CS3157: Advanced
Programming

Lecture #11
Apr 10

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

CPP continued

Language basics: identifiers, data types, operators, type
conversions, branching and looping, program structure

data structures: arrays, structures
pointers and references

:'/k?: writing to the screen, reading from the keyboard, iostream
ibrary

functions: defining, overloading, inlining, overriding
classes: defining, scope, ctors and dtors
listing of keywords

Reading
— c++core ch 3-6
— c++nutshell 5-6,9




Announcements

* This weekend (Thur/Friday) Passover
begins

* | wont be available, please contact the
Ta's for any help

» Don't forget the hw’s are due next week

Next 2 weeks

We will be covering practical CPP

For those taking data structures in cpp,
this will be very very very very useful

For those of you not taking this will be very
very very very useful

Still also fun!




Before we get started

« So we've tasted
— Perl
-C
- CPP
— Java (hopefully in the past)

Programming languges

* When you taking a formal course in
programming languages

— Programming Languages and Translators
(PLT)

» Covers the limitations of a language
through mathematical models

« But a practical question:




* You want to program something.....

 How do you choose a language??

How to choose

Depends on project

Depending on requirements
Depending on available libraries
Depending on skill availability
Hardware constraints

Operating constraints




CPP classes

» So we covered basic CPP with basic
classes

* | really hope you did the lab already

Random important stuff

* I'm going to step through some random
cpp stuff incase you've missed it




Pass by reference

 In c we noticed default function argument
was pass by value

 How does c pass by reference ?

CPP pass by reference

« Another way of passing by reference
int count = 10;
int &rcount = count;




references

void foo2(int &);

void foo(int &refint){
refint *= refint;

}

Variable scope

« CPP allows you to specify scope through
unary scope operator (::)

» So can differentiate between local and
global variables




code

int count = 10;

int main(){
int count = 5;

// count 1s local
// :-:-count is global
// std::count 1s the same as 2

Inline functions

* We covered these....any ideas ?

* Where do you code them?




Functions organization

* You've programmed classes in Java

 What kind of functions exist with well
designed classes

Functions

Accessor
Mutator
Helper
Predicate




CPP classes

» A class if a collection of functions and
variables

* In CPP we have constructors and
destructors

Order of running program

* In c we saw that the program always starts
from main

» This is different in cpp

10



What can go wrong

» The good thing about cpp is that your

program can now crash many times even
before reaching main ©

Ordering and where to look for
problems

Global variables
— Assignments and constructors
— What else ??

Main

Local variables
End local variables
End main

Global destructors

11



code

 I'd like to cover a bunch of code examples
now illustrating the power of classes

« Will start from simple array and work out a
complex class

» You will do the same with the string class
in this week’s lab

Abstraction with member functions

* example #1: arrayl.cpp
* example #2: array2.cpp
— arrayl.cpp with interface functions

« example #3: array3.cpp
— array2.cpp with member functions

e class definition

public vs private
¢ declaring member functions inside/outside class definition
« scope operator (::)

e this pointer

12



arrayl.cpp

struct IntArray {
int *elems;
size_t numElems;
}:
main() {
IntArray powersOf2 = { 0, O };
powersOf2_numElems = 8;
powersOf2._elems = (int *)malloc( powersOf2_numElems *
sizeof( int ));
powersOf2._elems[0] = 1;
for ( int i=1; i<powersOf2_numElems; i++ ) {
powersOf2._elems[i] = 2 * powersOf2_elems[i-1];
}
cout << "here are the elements:\n";
for ( int i=0; i<powersOf2_numElems; i++ ) {

cout << "Mi=" << I << " powerOf2="" <<
powersOf2._elems[i] << "\n"';

}

free( powersOf2._elems );

array2

void IA_init( IntArray *object ) {
object->numElems = 0;
object->elems = 0;

} 7/ end of 1A_initQ

void 1A_cleanup( IntArray *object ) {
free( object->elems );
object->numElems = 0;

} 77 end of 1A_cleanup(Q

void IA_setSize( IntArray *object, size_t value ) {
if ( object->elems =0 ) {
free( object->elems );

object->numElems = value;
object->elems = (int *)malloc( value * sizeof( int ));
} 7/ end of I1A_setSize()

size_t IA_getSize( IntArray *object ) {
return( object->numElems );
} 7/ end of 1A_getSize()

13



Class friends

» allows two or more classes to share
private members

* e.g., container and iterator classes

« friendship is not transitive

hierarchy

e composition:
— creating objects with other objects as members
— example: array4.cpp

« derivation:
— defining classes by expanding other classes
— like “extends” in java
— example:
class SortintArray : public IntArray {
public:
void sort();
private:
int *sortBuf;
}:; 7/ end of class SortlntArray
* ‘“base class” (IntArray) and “derived class” (SortIntArray)
« derived class can only access public members of base class




complete example: array5.cpp
— public vs private derivation:

public derivation means that users of the derived class
can access the public portions of the base class

private derivation means that all of the base class is
inaccessible to anything outside the derived class

private is the default

Class derivation

encapsulation
— derivation maintains encapsulation

— i.e., itis better to expand IntArray and add sort() than to modify your own version
of IntArray

friendship
— not the same as derivation!!
— example:

is a friend of

B2 is a friend of B1

D1 is derived from B1

D2 is derived from B2

B2 has special access to private members of B1 as a friend
But D2 does not inherit this special access

nor does B2 get special access to D1 (derived from friend B1)

15



Derivation and pointer conversion

« derived-class instance is treated like a base-class instance

¢ but you can't go the other way

* example:

main() {

IntArray ia, *pia;

// base-class object and pointer

StatsIntArray sia, *psia;

// derived-class object and pointer

pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatslntArray *)pia; // sort of okay now since:
// 1. there’s a cast

// 2. pia is really pointing to sia,

// but if it were pointing to ia, then

// this wouldn’t work (as below)

psia = (StatsIntArray *)&ia; // no: because ia isn’t a
StatsintArray

» danger:

—don’t point a base class pointer to an array of
derived objects!

—they aren’t the same size!




Const variables

e Can have const variables in a class

» Any ideas for this ?

Operator overloading

» Most operators can be overloaded in cpp
» Treated as functions

« But its important to understand how they
really work

17



+ o >>
_ e &&
o ++
; - 1
! . 0
= * new
* + delete
o /= ° neW[]
« >
+=
o >S>=
e <L
Look up list
Operators which cant be
overloaded
[ ] _*
°« ?:
e sizeof

18



e X=X+Y

 Need to overload
+

e But this doesn’t overload +=

Functions can be member or non-member
Non-member as friends
If its member, can use this

0, [], -> or any assignments must be class
members

* When overloading need to follow set
function signature

19



e Code from fig18 03 (c book)

» Will cover next class in depth

Y+=Z
Y.operator+=(Z)

++D
member
— D.operator++()

Non member
— operator++(D)

unary

20



For lab

* Read up on classes, and class overloading
* Will be easier lab since homework will be due

* Next week lab, you will be presenting your
Othello program to the class
— You need to show up to lab (if possible)
— Else someone needs to present it for you
— Will vote for best homework
— Some kind of prize

21



