
1

1

CS3157: Advanced 
Programming

Lecture #14
Apr 17

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline 

• Wrapping up CPP
– Little things
– dynamic memory allocation (new/delete vs

malloc/free)
– Copy and construction options
– Templates
– Polymorphism

– c++core ch 7-9,11-13



2

3

Announcements 

• How are you doing on the homework ?

• Anyone up for extension ??

• Wednesday lab:
– Due from last week
– Get it in on time please
– Will allow you more time to focus on other stuff

4

Linkage directions

• If you want to call a function in another 
programming language, the compiler must 
be told that different rules apply

• Linkage directive
– Single statement
– Compound form

• Declared outside of functions



3

5

Single form

• extern “C” void something(int);

• Keyword
• String
• Function
• Compiler will type check any function calls

6

Compound form

• extern “C” {
int printf(const char * …);
int scanf (const char * … );
}

• extern “C” {
#include <cmath>
}



4

7

Other languages

• Depends on the compiler

• For example many support 
• FORTRAN

8

Dynamic allocation

• Local variables have local life and scope
• If you want to dynamically create and 

manage memory, use the new and delete
• Using pointers

• Have to be careful from dangling 
pointers…

• Ideas?



5

9

Reality check

• int *p = new int (1024);

• int *q = new int [1024];

• int (*r)[1024] = new int [4][1024];

10

Abstraction and member functions

• How are object internally manipulated by 
cpp…..lets take a look at a complex 
example



6

11

Rect

class Rect {

// ...
private:
int top, left;
int width, height;
..
};

12

Color

class Color{
// ..
private:
int data;
};



7

13

TextBox

class TextBox: public Rect{
//...
private:
Color txtColor;
int frameThick;
char *text;
};

14

main

main(){
TextBox source, dest;

//...

dest = source;

• How to get this to work ?



8

15

Overloading operator =
class TextBox : public Rect{
public:
void operator=(TextBox &source);
..

16

Equivalent 

main(){
TextBox source, dest;

//...

dest.operator=(source);



9

17

Inside 
void TextBox::operator=(TextBox &source) {

if(this == &source)
return;

Rect::operator=(source);

txtColor = source.txtColor;

frameThick = source.frameThick;

delete []text;
if(source.text != 0) {

text = new char[strlen(source.text+1)];
strcpy(text,source.text);

}
else

text = 0;
}

18

Implicit assignment

• If you don’t define an assignment operator
– Will try to figure out how do to it
– By looking at each field member variable
– Works with primitives
– Pointers will get shallow copied



10

19

Copy constructor

• TextBox t2 = t1;

• Looks like assignment
• Really a constructor call with object as 

argument
• Called copy constructor
• Combination of constructor and 

assignment

20

Defining it

• Just overload the constructor
• TextBox(TextBox &source);

• Be careful:
– When you overload the copy constructor you 

throw out a default constructor
– Which means you need to explicitly define a 

default constructor (no arg)



11

21

code

TextBox::TextBox(TextBox
&source){

Rect::operator=(source);

frameThick = source.frameThick;
textColor = source.textColor;

etc

22

Chaining 

• If you want to be able to say
Textbox a,b,c;
//…

a = b = c ;

• how would the operator overloaded be 
different ??



12

23

Exception 

• Like in java , CPP allows you to throw and 
catch exceptions

• Compiler time exceptions
• Run time exceptions

24

Template programming

• Allows you to specify a type to pass in to 
your class, so can create a collection class 
to handle many different types, without 
having the problem if limited casting in the 
code

• Allows you to move errors from run time to 
compiler time



13

25

Virtual functions

• Allows you to declare a function in the 
base class without a definition

• Each of the derived class provide a 
definition unique to their implementation

• At runtime will allow all derived class 
object instances to be manipulated 
uniformally

26

Next week 

• Please finish the lab for this Wednesday
• Homework extended till Wednesday night
• Ta’s will be in lab to help with homework

• Read up on things discussed in today’s class
– Understand how operator overloading works and 

implications
– Understand the pointer examples

• Will be starting shell programming next class


