CS3157: Advanced
Programming

Lecture #14
Apr 17

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

* Wrapping up CPP
— Little things

— dynamic memory allocation (new/delete vs
malloc/free)

— Copy and construction options
— Templates
— Polymorphism

— c++core ch 7-9,11-13

Announcements

* How are you doing on the homework ?

» Anyone up for extension ??

» Wednesday lab:
— Due from last week
— Get it in on time please
— Will allow you more time to focus on other stuff

Linkage directions

* If you want to call a function in another
programming language, the compiler must
be told that different rules apply

 Linkage directive
— Single statement
— Compound form

» Declared outside of functions

Single form

extern “C” void something(int);

Keyword

String

Function

Compiler will type check any function calls

Compound form

extern “C” {
int printf(const char * ...);
int scanf (const char * ...);

}

extern “C” {
#include <cmath>

}

Other languages

« Depends on the compiler

 For example many support
* FORTRAN

Dynamic allocation

» Local variables have local life and scope

* If you want to dynamically create and
manage memory, use the new and delete

» Using pointers

» Have to be careful from dangling
pointers...

e |deas?

Reality check

e int *p = new int (1024);
e int *g = new int [1024];

 int (*r)[1024] = new int [4][1024];

Abstraction and member functions

* How are object internally manipulated by
cpp.....lets take a look at a complex
example

10

Rect

class Rect {

// ...

private:

int top, left;

int width, height;
}3

11

Color

class Color{
// ..
private:
int data;

¥

12

TextBox

class TextBox: public Rect{
//. ..
private:
Color txtColor;
int frameThick;
char *text;

¥

13

main

main(){

TextBox source, dest;
// . ..

dest = source;

* How to get this to work ?

14

Overloading operator =

class TextBox : public Rect{
public:

void operator=(TextBox &source);

15

Equivalent

main(){

TextBox source, dest;
// . ..

dest.operator=(source);

16

Inside

void TextBox::operator=(TextBox &source) {

if(this == &source)
return;

Rect: :operator=(source);

txtColor = source.txtColor;

frameThick = source.frameThick;

delete []Jtext;

if(source.text 1= 0) {
text = new char[strlen(source.text+1)];
strcpy(text,source.text);

else
text = 0;

17

Implicit assignment

 If you don’t define an assignment operator
— Will try to figure out how do to it
— By looking at each field member variable
— Works with primitives
— Pointers will get shallow copied

18

Copy constructor

e TextBox t2 = t1;

» Looks like assignment

» Really a constructor call with object as
argument

» Called copy constructor

 Combination of constructor and
assignment

19

Defining it

» Just overload the constructor
» TextBox(TextBox &source);

» Be careful:

— When you overload the copy constructor you
throw out a default constructor

— Which means you need to explicitly define a
default constructor (no arg)

20

10

code

TextBox: : TextBox(TextBox
&source){

Rect: :operator=(source);

frameThick = source.frameThick;
textColor = source.textColor;

etc

21

Chaining

* If you want to be able to say
Textbox a,b,c;

/7.

* how would the operator overloaded be
different ??

22

11

Exception

 Like in java , CPP allows you to throw and
catch exceptions

« Compiler time exceptions
* Run time exceptions

23

Template programming

 Allows you to specify a type to pass in to
your class, so can create a collection class
to handle many different types, without
having the problem if limited casting in the
code

 Allows you to move errors from run time to
compiler time

24

12

Virtual functions

» Allows you to declare a function in the
base class without a definition

» Each of the derived class provide a
definition unique to their implementation

« At runtime will allow all derived class
object instances to be manipulated
uniformally

25

Next week

* Please finish the lab for this Wednesday
* Homework extended till Wednesday night
» Ta’'s will be in lab to help with homework

* Read up on things discussed in today’s class

— Understand how operator overloading works and
implications
— Understand the pointer examples

* Will be starting shell programming next class

26

13

