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Outline

* Wrapping up CPP
— Little things

— dynamic memory allocation (new/delete vs
malloc/free)

— Copy and construction options
— Templates
— Polymorphism

— c++core ch 7-9,11-13




Announcements

* How are you doing on the homework ?

» Anyone up for extension ??

» Wednesday lab:
— Due from last week
— Get it in on time please
— Will allow you more time to focus on other stuff

Linkage directions

* If you want to call a function in another
programming language, the compiler must
be told that different rules apply

 Linkage directive
— Single statement
— Compound form

» Declared outside of functions




Single form

extern “C” void something(int);

Keyword

String

Function

Compiler will type check any function calls

Compound form

extern “C” {
int printf(const char * ...);
int scanf (const char * ... );

}

extern “C” {
#include <cmath>

}




Other languages

« Depends on the compiler

 For example many support
* FORTRAN

Dynamic allocation

» Local variables have local life and scope

* If you want to dynamically create and
manage memory, use the new and delete

» Using pointers

» Have to be careful from dangling
pointers...

e |deas?




Reality check

e int *p = new int (1024);
e int *g = new int [1024];

 int (*r)[1024] = new int [4][1024];

Abstraction and member functions

* How are object internally manipulated by
cpp.....lets take a look at a complex
example
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Rect

class Rect {

// ...

private:

int top, left;

int width, height;
}3
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Color

class Color{
// ..
private:
int data;

¥
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TextBox

class TextBox: public Rect{
//. ..
private:
Color txtColor;
int frameThick;
char *text;

¥
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main

main(){

TextBox source, dest;
// . ..

dest = source;

* How to get this to work ?
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Overloading operator =

class TextBox : public Rect{
public:

void operator=(TextBox &source);
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Equivalent

main(){

TextBox source, dest;
// . ..

dest.operator=(source);
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Inside

void TextBox::operator=(TextBox &source) {

if(this == &source)
return;

Rect: :operator=(source);

txtColor = source.txtColor;

frameThick = source.frameThick;

delete []Jtext;

if(source.text 1= 0) {
text = new char[strlen(source.text+1)];
strcpy(text,source.text);

else
text = 0;
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Implicit assignment

 If you don’t define an assignment operator
— Will try to figure out how do to it
— By looking at each field member variable
— Works with primitives
— Pointers will get shallow copied

18




Copy constructor

e TextBox t2 = t1;

» Looks like assignment

» Really a constructor call with object as
argument

» Called copy constructor

 Combination of constructor and
assignment
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Defining it

» Just overload the constructor
» TextBox(TextBox &source);

» Be careful:

— When you overload the copy constructor you
throw out a default constructor

— Which means you need to explicitly define a
default constructor (no arg)
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code

TextBox: : TextBox(TextBox
&source){

Rect: :operator=(source);

frameThick = source.frameThick;
textColor = source.textColor;

etc
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Chaining

* If you want to be able to say
Textbox a,b,c;

/7.

* how would the operator overloaded be
different ??
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Exception

 Like in java , CPP allows you to throw and
catch exceptions

« Compiler time exceptions
* Run time exceptions
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Template programming

 Allows you to specify a type to pass in to
your class, so can create a collection class
to handle many different types, without
having the problem if limited casting in the
code

 Allows you to move errors from run time to
compiler time
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Virtual functions

» Allows you to declare a function in the
base class without a definition

» Each of the derived class provide a
definition unique to their implementation

« At runtime will allow all derived class
object instances to be manipulated
uniformally
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Next week

* Please finish the lab for this Wednesday
* Homework extended till Wednesday night
» Ta’'s will be in lab to help with homework

* Read up on things discussed in today’s class

— Understand how operator overloading works and
implications
— Understand the pointer examples

* Will be starting shell programming next class
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