» search path

— the place where the shell looks for the commands it
runs
— should include standard directories:
* /bin
* /usr/bin
« it should also include your current working directory (.)

10

 are you running the Bourne shell?
type:

$SHELL

« if the answer is /bin/sh, then you are

 if the answer is /bin/bash, then that's close
enough

» otherwise, you can start the Bourne shell by
typing sh at the UNIX prompt

« enter Ctrl-D or exit to exit the Bourne shell and
go back to whatever shell you were running
before...

Power of Shells

» capable of both synchronous and asynchronous
execution
— synchronous: wait for completion
— asychronous: in parallel with shell (runs in the background)

+ allows control of stdin, stdout, stderr

» enables environment setting for processes (using
inheritance between processes)

» sets default directory

11

Useful tools & commands

* WC — counts characters, words and lines in input

» grep — matches regular expression patterns in
input

* cut — extracts portions of each line from input

e cat — print files

» sort — sorts lines of input

* sed — stream edits input

* ps — displays process list of running processes
» who — displays anyone logged in on the system

WC

e unix command: counts the number of characters/words/lines in its input
* input can be a file or a piped command (see below)
example:

¢ filename = “hello.dat”

hello

world

e usage:

unix-prompt$ wc hello.dat

2 2 12 hello.dat

unix-prompt$ wc -1 hello.dat

2 hello.dat

unix-prompt$ wc -c hello.dat

12 hello.dat

unix-prompt$ wc -w hello.dat

2 hello.dat

12

Global Regular Expression Parser
GREP

» one of the most useful tools in unix
 three standard versions:
— plain old grep
— extended grep: egrep
— fast grep: fgrep
» used to search through files for ... regular expressions!
 prints only lines that match given pattern

» akind of filter

e BUT it's line oriented

* input can be one or more files or can be piped into grep

» examples:
grep "“[aeiou]” myfile
Is -1 | grep t

 useful options:

* -iignore case

e -w match pattern as a word

» -l return only the filename if there’s a match

» -vreverse the normal action (i.e., return what doesn’t
match)

13

examples:

grep -1 ""[aeiou]" myfile
grep -v ""[aeiou]" myfile
grep -iv ""[aeiou]" myFile

how do you list all lines containing a digit?
how do you list all lines containing a 5?
how do you list all lines containing a 0?
how do you list all lines containing 50?

how do you list all lines containing a 5 and an 0?

cut

unix command: extracts portions of each line
from input

input can be a file or a piped command

Can cut file according to deliminators (fields)
and characters

syntax: cut <-c|f> <-d>

note that ¢ and +f+ start with 1; default delimiter
is TAB

14

cat

« Concatenate files and print to standard out

« Easy way to pipe the contents of a file to
another command

sort

* unix command: sorts lines of input

* input can be a file or a piped command (see
below)

» three modes: sort, check (sort -c), merge (sort -
m)

e syntax: sort <-t> <-n> <-r> <-0> POS1 -POS2+

* note that POS starts with 0; default delimiter is
whitespace

15

sed

stream editor
does not change the file it “edits”

commands are implicitly global
input can be a file or can be piped into sed

example: substitute all A for B:
sed 's/A/B/I’ myfile
cat myfile | sed 's/A/B/’

use the -e option to specify more than one command at a time:
sed -e 's/A/B/' -e 's/C/DI" myfile

pipe output to a file in order to save it:
sed -e 's/A/B/" -e 's/C/D/’ myfile >mynewfile

sed

sed can specify an address of the line(s) to affect
if no address is specified, then all lines are affected
if there is one address, then any line matching the address is affected

if there are two (comma separated) addresses, then all lines between the
two addresses

are affected

if an exclamation mark (!) follows the address, then all lines that DON'T
match the

address are affected
addresses are used in conjunction with commands

examples (using the delete (d) command):

sed *$d” myfFile

sed */7%$/d” myfile

sed ’1,/under/d” myfile

sed */over/,/under/d’ myfile

16

order of commands is important

input is line oriented

all editing commands are applied to each line, one at a
time

then next line is read and editing commands are applied
to that linei

etc

for example:

sed -e “s/pig/cow/” -e “s/cow/horse’ myfile

What does this do?

