
1

CS3157: Advanced
Programming

Lecture #11
Apr 10

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline
• CPP continued
• Language basics: identifiers, data types, operators, type

conversions, branching and looping, program structure
• data structures: arrays, structures
• pointers and references
• I/O: writing to the screen, reading from the keyboard, iostream

library
• functions: defining, overloading, inlining, overriding
• classes: defining, scope, ctors and dtors
• listing of keywords

• Reading
– c++core ch 3-6
– c++nutshell 5-6,9

2

Announcements

• This weekend (Thur/Friday) Passover
begins

• I wont be available, please contact the
Ta’s for any help

• Don’t forget the hw’s are due next week

Next 2 weeks

• We will be covering practical CPP
• For those taking data structures in cpp,

this will be very very very very useful
• For those of you not taking this will be very

very very very useful
• Still also fun!

3

Before we get started

• So we’ve tasted
– Perl
– C
– CPP
– Java (hopefully in the past)

Programming languges

• When you taking a formal course in
programming languages
– Programming Languages and Translators

(PLT)
• Covers the limitations of a language

through mathematical models

• But a practical question:

4

• You want to program something…..

• How do you choose a language??

How to choose

• Depends on project
• Depending on requirements
• Depending on available libraries
• Depending on skill availability
• Hardware constraints
• Operating constraints

5

CPP classes

• So we covered basic CPP with basic
classes

• I really hope you did the lab already

Random important stuff

• I’m going to step through some random
cpp stuff incase you’ve missed it

6

Pass by reference

• In c we noticed default function argument
was pass by value

• How does c pass by reference ?

CPP pass by reference

• Another way of passing by reference
int count = 10;

int &rcount = count;

7

references

void foo2(int &);

void foo(int &refint){
refint *= refint;
}

Variable scope

• CPP allows you to specify scope through
unary scope operator (::)

• So can differentiate between local and
global variables

8

code

int count = 10;

int main(){
int count = 5;

// count is local
// ::count is global
// std::count is the same as 2

Inline functions

• We covered these….any ideas ?

• Where do you code them?

9

Functions organization

• You’ve programmed classes in Java
• What kind of functions exist with well

designed classes

Functions

• Accessor
• Mutator
• Helper
• Predicate

10

CPP classes

• A class if a collection of functions and
variables

• In CPP we have constructors and
destructors

Order of running program

• In c we saw that the program always starts
from main

• This is different in cpp

11

What can go wrong

• The good thing about cpp is that your
program can now crash many times even
before reaching main ☺

Ordering and where to look for
problems

• Global variables
– Assignments and constructors
– What else ??

• Main
• Local variables
• End local variables
• End main
• Global destructors

12

code

• I’d like to cover a bunch of code examples
now illustrating the power of classes

• Will start from simple array and work out a
complex class

• You will do the same with the string class
in this week’s lab

Abstraction with member functions
• example #1: array1.cpp
• example #2: array2.cpp

– array1.cpp with interface functions

• example #3: array3.cpp
– array2.cpp with member functions

• class definition

• public vs private

• declaring member functions inside/outside class definition

• scope operator (::)

• this pointer

13

array1.cpp
struct IntArray {

int *elems;
size_t numElems;

};
main() {

IntArray powersOf2 = { 0, 0 };
powersOf2.numElems = 8;
powersOf2.elems = (int *)malloc(powersOf2.numElems *
sizeof(int));
powersOf2.elems[0] = 1;
for (int i=1; i<powersOf2.numElems; i++) {
powersOf2.elems[i] = 2 * powersOf2.elems[i-1];

}
cout << "here are the elements:\n";
for (int i=0; i<powersOf2.numElems; i++) {
cout << "i=" << i << " powerOf2=" <<

powersOf2.elems[i] << "\n";
}
free(powersOf2.elems);

}

array2
void IA_init(IntArray *object) {
object->numElems = 0;
object->elems = 0;

} // end of IA_init()

void IA_cleanup(IntArray *object) {
free(object->elems);
object->numElems = 0;

} // end of IA_cleanup()

void IA_setSize(IntArray *object, size_t value) {
if (object->elems != 0) {
free(object->elems);

}
object->numElems = value;
object->elems = (int *)malloc(value * sizeof(int));

} // end of IA_setSize()

size_t IA_getSize(IntArray *object) {
return(object->numElems);

} // end of IA_getSize()

14

Class friends

• allows two or more classes to share
private members

• e.g., container and iterator classes

• friendship is not transitive

hierarchy
• composition:

– creating objects with other objects as members
– example: array4.cpp

• derivation:
– defining classes by expanding other classes
– like “extends” in java
– example:

class SortIntArray : public IntArray {
public:
void sort();
private:
int *sortBuf;
}; // end of class SortIntArray
• “base class” (IntArray) and “derived class” (SortIntArray)
• derived class can only access public members of base class

15

• complete example: array5.cpp
– public vs private derivation:

• public derivation means that users of the derived class
can access the public portions of the base class

• private derivation means that all of the base class is
inaccessible to anything outside the derived class

• private is the default

Class derivation
• encapsulation

– derivation maintains encapsulation
– i.e., it is better to expand IntArray and add sort() than to modify your own version

of IntArray

• friendship
– not the same as derivation!!
– example:

• is a friend of
• B2 is a friend of B1
• D1 is derived from B1
• D2 is derived from B2
• B2 has special access to private members of B1 as a friend
• But D2 does not inherit this special access
• nor does B2 get special access to D1 (derived from friend B1)

16

Derivation and pointer conversion
• derived-class instance is treated like a base-class instance
• but you can’t go the other way
• example:
main() {
IntArray ia, *pia;
// base-class object and pointer
StatsIntArray sia, *psia;
// derived-class object and pointer
pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatsIntArray *)pia; // sort of okay now since:
// 1. there’s a cast
// 2. pia is really pointing to sia,
// but if it were pointing to ia, then
// this wouldn’t work (as below)
psia = (StatsIntArray *)&ia; // no: because ia isn’t a

StatsIntArray

• danger:
– don’t point a base class pointer to an array of

derived objects!
– they aren’t the same size!

17

Const variables

• Can have const variables in a class

• Any ideas for this ?

Operator overloading

• Most operators can be overloaded in cpp
• Treated as functions
• But its important to understand how they

really work

18

• +
• ~
• -
• !
• =
• *
• /=
• +=
• <<

• >>
• &&
• ++
• []
• ()
• new
• delete
• new[]
• ->
• >>=

Look up list

Operators which cant be
overloaded

• .
• .*
• ::
• ?:
• sizeof

19

• X = X + Y
• Need to overload

+
=

• But this doesn’t overload +=

• Functions can be member or non-member
• Non-member as friends
• If its member, can use this
• (), [], -> or any assignments must be class

members

• When overloading need to follow set
function signature

20

• Code from fig18_03 (c book)

• Will cover next class in depth

unary

• Y += Z
• Y.operator+=(Z)

• ++D
• member

– D.operator++()
• Non member

– operator++(D)

21

For lab
• Read up on classes, and class overloading

• Will be easier lab since homework will be due

• Next week lab, you will be presenting your
Othello program to the class
– You need to show up to lab (if possible)
– Else someone needs to present it for you
– Will vote for best homework
– Some kind of prize