Regular expression like grep
Except forward slash
delimiter is slash (/)

backslash (escape) it if it appears in the
command, e.g.:

sed ’s/\/usr\/bin\//\/usr\/etc/’

myfile

17

* meta-character ampersand (&) represents the
extent of the pattern matched

* example:

sed *s/[0-9)/#&/° myfTile

» what does this do?

* you can also save portions of the matched
pattern:

sed s/\([0-9]\)/#\1/* myFile

sed ~s/\([0-91\)\([0-91\)/#\1-\2/" myFile

 transformation command: y

« example:
sed *y/ABC/abc” myfile

18

e print command: p

o example:
sed */begin/,/end/p’ myfile
sed -n */begin/,/end/p’ myfile

» what do the following sed commands do?
sed “s/xx/yy’ myfile

sed */BSD/d” myfile

sed */"BEGIN/,/ "END/p@> myfTile

 how do you change the content of all your html
files to lowercase?

* how do you change all the html commands to
lowercase?

19

Shell programming

creating your own shell scripts

e naming:
— DON'T ever name your script (or any executable file) “test”
— since that's a sh command

e executing

- %_rre notation #! inside your file tells UNIX which shell should execute the commands in your
ile

* example— create a file called “myscript.sh”
#!/bin/sh
echo hello world

* make the script executable: unix-prompt# chmod +x myscript.sh
* execute the script:

./myscript.sh

myscript.sh

* quote ()
'something’: preserve everything literally and don’t evaluate
anything that is inside the quotes

* double quote (")

"something2": preserve most things literally, but also allow
$ variable expansion (but not ’ evaluation)

» backquote ()
‘something3‘: try to execute something as a command

20

Filename is t.sh
e #1/bin/sh

e hello="hi"

e echo 0=$hello
e echo 1="$hello”

e echo 2="$hello"

e echo 3=“$hello*

e echo 4="“$hello“"
e echo 5=""$hello”""

filename=hi
#1/bin/sh
echo "how did you get in here?"

output=

unix$ t.sh

0=hi

1=%hello

2=hi

3=how did you get in here?
4=how did you get in here?
5="hi’

comments

 single line comments only (no multi-line
comments)

* line begins with # character

21

Simple commands

« sequence of words

¢ first word defines command
e can be combined with &&, ||, ;

to execute commands sequentially:

cmdl; cmd2;

to execute a command in the background :
cmdl&

to execute two commands asynchronously:
cmdl&

cmd2&

to execute cmd2 if cmd1 has zero exit status:
cmdl && cmd2

to execute cmd2 only if cmd1 has non-zero exit status:
cmdl || cmd2

e set exit status using exit command (e.g., exit O or exit 1)

pipes

» sequence of commands
» connected with |

e each command reads previous command’s

output and takes it as input

* example:
echo "hello world" | wc -w

2

22

variables

variables are placeholders for values
shell does variable substitution
$var or ${var} is the value of the variable
assignment;

— var=value (with no spaces before or after!)

— let "var = value"

— export var=value

BUT values go away when shell is done executing
uninitialized variables have no value
variables are untyped, interpreted based on context
standard shell variables:

— ${N} = shell Nth parameter

— $% = process ID

— $7? = exit status

¢ filename=u.sh
#1/bin/sh
echo 0=%0
echo 1=%1
echo 2=%2
echo 3=%$%$
echo 4=%7

e output
unix$ u.sh
0=.//u.sh
1=

2=

3=21093
4=0

unix$ u.sh abc 23
0=.//u.sh
1=abc

2=23

3=21094

4=0

23

shell variables are generally not visible to programs
environment variables are a list of name/value pairs
passed to sub-processes

all environment variables are also shell variables, but not
vice versa

show with env or echo $var

standard environment variables include:
— HOME = home directory

— PATH = list of directories to search

— TERM = type of terminal (vt100, ...)

— TZ =timezone (e.g., US/Eastern)

Loops

similar to C/Java constructs, but with commands

until test-commands; do consequent-commands;
done

while test-commands; do consequent-
commands; done

for name [in words ...]; do commands; done

also on separate lines
break and continue control loop

24

e while

i=0

while [$1 -1t 10]; do
echo "i=$i"

((i=%i+1)) # same as let "i=$i+1"

done

« for

for counter in “Is *.c“; do
echo $counter

done

If

if test-commands; then
consequent-commands

[elif more-test-commands; then
more-consequents;]

[else alternate-consequents;]

fi

e colon (:) is a null command

e example

#1/bin/sh

if expr $TERM = "'xterm'; then
echo "hello xterm';

else

echo "something else™;

fi

25

case test-var in

valuel) consequent-commands;;
value2) consequent-commands;;
*) default-commands;

esac

e pattern matching:

— ?) matches a string with exactly one character

— ?*) matches a string with one or more characters

= [yY]llyY]leE][sS]) matches y, Y, yes, YES, yES...

— [*/*[0-9]) matches filename with wildcards like /xxx/yyy/zzz3
— notice two semi-colons at the end of each clause

— stops after first match with a value

—you don’t need double quotes to match string values!

example

#1/bin/sh

case ""$TERM" 1n

xterm) echo "hello xterm";;
vtl00) echo "hello vt100";;
*) echo ''something else";;
esac

26

* biggest difference from traditional programming
languages

» shell substitutes and executes

» order:
— brace expansion
tilde expansion
parameter and variable expansion
command substitution
arithmetic expansion
word splitting
filename expansion

Command subing

replace $(command) or ‘command* by stdout of executing command
can be used to execute content of variables:
unix$ x=Is
unix$ $x
myfile.c
a.out
unix$ echo $x
Is
unix$ echo “Is*
myfile.c
a.out
unix$ echo “x*
sh: x: command not found
unix$ echo “$x*
myfile.c
a.out
unix$ echo $(Is)
myfile.c
a.out
unix$ echo $(x)
sh: x: command not found
unix$ echo $($x)
myfile.c
a.out

27

Filename expansion

any word containing *?([is considered a pattern
* matches any string
? matches any single character
[...] matches any of the enclosed characters

unix$ Is

myfile.c

a.out

a.b

unix$ Is a*

a.out

a.b

unix$ Is a?

Is: No match.

unix$ Is a.*

a.out

a.b

unix$ Is a.?

a.b

unix$ Is a.???

a.out

unix$ Is [am].b

a.b

redirection

* stdin, stdout and stderr may be redirected
» <redirects stdin (0) to come from a file

» > redirects stdout (1) to go to file

e >> appends stdout to the end of a file

» &> redirects stderr (2)

» >& redirects stdout and stderr, e.g.: 2>&1 sends
stderr to the same place that stdout is going

» << gets input from a here document, i.e., the
input is what you type, rather than reading from
a file

28

Built in commands

alias, unalias — create or remove a pseudonym or shorthand for a
command or series of commands

jobs, fg, bg, stop, notify — control process execution
command — execute a simple command

cd, chdir, pushd, popd, dirs — change working directory
echo — display a line of text

history, fc — process command history list

set, unset, setenv, unsetenv, export — shell built-in functions to
determine the characteristics for environmental variables of the
current shell and its descendents

getopts — parse utility options
hash, rehash, unhash, hashstat — evaluate the internal hash table
of the contents of directories

kill — send a signal to a process

pwd — print name of current/working directory

shift — shell built-in function to traverse either a shell’'s argument list
or a list of field-separated words

readonly — shell built-in function to protect the value of the given
variable from reassignment

source — execute a file as a shell script
suspend — shell built-in function to halt the current shell
test — check file types and compare values

times — shell built-in function to report time usages of the current
shell

trap, onintr — shell built-in functions to respond to (hardware)
signals

type — write a description of command type

typeset, whence — shell built-in functions to set/get attributes and
values for shell variables and functions

29

o limit, ulimit, unlimit — set or get limitations
on the system resources available to the
current shell and its descendents

» umask — get or set the file mode creation
mask

More programs you might like

e cal
— Prints a calendar

bash-2.05% cal 2 2004
February 2004

Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29

30

Usage stuff

o df

bash-2.05$% df -h

Filesystem Size Used Avail Use% Mounted on
/dev/hda3 197M 157M 31M 84% /
/dev/hda7 296M 65k 280M 1% /tmp
/dev/hdab 2.4G 2.0G 385M 84% /usr

e du

bash-2.05% du -ch code2
48k code2/ail

56k code2

56k total

* quota

Next time

* Lab Wednesday

— Please come on time, will be wrapping up all
labs and answering any lab questions you
have

— Will have extra credit lab on unix
programming
— Will give you homework hints/help
« Monday — review and practice final class

31

